Btrfs: fix the new inspection ioctls for 32 bit compat
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / scrub.c
blob562dad10dee9b894344abe65c5e7c6962d6ae112
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
30 * This is only the first step towards a full-features scrub. It reads all
31 * extent and super block and verifies the checksums. In case a bad checksum
32 * is found or the extent cannot be read, good data will be written back if
33 * any can be found.
35 * Future enhancements:
36 * - In case an unrepairable extent is encountered, track which files are
37 * affected and report them
38 * - In case of a read error on files with nodatasum, map the file and read
39 * the extent to trigger a writeback of the good copy
40 * - track and record media errors, throw out bad devices
41 * - add a mode to also read unallocated space
44 struct scrub_bio;
45 struct scrub_page;
46 struct scrub_dev;
47 static void scrub_bio_end_io(struct bio *bio, int err);
48 static void scrub_checksum(struct btrfs_work *work);
49 static int scrub_checksum_data(struct scrub_dev *sdev,
50 struct scrub_page *spag, void *buffer);
51 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
52 struct scrub_page *spag, u64 logical,
53 void *buffer);
54 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer);
55 static int scrub_fixup_check(struct scrub_bio *sbio, int ix);
56 static void scrub_fixup_end_io(struct bio *bio, int err);
57 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
58 struct page *page);
59 static void scrub_fixup(struct scrub_bio *sbio, int ix);
61 #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
62 #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
64 struct scrub_page {
65 u64 flags; /* extent flags */
66 u64 generation;
67 int mirror_num;
68 int have_csum;
69 u8 csum[BTRFS_CSUM_SIZE];
72 struct scrub_bio {
73 int index;
74 struct scrub_dev *sdev;
75 struct bio *bio;
76 int err;
77 u64 logical;
78 u64 physical;
79 struct scrub_page spag[SCRUB_PAGES_PER_BIO];
80 u64 count;
81 int next_free;
82 struct btrfs_work work;
85 struct scrub_dev {
86 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
87 struct btrfs_device *dev;
88 int first_free;
89 int curr;
90 atomic_t in_flight;
91 atomic_t fixup_cnt;
92 spinlock_t list_lock;
93 wait_queue_head_t list_wait;
94 u16 csum_size;
95 struct list_head csum_list;
96 atomic_t cancel_req;
97 int readonly;
99 * statistics
101 struct btrfs_scrub_progress stat;
102 spinlock_t stat_lock;
105 struct scrub_fixup_nodatasum {
106 struct scrub_dev *sdev;
107 u64 logical;
108 struct btrfs_root *root;
109 struct btrfs_work work;
110 int mirror_num;
113 struct scrub_warning {
114 struct btrfs_path *path;
115 u64 extent_item_size;
116 char *scratch_buf;
117 char *msg_buf;
118 const char *errstr;
119 sector_t sector;
120 u64 logical;
121 struct btrfs_device *dev;
122 int msg_bufsize;
123 int scratch_bufsize;
126 static void scrub_free_csums(struct scrub_dev *sdev)
128 while (!list_empty(&sdev->csum_list)) {
129 struct btrfs_ordered_sum *sum;
130 sum = list_first_entry(&sdev->csum_list,
131 struct btrfs_ordered_sum, list);
132 list_del(&sum->list);
133 kfree(sum);
137 static void scrub_free_bio(struct bio *bio)
139 int i;
140 struct page *last_page = NULL;
142 if (!bio)
143 return;
145 for (i = 0; i < bio->bi_vcnt; ++i) {
146 if (bio->bi_io_vec[i].bv_page == last_page)
147 continue;
148 last_page = bio->bi_io_vec[i].bv_page;
149 __free_page(last_page);
151 bio_put(bio);
154 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
156 int i;
158 if (!sdev)
159 return;
161 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
162 struct scrub_bio *sbio = sdev->bios[i];
164 if (!sbio)
165 break;
167 scrub_free_bio(sbio->bio);
168 kfree(sbio);
171 scrub_free_csums(sdev);
172 kfree(sdev);
175 static noinline_for_stack
176 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
178 struct scrub_dev *sdev;
179 int i;
180 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
182 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
183 if (!sdev)
184 goto nomem;
185 sdev->dev = dev;
186 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
187 struct scrub_bio *sbio;
189 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
190 if (!sbio)
191 goto nomem;
192 sdev->bios[i] = sbio;
194 sbio->index = i;
195 sbio->sdev = sdev;
196 sbio->count = 0;
197 sbio->work.func = scrub_checksum;
199 if (i != SCRUB_BIOS_PER_DEV-1)
200 sdev->bios[i]->next_free = i + 1;
201 else
202 sdev->bios[i]->next_free = -1;
204 sdev->first_free = 0;
205 sdev->curr = -1;
206 atomic_set(&sdev->in_flight, 0);
207 atomic_set(&sdev->fixup_cnt, 0);
208 atomic_set(&sdev->cancel_req, 0);
209 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
210 INIT_LIST_HEAD(&sdev->csum_list);
212 spin_lock_init(&sdev->list_lock);
213 spin_lock_init(&sdev->stat_lock);
214 init_waitqueue_head(&sdev->list_wait);
215 return sdev;
217 nomem:
218 scrub_free_dev(sdev);
219 return ERR_PTR(-ENOMEM);
222 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
224 u64 isize;
225 u32 nlink;
226 int ret;
