4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work
{
37 struct super_block
*sb
;
38 enum writeback_sync_modes sync_mode
;
39 unsigned int tagged_writepages
:1;
40 unsigned int for_kupdate
:1;
41 unsigned int range_cyclic
:1;
42 unsigned int for_background
:1;
44 struct list_head list
; /* pending work list */
45 struct completion
*done
; /* set if the caller waits */
49 * Include the creation of the trace points after defining the
50 * wb_writeback_work structure so that the definition remains local to this
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
57 * We don't actually have pdflush, but this one is exported though /proc...
59 int nr_pdflush_threads
;
62 * writeback_in_progress - determine whether there is writeback in progress
63 * @bdi: the device's backing_dev_info structure.
65 * Determine whether there is writeback waiting to be handled against a
68 int writeback_in_progress(struct backing_dev_info
*bdi
)
70 return test_bit(BDI_writeback_running
, &bdi
->state
);
73 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
75 struct super_block
*sb
= inode
->i_sb
;
77 if (strcmp(sb
->s_type
->name
, "bdev") == 0)
78 return inode
->i_mapping
->backing_dev_info
;
83 static inline struct inode
*wb_inode(struct list_head
*head
)
85 return list_entry(head
, struct inode
, i_wb_list
);
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info
*bdi
)
92 wake_up_process(bdi
->wb
.task
);
95 * The bdi thread isn't there, wake up the forker thread which
96 * will create and run it.
98 wake_up_process(default_backing_dev_info
.wb
.task
);
102 static void bdi_queue_work(struct backing_dev_info
*bdi
,
103 struct wb_writeback_work
*work
)
105 trace_writeback_queue(bdi
, work
);
107 spin_lock_bh(&bdi
->wb_lock
);
108 list_add_tail(&work
->list
, &bdi
->work_list
);
110 trace_writeback_nothread(bdi
, work
);
111 bdi_wakeup_flusher(bdi
);
112 spin_unlock_bh(&bdi
->wb_lock
);
116 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
119 struct wb_writeback_work
*work
;
122 * This is WB_SYNC_NONE writeback, so if allocation fails just
123 * wakeup the thread for old dirty data writeback
125 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
128 trace_writeback_nowork(bdi
);
129 wake_up_process(bdi
->wb
.task
);
134 work
->sync_mode
= WB_SYNC_NONE
;
135 work
->nr_pages
= nr_pages
;
136 work
->range_cyclic
= range_cyclic
;
138 bdi_queue_work(bdi
, work
);
142 * bdi_start_writeback - start writeback
143 * @bdi: the backing device to write from
144 * @nr_pages: the number of pages to write
147 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
148 * started when this function returns, we make no guarantees on
149 * completion. Caller need not hold sb s_umount semaphore.
152 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
)
154 __bdi_start_writeback(bdi
, nr_pages
, true);
158 * bdi_start_background_writeback - start background writeback
159 * @bdi: the backing device to write from
162 * This makes sure WB_SYNC_NONE background writeback happens. When
163 * this function returns, it is only guaranteed that for given BDI
164 * some IO is happening if we are over background dirty threshold.
165 * Caller need not hold sb s_umount semaphore.
167 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
170 * We just wake up the flusher thread. It will perform background
171 * writeback as soon as there is no other work to do.
173 trace_writeback_wake_background(bdi
);
174 spin_lock_bh(&bdi
->wb_lock
);
175 bdi_wakeup_flusher(bdi
);
176 spin_unlock_bh(&bdi
->wb_lock
);
180 * Remove the inode from the writeback list it is on.
182 void inode_wb_list_del(struct inode
*inode
)
184 spin_lock(&inode_wb_list_lock
);
185 list_del_init(&inode
->i_wb_list
);
186 spin_unlock(&inode_wb_list_lock
);
191 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
192 * furthest end of its superblock's dirty-inode list.
194 * Before stamping the inode's ->dirtied_when, we check to see whether it is
195 * already the most-recently-dirtied inode on the b_dirty list. If that is
196 * the case then the inode must have been redirtied while it was being written
197 * out and we don't reset its dirtied_when.
