2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
16 void update_rlimit_cpu(unsigned long rlim_new
)
18 cputime_t cputime
= secs_to_cputime(rlim_new
);
19 struct signal_struct
*const sig
= current
->signal
;
21 if (cputime_eq(sig
->it
[CPUCLOCK_PROF
].expires
, cputime_zero
) ||
22 cputime_gt(sig
->it
[CPUCLOCK_PROF
].expires
, cputime
)) {
23 spin_lock_irq(¤t
->sighand
->siglock
);
24 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(¤t
->sighand
->siglock
);
29 static int check_clock(const clockid_t which_clock
)
32 struct task_struct
*p
;
33 const pid_t pid
= CPUCLOCK_PID(which_clock
);
35 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
41 read_lock(&tasklist_lock
);
42 p
= find_task_by_vpid(pid
);
43 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
44 same_thread_group(p
, current
) : thread_group_leader(p
))) {
47 read_unlock(&tasklist_lock
);
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
55 union cpu_time_count ret
;
56 ret
.sched
= 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
58 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
60 ret
.cpu
= timespec_to_cputime(tp
);
65 static void sample_to_timespec(const clockid_t which_clock
,
66 union cpu_time_count cpu
,
69 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
70 *tp
= ns_to_timespec(cpu
.sched
);
72 cputime_to_timespec(cpu
.cpu
, tp
);
75 static inline int cpu_time_before(const clockid_t which_clock
,
76 union cpu_time_count now
,
77 union cpu_time_count then
)
79 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
80 return now
.sched
< then
.sched
;
82 return cputime_lt(now
.cpu
, then
.cpu
);
85 static inline void cpu_time_add(const clockid_t which_clock
,
86 union cpu_time_count
*acc
,
87 union cpu_time_count val
)
89 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
90 acc
->sched
+= val
.sched
;
92 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
95 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
96 union cpu_time_count a
,
97 union cpu_time_count b
)
99 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
102 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
108 * Divide and limit the result to res >= 1
110 * This is necessary to prevent signal delivery starvation, when the result of
111 * the division would be rounded down to 0.
113 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
115 cputime_t res
= cputime_div(time
, div
);
117 return max_t(cputime_t
, res
, 1);
121 * Update expiry time from increment, and increase overrun count,
122 * given the current clock sample.
124 static void bump_cpu_timer(struct k_itimer
*timer
,
125 union cpu_time_count now
)
129 if (timer
->it
.cpu
.incr
.sched
== 0)
132 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
133 unsigned long long delta
, incr
;
135 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
137 incr
= timer
->it
.cpu
.incr
.sched
;
138 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
140 for (i
= 0; incr
< delta
- incr
; i
++)
142 for (; i
>= 0; incr
>>= 1, i
--) {
145 timer
->it
.cpu
.expires
.sched
+= incr
;
146 timer
->it_overrun
+= 1 << i
;
150 cputime_t delta
, incr
;
152 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
154 incr
= timer
->it
.cpu
.incr
.cpu
;
155 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
156 timer
->it
.cpu
.expires
.cpu
);
157 /* Don't use (incr*2 < delta), incr*2 might overflow. */
158 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
159 incr
= cputime_add(incr
, incr
);
160 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
161 if (cputime_lt(delta
, incr
))
163 timer
->it
.cpu
.expires
.cpu
=
164 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
165 timer
->it_overrun
+= 1 << i
;
166 delta
= cputime_sub(delta
, incr
);
171 static inline cputime_t
prof_ticks(struct task_struct
*p
)
173 return cputime_add(p
->utime
, p
->stime
);
175 static inline cputime_t
virt_ticks(struct task_struct
*p
)
180 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
182 int error
= check_clock(which_clock
);
185 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
186 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
188 * If sched_clock is using a cycle counter, we
189 * don't have any idea of its true resolution
190 * exported, but it is much more than 1s/HZ.
198 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
201 * You can never reset a CPU clock, but we check for other errors
202 * in the call before failing with EPERM.
204 int error
= check_clock(which_clock
);
213 * Sample a per-thread clock for the given task.
215 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
216 union cpu_time_count
*cpu
)
218 switch (CPUCLOCK_WHICH(which_clock
)) {
222 cpu
->cpu
= prof_ticks(p
);
225 cpu
->cpu
= virt_ticks(p
);
228 cpu
->sched
= task_sched_runtime(p
);
234 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
236 struct sighand_struct
*sighand
;
237 struct signal_struct
*sig
;
238 struct task_struct
*t
;
240 *times
= INIT_CPUTIME
;
243 sighand
= rcu_dereference(tsk
->sighand
);
251 times
->utime
= cputime_add(times
->utime
, t
->utime
);
252 times
->stime
= cputime_add(times
->stime
, t
->stime
);
253 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
258 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
259 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
260 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
265 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
267 if (cputime_gt(b
->utime
, a
->utime
))
270 if (cputime_gt(b
->stime
, a
->stime
))
273 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
274 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
277 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
279 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
280 struct task_cputime sum
;
283 spin_lock_irqsave(&cputimer
->lock
, flags
);
284 if (!cputimer
->running
) {
285 cputimer
->running
= 1;
287 * The POSIX timer interface allows for absolute time expiry
288 * values through the TIMER_ABSTIME flag, therefore we have
289 * to synchronize the timer to the clock every time we start
292 thread_group_cputime(tsk
, &sum
);
293 update_gt_cputime(&cputimer
->cputime
, &sum
);
295 *times
= cputimer
->cputime
;
296 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
300 * Sample a process (thread group) clock for the given group_leader task.