227 int i;
228 struct extent_buffer *eb;
229 struct btrfs_inode_item *inode_item;
230 struct scrub_warning *swarn = ctx;
231 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
232 struct inode_fs_paths *ipath = NULL;
233 struct btrfs_root *local_root;
234 struct btrfs_key root_key;
236 root_key.objectid = root;
237 root_key.type = BTRFS_ROOT_ITEM_KEY;
238 root_key.offset = (u64)-1;
239 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
240 if (IS_ERR(local_root)) {
241 ret = PTR_ERR(local_root);
242 goto err;
245 ret = inode_item_info(inum, 0, local_root, swarn->path);
246 if (ret) {
247 btrfs_release_path(swarn->path);
248 goto err;
251 eb = swarn->path->nodes[0];
252 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
253 struct btrfs_inode_item);
254 isize = btrfs_inode_size(eb, inode_item);
255 nlink = btrfs_inode_nlink(eb, inode_item);
256 btrfs_release_path(swarn->path);
258 ipath = init_ipath(4096, local_root, swarn->path);
259 ret = paths_from_inode(inum, ipath);
261 if (ret < 0)
262 goto err;
265 * we deliberately ignore the bit ipath might have been too small to
266 * hold all of the paths here
268 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
269 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
270 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
271 "length %llu, links %u (path: %s)\n", swarn->errstr,
272 swarn->logical, swarn->dev->name,
273 (unsigned long long)swarn->sector, root, inum, offset,
274 min(isize - offset, (u64)PAGE_SIZE), nlink,
275 (char *)ipath->fspath->val[i]);
277 free_ipath(ipath);
278 return 0;
280 err:
281 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
282 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
283 "resolving failed with ret=%d\n", swarn->errstr,
284 swarn->logical, swarn->dev->name,
285 (unsigned long long)swarn->sector, root, inum, offset, ret);
287 free_ipath(ipath);
288 return 0;
291 static void scrub_print_warning(const char *errstr, struct scrub_bio *sbio,
292 int ix)
294 struct btrfs_device *dev = sbio->sdev->dev;
295 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
296 struct btrfs_path *path;
297 struct btrfs_key found_key;
298 struct extent_buffer *eb;
299 struct btrfs_extent_item *ei;
300 struct scrub_warning swarn;
301 u32 item_size;
302 int ret;
303 u64 ref_root;
304 u8 ref_level;
305 unsigned long ptr = 0;
306 const int bufsize = 4096;
307 u64 extent_offset;
309 path = btrfs_alloc_path();
311 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
312 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
313 swarn.sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
314 swarn.logical = sbio->logical + ix * PAGE_SIZE;
315 swarn.errstr = errstr;
316 swarn.dev = dev;
317 swarn.msg_bufsize = bufsize;
318 swarn.scratch_bufsize = bufsize;
320 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
321 goto out;
323 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
324 if (ret < 0)
325 goto out;
327 extent_offset = swarn.logical - found_key.objectid;
328 swarn.extent_item_size = found_key.offset;
330 eb = path->nodes[0];
331 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
332 item_size = btrfs_item_size_nr(eb, path->slots[0]);
334 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
335 do {
336 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
337 &ref_root, &ref_level);
338 printk(KERN_WARNING "%s at logical %llu on dev %s, "
339 "sector %llu: metadata %s (level %d) in tree "
340 "%llu\n", errstr, swarn.logical, dev->name,
341 (unsigned long long)swarn.sector,
342 ref_level ? "node" : "leaf",
343 ret < 0 ? -1 : ref_level,
344 ret < 0 ? -1 : ref_root);
345 } while (ret != 1);
346 } else {
347 swarn.path = path;
348 iterate_extent_inodes(fs_info, path, found_key.objectid,
349 extent_offset,
350 scrub_print_warning_inode, &swarn);
353 out:
354 btrfs_free_path(path);
355 kfree(swarn.scratch_buf);
356 kfree(swarn.msg_buf);
359 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
361 struct page *page = NULL;
362 unsigned long index;
363 struct scrub_fixup_nodatasum *fixup = ctx;
364 int ret;
365 int corrected = 0;
366 struct btrfs_key key;
367 struct inode *inode = NULL;
368 u64 end = offset + PAGE_SIZE - 1;
369 struct btrfs_root *local_root;
371 key.objectid = root;
372 key.type = BTRFS_ROOT_ITEM_KEY;
373 key.offset = (u64)-1;
374 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
375 if (IS_ERR(local_root))
376 return PTR_ERR(local_root);
378 key.type = BTRFS_INODE_ITEM_KEY;
379 key.objectid = inum;
380 key.offset = 0;
381 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
382 if (IS_ERR(inode))
383 return PTR_ERR(inode);
385 index = offset >> PAGE_CACHE_SHIFT;
387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
388 if (!page) {
389 ret = -ENOMEM;
390 goto out;
393 if (PageUptodate(page)) {
394 struct btrfs_mapping_tree *map_tree;
395 if (PageDirty(page)) {
397 * we need to write the data to the defect sector. the
398 * data that was in that sector is not in memory,
399 * because the page was modified. we must not write the
400 * modified page to that sector.