199 static void redirty_tail(struct inode
*inode
)
201 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
203 assert_spin_locked(&inode_wb_list_lock
);
204 if (!list_empty(&wb
->b_dirty
)) {
207 tail
= wb_inode(wb
->b_dirty
.next
);
208 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
209 inode
->dirtied_when
= jiffies
;
211 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
215 * requeue inode for re-scanning after bdi->b_io list is exhausted.
217 static void requeue_io(struct inode
*inode
)
219 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
221 assert_spin_locked(&inode_wb_list_lock
);
222 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
225 static void inode_sync_complete(struct inode
*inode
)
228 * Prevent speculative execution through
229 * spin_unlock(&inode_wb_list_lock);
233 wake_up_bit(&inode
->i_state
, __I_SYNC
);
236 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
238 bool ret
= time_after(inode
->dirtied_when
, t
);
241 * For inodes being constantly redirtied, dirtied_when can get stuck.
242 * It _appears_ to be in the future, but is actually in distant past.
243 * This test is necessary to prevent such wrapped-around relative times
244 * from permanently stopping the whole bdi writeback.
246 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
252 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
254 static void move_expired_inodes(struct list_head
*delaying_queue
,
255 struct list_head
*dispatch_queue
,
256 unsigned long *older_than_this
)
259 struct list_head
*pos
, *node
;
260 struct super_block
*sb
= NULL
;
264 while (!list_empty(delaying_queue
)) {
265 inode
= wb_inode(delaying_queue
->prev
);
266 if (older_than_this
&&
267 inode_dirtied_after(inode
, *older_than_this
))
269 if (sb
&& sb
!= inode
->i_sb
)
272 list_move(&inode
->i_wb_list
, &tmp
);
275 /* just one sb in list, splice to dispatch_queue and we're done */
277 list_splice(&tmp
, dispatch_queue
);
281 /* Move inodes from one superblock together */
282 while (!list_empty(&tmp
)) {
283 sb
= wb_inode(tmp
.prev
)->i_sb
;
284 list_for_each_prev_safe(pos
, node
, &tmp
) {
285 inode
= wb_inode(pos
);
286 if (inode
->i_sb
== sb
)
287 list_move(&inode
->i_wb_list
, dispatch_queue
);
293 * Queue all expired dirty inodes for io, eldest first.
295 * newly dirtied b_dirty b_io b_more_io
296 * =============> gf edc BA
298 * newly dirtied b_dirty b_io b_more_io
299 * =============> g fBAedc
301 * +--> dequeue for IO
303 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
305 assert_spin_locked(&inode_wb_list_lock
);
306 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
307 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
310 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
312 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
313 return inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
318 * Wait for writeback on an inode to complete.
320 static void inode_wait_for_writeback(struct inode
*inode
)
322 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
323 wait_queue_head_t
*wqh
;
325 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
326 while (inode
->i_state
& I_SYNC
) {
327 spin_unlock(&inode
->i_lock
);
328 spin_unlock(&inode_wb_list_lock
);
329 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
330 spin_lock(&inode_wb_list_lock
);
331 spin_lock(&inode
->i_lock
);
336 * Write out an inode's dirty pages. Called under inode_wb_list_lock and
337 * inode->i_lock. Either the caller has an active reference on the inode or
338 * the inode has I_WILL_FREE set.
340 * If `wait' is set, wait on the writeout.
342 * The whole writeout design is quite complex and fragile. We want to avoid
343 * starvation of particular inodes when others are being redirtied, prevent
347 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
349 struct address_space
*mapping
= inode
->i_mapping
;
353 assert_spin_locked(&inode_wb_list_lock
);
354 assert_spin_locked(&inode
->i_lock
);
356 if (!atomic_read(&inode
->i_count
))
357 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
359 WARN_ON(inode
->i_state
& I_WILL_FREE
);
361 if (inode
->i_state
& I_SYNC
) {
363 * If this inode is locked for writeback and we are not doing
364 * writeback-for-data-integrity, move it to b_more_io so that
365 * writeback can proceed with the other inodes on s_io.
367 * We'll have another go at writing back this inode when we
368 * completed a full scan of b_io.
370 if (wbc
->sync_mode
!= WB_SYNC_ALL
) {
376 * It's a data-integrity sync. We must wait.