301 * Must be called with tasklist_lock held for reading.
303 static int cpu_clock_sample_group(const clockid_t which_clock
,
304 struct task_struct
*p
,
305 union cpu_time_count
*cpu
)
307 struct task_cputime cputime
;
309 switch (CPUCLOCK_WHICH(which_clock
)) {
313 thread_group_cputime(p
, &cputime
);
314 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
317 thread_group_cputime(p
, &cputime
);
318 cpu
->cpu
= cputime
.utime
;
321 cpu
->sched
= thread_group_sched_runtime(p
);
328 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
330 const pid_t pid
= CPUCLOCK_PID(which_clock
);
332 union cpu_time_count rtn
;
336 * Special case constant value for our own clocks.
337 * We don't have to do any lookup to find ourselves.
339 if (CPUCLOCK_PERTHREAD(which_clock
)) {
341 * Sampling just ourselves we can do with no locking.
343 error
= cpu_clock_sample(which_clock
,
346 read_lock(&tasklist_lock
);
347 error
= cpu_clock_sample_group(which_clock
,
349 read_unlock(&tasklist_lock
);
353 * Find the given PID, and validate that the caller
354 * should be able to see it.
356 struct task_struct
*p
;
358 p
= find_task_by_vpid(pid
);
360 if (CPUCLOCK_PERTHREAD(which_clock
)) {
361 if (same_thread_group(p
, current
)) {
362 error
= cpu_clock_sample(which_clock
,
366 read_lock(&tasklist_lock
);
367 if (thread_group_leader(p
) && p
->signal
) {
369 cpu_clock_sample_group(which_clock
,
372 read_unlock(&tasklist_lock
);
380 sample_to_timespec(which_clock
, rtn
, tp
);
386 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
387 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
388 * new timer already all-zeros initialized.
390 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
393 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
394 struct task_struct
*p
;
396 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
399 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
401 read_lock(&tasklist_lock
);
402 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
406 p
= find_task_by_vpid(pid
);
407 if (p
&& !same_thread_group(p
, current
))
412 p
= current
->group_leader
;
414 p
= find_task_by_vpid(pid
);
415 if (p
&& !thread_group_leader(p
))
419 new_timer
->it
.cpu
.task
= p
;
425 read_unlock(&tasklist_lock
);
431 * Clean up a CPU-clock timer that is about to be destroyed.
432 * This is called from timer deletion with the timer already locked.
433 * If we return TIMER_RETRY, it's necessary to release the timer's lock
434 * and try again. (This happens when the timer is in the middle of firing.)
436 int posix_cpu_timer_del(struct k_itimer
*timer
)
438 struct task_struct
*p
= timer
->it
.cpu
.task
;
441 if (likely(p
!= NULL
)) {
442 read_lock(&tasklist_lock
);
443 if (unlikely(p
->signal
== NULL
)) {
445 * We raced with the reaping of the task.
446 * The deletion should have cleared us off the list.
448 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
450 spin_lock(&p
->sighand
->siglock
);
451 if (timer
->it
.cpu
.firing
)
454 list_del(&timer
->it
.cpu
.entry
);
455 spin_unlock(&p
->sighand
->siglock
);
457 read_unlock(&tasklist_lock
);
467 * Clean out CPU timers still ticking when a thread exited. The task
468 * pointer is cleared, and the expiry time is replaced with the residual
469 * time for later timer_gettime calls to return.
470 * This must be called with the siglock held.
