2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
50 STATIC
void xfs_unmountfs_wait(xfs_mount_t
*);
54 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
56 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
58 STATIC
int xfs_icsb_modify_counters(xfs_mount_t
*, xfs_sb_field_t
,
60 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
72 short type
; /* 0 = integer
73 * 1 = binary / string (no translation)
76 { offsetof(xfs_sb_t
, sb_magicnum
), 0 },
77 { offsetof(xfs_sb_t
, sb_blocksize
), 0 },
78 { offsetof(xfs_sb_t
, sb_dblocks
), 0 },
79 { offsetof(xfs_sb_t
, sb_rblocks
), 0 },
80 { offsetof(xfs_sb_t
, sb_rextents
), 0 },
81 { offsetof(xfs_sb_t
, sb_uuid
), 1 },
82 { offsetof(xfs_sb_t
, sb_logstart
), 0 },
83 { offsetof(xfs_sb_t
, sb_rootino
), 0 },
84 { offsetof(xfs_sb_t
, sb_rbmino
), 0 },
85 { offsetof(xfs_sb_t
, sb_rsumino
), 0 },
86 { offsetof(xfs_sb_t
, sb_rextsize
), 0 },
87 { offsetof(xfs_sb_t
, sb_agblocks
), 0 },
88 { offsetof(xfs_sb_t
, sb_agcount
), 0 },
89 { offsetof(xfs_sb_t
, sb_rbmblocks
), 0 },
90 { offsetof(xfs_sb_t
, sb_logblocks
), 0 },
91 { offsetof(xfs_sb_t
, sb_versionnum
), 0 },
92 { offsetof(xfs_sb_t
, sb_sectsize
), 0 },
93 { offsetof(xfs_sb_t
, sb_inodesize
), 0 },
94 { offsetof(xfs_sb_t
, sb_inopblock
), 0 },
95 { offsetof(xfs_sb_t
, sb_fname
[0]), 1 },
96 { offsetof(xfs_sb_t
, sb_blocklog
), 0 },
97 { offsetof(xfs_sb_t
, sb_sectlog
), 0 },
98 { offsetof(xfs_sb_t
, sb_inodelog
), 0 },
99 { offsetof(xfs_sb_t
, sb_inopblog
), 0 },
100 { offsetof(xfs_sb_t
, sb_agblklog
), 0 },
101 { offsetof(xfs_sb_t
, sb_rextslog
), 0 },
102 { offsetof(xfs_sb_t
, sb_inprogress
), 0 },
103 { offsetof(xfs_sb_t
, sb_imax_pct
), 0 },
104 { offsetof(xfs_sb_t
, sb_icount
), 0 },
105 { offsetof(xfs_sb_t
, sb_ifree
), 0 },
106 { offsetof(xfs_sb_t
, sb_fdblocks
), 0 },
107 { offsetof(xfs_sb_t
, sb_frextents
), 0 },
108 { offsetof(xfs_sb_t
, sb_uquotino
), 0 },
109 { offsetof(xfs_sb_t
, sb_gquotino
), 0 },
110 { offsetof(xfs_sb_t
, sb_qflags
), 0 },
111 { offsetof(xfs_sb_t
, sb_flags
), 0 },
112 { offsetof(xfs_sb_t
, sb_shared_vn
), 0 },
113 { offsetof(xfs_sb_t
, sb_inoalignmt
), 0 },
114 { offsetof(xfs_sb_t
, sb_unit
), 0 },
115 { offsetof(xfs_sb_t
, sb_width
), 0 },
116 { offsetof(xfs_sb_t
, sb_dirblklog
), 0 },
117 { offsetof(xfs_sb_t
, sb_logsectlog
), 0 },
118 { offsetof(xfs_sb_t
, sb_logsectsize
),0 },
119 { offsetof(xfs_sb_t
, sb_logsunit
), 0 },
120 { offsetof(xfs_sb_t
, sb_features2
), 0 },
121 { offsetof(xfs_sb_t
, sb_bad_features2
), 0 },
122 { sizeof(xfs_sb_t
), 0 }
125 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
126 static int xfs_uuid_table_size
;
127 static uuid_t
*xfs_uuid_table
;
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
135 struct xfs_mount
*mp
)
137 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
140 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
143 if (uuid_is_nil(uuid
)) {
145 "XFS: Filesystem %s has nil UUID - can't mount",
147 return XFS_ERROR(EINVAL
);
150 mutex_lock(&xfs_uuid_table_mutex
);
151 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
152 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
156 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
161 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
162 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
163 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
165 hole
= xfs_uuid_table_size
++;
167 xfs_uuid_table
[hole
] = *uuid
;
168 mutex_unlock(&xfs_uuid_table_mutex
);
173 mutex_unlock(&xfs_uuid_table_mutex
);
174 cmn_err(CE_WARN
, "XFS: Filesystem %s has duplicate UUID - can't mount",
176 return XFS_ERROR(EINVAL
);
181 struct xfs_mount
*mp
)
183 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
186 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
189 mutex_lock(&xfs_uuid_table_mutex
);
190 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
191 if (uuid_is_nil(&xfs_uuid_table
[i
]))
193 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
195 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
198 ASSERT(i
< xfs_uuid_table_size
);
199 mutex_unlock(&xfs_uuid_table_mutex
);
204 * Free up the resources associated with a mount structure. Assume that
205 * the structure was initially zeroed, so we can tell which fields got
215 for (agno
= 0; agno
< mp
->m_maxagi
; agno
++)
216 if (mp
->m_perag
[agno
].pagb_list
)
217 kmem_free(mp
->m_perag
[agno
].pagb_list
);
218 kmem_free(mp
->m_perag
);
223 * Check size of device based on the (data/realtime) block count.
224 * Note: this check is used by the growfs code as well as mount.
227 xfs_sb_validate_fsb_count(
231 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
232 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
234 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
235 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
237 #else /* Limited by UINT_MAX of sectors */
238 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
245 * Check the validity of the SB found.
248 xfs_mount_validate_sb(
254 * If the log device and data device have the
255 * same device number, the log is internal.
256 * Consequently, the sb_logstart should be non-zero. If
257 * we have a zero sb_logstart in this case, we may be trying to mount
258 * a volume filesystem in a non-volume manner.
260 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
261 xfs_fs_mount_cmn_err(flags
, "bad magic number");
262 return XFS_ERROR(EWRONGFS
);
265 if (!xfs_sb_good_version(sbp
)) {
266 xfs_fs_mount_cmn_err(flags
, "bad version");
267 return XFS_ERROR(EWRONGFS
);
271 sbp
->sb_logstart
== 0 && mp
->m_logdev_targp
== mp
->m_ddev_targp
)) {
272 xfs_fs_mount_cmn_err(flags
,
273 "filesystem is marked as having an external log; "
274 "specify logdev on the\nmount command line.");
275 return XFS_ERROR(EINVAL
);
279 sbp
->sb_logstart
!= 0 && mp
->m_logdev_targp
!= mp
->m_ddev_targp
)) {
280 xfs_fs_mount_cmn_err(flags
,
281 "filesystem is marked as having an internal log; "
282 "do not specify logdev on\nthe mount command line.");
283 return XFS_ERROR(EINVAL
);
287 * More sanity checking. These were stolen directly from
291 sbp
->sb_agcount
<= 0 ||
292 sbp
->sb_sectsize
< XFS_MIN_SECTORSIZE
||
293 sbp
->sb_sectsize
> XFS_MAX_SECTORSIZE
||
294 sbp
->sb_sectlog
< XFS_MIN_SECTORSIZE_LOG
||
295 sbp
->sb_sectlog
> XFS_MAX_SECTORSIZE_LOG
||
296 sbp
->sb_sectsize
!= (1 << sbp
->sb_sectlog
) ||
297 sbp
->sb_blocksize
< XFS_MIN_BLOCKSIZE
||
298 sbp
->sb_blocksize
> XFS_MAX_BLOCKSIZE
||
299 sbp
->sb_blocklog
< XFS_MIN_BLOCKSIZE_LOG
||
300 sbp
->sb_blocklog
> XFS_MAX_BLOCKSIZE_LOG
||
301 sbp
->sb_blocksize
!= (1 << sbp
->sb_blocklog
) ||
302 sbp
->sb_inodesize
< XFS_DINODE_MIN_SIZE
||
303 sbp
->sb_inodesize
> XFS_DINODE_MAX_SIZE
||
304 sbp
->sb_inodelog
< XFS_DINODE_MIN_LOG
||
305 sbp
->sb_inodelog
> XFS_DINODE_MAX_LOG
||
306 sbp
->sb_inodesize
!= (1 << sbp
->sb_inodelog
) ||
307 (sbp
->sb_blocklog
- sbp
->sb_inodelog
!= sbp
->sb_inopblog
) ||
308 (sbp
->sb_rextsize
* sbp
->sb_blocksize
> XFS_MAX_RTEXTSIZE
) ||
309 (sbp
->sb_rextsize
* sbp
->sb_blocksize
< XFS_MIN_RTEXTSIZE
) ||
310 (sbp
->sb_imax_pct
> 100 /* zero sb_imax_pct is valid */))) {
311 xfs_fs_mount_cmn_err(flags
, "SB sanity check 1 failed");
312 return XFS_ERROR(EFSCORRUPTED
);
316 * Sanity check AG count, size fields against data size field
319 sbp
->sb_dblocks
== 0 ||
321 (xfs_drfsbno_t
)sbp
->sb_agcount
* sbp
->sb_agblocks
||
322 sbp
->sb_dblocks
< (xfs_drfsbno_t
)(sbp
->sb_agcount
- 1) *
323 sbp
->sb_agblocks
+ XFS_MIN_AG_BLOCKS
)) {
324 xfs_fs_mount_cmn_err(flags
, "SB sanity check 2 failed");
325 return XFS_ERROR(EFSCORRUPTED
);
329 * Until this is fixed only page-sized or smaller data blocks work.