378 inode_wait_for_writeback(inode
);
381 BUG_ON(inode
->i_state
& I_SYNC
);
383 /* Set I_SYNC, reset I_DIRTY_PAGES */
384 inode
->i_state
|= I_SYNC
;
385 inode
->i_state
&= ~I_DIRTY_PAGES
;
386 spin_unlock(&inode
->i_lock
);
387 spin_unlock(&inode_wb_list_lock
);
389 ret
= do_writepages(mapping
, wbc
);
392 * Make sure to wait on the data before writing out the metadata.
393 * This is important for filesystems that modify metadata on data
396 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
397 int err
= filemap_fdatawait(mapping
);
403 * Some filesystems may redirty the inode during the writeback
404 * due to delalloc, clear dirty metadata flags right before
407 spin_lock(&inode
->i_lock
);
408 dirty
= inode
->i_state
& I_DIRTY
;
409 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
410 spin_unlock(&inode
->i_lock
);
411 /* Don't write the inode if only I_DIRTY_PAGES was set */
412 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
413 int err
= write_inode(inode
, wbc
);
418 spin_lock(&inode_wb_list_lock
);
419 spin_lock(&inode
->i_lock
);
420 inode
->i_state
&= ~I_SYNC
;
421 if (!(inode
->i_state
& I_FREEING
)) {
423 * Sync livelock prevention. Each inode is tagged and synced in
424 * one shot. If still dirty, it will be redirty_tail()'ed below.
425 * Update the dirty time to prevent enqueue and sync it again.
427 if ((inode
->i_state
& I_DIRTY
) &&
428 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
429 inode
->dirtied_when
= jiffies
;
431 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
433 * We didn't write back all the pages. nfs_writepages()
434 * sometimes bales out without doing anything.
436 inode
->i_state
|= I_DIRTY_PAGES
;
437 if (wbc
->nr_to_write
<= 0) {
439 * slice used up: queue for next turn
444 * Writeback blocked by something other than
445 * congestion. Delay the inode for some time to
446 * avoid spinning on the CPU (100% iowait)
447 * retrying writeback of the dirty page/inode
448 * that cannot be performed immediately.
452 } else if (inode
->i_state
& I_DIRTY
) {
454 * Filesystems can dirty the inode during writeback
455 * operations, such as delayed allocation during
456 * submission or metadata updates after data IO
462 * The inode is clean. At this point we either have
463 * a reference to the inode or it's on it's way out.
464 * No need to add it back to the LRU.
466 list_del_init(&inode
->i_wb_list
);
469 inode_sync_complete(inode
);
474 * For background writeback the caller does not have the sb pinned
475 * before calling writeback. So make sure that we do pin it, so it doesn't
476 * go away while we are writing inodes from it.
478 static bool pin_sb_for_writeback(struct super_block
*sb
)
481 if (list_empty(&sb
->s_instances
)) {
482 spin_unlock(&sb_lock
);
487 spin_unlock(&sb_lock
);
489 if (down_read_trylock(&sb
->s_umount
)) {
492 up_read(&sb
->s_umount
);
500 * Write a portion of b_io inodes which belong to @sb.
502 * If @only_this_sb is true, then find and write all such
503 * inodes. Otherwise write only ones which go sequentially
506 * Return 1, if the caller writeback routine should be
507 * interrupted. Otherwise return 0.
509 static int writeback_sb_inodes(struct super_block
*sb
, struct bdi_writeback
*wb
,
510 struct writeback_control
*wbc
, bool only_this_sb
)
512 while (!list_empty(&wb
->b_io
)) {
514 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
516 if (inode
->i_sb
!= sb
) {
519 * We only want to write back data for this
520 * superblock, move all inodes not belonging
521 * to it back onto the dirty list.
528 * The inode belongs to a different superblock.
529 * Bounce back to the caller to unpin this and
530 * pin the next superblock.
536 * Don't bother with new inodes or inodes beeing freed, first
537 * kind does not need peridic writeout yet, and for the latter
538 * kind writeout is handled by the freer.
540 spin_lock(&inode
->i_lock
);
541 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
542 spin_unlock(&inode
->i_lock
);
548 * Was this inode dirtied after sync_sb_inodes was called?
549 * This keeps sync from extra jobs and livelock.