472 static void cleanup_timers(struct list_head
*head
,
473 cputime_t utime
, cputime_t stime
,
474 unsigned long long sum_exec_runtime
)
476 struct cpu_timer_list
*timer
, *next
;
477 cputime_t ptime
= cputime_add(utime
, stime
);
479 list_for_each_entry_safe(timer
, next
, head
, entry
) {
480 list_del_init(&timer
->entry
);
481 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
482 timer
->expires
.cpu
= cputime_zero
;
484 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
490 list_for_each_entry_safe(timer
, next
, head
, entry
) {
491 list_del_init(&timer
->entry
);
492 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
493 timer
->expires
.cpu
= cputime_zero
;
495 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
501 list_for_each_entry_safe(timer
, next
, head
, entry
) {
502 list_del_init(&timer
->entry
);
503 if (timer
->expires
.sched
< sum_exec_runtime
) {
504 timer
->expires
.sched
= 0;
506 timer
->expires
.sched
-= sum_exec_runtime
;
512 * These are both called with the siglock held, when the current thread
513 * is being reaped. When the final (leader) thread in the group is reaped,
514 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
516 void posix_cpu_timers_exit(struct task_struct
*tsk
)
518 cleanup_timers(tsk
->cpu_timers
,
519 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
522 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
524 struct signal_struct
*const sig
= tsk
->signal
;
526 cleanup_timers(tsk
->signal
->cpu_timers
,
527 cputime_add(tsk
->utime
, sig
->utime
),
528 cputime_add(tsk
->stime
, sig
->stime
),
529 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
532 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
535 * That's all for this thread or process.
536 * We leave our residual in expires to be reported.
538 put_task_struct(timer
->it
.cpu
.task
);
539 timer
->it
.cpu
.task
= NULL
;
540 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
541 timer
->it
.cpu
.expires
,
545 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
547 return cputime_eq(expires
, cputime_zero
) ||
548 cputime_gt(expires
, new_exp
);
551 static inline int expires_le(cputime_t expires
, cputime_t new_exp
)
553 return !cputime_eq(expires
, cputime_zero
) &&
554 cputime_le(expires
, new_exp
);
557 * Insert the timer on the appropriate list before any timers that
558 * expire later. This must be called with the tasklist_lock held
559 * for reading, and interrupts disabled.
561 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
563 struct task_struct
*p
= timer
->it
.cpu
.task
;
564 struct list_head
*head
, *listpos
;
565 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
566 struct cpu_timer_list
*next
;
569 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
570 p
->cpu_timers
: p
->signal
->cpu_timers
);
571 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
573 BUG_ON(!irqs_disabled());
574 spin_lock(&p
->sighand
->siglock
);
577 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
578 list_for_each_entry(next
, head
, entry
) {
579 if (next
->expires
.sched
> nt
->expires
.sched
)
581 listpos
= &next
->entry
;
584 list_for_each_entry(next
, head
, entry
) {
585 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
587 listpos
= &next
->entry
;
590 list_add(&nt
->entry
, listpos
);
592 if (listpos
== head
) {
594 * We are the new earliest-expiring timer.
595 * If we are a thread timer, there can always
596 * be a process timer telling us to stop earlier.
599 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
600 union cpu_time_count
*exp
= &nt
->expires
;
602 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
606 if (expires_gt(p
->cputime_expires
.prof_exp
,
608 p
->cputime_expires
.prof_exp
= exp
->cpu
;
611 if (expires_gt(p
->cputime_expires
.virt_exp
,
613 p
->cputime_expires
.virt_exp
= exp
->cpu
;
616 if (p
->cputime_expires
.sched_exp
== 0 ||
617 p
->cputime_expires
.sched_exp
> exp
->sched
)
618 p
->cputime_expires
.sched_exp
=
623 struct signal_struct
*const sig
= p
->signal
;
624 union cpu_time_count
*exp
= &timer
->it
.cpu
.expires
;
627 * For a process timer, set the cached expiration time.
629 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
633 if (expires_le(sig
->it
[CPUCLOCK_VIRT
].expires
,
636 sig
->cputime_expires
.virt_exp
= exp
->cpu
;
639 if (expires_le(sig
->it
[CPUCLOCK_PROF
].expires
,
642 i
= sig
->rlim
[RLIMIT_CPU
].rlim_cur
;
643 if (i
!= RLIM_INFINITY
&&
644 i
<= cputime_to_secs(exp
->cpu
))
646 sig
->cputime_expires
.prof_exp
= exp
->cpu
;
649 sig
->cputime_expires
.sched_exp
= exp
->sched
;
655 spin_unlock(&p
->sighand
->siglock
);
659 * The timer is locked, fire it and arrange for its reload.
661 static void cpu_timer_fire(struct k_itimer
*timer
)
663 if (unlikely(timer
->sigq
== NULL
)) {
665 * This a special case for clock_nanosleep,
666 * not a normal timer from sys_timer_create.
668 wake_up_process(timer
->it_process
);
669 timer
->it
.cpu
.expires
.sched
= 0;
670 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
672 * One-shot timer. Clear it as soon as it's fired.
674 posix_timer_event(timer
, 0);
675 timer
->it
.cpu
.expires
.sched
= 0;
676 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
678 * The signal did not get queued because the signal
679 * was ignored, so we won't get any callback to
680 * reload the timer. But we need to keep it
681 * ticking in case the signal is deliverable next time.
683 posix_cpu_timer_schedule(timer
);
688 * Sample a process (thread group) timer for the given group_leader task.