331 if (unlikely(sbp
->sb_blocksize
> PAGE_SIZE
)) {
332 xfs_fs_mount_cmn_err(flags
,
333 "file system with blocksize %d bytes",
335 xfs_fs_mount_cmn_err(flags
,
336 "only pagesize (%ld) or less will currently work.",
338 return XFS_ERROR(ENOSYS
);
342 * Currently only very few inode sizes are supported.
344 switch (sbp
->sb_inodesize
) {
351 xfs_fs_mount_cmn_err(flags
,
352 "inode size of %d bytes not supported",
354 return XFS_ERROR(ENOSYS
);
357 if (xfs_sb_validate_fsb_count(sbp
, sbp
->sb_dblocks
) ||
358 xfs_sb_validate_fsb_count(sbp
, sbp
->sb_rblocks
)) {
359 xfs_fs_mount_cmn_err(flags
,
360 "file system too large to be mounted on this system.");
361 return XFS_ERROR(E2BIG
);
364 if (unlikely(sbp
->sb_inprogress
)) {
365 xfs_fs_mount_cmn_err(flags
, "file system busy");
366 return XFS_ERROR(EFSCORRUPTED
);
370 * Version 1 directory format has never worked on Linux.
372 if (unlikely(!xfs_sb_version_hasdirv2(sbp
))) {
373 xfs_fs_mount_cmn_err(flags
,
374 "file system using version 1 directory format");
375 return XFS_ERROR(ENOSYS
);
382 xfs_initialize_perag_icache(
385 if (!pag
->pag_ici_init
) {
386 rwlock_init(&pag
->pag_ici_lock
);
387 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
388 pag
->pag_ici_init
= 1;
393 xfs_initialize_perag(
395 xfs_agnumber_t agcount
)
397 xfs_agnumber_t index
, max_metadata
;
401 xfs_sb_t
*sbp
= &mp
->m_sb
;
402 xfs_ino_t max_inum
= XFS_MAXINUMBER_32
;
404 /* Check to see if the filesystem can overflow 32 bit inodes */
405 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
406 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
408 /* Clear the mount flag if no inode can overflow 32 bits
409 * on this filesystem, or if specifically requested..
411 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> max_inum
) {
412 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
414 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
417 /* If we can overflow then setup the ag headers accordingly */
418 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
) {
419 /* Calculate how much should be reserved for inodes to
420 * meet the max inode percentage.
422 if (mp
->m_maxicount
) {
425 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
427 icount
+= sbp
->sb_agblocks
- 1;
428 do_div(icount
, sbp
->sb_agblocks
);
429 max_metadata
= icount
;
431 max_metadata
= agcount
;
433 for (index
= 0; index
< agcount
; index
++) {
434 ino
= XFS_AGINO_TO_INO(mp
, index
, agino
);
435 if (ino
> max_inum
) {
440 /* This ag is preferred for inodes */
441 pag
= &mp
->m_perag
[index
];
442 pag
->pagi_inodeok
= 1;
443 if (index
< max_metadata
)
444 pag
->pagf_metadata
= 1;
445 xfs_initialize_perag_icache(pag
);
448 /* Setup default behavior for smaller filesystems */
449 for (index
= 0; index
< agcount
; index
++) {
450 pag
= &mp
->m_perag
[index
];
451 pag
->pagi_inodeok
= 1;
452 xfs_initialize_perag_icache(pag
);
463 to
->sb_magicnum
= be32_to_cpu(from
->sb_magicnum
);
464 to
->sb_blocksize
= be32_to_cpu(from
->sb_blocksize
);
465 to
->sb_dblocks
= be64_to_cpu(from
->sb_dblocks
);
466 to
->sb_rblocks
= be64_to_cpu(from
->sb_rblocks
);
467 to
->sb_rextents
= be64_to_cpu(from
->sb_rextents
);
468 memcpy(&to
->sb_uuid
, &from
->sb_uuid
, sizeof(to
->sb_uuid
));
469 to
->sb_logstart
= be64_to_cpu(from
->sb_logstart
);
470 to
->sb_rootino
= be64_to_cpu(from
->sb_rootino
);
471 to
->sb_rbmino
= be64_to_cpu(from
->sb_rbmino
);
472 to
->sb_rsumino
= be64_to_cpu(from
->sb_rsumino
);
473 to
->sb_rextsize
= be32_to_cpu(from
->sb_rextsize
);
474 to
->sb_agblocks
= be32_to_cpu(from
->sb_agblocks
);
475 to
->sb_agcount
= be32_to_cpu(from
->sb_agcount
);
476 to
->sb_rbmblocks
= be32_to_cpu(from
->sb_rbmblocks
);
477 to
->sb_logblocks
= be32_to_cpu(from
->sb_logblocks
);
478 to
->sb_versionnum
= be16_to_cpu(from
->sb_versionnum
);
479 to
->sb_sectsize
= be16_to_cpu(from
->sb_sectsize
);
480 to
->sb_inodesize
= be16_to_cpu(from
->sb_inodesize
);
481 to
->sb_inopblock
= be16_to_cpu(from
->sb_inopblock
);
482 memcpy(&to
->sb_fname
, &from
->sb_fname
, sizeof(to
->sb_fname
));
483 to
->sb_blocklog
= from
->sb_blocklog
;
484 to
->sb_sectlog
= from
->sb_sectlog
;
485 to
->sb_inodelog
= from
->sb_inodelog
;
486 to
->sb_inopblog
= from
->sb_inopblog
;
487 to
->sb_agblklog
= from
->sb_agblklog
;
488 to
->sb_rextslog
= from
->sb_rextslog
;
489 to
->sb_inprogress
= from
->sb_inprogress
;
490 to
->sb_imax_pct
= from
->sb_imax_pct
;
491 to
->sb_icount
= be64_to_cpu(from
->sb_icount
);
492 to
->sb_ifree
= be64_to_cpu(from
->sb_ifree
);
493 to
->sb_fdblocks
= be64_to_cpu(from
->sb_fdblocks
);
494 to
->sb_frextents
= be64_to_cpu(from
->sb_frextents
);
495 to
->sb_uquotino
= be64_to_cpu(from
->sb_uquotino
);
496 to
->sb_gquotino
= be64_to_cpu(from
->sb_gquotino
);
497 to
->sb_qflags
= be16_to_cpu(from
->sb_qflags
);
498 to
->sb_flags
= from
->sb_flags
;
499 to
->sb_shared_vn
= from
->sb_shared_vn
;
500 to
->sb_inoalignmt
= be32_to_cpu(from
->sb_inoalignmt
);
501 to
->sb_unit
= be32_to_cpu(from
->sb_unit
);
502 to
->sb_width
= be32_to_cpu(from
->sb_width
);
503 to
->sb_dirblklog
= from
->sb_dirblklog
;
504 to
->sb_logsectlog
= from
->sb_logsectlog
;
505 to
->sb_logsectsize
= be16_to_cpu(from
->sb_logsectsize
);
506 to
->sb_logsunit
= be32_to_cpu(from
->sb_logsunit
);
507 to
->sb_features2
= be32_to_cpu(from
->sb_features2
);
508 to
->sb_bad_features2
= be32_to_cpu(from
->sb_bad_features2
);
512 * Copy in core superblock to ondisk one.