551 if (inode_dirtied_after(inode
, wbc
->wb_start
)) {
552 spin_unlock(&inode
->i_lock
);
558 pages_skipped
= wbc
->pages_skipped
;
559 writeback_single_inode(inode
, wbc
);
560 if (wbc
->pages_skipped
!= pages_skipped
) {
562 * writeback is not making progress due to locked
563 * buffers. Skip this inode for now.
567 spin_unlock(&inode
->i_lock
);
568 spin_unlock(&inode_wb_list_lock
);
571 spin_lock(&inode_wb_list_lock
);
572 if (wbc
->nr_to_write
<= 0) {
576 if (!list_empty(&wb
->b_more_io
))
583 void writeback_inodes_wb(struct bdi_writeback
*wb
,
584 struct writeback_control
*wbc
)
589 wbc
->wb_start
= jiffies
; /* livelock avoidance */
590 spin_lock(&inode_wb_list_lock
);
591 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
592 queue_io(wb
, wbc
->older_than_this
);
594 while (!list_empty(&wb
->b_io
)) {
595 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
596 struct super_block
*sb
= inode
->i_sb
;
598 if (!pin_sb_for_writeback(sb
)) {
602 ret
= writeback_sb_inodes(sb
, wb
, wbc
, false);
608 spin_unlock(&inode_wb_list_lock
);
609 /* Leave any unwritten inodes on b_io */
612 static void __writeback_inodes_sb(struct super_block
*sb
,
613 struct bdi_writeback
*wb
, struct writeback_control
*wbc
)
615 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
617 spin_lock(&inode_wb_list_lock
);
618 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
619 queue_io(wb
, wbc
->older_than_this
);
620 writeback_sb_inodes(sb
, wb
, wbc
, true);
621 spin_unlock(&inode_wb_list_lock
);
625 * The maximum number of pages to writeout in a single bdi flush/kupdate
626 * operation. We do this so we don't hold I_SYNC against an inode for
627 * enormous amounts of time, which would block a userspace task which has
628 * been forced to throttle against that inode. Also, the code reevaluates
629 * the dirty each time it has written this many pages.
631 #define MAX_WRITEBACK_PAGES 1024
633 static inline bool over_bground_thresh(void)
635 unsigned long background_thresh
, dirty_thresh
;
637 global_dirty_limits(&background_thresh
, &dirty_thresh
);
639 return (global_page_state(NR_FILE_DIRTY
) +
640 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
);
644 * Explicit flushing or periodic writeback of "old" data.
646 * Define "old": the first time one of an inode's pages is dirtied, we mark the
647 * dirtying-time in the inode's address_space. So this periodic writeback code
648 * just walks the superblock inode list, writing back any inodes which are
649 * older than a specific point in time.
651 * Try to run once per dirty_writeback_interval. But if a writeback event
652 * takes longer than a dirty_writeback_interval interval, then leave a
655 * older_than_this takes precedence over nr_to_write. So we'll only write back
656 * all dirty pages if they are all attached to "old" mappings.
658 static long wb_writeback(struct bdi_writeback
*wb
,
659 struct wb_writeback_work
*work
)
661 struct writeback_control wbc
= {
662 .sync_mode
= work
->sync_mode
,
663 .tagged_writepages
= work
->tagged_writepages
,
664 .older_than_this
= NULL
,
665 .for_kupdate
= work
->for_kupdate
,
666 .for_background
= work
->for_background
,
667 .range_cyclic
= work
->range_cyclic
,
669 unsigned long oldest_jif
;
671 long write_chunk
= MAX_WRITEBACK_PAGES
;
674 if (wbc
.for_kupdate
) {
675 wbc
.older_than_this
= &oldest_jif
;
676 oldest_jif
= jiffies
-
677 msecs_to_jiffies(dirty_expire_interval
* 10);
679 if (!wbc
.range_cyclic
) {
681 wbc
.range_end
= LLONG_MAX
;
685 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
686 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
687 * here avoids calling into writeback_inodes_wb() more than once.
689 * The intended call sequence for WB_SYNC_ALL writeback is:
692 * __writeback_inodes_sb() <== called only once
693 * write_cache_pages() <== called once for each inode
694 * (quickly) tag currently dirty pages
695 * (maybe slowly) sync all tagged pages
697 if (wbc
.sync_mode
== WB_SYNC_ALL
|| wbc
.tagged_writepages
)
698 write_chunk
= LONG_MAX
;
700 wbc
.wb_start
= jiffies
; /* livelock avoidance */
703 * Stop writeback when nr_pages has been consumed
705 if (work
->nr_pages
<= 0)
709 * Background writeout and kupdate-style writeback may
710 * run forever. Stop them if there is other work to do
711 * so that e.g. sync can proceed. They'll be restarted
712 * after the other works are all done.