689 * Must be called with tasklist_lock held for reading.
691 static int cpu_timer_sample_group(const clockid_t which_clock
,
692 struct task_struct
*p
,
693 union cpu_time_count
*cpu
)
695 struct task_cputime cputime
;
697 thread_group_cputimer(p
, &cputime
);
698 switch (CPUCLOCK_WHICH(which_clock
)) {
702 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
705 cpu
->cpu
= cputime
.utime
;
708 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
715 * Guts of sys_timer_settime for CPU timers.
716 * This is called with the timer locked and interrupts disabled.
717 * If we return TIMER_RETRY, it's necessary to release the timer's lock
718 * and try again. (This happens when the timer is in the middle of firing.)
720 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
721 struct itimerspec
*new, struct itimerspec
*old
)
723 struct task_struct
*p
= timer
->it
.cpu
.task
;
724 union cpu_time_count old_expires
, new_expires
, val
;
727 if (unlikely(p
== NULL
)) {
729 * Timer refers to a dead task's clock.
734 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
736 read_lock(&tasklist_lock
);
738 * We need the tasklist_lock to protect against reaping that
739 * clears p->signal. If p has just been reaped, we can no
740 * longer get any information about it at all.
742 if (unlikely(p
->signal
== NULL
)) {
743 read_unlock(&tasklist_lock
);
745 timer
->it
.cpu
.task
= NULL
;
750 * Disarm any old timer after extracting its expiry time.
752 BUG_ON(!irqs_disabled());
755 spin_lock(&p
->sighand
->siglock
);
756 old_expires
= timer
->it
.cpu
.expires
;
757 if (unlikely(timer
->it
.cpu
.firing
)) {
758 timer
->it
.cpu
.firing
= -1;
761 list_del_init(&timer
->it
.cpu
.entry
);
762 spin_unlock(&p
->sighand
->siglock
);
765 * We need to sample the current value to convert the new
766 * value from to relative and absolute, and to convert the
767 * old value from absolute to relative. To set a process
768 * timer, we need a sample to balance the thread expiry
769 * times (in arm_timer). With an absolute time, we must
770 * check if it's already passed. In short, we need a sample.
772 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
773 cpu_clock_sample(timer
->it_clock
, p
, &val
);
775 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
779 if (old_expires
.sched
== 0) {
780 old
->it_value
.tv_sec
= 0;
781 old
->it_value
.tv_nsec
= 0;
784 * Update the timer in case it has
785 * overrun already. If it has,
786 * we'll report it as having overrun
787 * and with the next reloaded timer
788 * already ticking, though we are
789 * swallowing that pending
790 * notification here to install the
793 bump_cpu_timer(timer
, val
);
794 if (cpu_time_before(timer
->it_clock
, val
,
795 timer
->it
.cpu
.expires
)) {
796 old_expires
= cpu_time_sub(
798 timer
->it
.cpu
.expires
, val
);
799 sample_to_timespec(timer
->it_clock
,
803 old
->it_value
.tv_nsec
= 1;
804 old
->it_value
.tv_sec
= 0;
811 * We are colliding with the timer actually firing.
812 * Punt after filling in the timer's old value, and
813 * disable this firing since we are already reporting
814 * it as an overrun (thanks to bump_cpu_timer above).
816 read_unlock(&tasklist_lock
);
820 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
821 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
825 * Install the new expiry time (or zero).
826 * For a timer with no notification action, we don't actually
827 * arm the timer (we'll just fake it for timer_gettime).
829 timer
->it
.cpu
.expires
= new_expires
;
830 if (new_expires
.sched
!= 0 &&
831 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
832 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
833 arm_timer(timer
, val
);
836 read_unlock(&tasklist_lock
);
839 * Install the new reload setting, and
840 * set up the signal and overrun bookkeeping.
842 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
846 * This acts as a modification timestamp for the timer,
847 * so any automatic reload attempt will punt on seeing
848 * that we have reset the timer manually.
850 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
852 timer
->it_overrun_last
= 0;
853 timer
->it_overrun
= -1;
855 if (new_expires
.sched
!= 0 &&
856 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
857 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
859 * The designated time already passed, so we notify
860 * immediately, even if the thread never runs to
861 * accumulate more time on this clock.
863 cpu_timer_fire(timer
);
869 sample_to_timespec(timer
->it_clock
,
870 timer
->it
.cpu
.incr
, &old
->it_interval
);
875 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
877 union cpu_time_count now
;
878 struct task_struct
*p
= timer
->it
.cpu
.task
;
882 * Easy part: convert the reload time.
884 sample_to_timespec(timer
->it_clock
,
885 timer
->it
.cpu
.incr
, &itp
->it_interval
);
887 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
888 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
892 if (unlikely(p
== NULL
)) {
894 * This task already died and the timer will never fire.
895 * In this case, expires is actually the dead value.