402 * TODO: what could be done here: wait for the delalloc
403 * runner to write out that page (might involve
404 * COW) and see whether the sector is still
405 * referenced afterwards.
407 * For the meantime, we'll treat this error
408 * incorrectable, although there is a chance that a
409 * later scrub will find the bad sector again and that
410 * there's no dirty page in memory, then.
412 ret = -EIO;
413 goto out;
415 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
416 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
417 fixup->logical, page,
418 fixup->mirror_num);
419 unlock_page(page);
420 corrected = !ret;
421 } else {
423 * we need to get good data first. the general readpage path
424 * will call repair_io_failure for us, we just have to make
425 * sure we read the bad mirror.
427 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
428 EXTENT_DAMAGED, GFP_NOFS);
429 if (ret) {
430 /* set_extent_bits should give proper error */
431 WARN_ON(ret > 0);
432 if (ret > 0)
433 ret = -EFAULT;
434 goto out;
437 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
438 btrfs_get_extent,
439 fixup->mirror_num);
440 wait_on_page_locked(page);
442 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
443 end, EXTENT_DAMAGED, 0, NULL);
444 if (!corrected)
445 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
446 EXTENT_DAMAGED, GFP_NOFS);
449 out:
450 if (page)
451 put_page(page);
452 if (inode)
453 iput(inode);
455 if (ret < 0)
456 return ret;
458 if (ret == 0 && corrected) {
460 * we only need to call readpage for one of the inodes belonging
461 * to this extent. so make iterate_extent_inodes stop
463 return 1;
466 return -EIO;
469 static void scrub_fixup_nodatasum(struct btrfs_work *work)
471 int ret;
472 struct scrub_fixup_nodatasum *fixup;
473 struct scrub_dev *sdev;
474 struct btrfs_trans_handle *trans = NULL;
475 struct btrfs_fs_info *fs_info;
476 struct btrfs_path *path;
477 int uncorrectable = 0;
479 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
480 sdev = fixup->sdev;
481 fs_info = fixup->root->fs_info;
483 path = btrfs_alloc_path();
484 if (!path) {
485 spin_lock(&sdev->stat_lock);
486 ++sdev->stat.malloc_errors;
487 spin_unlock(&sdev->stat_lock);
488 uncorrectable = 1;
489 goto out;
492 trans = btrfs_join_transaction(fixup->root);
493 if (IS_ERR(trans)) {
494 uncorrectable = 1;
495 goto out;
499 * the idea is to trigger a regular read through the standard path. we
500 * read a page from the (failed) logical address by specifying the
501 * corresponding copynum of the failed sector. thus, that readpage is
502 * expected to fail.
503 * that is the point where on-the-fly error correction will kick in
504 * (once it's finished) and rewrite the failed sector if a good copy
505 * can be found.