714 if ((work
->for_background
|| work
->for_kupdate
) &&
715 !list_empty(&wb
->bdi
->work_list
))
719 * For background writeout, stop when we are below the
720 * background dirty threshold
722 if (work
->for_background
&& !over_bground_thresh())
726 wbc
.nr_to_write
= write_chunk
;
727 wbc
.pages_skipped
= 0;
729 trace_wbc_writeback_start(&wbc
, wb
->bdi
);
731 __writeback_inodes_sb(work
->sb
, wb
, &wbc
);
733 writeback_inodes_wb(wb
, &wbc
);
734 trace_wbc_writeback_written(&wbc
, wb
->bdi
);
736 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
737 wrote
+= write_chunk
- wbc
.nr_to_write
;
740 * If we consumed everything, see if we have more
742 if (wbc
.nr_to_write
<= 0)
745 * Didn't write everything and we don't have more IO, bail
750 * Did we write something? Try for more
752 if (wbc
.nr_to_write
< write_chunk
)
755 * Nothing written. Wait for some inode to
756 * become available for writeback. Otherwise
757 * we'll just busyloop.
759 spin_lock(&inode_wb_list_lock
);
760 if (!list_empty(&wb
->b_more_io
)) {
761 inode
= wb_inode(wb
->b_more_io
.prev
);
762 trace_wbc_writeback_wait(&wbc
, wb
->bdi
);
763 spin_lock(&inode
->i_lock
);
764 inode_wait_for_writeback(inode
);
765 spin_unlock(&inode
->i_lock
);
767 spin_unlock(&inode_wb_list_lock
);
774 * Return the next wb_writeback_work struct that hasn't been processed yet.
776 static struct wb_writeback_work
*
777 get_next_work_item(struct backing_dev_info
*bdi
)
779 struct wb_writeback_work
*work
= NULL
;
781 spin_lock_bh(&bdi
->wb_lock
);
782 if (!list_empty(&bdi
->work_list
)) {
783 work
= list_entry(bdi
->work_list
.next
,
784 struct wb_writeback_work
, list
);
785 list_del_init(&work
->list
);
787 spin_unlock_bh(&bdi
->wb_lock
);
792 * Add in the number of potentially dirty inodes, because each inode
793 * write can dirty pagecache in the underlying blockdev.
795 static unsigned long get_nr_dirty_pages(void)
797 return global_page_state(NR_FILE_DIRTY
) +
798 global_page_state(NR_UNSTABLE_NFS
) +
799 get_nr_dirty_inodes();
802 static long wb_check_background_flush(struct bdi_writeback
*wb
)
804 if (over_bground_thresh()) {
806 struct wb_writeback_work work
= {
807 .nr_pages
= LONG_MAX
,
808 .sync_mode
= WB_SYNC_NONE
,
813 return wb_writeback(wb
, &work
);
819 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
821 unsigned long expired
;
825 * When set to zero, disable periodic writeback
827 if (!dirty_writeback_interval
)
830 expired
= wb
->last_old_flush
+
831 msecs_to_jiffies(dirty_writeback_interval
* 10);
832 if (time_before(jiffies
, expired
))
835 wb
->last_old_flush
= jiffies
;
836 nr_pages
= get_nr_dirty_pages();
839 struct wb_writeback_work work
= {
840 .nr_pages
= nr_pages
,
841 .sync_mode
= WB_SYNC_NONE
,
846 return wb_writeback(wb
, &work
);
853 * Retrieve work items and do the writeback they describe
855 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
857 struct backing_dev_info
*bdi
= wb
->bdi
;
858 struct wb_writeback_work
*work
;
861 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
862 while ((work
= get_next_work_item(bdi
)) != NULL
) {
864 * Override sync mode, in case we must wait for completion
865 * because this thread is exiting now.