898 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
904 * Sample the clock to take the difference with the expiry time.
906 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
907 cpu_clock_sample(timer
->it_clock
, p
, &now
);
908 clear_dead
= p
->exit_state
;
910 read_lock(&tasklist_lock
);
911 if (unlikely(p
->signal
== NULL
)) {
913 * The process has been reaped.
914 * We can't even collect a sample any more.
915 * Call the timer disarmed, nothing else to do.
918 timer
->it
.cpu
.task
= NULL
;
919 timer
->it
.cpu
.expires
.sched
= 0;
920 read_unlock(&tasklist_lock
);
923 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
924 clear_dead
= (unlikely(p
->exit_state
) &&
925 thread_group_empty(p
));
927 read_unlock(&tasklist_lock
);
930 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
931 if (timer
->it
.cpu
.incr
.sched
== 0 &&
932 cpu_time_before(timer
->it_clock
,
933 timer
->it
.cpu
.expires
, now
)) {
935 * Do-nothing timer expired and has no reload,
936 * so it's as if it was never set.
938 timer
->it
.cpu
.expires
.sched
= 0;
939 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
943 * Account for any expirations and reloads that should
946 bump_cpu_timer(timer
, now
);
949 if (unlikely(clear_dead
)) {
951 * We've noticed that the thread is dead, but
952 * not yet reaped. Take this opportunity to
955 clear_dead_task(timer
, now
);
959 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
960 sample_to_timespec(timer
->it_clock
,
961 cpu_time_sub(timer
->it_clock
,
962 timer
->it
.cpu
.expires
, now
),
966 * The timer should have expired already, but the firing
967 * hasn't taken place yet. Say it's just about to expire.
969 itp
->it_value
.tv_nsec
= 1;
970 itp
->it_value
.tv_sec
= 0;
975 * Check for any per-thread CPU timers that have fired and move them off
976 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
977 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
979 static void check_thread_timers(struct task_struct
*tsk
,
980 struct list_head
*firing
)
983 struct list_head
*timers
= tsk
->cpu_timers
;
984 struct signal_struct
*const sig
= tsk
->signal
;
987 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
988 while (!list_empty(timers
)) {
989 struct cpu_timer_list
*t
= list_first_entry(timers
,
990 struct cpu_timer_list
,
992 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
993 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
997 list_move_tail(&t
->entry
, firing
);
1002 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
1003 while (!list_empty(timers
)) {
1004 struct cpu_timer_list
*t
= list_first_entry(timers
,
1005 struct cpu_timer_list
,
1007 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
1008 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
1012 list_move_tail(&t
->entry
, firing
);
1017 tsk
->cputime_expires
.sched_exp
= 0;
1018 while (!list_empty(timers
)) {
1019 struct cpu_timer_list
*t
= list_first_entry(timers
,
1020 struct cpu_timer_list
,
1022 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
1023 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
1027 list_move_tail(&t
->entry
, firing
);
1031 * Check for the special case thread timers.
1033 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1034 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1035 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1037 if (hard
!= RLIM_INFINITY
&&
1038 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1040 * At the hard limit, we just die.
1041 * No need to calculate anything else now.
1043 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1046 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1048 * At the soft limit, send a SIGXCPU every second.
1050 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1051 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1052 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1056 "RT Watchdog Timeout: %s[%d]\n",
1057 tsk
->comm
, task_pid_nr(tsk
));
1058 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1063 static void stop_process_timers(struct task_struct
*tsk
)
1065 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
1066 unsigned long flags
;
1068 if (!cputimer
->running
)
1071 spin_lock_irqsave(&cputimer
->lock
, flags
);
1072 cputimer
->running
= 0;
1073 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1076 static u32 onecputick
;
1078 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1079 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1081 if (cputime_eq(it
->expires
, cputime_zero
))
1084 if (cputime_ge(cur_time
, it
->expires
)) {
1085 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1086 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1087 it
->error
+= it
->incr_error
;
1088 if (it
->error
>= onecputick
) {
1089 it
->expires
= cputime_sub(it
->expires
,
1091 it
->error
-= onecputick
;
1094 it
->expires
= cputime_zero
;
1097 trace_itimer_expire(signo
== SIGPROF
?
1098 ITIMER_PROF
: ITIMER_VIRTUAL
,
1099 tsk
->signal
->leader_pid
, cur_time
);
1100 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1103 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1104 (cputime_eq(*expires
, cputime_zero
) ||
1105 cputime_lt(it
->expires
, *expires
))) {
1106 *expires
= it
->expires
;
1111 * Check for any per-thread CPU timers that have fired and move them
1112 * off the tsk->*_timers list onto the firing list. Per-thread timers
1113 * have already been taken off.