514 * The fields argument is mask of superblock fields to copy.
522 xfs_caddr_t to_ptr
= (xfs_caddr_t
)to
;
523 xfs_caddr_t from_ptr
= (xfs_caddr_t
)from
;
533 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
534 first
= xfs_sb_info
[f
].offset
;
535 size
= xfs_sb_info
[f
+ 1].offset
- first
;
537 ASSERT(xfs_sb_info
[f
].type
== 0 || xfs_sb_info
[f
].type
== 1);
539 if (size
== 1 || xfs_sb_info
[f
].type
== 1) {
540 memcpy(to_ptr
+ first
, from_ptr
+ first
, size
);
544 *(__be16
*)(to_ptr
+ first
) =
545 cpu_to_be16(*(__u16
*)(from_ptr
+ first
));
548 *(__be32
*)(to_ptr
+ first
) =
549 cpu_to_be32(*(__u32
*)(from_ptr
+ first
));
552 *(__be64
*)(to_ptr
+ first
) =
553 cpu_to_be64(*(__u64
*)(from_ptr
+ first
));
560 fields
&= ~(1LL << f
);
567 * Does the initial read of the superblock.
570 xfs_readsb(xfs_mount_t
*mp
, int flags
)
572 unsigned int sector_size
;
573 unsigned int extra_flags
;
577 ASSERT(mp
->m_sb_bp
== NULL
);
578 ASSERT(mp
->m_ddev_targp
!= NULL
);
581 * Allocate a (locked) buffer to hold the superblock.
582 * This will be kept around at all times to optimize
583 * access to the superblock.
585 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
586 extra_flags
= XFS_BUF_LOCK
| XFS_BUF_MANAGE
| XFS_BUF_MAPPED
;
588 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
, BTOBB(sector_size
),
590 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
591 xfs_fs_mount_cmn_err(flags
, "SB read failed");
592 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
595 ASSERT(XFS_BUF_ISBUSY(bp
));
596 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
599 * Initialize the mount structure from the superblock.
600 * But first do some basic consistency checking.
602 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
604 error
= xfs_mount_validate_sb(mp
, &(mp
->m_sb
), flags
);
606 xfs_fs_mount_cmn_err(flags
, "SB validate failed");
611 * We must be able to do sector-sized and sector-aligned IO.
613 if (sector_size
> mp
->m_sb
.sb_sectsize
) {
614 xfs_fs_mount_cmn_err(flags
,
615 "device supports only %u byte sectors (not %u)",
616 sector_size
, mp
->m_sb
.sb_sectsize
);
622 * If device sector size is smaller than the superblock size,
623 * re-read the superblock so the buffer is correctly sized.
625 if (sector_size
< mp
->m_sb
.sb_sectsize
) {
626 XFS_BUF_UNMANAGE(bp
);
628 sector_size
= mp
->m_sb
.sb_sectsize
;
629 bp
= xfs_buf_read(mp
->m_ddev_targp
, XFS_SB_DADDR
,
630 BTOBB(sector_size
), extra_flags
);
631 if (!bp
|| XFS_BUF_ISERROR(bp
)) {
632 xfs_fs_mount_cmn_err(flags
, "SB re-read failed");
633 error
= bp
? XFS_BUF_GETERROR(bp
) : ENOMEM
;
636 ASSERT(XFS_BUF_ISBUSY(bp
));
637 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
640 /* Initialize per-cpu counters */
641 xfs_icsb_reinit_counters(mp
);
645 ASSERT(XFS_BUF_VALUSEMA(bp
) > 0);
650 XFS_BUF_UNMANAGE(bp
);
660 * Mount initialization code establishing various mount
661 * fields from the superblock associated with the given
665 xfs_mount_common(xfs_mount_t
*mp
, xfs_sb_t
*sbp
)
667 mp
->m_agfrotor
= mp
->m_agirotor
= 0;
668 spin_lock_init(&mp
->m_agirotor_lock
);
669 mp
->m_maxagi
= mp
->m_sb
.sb_agcount
;
670 mp
->m_blkbit_log
= sbp
->sb_blocklog
+ XFS_NBBYLOG
;
671 mp
->m_blkbb_log
= sbp
->sb_blocklog
- BBSHIFT
;
672 mp
->m_sectbb_log
= sbp
->sb_sectlog
- BBSHIFT
;
673 mp
->m_agno_log
= xfs_highbit32(sbp
->sb_agcount
- 1) + 1;
674 mp
->m_agino_log
= sbp
->sb_inopblog
+ sbp
->sb_agblklog
;
675 mp
->m_blockmask
= sbp
->sb_blocksize
- 1;
676 mp
->m_blockwsize
= sbp
->sb_blocksize
>> XFS_WORDLOG
;
677 mp
->m_blockwmask
= mp
->m_blockwsize
- 1;
679 mp
->m_alloc_mxr
[0] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
680 mp
->m_alloc_mxr
[1] = xfs_allocbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
681 mp
->m_alloc_mnr
[0] = mp
->m_alloc_mxr
[0] / 2;
682 mp
->m_alloc_mnr
[1] = mp
->m_alloc_mxr
[1] / 2;
684 mp
->m_inobt_mxr
[0] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
685 mp
->m_inobt_mxr
[1] = xfs_inobt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
686 mp
->m_inobt_mnr
[0] = mp
->m_inobt_mxr
[0] / 2;
687 mp
->m_inobt_mnr
[1] = mp
->m_inobt_mxr
[1] / 2;
689 mp
->m_bmap_dmxr
[0] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 1);
690 mp
->m_bmap_dmxr
[1] = xfs_bmbt_maxrecs(mp
, sbp
->sb_blocksize
, 0);
691 mp
->m_bmap_dmnr
[0] = mp
->m_bmap_dmxr
[0] / 2;
692 mp
->m_bmap_dmnr
[1] = mp
->m_bmap_dmxr
[1] / 2;
694 mp
->m_bsize
= XFS_FSB_TO_BB(mp
, 1);
695 mp
->m_ialloc_inos
= (int)MAX((__uint16_t
)XFS_INODES_PER_CHUNK
,
697 mp
->m_ialloc_blks
= mp
->m_ialloc_inos
>> sbp
->sb_inopblog
;
701 * xfs_initialize_perag_data
703 * Read in each per-ag structure so we can count up the number of
704 * allocated inodes, free inodes and used filesystem blocks as this
705 * information is no longer persistent in the superblock. Once we have
706 * this information, write it into the in-core superblock structure.
709 xfs_initialize_perag_data(xfs_mount_t
*mp
, xfs_agnumber_t agcount
)
711 xfs_agnumber_t index
;
713 xfs_sb_t
*sbp
= &mp
->m_sb
;
717 uint64_t bfreelst
= 0;
721 for (index
= 0; index
< agcount
; index
++) {
723 * read the agf, then the agi. This gets us
724 * all the information we need and populates the
725 * per-ag structures for us.
727 error
= xfs_alloc_pagf_init(mp
, NULL
, index
, 0);
731 error
= xfs_ialloc_pagi_init(mp
, NULL
, index
);
734 pag
= &mp
->m_perag
[index
];
735 ifree
+= pag
->pagi_freecount
;
736 ialloc
+= pag
->pagi_count
;
737 bfree
+= pag
->pagf_freeblks
;
738 bfreelst
+= pag
->pagf_flcount
;
739 btree
+= pag
->pagf_btreeblks
;
742 * Overwrite incore superblock counters with just-read data
744 spin_lock(&mp
->m_sb_lock
);
745 sbp
->sb_ifree
= ifree
;
746 sbp
->sb_icount
= ialloc
;
747 sbp
->sb_fdblocks
= bfree
+ bfreelst
+ btree
;
748 spin_unlock(&mp
->m_sb_lock
);
750 /* Fixup the per-cpu counters as well. */
751 xfs_icsb_reinit_counters(mp
);
757 * Update alignment values based on mount options and sb values
760 xfs_update_alignment(xfs_mount_t
*mp
)
762 xfs_sb_t
*sbp
= &(mp
->m_sb
);
766 * If stripe unit and stripe width are not multiples
767 * of the fs blocksize turn off alignment.