868 work
->sync_mode
= WB_SYNC_ALL
;
870 trace_writeback_exec(bdi
, work
);
872 wrote
+= wb_writeback(wb
, work
);
875 * Notify the caller of completion if this is a synchronous
876 * work item, otherwise just free it.
879 complete(work
->done
);
885 * Check for periodic writeback, kupdated() style
887 wrote
+= wb_check_old_data_flush(wb
);
888 wrote
+= wb_check_background_flush(wb
);
889 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
895 * Handle writeback of dirty data for the device backed by this bdi. Also
896 * wakes up periodically and does kupdated style flushing.
898 int bdi_writeback_thread(void *data
)
900 struct bdi_writeback
*wb
= data
;
901 struct backing_dev_info
*bdi
= wb
->bdi
;
904 current
->flags
|= PF_SWAPWRITE
;
906 wb
->last_active
= jiffies
;
909 * Our parent may run at a different priority, just set us to normal
911 set_user_nice(current
, 0);
913 trace_writeback_thread_start(bdi
);
915 while (!kthread_should_stop()) {
917 * Remove own delayed wake-up timer, since we are already awake
918 * and we'll take care of the preriodic write-back.
920 del_timer(&wb
->wakeup_timer
);
922 pages_written
= wb_do_writeback(wb
, 0);
924 trace_writeback_pages_written(pages_written
);
927 wb
->last_active
= jiffies
;
929 set_current_state(TASK_INTERRUPTIBLE
);
930 if (!list_empty(&bdi
->work_list
) || kthread_should_stop()) {
931 __set_current_state(TASK_RUNNING
);
935 if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
936 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval
* 10));
939 * We have nothing to do, so can go sleep without any
940 * timeout and save power. When a work is queued or
941 * something is made dirty - we will be woken up.
949 /* Flush any work that raced with us exiting */
950 if (!list_empty(&bdi
->work_list
))
951 wb_do_writeback(wb
, 1);
953 trace_writeback_thread_stop(bdi
);
959 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
962 void wakeup_flusher_threads(long nr_pages
)
964 struct backing_dev_info
*bdi
;
967 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
968 global_page_state(NR_UNSTABLE_NFS
);
972 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
973 if (!bdi_has_dirty_io(bdi
))
975 __bdi_start_writeback(bdi
, nr_pages
, false);
980 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
982 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
983 struct dentry
*dentry
;
984 const char *name
= "?";
986 dentry
= d_find_alias(inode
);
988 spin_lock(&dentry
->d_lock
);
989 name
= (const char *) dentry
->d_name
.name
;
992 "%s(%d): dirtied inode %lu (%s) on %s\n",
993 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
994 name
, inode
->i_sb
->s_id
);
996 spin_unlock(&dentry
->d_lock
);
1003 * __mark_inode_dirty - internal function
1004 * @inode: inode to mark
1005 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1006 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1007 * mark_inode_dirty_sync.
1009 * Put the inode on the super block's dirty list.
1011 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1012 * dirty list only if it is hashed or if it refers to a blockdev.
1013 * If it was not hashed, it will never be added to the dirty list
1014 * even if it is later hashed, as it will have been marked dirty already.
1016 * In short, make sure you hash any inodes _before_ you start marking
1019 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1020 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1021 * the kernel-internal blockdev inode represents the dirtying time of the
1022 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1023 * page->mapping->host, so the page-dirtying time is recorded in the internal
1026 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1028 struct super_block
*sb
= inode
->i_sb
;
1029 struct backing_dev_info
*bdi
= NULL
;
1032 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1033 * dirty the inode itself
1035 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1036 if (sb
->s_op
->dirty_inode
)
1037 sb
->s_op
->dirty_inode(inode
, flags
);
1041 * make sure that changes are seen by all cpus before we test i_state
1046 /* avoid the locking if we can */
1047 if ((inode
->i_state
& flags
) == flags
)
1050 if (unlikely(block_dump
))
1051 block_dump___mark_inode_dirty(inode
);
1053 spin_lock(&inode
->i_lock
);
1054 if ((inode
->i_state
& flags
) != flags
) {
1055 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1057 inode
->i_state
|= flags
;
1060 * If the inode is being synced, just update its dirty state.
1061 * The unlocker will place the inode on the appropriate
1062 * superblock list, based upon its state.