1115 static void check_process_timers(struct task_struct
*tsk
,
1116 struct list_head
*firing
)
1119 struct signal_struct
*const sig
= tsk
->signal
;
1120 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1121 unsigned long long sum_sched_runtime
, sched_expires
;
1122 struct list_head
*timers
= sig
->cpu_timers
;
1123 struct task_cputime cputime
;
1126 * Don't sample the current process CPU clocks if there are no timers.
1128 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1129 cputime_eq(sig
->it
[CPUCLOCK_PROF
].expires
, cputime_zero
) &&
1130 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1131 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1132 cputime_eq(sig
->it
[CPUCLOCK_VIRT
].expires
, cputime_zero
) &&
1133 list_empty(&timers
[CPUCLOCK_SCHED
])) {
1134 stop_process_timers(tsk
);
1139 * Collect the current process totals.
1141 thread_group_cputimer(tsk
, &cputime
);
1142 utime
= cputime
.utime
;
1143 ptime
= cputime_add(utime
, cputime
.stime
);
1144 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1146 prof_expires
= cputime_zero
;
1147 while (!list_empty(timers
)) {
1148 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1149 struct cpu_timer_list
,
1151 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1152 prof_expires
= tl
->expires
.cpu
;
1156 list_move_tail(&tl
->entry
, firing
);
1161 virt_expires
= cputime_zero
;
1162 while (!list_empty(timers
)) {
1163 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1164 struct cpu_timer_list
,
1166 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1167 virt_expires
= tl
->expires
.cpu
;
1171 list_move_tail(&tl
->entry
, firing
);
1177 while (!list_empty(timers
)) {
1178 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1179 struct cpu_timer_list
,
1181 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1182 sched_expires
= tl
->expires
.sched
;
1186 list_move_tail(&tl
->entry
, firing
);
1190 * Check for the special case process timers.
1192 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1194 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1197 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1198 unsigned long psecs
= cputime_to_secs(ptime
);
1200 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1202 * At the hard limit, we just die.
1203 * No need to calculate anything else now.
1205 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1208 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1210 * At the soft limit, send a SIGXCPU every second.
1212 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1213 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1214 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1215 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1218 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1219 if (cputime_eq(prof_expires
, cputime_zero
) ||
1220 cputime_lt(x
, prof_expires
)) {
1225 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1226 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1227 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1228 sig
->cputime_expires
.prof_exp
= prof_expires
;
1229 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1230 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1231 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1232 sig
->cputime_expires
.virt_exp
= virt_expires
;
1233 if (sched_expires
!= 0 &&
1234 (sig
->cputime_expires
.sched_exp
== 0 ||
1235 sig
->cputime_expires
.sched_exp
> sched_expires
))
1236 sig
->cputime_expires
.sched_exp
= sched_expires
;
1240 * This is called from the signal code (via do_schedule_next_timer)
1241 * when the last timer signal was delivered and we have to reload the timer.
1243 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1245 struct task_struct
*p
= timer
->it
.cpu
.task
;
1246 union cpu_time_count now
;
1248 if (unlikely(p
== NULL
))
1250 * The task was cleaned up already, no future firings.
1255 * Fetch the current sample and update the timer's expiry time.
1257 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1258 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1259 bump_cpu_timer(timer
, now
);
1260 if (unlikely(p
->exit_state
)) {
1261 clear_dead_task(timer
, now
);
1264 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1266 read_lock(&tasklist_lock
);
1267 if (unlikely(p
->signal
== NULL
)) {
1269 * The process has been reaped.
1270 * We can't even collect a sample any more.
1273 timer
->it
.cpu
.task
= p
= NULL
;
1274 timer
->it
.cpu
.expires
.sched
= 0;
1276 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1278 * We've noticed that the thread is dead, but
1279 * not yet reaped. Take this opportunity to
1280 * drop our task ref.
1282 clear_dead_task(timer
, now
);
1285 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1286 bump_cpu_timer(timer
, now
);
1287 /* Leave the tasklist_lock locked for the call below. */
1291 * Now re-arm for the new expiry time.
1293 arm_timer(timer
, now
);
1296 read_unlock(&tasklist_lock
);
1299 timer
->it_overrun_last
= timer
->it_overrun
;
1300 timer
->it_overrun
= -1;
1301 ++timer
->it_requeue_pending
;
1305 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1307 * @cputime: The struct to compare.
1309 * Checks @cputime to see if all fields are zero. Returns true if all fields
1310 * are zero, false if any field is nonzero.
1312 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1314 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1315 cputime_eq(cputime
->stime
, cputime_zero
) &&
1316 cputime
->sum_exec_runtime
== 0)
1322 * task_cputime_expired - Compare two task_cputime entities.
1324 * @sample: The task_cputime structure to be checked for expiration.
1325 * @expires: Expiration times, against which @sample will be checked.
1327 * Checks @sample against @expires to see if any field of @sample has expired.
1328 * Returns true if any field of the former is greater than the corresponding
1329 * field of the latter if the latter field is set. Otherwise returns false.