769 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
770 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
771 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
773 "XFS: alignment check 1 failed");
774 return XFS_ERROR(EINVAL
);
776 mp
->m_dalign
= mp
->m_swidth
= 0;
779 * Convert the stripe unit and width to FSBs.
781 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
782 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
783 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
784 return XFS_ERROR(EINVAL
);
786 xfs_fs_cmn_err(CE_WARN
, mp
,
787 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
788 mp
->m_dalign
, mp
->m_swidth
,
793 } else if (mp
->m_dalign
) {
794 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
796 if (mp
->m_flags
& XFS_MOUNT_RETERR
) {
797 xfs_fs_cmn_err(CE_WARN
, mp
,
798 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
801 return XFS_ERROR(EINVAL
);
808 * Update superblock with new values
811 if (xfs_sb_version_hasdalign(sbp
)) {
812 if (sbp
->sb_unit
!= mp
->m_dalign
) {
813 sbp
->sb_unit
= mp
->m_dalign
;
814 mp
->m_update_flags
|= XFS_SB_UNIT
;
816 if (sbp
->sb_width
!= mp
->m_swidth
) {
817 sbp
->sb_width
= mp
->m_swidth
;
818 mp
->m_update_flags
|= XFS_SB_WIDTH
;
821 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
822 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
823 mp
->m_dalign
= sbp
->sb_unit
;
824 mp
->m_swidth
= sbp
->sb_width
;
831 * Set the maximum inode count for this filesystem
834 xfs_set_maxicount(xfs_mount_t
*mp
)
836 xfs_sb_t
*sbp
= &(mp
->m_sb
);
839 if (sbp
->sb_imax_pct
) {
841 * Make sure the maximum inode count is a multiple
842 * of the units we allocate inodes in.
844 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
846 do_div(icount
, mp
->m_ialloc_blks
);
847 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
855 * Set the default minimum read and write sizes unless
856 * already specified in a mount option.
857 * We use smaller I/O sizes when the file system
858 * is being used for NFS service (wsync mount option).
861 xfs_set_rw_sizes(xfs_mount_t
*mp
)
863 xfs_sb_t
*sbp
= &(mp
->m_sb
);
864 int readio_log
, writeio_log
;
866 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
867 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
868 readio_log
= XFS_WSYNC_READIO_LOG
;
869 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
871 readio_log
= XFS_READIO_LOG_LARGE
;
872 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
875 readio_log
= mp
->m_readio_log
;
876 writeio_log
= mp
->m_writeio_log
;
879 if (sbp
->sb_blocklog
> readio_log
) {
880 mp
->m_readio_log
= sbp
->sb_blocklog
;
882 mp
->m_readio_log
= readio_log
;
884 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
885 if (sbp
->sb_blocklog
> writeio_log
) {
886 mp
->m_writeio_log
= sbp
->sb_blocklog
;
888 mp
->m_writeio_log
= writeio_log
;
890 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
894 * Set whether we're using inode alignment.
897 xfs_set_inoalignment(xfs_mount_t
*mp
)
899 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
900 mp
->m_sb
.sb_inoalignmt
>=
901 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
902 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
904 mp
->m_inoalign_mask
= 0;
906 * If we are using stripe alignment, check whether
907 * the stripe unit is a multiple of the inode alignment
909 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
910 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
911 mp
->m_sinoalign
= mp
->m_dalign
;
917 * Check that the data (and log if separate) are an ok size.
920 xfs_check_sizes(xfs_mount_t
*mp
)
926 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
927 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
928 cmn_err(CE_WARN
, "XFS: size check 1 failed");
929 return XFS_ERROR(E2BIG
);
931 error
= xfs_read_buf(mp
, mp
->m_ddev_targp
,
932 d
- XFS_FSS_TO_BB(mp
, 1),
933 XFS_FSS_TO_BB(mp
, 1), 0, &bp
);
937 cmn_err(CE_WARN
, "XFS: size check 2 failed");
939 error
= XFS_ERROR(E2BIG
);
943 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
944 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
945 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
946 cmn_err(CE_WARN
, "XFS: size check 3 failed");
947 return XFS_ERROR(E2BIG
);
949 error
= xfs_read_buf(mp
, mp
->m_logdev_targp
,
950 d
- XFS_FSB_TO_BB(mp
, 1),
951 XFS_FSB_TO_BB(mp
, 1), 0, &bp
);
955 cmn_err(CE_WARN
, "XFS: size check 3 failed");
957 error
= XFS_ERROR(E2BIG
);
965 * Clear the quotaflags in memory and in the superblock.
968 xfs_mount_reset_sbqflags(
969 struct xfs_mount
*mp
)
972 struct xfs_trans
*tp
;
977 * It is OK to look at sb_qflags here in mount path,
980 if (mp
->m_sb
.sb_qflags
== 0)
982 spin_lock(&mp
->m_sb_lock
);
983 mp
->m_sb
.sb_qflags
= 0;
984 spin_unlock(&mp
->m_sb_lock
);
987 * If the fs is readonly, let the incore superblock run
988 * with quotas off but don't flush the update out to disk
990 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
994 xfs_fs_cmn_err(CE_NOTE
, mp
, "Writing superblock quota changes");
997 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
998 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
999 XFS_DEFAULT_LOG_COUNT
);
1001 xfs_trans_cancel(tp
, 0);
1002 xfs_fs_cmn_err(CE_ALERT
, mp
,
1003 "xfs_mount_reset_sbqflags: Superblock update failed!");
1007 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
1008 return xfs_trans_commit(tp
, 0);
1012 * This function does the following on an initial mount of a file system:
1013 * - reads the superblock from disk and init the mount struct
1014 * - if we're a 32-bit kernel, do a size check on the superblock
1015 * so we don't mount terabyte filesystems
1016 * - init mount struct realtime fields
1017 * - allocate inode hash table for fs
1018 * - init directory manager
1019 * - perform recovery and init the log manager
1025 xfs_sb_t
*sbp
= &(mp
->m_sb
);
1028 uint quotamount
= 0;
1029 uint quotaflags
= 0;
1032 xfs_mount_common(mp
, sbp
);
1035 * Check for a mismatched features2 values. Older kernels
1036 * read & wrote into the wrong sb offset for sb_features2
1037 * on some platforms due to xfs_sb_t not being 64bit size aligned
1038 * when sb_features2 was added, which made older superblock
1039 * reading/writing routines swap it as a 64-bit value.
1041 * For backwards compatibility, we make both slots equal.
1043 * If we detect a mismatched field, we OR the set bits into the
1044 * existing features2 field in case it has already been modified; we
1045 * don't want to lose any features. We then update the bad location
1046 * with the ORed value so that older kernels will see any features2
1047 * flags, and mark the two fields as needing updates once the
1048 * transaction subsystem is online.
1050 if (xfs_sb_has_mismatched_features2(sbp
)) {
1052 "XFS: correcting sb_features alignment problem");
1053 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
1054 sbp
->sb_bad_features2
= sbp
->sb_features2
;
1055 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
1058 * Re-check for ATTR2 in case it was found in bad_features2
1061 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1062 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
1063 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
1066 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
1067 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
1068 xfs_sb_version_removeattr2(&mp
->m_sb
);
1069 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
1071 /* update sb_versionnum for the clearing of the morebits */
1072 if (!sbp
->sb_features2
)
1073 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
1077 * Check if sb_agblocks is aligned at stripe boundary
1078 * If sb_agblocks is NOT aligned turn off m_dalign since
1079 * allocator alignment is within an ag, therefore ag has
1080 * to be aligned at stripe boundary.
1082 error
= xfs_update_alignment(mp
);
1086 xfs_alloc_compute_maxlevels(mp
);
1087 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
1088 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
1089 xfs_ialloc_compute_maxlevels(mp
);
1091 xfs_set_maxicount(mp
);
1093 mp
->m_maxioffset
= xfs_max_file_offset(sbp
->sb_blocklog
);
1095 error
= xfs_uuid_mount(mp
);
1100 * Set the minimum read and write sizes
1102 xfs_set_rw_sizes(mp
);
1105 * Set the inode cluster size.