1064 if (inode
->i_state
& I_SYNC
)
1065 goto out_unlock_inode
;
1068 * Only add valid (hashed) inodes to the superblock's
1069 * dirty list. Add blockdev inodes as well.
1071 if (!S_ISBLK(inode
->i_mode
)) {
1072 if (inode_unhashed(inode
))
1073 goto out_unlock_inode
;
1075 if (inode
->i_state
& I_FREEING
)
1076 goto out_unlock_inode
;
1079 * If the inode was already on b_dirty/b_io/b_more_io, don't
1080 * reposition it (that would break b_dirty time-ordering).
1083 bool wakeup_bdi
= false;
1084 bdi
= inode_to_bdi(inode
);
1086 if (bdi_cap_writeback_dirty(bdi
)) {
1087 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1088 "bdi-%s not registered\n", bdi
->name
);
1091 * If this is the first dirty inode for this
1092 * bdi, we have to wake-up the corresponding
1093 * bdi thread to make sure background
1094 * write-back happens later.
1096 if (!wb_has_dirty_io(&bdi
->wb
))
1100 spin_unlock(&inode
->i_lock
);
1101 spin_lock(&inode_wb_list_lock
);
1102 inode
->dirtied_when
= jiffies
;
1103 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1104 spin_unlock(&inode_wb_list_lock
);
1107 bdi_wakeup_thread_delayed(bdi
);
1112 spin_unlock(&inode
->i_lock
);
1115 EXPORT_SYMBOL(__mark_inode_dirty
);
1118 * Write out a superblock's list of dirty inodes. A wait will be performed
1119 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1121 * If older_than_this is non-NULL, then only write out inodes which
1122 * had their first dirtying at a time earlier than *older_than_this.
1124 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1125 * This function assumes that the blockdev superblock's inodes are backed by
1126 * a variety of queues, so all inodes are searched. For other superblocks,
1127 * assume that all inodes are backed by the same queue.
1129 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1130 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1131 * on the writer throttling path, and we get decent balancing between many
1132 * throttled threads: we don't want them all piling up on inode_sync_wait.
1134 static void wait_sb_inodes(struct super_block
*sb
)
1136 struct inode
*inode
, *old_inode
= NULL
;
1139 * We need to be protected against the filesystem going from
1140 * r/o to r/w or vice versa.
1142 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1144 spin_lock(&inode_sb_list_lock
);
1147 * Data integrity sync. Must wait for all pages under writeback,
1148 * because there may have been pages dirtied before our sync
1149 * call, but which had writeout started before we write it out.
1150 * In which case, the inode may not be on the dirty list, but
1151 * we still have to wait for that writeout.
1153 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1154 struct address_space
*mapping
= inode
->i_mapping
;
1156 spin_lock(&inode
->i_lock
);
1157 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1158 (mapping
->nrpages
== 0)) {
1159 spin_unlock(&inode
->i_lock
);
1163 spin_unlock(&inode
->i_lock
);
1164 spin_unlock(&inode_sb_list_lock
);
1167 * We hold a reference to 'inode' so it couldn't have been
1168 * removed from s_inodes list while we dropped the
1169 * inode_sb_list_lock. We cannot iput the inode now as we can
1170 * be holding the last reference and we cannot iput it under
1171 * inode_sb_list_lock. So we keep the reference and iput it
1177 filemap_fdatawait(mapping
);
1181 spin_lock(&inode_sb_list_lock
);
1183 spin_unlock(&inode_sb_list_lock
);
1188 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1189 * @sb: the superblock
1190 * @nr: the number of pages to write
1192 * Start writeback on some inodes on this super_block. No guarantees are made
1193 * on how many (if any) will be written, and this function does not wait
1194 * for IO completion of submitted IO.
1196 void writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
)
1198 DECLARE_COMPLETION_ONSTACK(done
);
1199 struct wb_writeback_work work
= {
1201 .sync_mode
= WB_SYNC_NONE
,
1202 .tagged_writepages
= 1,
1207 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1208 bdi_queue_work(sb
->s_bdi
, &work
);
1209 wait_for_completion(&done
);
1211 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1214 * writeback_inodes_sb - writeback dirty inodes from given super_block
1215 * @sb: the superblock
1217 * Start writeback on some inodes on this super_block. No guarantees are made
1218 * on how many (if any) will be written, and this function does not wait
1219 * for IO completion of submitted IO.