1331 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1332 const struct task_cputime
*expires
)
1334 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1335 cputime_ge(sample
->utime
, expires
->utime
))
1337 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1338 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1341 if (expires
->sum_exec_runtime
!= 0 &&
1342 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1348 * fastpath_timer_check - POSIX CPU timers fast path.
1350 * @tsk: The task (thread) being checked.
1352 * Check the task and thread group timers. If both are zero (there are no
1353 * timers set) return false. Otherwise snapshot the task and thread group
1354 * timers and compare them with the corresponding expiration times. Return
1355 * true if a timer has expired, else return false.
1357 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1359 struct signal_struct
*sig
;
1361 /* tsk == current, ensure it is safe to use ->signal/sighand */
1362 if (unlikely(tsk
->exit_state
))
1365 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1366 struct task_cputime task_sample
= {
1367 .utime
= tsk
->utime
,
1368 .stime
= tsk
->stime
,
1369 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1372 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1377 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1378 struct task_cputime group_sample
;
1380 thread_group_cputimer(tsk
, &group_sample
);
1381 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1385 return sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
;
1389 * This is called from the timer interrupt handler. The irq handler has
1390 * already updated our counts. We need to check if any timers fire now.
1391 * Interrupts are disabled.
1393 void run_posix_cpu_timers(struct task_struct
*tsk
)
1396 struct k_itimer
*timer
, *next
;
1398 BUG_ON(!irqs_disabled());
1401 * The fast path checks that there are no expired thread or thread
1402 * group timers. If that's so, just return.
1404 if (!fastpath_timer_check(tsk
))
1407 spin_lock(&tsk
->sighand
->siglock
);
1409 * Here we take off tsk->signal->cpu_timers[N] and
1410 * tsk->cpu_timers[N] all the timers that are firing, and
1411 * put them on the firing list.
1413 check_thread_timers(tsk
, &firing
);
1414 check_process_timers(tsk
, &firing
);
1417 * We must release these locks before taking any timer's lock.
1418 * There is a potential race with timer deletion here, as the
1419 * siglock now protects our private firing list. We have set
1420 * the firing flag in each timer, so that a deletion attempt
1421 * that gets the timer lock before we do will give it up and
1422 * spin until we've taken care of that timer below.
1424 spin_unlock(&tsk
->sighand
->siglock
);
1427 * Now that all the timers on our list have the firing flag,
1428 * noone will touch their list entries but us. We'll take
1429 * each timer's lock before clearing its firing flag, so no
1430 * timer call will interfere.
1432 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1435 spin_lock(&timer
->it_lock
);
1436 list_del_init(&timer
->it
.cpu
.entry
);
1437 cpu_firing
= timer
->it
.cpu
.firing
;
1438 timer
->it
.cpu
.firing
= 0;
1440 * The firing flag is -1 if we collided with a reset
1441 * of the timer, which already reported this
1442 * almost-firing as an overrun. So don't generate an event.
1444 if (likely(cpu_firing
>= 0))
1445 cpu_timer_fire(timer
);
1446 spin_unlock(&timer
->it_lock
);
1451 * Set one of the process-wide special case CPU timers.
1452 * The tsk->sighand->siglock must be held by the caller.
1453 * The *newval argument is relative and we update it to be absolute, *oldval
1454 * is absolute and we update it to be relative.
1456 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1457 cputime_t
*newval
, cputime_t
*oldval
)
1459 union cpu_time_count now
;
1460 struct list_head
*head
;
1462 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1463 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1466 if (!cputime_eq(*oldval
, cputime_zero
)) {
1467 if (cputime_le(*oldval
, now
.cpu
)) {
1468 /* Just about to fire. */
1469 *oldval
= cputime_one_jiffy
;
1471 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1475 if (cputime_eq(*newval
, cputime_zero
))
1477 *newval
= cputime_add(*newval
, now
.cpu
);
1480 * If the RLIMIT_CPU timer will expire before the
1481 * ITIMER_PROF timer, we have nothing else to do.
1483 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1484 < cputime_to_secs(*newval
))
1489 * Check whether there are any process timers already set to fire
1490 * before this one. If so, we don't have anything more to do.
1492 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1493 if (list_empty(head
) ||
1494 cputime_ge(list_first_entry(head
,
1495 struct cpu_timer_list
, entry
)->expires
.cpu
,
1497 switch (clock_idx
) {
1499 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1502 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1508 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1509 struct timespec
*rqtp
, struct itimerspec
*it
)
1511 struct k_itimer timer
;
1515 * Set up a temporary timer and then wait for it to go off.