1106 * This may still be overridden by the file system
1107 * block size if it is larger than the chosen cluster size.
1109 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
1112 * Set inode alignment fields
1114 xfs_set_inoalignment(mp
);
1117 * Check that the data (and log if separate) are an ok size.
1119 error
= xfs_check_sizes(mp
);
1121 goto out_remove_uuid
;
1124 * Initialize realtime fields in the mount structure
1126 error
= xfs_rtmount_init(mp
);
1128 cmn_err(CE_WARN
, "XFS: RT mount failed");
1129 goto out_remove_uuid
;
1133 * Copies the low order bits of the timestamp and the randomly
1134 * set "sequence" number out of a UUID.
1136 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
1138 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
1143 * Initialize the attribute manager's entries.
1145 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
1148 * Initialize the precomputed transaction reservations values.
1153 * Allocate and initialize the per-ag data.
1155 init_rwsem(&mp
->m_peraglock
);
1156 mp
->m_perag
= kmem_zalloc(sbp
->sb_agcount
* sizeof(xfs_perag_t
),
1159 goto out_remove_uuid
;
1161 mp
->m_maxagi
= xfs_initialize_perag(mp
, sbp
->sb_agcount
);
1163 if (!sbp
->sb_logblocks
) {
1164 cmn_err(CE_WARN
, "XFS: no log defined");
1165 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
1166 error
= XFS_ERROR(EFSCORRUPTED
);
1167 goto out_free_perag
;
1171 * log's mount-time initialization. Perform 1st part recovery if needed
1173 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
1174 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
1175 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
1177 cmn_err(CE_WARN
, "XFS: log mount failed");
1178 goto out_free_perag
;
1182 * Now the log is mounted, we know if it was an unclean shutdown or
1183 * not. If it was, with the first phase of recovery has completed, we
1184 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1185 * but they are recovered transactionally in the second recovery phase
1188 * Hence we can safely re-initialise incore superblock counters from
1189 * the per-ag data. These may not be correct if the filesystem was not
1190 * cleanly unmounted, so we need to wait for recovery to finish before
1193 * If the filesystem was cleanly unmounted, then we can trust the
1194 * values in the superblock to be correct and we don't need to do
1197 * If we are currently making the filesystem, the initialisation will
1198 * fail as the perag data is in an undefined state.
1200 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
1201 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
1202 !mp
->m_sb
.sb_inprogress
) {
1203 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
1205 goto out_free_perag
;
1209 * Get and sanity-check the root inode.
1210 * Save the pointer to it in the mount structure.
1212 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
, 0);
1214 cmn_err(CE_WARN
, "XFS: failed to read root inode");
1215 goto out_log_dealloc
;
1218 ASSERT(rip
!= NULL
);
1220 if (unlikely((rip
->i_d
.di_mode
& S_IFMT
) != S_IFDIR
)) {
1221 cmn_err(CE_WARN
, "XFS: corrupted root inode");
1222 cmn_err(CE_WARN
, "Device %s - root %llu is not a directory",
1223 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
1224 (unsigned long long)rip
->i_ino
);
1225 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1226 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
1228 error
= XFS_ERROR(EFSCORRUPTED
);
1231 mp
->m_rootip
= rip
; /* save it */
1233 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
1236 * Initialize realtime inode pointers in the mount structure
1238 error
= xfs_rtmount_inodes(mp
);
1241 * Free up the root inode.
1243 cmn_err(CE_WARN
, "XFS: failed to read RT inodes");
1248 * If this is a read-only mount defer the superblock updates until
1249 * the next remount into writeable mode. Otherwise we would never
1250 * perform the update e.g. for the root filesystem.
1252 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1253 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
1255 cmn_err(CE_WARN
, "XFS: failed to write sb changes");
1261 * Initialise the XFS quota management subsystem for this mount
1263 if (XFS_IS_QUOTA_RUNNING(mp
)) {
1264 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
1268 ASSERT(!XFS_IS_QUOTA_ON(mp
));
1271 * If a file system had quotas running earlier, but decided to
1272 * mount without -o uquota/pquota/gquota options, revoke the
1273 * quotachecked license.
1275 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
1277 "XFS: resetting qflags for filesystem %s",
1280 error
= xfs_mount_reset_sbqflags(mp
);
1287 * Finish recovering the file system. This part needed to be
1288 * delayed until after the root and real-time bitmap inodes
1289 * were consistently read in.
1291 error
= xfs_log_mount_finish(mp
);
1293 cmn_err(CE_WARN
, "XFS: log mount finish failed");
1298 * Complete the quota initialisation, post-log-replay component.
1301 ASSERT(mp
->m_qflags
== 0);
1302 mp
->m_qflags
= quotaflags
;
1304 xfs_qm_mount_quotas(mp
);
1307 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1308 if (XFS_IS_QUOTA_ON(mp
))
1309 xfs_fs_cmn_err(CE_NOTE
, mp
, "Disk quotas turned on");
1311 xfs_fs_cmn_err(CE_NOTE
, mp
, "Disk quotas not turned on");
1315 * Now we are mounted, reserve a small amount of unused space for
1316 * privileged transactions. This is needed so that transaction
1317 * space required for critical operations can dip into this pool
1318 * when at ENOSPC. This is needed for operations like create with
1319 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1320 * are not allowed to use this reserved space.
1322 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1323 * This may drive us straight to ENOSPC on mount, but that implies
1324 * we were already there on the last unmount. Warn if this occurs.
1326 resblks
= mp
->m_sb
.sb_dblocks
;
1327 do_div(resblks
, 20);
1328 resblks
= min_t(__uint64_t
, resblks
, 1024);
1329 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1331 cmn_err(CE_WARN
, "XFS: Unable to allocate reserve blocks. "
1332 "Continuing without a reserve pool.");
1337 xfs_rtunmount_inodes(mp
);
1341 xfs_log_unmount(mp
);
1345 xfs_uuid_unmount(mp
);
1351 * This flushes out the inodes,dquots and the superblock, unmounts the
1352 * log and makes sure that incore structures are freed.
1356 struct xfs_mount
*mp
)
1361 xfs_qm_unmount_quotas(mp
);
1362 xfs_rtunmount_inodes(mp
);
1363 IRELE(mp
->m_rootip
);
1366 * We can potentially deadlock here if we have an inode cluster
1367 * that has been freed has its buffer still pinned in memory because
1368 * the transaction is still sitting in a iclog. The stale inodes
1369 * on that buffer will have their flush locks held until the
1370 * transaction hits the disk and the callbacks run. the inode
1371 * flush takes the flush lock unconditionally and with nothing to
1372 * push out the iclog we will never get that unlocked. hence we
1373 * need to force the log first.
1375 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1376 xfs_reclaim_inodes(mp
, XFS_IFLUSH_ASYNC
);
1381 * Flush out the log synchronously so that we know for sure
1382 * that nothing is pinned. This is important because bflush()
1383 * will skip pinned buffers.
1385 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
| XFS_LOG_SYNC
);
1387 xfs_binval(mp
->m_ddev_targp
);
1388 if (mp
->m_rtdev_targp
) {
1389 xfs_binval(mp
->m_rtdev_targp
);
1393 * Unreserve any blocks we have so that when we unmount we don't account
1394 * the reserved free space as used. This is really only necessary for
1395 * lazy superblock counting because it trusts the incore superblock
1396 * counters to be absolutely correct on clean unmount.
1398 * We don't bother correcting this elsewhere for lazy superblock
1399 * counting because on mount of an unclean filesystem we reconstruct the
1400 * correct counter value and this is irrelevant.
1402 * For non-lazy counter filesystems, this doesn't matter at all because
1403 * we only every apply deltas to the superblock and hence the incore
1404 * value does not matter....