1221 void writeback_inodes_sb(struct super_block
*sb
)
1223 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages());
1225 EXPORT_SYMBOL(writeback_inodes_sb
);
1228 * writeback_inodes_sb_if_idle - start writeback if none underway
1229 * @sb: the superblock
1231 * Invoke writeback_inodes_sb if no writeback is currently underway.
1232 * Returns 1 if writeback was started, 0 if not.
1234 int writeback_inodes_sb_if_idle(struct super_block
*sb
)
1236 if (!writeback_in_progress(sb
->s_bdi
)) {
1237 down_read(&sb
->s_umount
);
1238 writeback_inodes_sb(sb
);
1239 up_read(&sb
->s_umount
);
1244 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1247 * writeback_inodes_sb_if_idle - start writeback if none underway
1248 * @sb: the superblock
1249 * @nr: the number of pages to write
1251 * Invoke writeback_inodes_sb if no writeback is currently underway.
1252 * Returns 1 if writeback was started, 0 if not.
1254 int writeback_inodes_sb_nr_if_idle(struct super_block
*sb
,
1257 if (!writeback_in_progress(sb
->s_bdi
)) {
1258 down_read(&sb
->s_umount
);
1259 writeback_inodes_sb_nr(sb
, nr
);
1260 up_read(&sb
->s_umount
);
1265 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle
);
1268 * sync_inodes_sb - sync sb inode pages
1269 * @sb: the superblock
1271 * This function writes and waits on any dirty inode belonging to this
1274 void sync_inodes_sb(struct super_block
*sb
)
1276 DECLARE_COMPLETION_ONSTACK(done
);
1277 struct wb_writeback_work work
= {
1279 .sync_mode
= WB_SYNC_ALL
,
1280 .nr_pages
= LONG_MAX
,
1285 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1287 bdi_queue_work(sb
->s_bdi
, &work
);
1288 wait_for_completion(&done
);
1292 EXPORT_SYMBOL(sync_inodes_sb
);
1295 * write_inode_now - write an inode to disk
1296 * @inode: inode to write to disk
1297 * @sync: whether the write should be synchronous or not
1299 * This function commits an inode to disk immediately if it is dirty. This is
1300 * primarily needed by knfsd.
1302 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1304 int write_inode_now(struct inode
*inode
, int sync
)
1307 struct writeback_control wbc
= {
1308 .nr_to_write
= LONG_MAX
,
1309 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1311 .range_end
= LLONG_MAX
,
1314 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1315 wbc
.nr_to_write
= 0;
1318 spin_lock(&inode_wb_list_lock
);
1319 spin_lock(&inode
->i_lock
);
1320 ret
= writeback_single_inode(inode
, &wbc
);
1321 spin_unlock(&inode
->i_lock
);
1322 spin_unlock(&inode_wb_list_lock
);
1324 inode_sync_wait(inode
);
1327 EXPORT_SYMBOL(write_inode_now
);
1330 * sync_inode - write an inode and its pages to disk.
1331 * @inode: the inode to sync
1332 * @wbc: controls the writeback mode
1334 * sync_inode() will write an inode and its pages to disk. It will also
1335 * correctly update the inode on its superblock's dirty inode lists and will
1336 * update inode->i_state.
1338 * The caller must have a ref on the inode.
1340 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1344 spin_lock(&inode_wb_list_lock
);
1345 spin_lock(&inode
->i_lock
);
1346 ret
= writeback_single_inode(inode
, wbc
);
1347 spin_unlock(&inode
->i_lock
);
1348 spin_unlock(&inode_wb_list_lock
);
1351 EXPORT_SYMBOL(sync_inode
);
1354 * sync_inode_metadata - write an inode to disk
1355 * @inode: the inode to sync
1356 * @wait: wait for I/O to complete.
1358 * Write an inode to disk and adjust its dirty state after completion.
1360 * Note: only writes the actual inode, no associated data or other metadata.
1362 int sync_inode_metadata(struct inode
*inode
, int wait
)
1364 struct writeback_control wbc
= {
1365 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1366 .nr_to_write
= 0, /* metadata-only */
1369 return sync_inode(inode
, &wbc
);
1371 EXPORT_SYMBOL(sync_inode_metadata
);