1517 memset(&timer
, 0, sizeof timer
);
1518 spin_lock_init(&timer
.it_lock
);
1519 timer
.it_clock
= which_clock
;
1520 timer
.it_overrun
= -1;
1521 error
= posix_cpu_timer_create(&timer
);
1522 timer
.it_process
= current
;
1524 static struct itimerspec zero_it
;
1526 memset(it
, 0, sizeof *it
);
1527 it
->it_value
= *rqtp
;
1529 spin_lock_irq(&timer
.it_lock
);
1530 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1532 spin_unlock_irq(&timer
.it_lock
);
1536 while (!signal_pending(current
)) {
1537 if (timer
.it
.cpu
.expires
.sched
== 0) {
1539 * Our timer fired and was reset.
1541 spin_unlock_irq(&timer
.it_lock
);
1546 * Block until cpu_timer_fire (or a signal) wakes us.
1548 __set_current_state(TASK_INTERRUPTIBLE
);
1549 spin_unlock_irq(&timer
.it_lock
);
1551 spin_lock_irq(&timer
.it_lock
);
1555 * We were interrupted by a signal.
1557 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1558 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1559 spin_unlock_irq(&timer
.it_lock
);
1561 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1563 * It actually did fire already.
1568 error
= -ERESTART_RESTARTBLOCK
;
1574 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1575 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1577 struct restart_block
*restart_block
=
1578 ¤t_thread_info()->restart_block
;
1579 struct itimerspec it
;
1583 * Diagnose required errors first.
1585 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1586 (CPUCLOCK_PID(which_clock
) == 0 ||
1587 CPUCLOCK_PID(which_clock
) == current
->pid
))
1590 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1592 if (error
== -ERESTART_RESTARTBLOCK
) {
1594 if (flags
& TIMER_ABSTIME
)
1595 return -ERESTARTNOHAND
;
1597 * Report back to the user the time still remaining.
1599 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1602 restart_block
->fn
= posix_cpu_nsleep_restart
;
1603 restart_block
->arg0
= which_clock
;
1604 restart_block
->arg1
= (unsigned long) rmtp
;
1605 restart_block
->arg2
= rqtp
->tv_sec
;
1606 restart_block
->arg3
= rqtp
->tv_nsec
;
1611 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1613 clockid_t which_clock
= restart_block
->arg0
;
1614 struct timespec __user
*rmtp
;
1616 struct itimerspec it
;
1619 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1620 t
.tv_sec
= restart_block
->arg2
;
1621 t
.tv_nsec
= restart_block
->arg3
;
1623 restart_block
->fn
= do_no_restart_syscall
;
1624 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1626 if (error
== -ERESTART_RESTARTBLOCK
) {
1628 * Report back to the user the time still remaining.
1630 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1633 restart_block
->fn
= posix_cpu_nsleep_restart
;
1634 restart_block
->arg0
= which_clock
;
1635 restart_block
->arg1
= (unsigned long) rmtp
;
1636 restart_block
->arg2
= t
.tv_sec
;
1637 restart_block
->arg3
= t
.tv_nsec
;
1644 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1645 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1647 static int process_cpu_clock_getres(const clockid_t which_clock
,
1648 struct timespec
*tp
)
1650 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1652 static int process_cpu_clock_get(const clockid_t which_clock
,
1653 struct timespec
*tp
)
1655 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1657 static int process_cpu_timer_create(struct k_itimer
*timer
)
1659 timer
->it_clock
= PROCESS_CLOCK
;
1660 return posix_cpu_timer_create(timer
);
1662 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1663 struct timespec
*rqtp
,
1664 struct timespec __user
*rmtp
)
1666 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1668 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1672 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1673 struct timespec
*tp
)
1675 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1677 static int thread_cpu_clock_get(const clockid_t which_clock
,
1678 struct timespec
*tp
)
1680 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1682 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1684 timer
->it_clock
= THREAD_CLOCK
;
1685 return posix_cpu_timer_create(timer
);
1687 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1688 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1692 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1697 static __init
int init_posix_cpu_timers(void)
1699 struct k_clock process
= {
1700 .clock_getres
= process_cpu_clock_getres
,
1701 .clock_get
= process_cpu_clock_get
,
1702 .clock_set
= do_posix_clock_nosettime
,
1703 .timer_create
= process_cpu_timer_create
,
1704 .nsleep
= process_cpu_nsleep
,
1705 .nsleep_restart
= process_cpu_nsleep_restart
,
1707 struct k_clock thread
= {
1708 .clock_getres
= thread_cpu_clock_getres
,
1709 .clock_get
= thread_cpu_clock_get
,
1710 .clock_set
= do_posix_clock_nosettime
,
1711 .timer_create
= thread_cpu_timer_create
,
1712 .nsleep
= thread_cpu_nsleep
,
1713 .nsleep_restart
= thread_cpu_nsleep_restart
,
1717 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1718 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1720 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1721 onecputick
= ts
.tv_nsec
;
1722 WARN_ON(ts
.tv_sec
!= 0);
1726 __initcall(init_posix_cpu_timers
);