1407 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1409 cmn_err(CE_WARN
, "XFS: Unable to free reserved block pool. "
1410 "Freespace may not be correct on next mount.");
1412 error
= xfs_log_sbcount(mp
, 1);
1414 cmn_err(CE_WARN
, "XFS: Unable to update superblock counters. "
1415 "Freespace may not be correct on next mount.");
1416 xfs_unmountfs_writesb(mp
);
1417 xfs_unmountfs_wait(mp
); /* wait for async bufs */
1418 xfs_log_unmount_write(mp
);
1419 xfs_log_unmount(mp
);
1420 xfs_uuid_unmount(mp
);
1423 xfs_errortag_clearall(mp
, 0);
1429 xfs_unmountfs_wait(xfs_mount_t
*mp
)
1431 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1432 xfs_wait_buftarg(mp
->m_logdev_targp
);
1433 if (mp
->m_rtdev_targp
)
1434 xfs_wait_buftarg(mp
->m_rtdev_targp
);
1435 xfs_wait_buftarg(mp
->m_ddev_targp
);
1439 xfs_fs_writable(xfs_mount_t
*mp
)
1441 return !(xfs_test_for_freeze(mp
) || XFS_FORCED_SHUTDOWN(mp
) ||
1442 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1448 * Called either periodically to keep the on disk superblock values
1449 * roughly up to date or from unmount to make sure the values are
1450 * correct on a clean unmount.
1452 * Note this code can be called during the process of freezing, so
1453 * we may need to use the transaction allocator which does not not
1454 * block when the transaction subsystem is in its frozen state.
1464 if (!xfs_fs_writable(mp
))
1467 xfs_icsb_sync_counters(mp
, 0);
1470 * we don't need to do this if we are updating the superblock
1471 * counters on every modification.
1473 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1476 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1477 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1478 XFS_DEFAULT_LOG_COUNT
);
1480 xfs_trans_cancel(tp
, 0);
1484 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1486 xfs_trans_set_sync(tp
);
1487 error
= xfs_trans_commit(tp
, 0);
1492 xfs_unmountfs_writesb(xfs_mount_t
*mp
)
1498 * skip superblock write if fs is read-only, or
1499 * if we are doing a forced umount.
1501 if (!((mp
->m_flags
& XFS_MOUNT_RDONLY
) ||
1502 XFS_FORCED_SHUTDOWN(mp
))) {
1504 sbp
= xfs_getsb(mp
, 0);
1506 XFS_BUF_UNDONE(sbp
);
1507 XFS_BUF_UNREAD(sbp
);
1508 XFS_BUF_UNDELAYWRITE(sbp
);
1510 XFS_BUF_UNASYNC(sbp
);
1511 ASSERT(XFS_BUF_TARGET(sbp
) == mp
->m_ddev_targp
);
1512 xfsbdstrat(mp
, sbp
);
1513 error
= xfs_iowait(sbp
);
1515 xfs_ioerror_alert("xfs_unmountfs_writesb",
1516 mp
, sbp
, XFS_BUF_ADDR(sbp
));
1523 * xfs_mod_sb() can be used to copy arbitrary changes to the
1524 * in-core superblock into the superblock buffer to be logged.
1525 * It does not provide the higher level of locking that is
1526 * needed to protect the in-core superblock from concurrent
1530 xfs_mod_sb(xfs_trans_t
*tp
, __int64_t fields
)
1542 bp
= xfs_trans_getsb(tp
, mp
, 0);
1543 first
= sizeof(xfs_sb_t
);
1546 /* translate/copy */
1548 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp
), &mp
->m_sb
, fields
);
1550 /* find modified range */
1552 f
= (xfs_sb_field_t
)xfs_lowbit64((__uint64_t
)fields
);
1553 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1554 first
= xfs_sb_info
[f
].offset
;
1556 f
= (xfs_sb_field_t
)xfs_highbit64((__uint64_t
)fields
);
1557 ASSERT((1LL << f
) & XFS_SB_MOD_BITS
);
1558 last
= xfs_sb_info
[f
+ 1].offset
- 1;
1560 xfs_trans_log_buf(tp
, bp
, first
, last
);
1565 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1566 * a delta to a specified field in the in-core superblock. Simply
1567 * switch on the field indicated and apply the delta to that field.
1568 * Fields are not allowed to dip below zero, so if the delta would
1569 * do this do not apply it and return EINVAL.
1571 * The m_sb_lock must be held when this routine is called.
1574 xfs_mod_incore_sb_unlocked(
1576 xfs_sb_field_t field
,
1580 int scounter
; /* short counter for 32 bit fields */
1581 long long lcounter
; /* long counter for 64 bit fields */
1582 long long res_used
, rem
;
1585 * With the in-core superblock spin lock held, switch
1586 * on the indicated field. Apply the delta to the
1587 * proper field. If the fields value would dip below
1588 * 0, then do not apply the delta and return EINVAL.
1591 case XFS_SBS_ICOUNT
:
1592 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1596 return XFS_ERROR(EINVAL
);
1598 mp
->m_sb
.sb_icount
= lcounter
;
1601 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1605 return XFS_ERROR(EINVAL
);
1607 mp
->m_sb
.sb_ifree
= lcounter
;
1609 case XFS_SBS_FDBLOCKS
:
1610 lcounter
= (long long)
1611 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1612 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1614 if (delta
> 0) { /* Putting blocks back */
1615 if (res_used
> delta
) {
1616 mp
->m_resblks_avail
+= delta
;
1618 rem
= delta
- res_used
;
1619 mp
->m_resblks_avail
= mp
->m_resblks
;
1622 } else { /* Taking blocks away */
1627 * If were out of blocks, use any available reserved blocks if
1633 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1635 return XFS_ERROR(ENOSPC
);
1637 mp
->m_resblks_avail
= lcounter
;
1639 } else { /* not reserved */
1640 return XFS_ERROR(ENOSPC
);
1645 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1647 case XFS_SBS_FREXTENTS
:
1648 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1651 return XFS_ERROR(ENOSPC
);
1653 mp
->m_sb
.sb_frextents
= lcounter
;
1655 case XFS_SBS_DBLOCKS
:
1656 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1660 return XFS_ERROR(EINVAL
);
1662 mp
->m_sb
.sb_dblocks
= lcounter
;
1664 case XFS_SBS_AGCOUNT
:
1665 scounter
= mp
->m_sb
.sb_agcount
;
1669 return XFS_ERROR(EINVAL
);
1671 mp
->m_sb
.sb_agcount
= scounter
;
1673 case XFS_SBS_IMAX_PCT
:
1674 scounter
= mp
->m_sb
.sb_imax_pct
;
1678 return XFS_ERROR(EINVAL
);
1680 mp
->m_sb
.sb_imax_pct
= scounter
;
1682 case XFS_SBS_REXTSIZE
:
1683 scounter
= mp
->m_sb
.sb_rextsize
;
1687 return XFS_ERROR(EINVAL
);
1689 mp
->m_sb
.sb_rextsize
= scounter
;
1691 case XFS_SBS_RBMBLOCKS
:
1692 scounter
= mp
->m_sb
.sb_rbmblocks
;
1696 return XFS_ERROR(EINVAL
);
1698 mp
->m_sb
.sb_rbmblocks
= scounter
;
1700 case XFS_SBS_RBLOCKS
:
1701 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1705 return XFS_ERROR(EINVAL
);
1707 mp
->m_sb
.sb_rblocks
= lcounter
;
1709 case XFS_SBS_REXTENTS
:
1710 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1714 return XFS_ERROR(EINVAL
);
1716 mp
->m_sb
.sb_rextents
= lcounter
;
1718 case XFS_SBS_REXTSLOG
:
1719 scounter
= mp
->m_sb
.sb_rextslog
;
1723 return XFS_ERROR(EINVAL
);
1725 mp
->m_sb
.sb_rextslog
= scounter
;
1729 return XFS_ERROR(EINVAL
);
1734 * xfs_mod_incore_sb() is used to change a field in the in-core
1735 * superblock structure by the specified delta. This modification
1736 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1737 * routine to do the work.
1742 xfs_sb_field_t field
,
1748 /* check for per-cpu counters */
1750 #ifdef HAVE_PERCPU_SB
1751 case XFS_SBS_ICOUNT
:
1753 case XFS_SBS_FDBLOCKS
:
1754 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1755 status
= xfs_icsb_modify_counters(mp
, field
,
1762 spin_lock(&mp
->m_sb_lock
);
1763 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1764 spin_unlock(&mp
->m_sb_lock
);
1772 * xfs_mod_incore_sb_batch() is used to change more than one field
1773 * in the in-core superblock structure at a time. This modification
1774 * is protected by a lock internal to this module. The fields and
1775 * changes to those fields are specified in the array of xfs_mod_sb
1776 * structures passed in.
1778 * Either all of the specified deltas will be applied or none of
1779 * them will. If any modified field dips below 0, then all modifications
1780 * will be backed out and EINVAL will be returned.
1783 xfs_mod_incore_sb_batch(xfs_mount_t
*mp
, xfs_mod_sb_t
*msb
, uint nmsb
, int rsvd
)
1789 * Loop through the array of mod structures and apply each
1790 * individually. If any fail, then back out all those
1791 * which have already been applied. Do all of this within
1792 * the scope of the m_sb_lock so that all of the changes will
1795 spin_lock(&mp
->m_sb_lock
);
1797 for (msbp
= &msbp
[0]; msbp
< (msb
+ nmsb
); msbp
++) {
1799 * Apply the delta at index n. If it fails, break
1800 * from the loop so we'll fall into the undo loop
1803 switch (msbp
->msb_field
) {
1804 #ifdef HAVE_PERCPU_SB
1805 case XFS_SBS_ICOUNT
:
1807 case XFS_SBS_FDBLOCKS
:
1808 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1809 spin_unlock(&mp
->m_sb_lock
);
1810 status
= xfs_icsb_modify_counters(mp
,
1812 msbp
->msb_delta
, rsvd
);
1813 spin_lock(&mp
->m_sb_lock
);
1819 status
= xfs_mod_incore_sb_unlocked(mp
,
1821 msbp
->msb_delta
, rsvd
);
1831 * If we didn't complete the loop above, then back out
1832 * any changes made to the superblock. If you add code
1833 * between the loop above and here, make sure that you
1834 * preserve the value of status. Loop back until
1835 * we step below the beginning of the array. Make sure
1836 * we don't touch anything back there.
1840 while (msbp
>= msb
) {
1841 switch (msbp
->msb_field
) {
1842 #ifdef HAVE_PERCPU_SB
1843 case XFS_SBS_ICOUNT
:
1845 case XFS_SBS_FDBLOCKS
:
1846 if (!(mp
->m_flags
& XFS_MOUNT_NO_PERCPU_SB
)) {
1847 spin_unlock(&mp
->m_sb_lock
);
1848 status
= xfs_icsb_modify_counters(mp
,
1852 spin_lock(&mp
->m_sb_lock
);
1858 status
= xfs_mod_incore_sb_unlocked(mp
,
1864 ASSERT(status
== 0);
1868 spin_unlock(&mp
->m_sb_lock
);
1873 * xfs_getsb() is called to obtain the buffer for the superblock.
1874 * The buffer is returned locked and read in from disk.
1875 * The buffer should be released with a call to xfs_brelse().
1877 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1878 * the superblock buffer if it can be locked without sleeping.
1879 * If it can't then we'll return NULL.
1888 ASSERT(mp
->m_sb_bp
!= NULL
);
1890 if (flags
& XFS_BUF_TRYLOCK
) {
1891 if (!XFS_BUF_CPSEMA(bp
)) {
1895 XFS_BUF_PSEMA(bp
, PRIBIO
);
1898 ASSERT(XFS_BUF_ISDONE(bp
));
1903 * Used to free the superblock along various error paths.
1912 * Use xfs_getsb() so that the buffer will be locked
1913 * when we call xfs_buf_relse().
1915 bp
= xfs_getsb(mp
, 0);
1916 XFS_BUF_UNMANAGE(bp
);
1922 * Used to log changes to the superblock unit and width fields which could
1923 * be altered by the mount options, as well as any potential sb_features2
1924 * fixup. Only the first superblock is updated.
1934 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1935 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1936 XFS_SB_VERSIONNUM
));
1938 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1939 error
= xfs_trans_reserve(tp
, 0, mp
->m_sb
.sb_sectsize
+ 128, 0, 0,
1940 XFS_DEFAULT_LOG_COUNT
);
1942 xfs_trans_cancel(tp
, 0);
1945 xfs_mod_sb(tp
, fields
);
1946 error
= xfs_trans_commit(tp
, 0);
1951 #ifdef HAVE_PERCPU_SB
1953 * Per-cpu incore superblock counters
1955 * Simple concept, difficult implementation
1957 * Basically, replace the incore superblock counters with a distributed per cpu
1958 * counter for contended fields (e.g. free block count).
1960 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1961 * hence needs to be accurately read when we are running low on space. Hence
1962 * there is a method to enable and disable the per-cpu counters based on how
1963 * much "stuff" is available in them.
1965 * Basically, a counter is enabled if there is enough free resource to justify
1966 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1967 * ENOSPC), then we disable the counters to synchronise all callers and
1968 * re-distribute the available resources.
1970 * If, once we redistributed the available resources, we still get a failure,
1971 * we disable the per-cpu counter and go through the slow path.
1973 * The slow path is the current xfs_mod_incore_sb() function. This means that
1974 * when we disable a per-cpu counter, we need to drain its resources back to
1975 * the global superblock. We do this after disabling the counter to prevent
1976 * more threads from queueing up on the counter.
1978 * Essentially, this means that we still need a lock in the fast path to enable
1979 * synchronisation between the global counters and the per-cpu counters. This
1980 * is not a problem because the lock will be local to a CPU almost all the time
1981 * and have little contention except when we get to ENOSPC conditions.
1983 * Basically, this lock becomes a barrier that enables us to lock out the fast
1984 * path while we do things like enabling and disabling counters and
1985 * synchronising the counters.
1989 * 1. m_sb_lock before picking up per-cpu locks
1990 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1991 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1992 * 4. modifying per-cpu counters requires holding per-cpu lock
1993 * 5. modifying global counters requires holding m_sb_lock
1994 * 6. enabling or disabling a counter requires holding the m_sb_lock
1995 * and _none_ of the per-cpu locks.
1997 * Disabled counters are only ever re-enabled by a balance operation
1998 * that results in more free resources per CPU than a given threshold.
1999 * To ensure counters don't remain disabled, they are rebalanced when
2000 * the global resource goes above a higher threshold (i.e. some hysteresis
2001 * is present to prevent thrashing).
2004 #ifdef CONFIG_HOTPLUG_CPU
2006 * hot-plug CPU notifier support.
2008 * We need a notifier per filesystem as we need to be able to identify
2009 * the filesystem to balance the counters out. This is achieved by
2010 * having a notifier block embedded in the xfs_mount_t and doing pointer
2011 * magic to get the mount pointer from the notifier block address.
2014 xfs_icsb_cpu_notify(
2015 struct notifier_block
*nfb
,
2016 unsigned long action
,
2019 xfs_icsb_cnts_t
*cntp
;
2022 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
2023 cntp
= (xfs_icsb_cnts_t
*)
2024 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
2026 case CPU_UP_PREPARE
:
2027 case CPU_UP_PREPARE_FROZEN
:
2028 /* Easy Case - initialize the area and locks, and
2029 * then rebalance when online does everything else for us. */
2030 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2033 case CPU_ONLINE_FROZEN
:
2035 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2036 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2037 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2038 xfs_icsb_unlock(mp
);
2041 case CPU_DEAD_FROZEN
:
2042 /* Disable all the counters, then fold the dead cpu's
2043 * count into the total on the global superblock and
2044 * re-enable the counters. */
2046 spin_lock(&mp
->m_sb_lock
);
2047 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
2048 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
2049 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
2051 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
2052 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
2053 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
2055 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2057 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
2058 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
2059 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
2060 spin_unlock(&mp
->m_sb_lock
);
2061 xfs_icsb_unlock(mp
);
2067 #endif /* CONFIG_HOTPLUG_CPU */
2070 xfs_icsb_init_counters(
2073 xfs_icsb_cnts_t
*cntp
;
2076 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
2077 if (mp
->m_sb_cnts
== NULL
)
2080 #ifdef CONFIG_HOTPLUG_CPU
2081 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
2082 mp
->m_icsb_notifier
.priority
= 0;
2083 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
2084 #endif /* CONFIG_HOTPLUG_CPU */
2086 for_each_online_cpu(i
) {
2087 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2088 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
2091 mutex_init(&mp
->m_icsb_mutex
);
2094 * start with all counters disabled so that the
2095 * initial balance kicks us off correctly
2097 mp
->m_icsb_counters
= -1;
2102 xfs_icsb_reinit_counters(
2107 * start with all counters disabled so that the
2108 * initial balance kicks us off correctly
2110 mp
->m_icsb_counters
= -1;
2111 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
2112 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
2113 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
2114 xfs_icsb_unlock(mp
);
2118 xfs_icsb_destroy_counters(
2121 if (mp
->m_sb_cnts
) {
2122 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
2123 free_percpu(mp
->m_sb_cnts
);
2125 mutex_destroy(&mp
->m_icsb_mutex
);
2130 xfs_icsb_cnts_t
*icsbp
)
2132 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
2138 xfs_icsb_unlock_cntr(
2139 xfs_icsb_cnts_t
*icsbp
)
2141 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
2146 xfs_icsb_lock_all_counters(
2149 xfs_icsb_cnts_t
*cntp
;
2152 for_each_online_cpu(i
) {
2153 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2154 xfs_icsb_lock_cntr(cntp
);
2159 xfs_icsb_unlock_all_counters(
2162 xfs_icsb_cnts_t
*cntp
;
2165 for_each_online_cpu(i
) {
2166 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2167 xfs_icsb_unlock_cntr(cntp
);
2174 xfs_icsb_cnts_t
*cnt
,
2177 xfs_icsb_cnts_t
*cntp
;
2180 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
2182 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2183 xfs_icsb_lock_all_counters(mp
);
2185 for_each_online_cpu(i
) {
2186 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
2187 cnt
->icsb_icount
+= cntp
->icsb_icount
;
2188 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
2189 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
2192 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
2193 xfs_icsb_unlock_all_counters(mp
);
2197 xfs_icsb_counter_disabled(
2199 xfs_sb_field_t field
)
2201 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2202 return test_bit(field
, &mp
->m_icsb_counters
);
2206 xfs_icsb_disable_counter(
2208 xfs_sb_field_t field
)
2210 xfs_icsb_cnts_t cnt
;
2212 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2215 * If we are already disabled, then there is nothing to do
2216 * here. We check before locking all the counters to avoid
2217 * the expensive lock operation when being called in the
2218 * slow path and the counter is already disabled. This is
2219 * safe because the only time we set or clear this state is under
2222 if (xfs_icsb_counter_disabled(mp
, field
))
2225 xfs_icsb_lock_all_counters(mp
);
2226 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
2227 /* drain back to superblock */
2229 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
2231 case XFS_SBS_ICOUNT
:
2232 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2235 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2237 case XFS_SBS_FDBLOCKS
:
2238 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2245 xfs_icsb_unlock_all_counters(mp
);
2249 xfs_icsb_enable_counter(
2251 xfs_sb_field_t field
,
2255 xfs_icsb_cnts_t
*cntp
;
2258 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
2260 xfs_icsb_lock_all_counters(mp
);
2261 for_each_online_cpu(i
) {
2262 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
2264 case XFS_SBS_ICOUNT
:
2265 cntp
->icsb_icount
= count
+ resid
;
2268 cntp
->icsb_ifree
= count
+ resid
;
2270 case XFS_SBS_FDBLOCKS
:
2271 cntp
->icsb_fdblocks
= count
+ resid
;
2279 clear_bit(field
, &mp
->m_icsb_counters
);
2280 xfs_icsb_unlock_all_counters(mp
);
2284 xfs_icsb_sync_counters_locked(
2288 xfs_icsb_cnts_t cnt
;
2290 xfs_icsb_count(mp
, &cnt
, flags
);
2292 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
2293 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
2294 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
2295 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
2296 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
2297 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
2301 * Accurate update of per-cpu counters to incore superblock
2304 xfs_icsb_sync_counters(
2308 spin_lock(&mp
->m_sb_lock
);
2309 xfs_icsb_sync_counters_locked(mp
, flags
);
2310 spin_unlock(&mp
->m_sb_lock
);
2314 * Balance and enable/disable counters as necessary.
2316 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2317 * chosen to be the same number as single on disk allocation chunk per CPU, and
2318 * free blocks is something far enough zero that we aren't going thrash when we
2319 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2320 * prevent looping endlessly when xfs_alloc_space asks for more than will
2321 * be distributed to a single CPU but each CPU has enough blocks to be
2324 * Note that we can be called when counters are already disabled.
2325 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2326 * prevent locking every per-cpu counter needlessly.
2329 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2330 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2331 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2333 xfs_icsb_balance_counter_locked(
2335 xfs_sb_field_t field
,
2338 uint64_t count
, resid
;
2339 int weight
= num_online_cpus();
2340 uint64_t min
= (uint64_t)min_per_cpu
;
2342 /* disable counter and sync counter */
2343 xfs_icsb_disable_counter(mp
, field
);
2345 /* update counters - first CPU gets residual*/
2347 case XFS_SBS_ICOUNT
:
2348 count
= mp
->m_sb
.sb_icount
;
2349 resid
= do_div(count
, weight
);
2350 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2354 count
= mp
->m_sb
.sb_ifree
;
2355 resid
= do_div(count
, weight
);
2356 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
2359 case XFS_SBS_FDBLOCKS
:
2360 count
= mp
->m_sb
.sb_fdblocks
;
2361 resid
= do_div(count
, weight
);
2362 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
2367 count
= resid
= 0; /* quiet, gcc */
2371 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
2375 xfs_icsb_balance_counter(
2377 xfs_sb_field_t fields
,
2380 spin_lock(&mp
->m_sb_lock
);
2381 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
2382 spin_unlock(&mp
->m_sb_lock
);
2386 xfs_icsb_modify_counters(
2388 xfs_sb_field_t field
,
2392 xfs_icsb_cnts_t
*icsbp
;
2393 long long lcounter
; /* long counter for 64 bit fields */
2399 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
2402 * if the counter is disabled, go to slow path
2404 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
2406 xfs_icsb_lock_cntr(icsbp
);
2407 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
2408 xfs_icsb_unlock_cntr(icsbp
);
2413 case XFS_SBS_ICOUNT
:
2414 lcounter
= icsbp
->icsb_icount
;
2416 if (unlikely(lcounter
< 0))
2417 goto balance_counter
;
2418 icsbp
->icsb_icount
= lcounter
;
2422 lcounter
= icsbp
->icsb_ifree
;
2424 if (unlikely(lcounter
< 0))
2425 goto balance_counter
;
2426 icsbp
->icsb_ifree
= lcounter
;
2429 case XFS_SBS_FDBLOCKS
:
2430 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
2432 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
2434 if (unlikely(lcounter
< 0))
2435 goto balance_counter
;
2436 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
2442 xfs_icsb_unlock_cntr(icsbp
);
2450 * serialise with a mutex so we don't burn lots of cpu on
2451 * the superblock lock. We still need to hold the superblock
2452 * lock, however, when we modify the global structures.
2457 * Now running atomically.
2459 * If the counter is enabled, someone has beaten us to rebalancing.
2460 * Drop the lock and try again in the fast path....
2462 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
2463 xfs_icsb_unlock(mp
);
2468 * The counter is currently disabled. Because we are
2469 * running atomically here, we know a rebalance cannot
2470 * be in progress. Hence we can go straight to operating
2471 * on the global superblock. We do not call xfs_mod_incore_sb()
2472 * here even though we need to get the m_sb_lock. Doing so
2473 * will cause us to re-enter this function and deadlock.
2474 * Hence we get the m_sb_lock ourselves and then call
2475 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2476 * directly on the global counters.
2478 spin_lock(&mp
->m_sb_lock
);
2479 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
2480 spin_unlock(&mp
->m_sb_lock
);
2483 * Now that we've modified the global superblock, we
2484 * may be able to re-enable the distributed counters
2485 * (e.g. lots of space just got freed). After that
2489 xfs_icsb_balance_counter(mp
, field
, 0);
2490 xfs_icsb_unlock(mp
);
2494 xfs_icsb_unlock_cntr(icsbp
);
2498 * We may have multiple threads here if multiple per-cpu
2499 * counters run dry at the same time. This will mean we can
2500 * do more balances than strictly necessary but it is not
2501 * the common slowpath case.
2506 * running atomically.
2508 * This will leave the counter in the correct state for future
2509 * accesses. After the rebalance, we simply try again and our retry
2510 * will either succeed through the fast path or slow path without
2511 * another balance operation being required.
2513 xfs_icsb_balance_counter(mp
, field
, delta
);
2514 xfs_icsb_unlock(mp
);