507 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
508 path, scrub_fixup_readpage,
509 fixup);
510 if (ret < 0) {
511 uncorrectable = 1;
512 goto out;
514 WARN_ON(ret != 1);
516 spin_lock(&sdev->stat_lock);
517 ++sdev->stat.corrected_errors;
518 spin_unlock(&sdev->stat_lock);
520 out:
521 if (trans && !IS_ERR(trans))
522 btrfs_end_transaction(trans, fixup->root);
523 if (uncorrectable) {
524 spin_lock(&sdev->stat_lock);
525 ++sdev->stat.uncorrectable_errors;
526 spin_unlock(&sdev->stat_lock);
527 printk_ratelimited(KERN_ERR "btrfs: unable to fixup "
528 "(nodatasum) error at logical %llu\n",
529 fixup->logical);
532 btrfs_free_path(path);
533 kfree(fixup);
535 /* see caller why we're pretending to be paused in the scrub counters */
536 mutex_lock(&fs_info->scrub_lock);
537 atomic_dec(&fs_info->scrubs_running);
538 atomic_dec(&fs_info->scrubs_paused);
539 mutex_unlock(&fs_info->scrub_lock);
540 atomic_dec(&sdev->fixup_cnt);
541 wake_up(&fs_info->scrub_pause_wait);
542 wake_up(&sdev->list_wait);
546 * scrub_recheck_error gets called when either verification of the page
547 * failed or the bio failed to read, e.g. with EIO. In the latter case,
548 * recheck_error gets called for every page in the bio, even though only
549 * one may be bad
551 static int scrub_recheck_error(struct scrub_bio *sbio, int ix)
553 struct scrub_dev *sdev = sbio->sdev;
554 u64 sector = (sbio->physical + ix * PAGE_SIZE) >> 9;
555 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
556 DEFAULT_RATELIMIT_BURST);
558 if (sbio->err) {
559 if (scrub_fixup_io(READ, sbio->sdev->dev->bdev, sector,
560 sbio->bio->bi_io_vec[ix].bv_page) == 0) {
561 if (scrub_fixup_check(sbio, ix) == 0)
562 return 0;
564 if (__ratelimit(&_rs))
565 scrub_print_warning("i/o error", sbio, ix);
566 } else {
567 if (__ratelimit(&_rs))
568 scrub_print_warning("checksum error", sbio, ix);
571 spin_lock(&sdev->stat_lock);
572 ++sdev->stat.read_errors;
573 spin_unlock(&sdev->stat_lock);
575 scrub_fixup(sbio, ix);
576 return 1;
579 static int scrub_fixup_check(struct scrub_bio *sbio, int ix)
581 int ret = 1;
582 struct page *page;
583 void *buffer;
584 u64 flags = sbio->spag[ix].flags;
586 page = sbio->bio->bi_io_vec[ix].bv_page;
587 buffer = kmap_atomic(page, KM_USER0);
588 if (flags & BTRFS_EXTENT_FLAG_DATA) {
589 ret = scrub_checksum_data(sbio->sdev,
590 sbio->spag + ix, buffer);
591 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
592 ret = scrub_checksum_tree_block(sbio->sdev,
593 sbio->spag + ix,
594 sbio->logical + ix * PAGE_SIZE,
595 buffer);
596 } else {
597 WARN_ON(1);
599 kunmap_atomic(buffer, KM_USER0);
601 return ret;
604 static void scrub_fixup_end_io(struct bio *bio, int err)
606 complete((struct completion *)bio->bi_private);
609 static void scrub_fixup(struct scrub_bio *sbio, int ix)
611 struct scrub_dev *sdev = sbio->sdev;
612 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
613 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
614 struct btrfs_bio *bbio = NULL;
615 struct scrub_fixup_nodatasum *fixup;
616 u64 logical = sbio->logical + ix * PAGE_SIZE;
617 u64 length;
618 int i;
619 int ret;
620 DECLARE_COMPLETION_ONSTACK(complete);
622 if ((sbio->spag[ix].flags & BTRFS_EXTENT_FLAG_DATA) &&
623 (sbio->spag[ix].have_csum == 0)) {
624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
625 if (!fixup)
626 goto uncorrectable;
627 fixup->sdev = sdev;
628 fixup->logical = logical;
629 fixup->root = fs_info->extent_root;
630 fixup->mirror_num = sbio->spag[ix].mirror_num;
632 * increment scrubs_running to prevent cancel requests from
633 * completing as long as a fixup worker is running. we must also
634 * increment scrubs_paused to prevent deadlocking on pause
635 * requests used for transactions commits (as the worker uses a
636 * transaction context). it is safe to regard the fixup worker
637 * as paused for all matters practical. effectively, we only
638 * avoid cancellation requests from completing.
640 mutex_lock(&fs_info->scrub_lock);
641 atomic_inc(&fs_info->scrubs_running);
642 atomic_inc(&fs_info->scrubs_paused);
643 mutex_unlock(&fs_info->scrub_lock);
644 atomic_inc(&sdev->fixup_cnt);
645 fixup->work.func = scrub_fixup_nodatasum;
646 btrfs_queue_worker(&fs_info->scrub_workers, &fixup->work);
647 return;
650 length = PAGE_SIZE;
651 ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length,
652 &bbio, 0);
653 if (ret || !bbio || length < PAGE_SIZE) {
654 printk(KERN_ERR
655 "scrub_fixup: btrfs_map_block failed us for %llu\n",
656 (unsigned long long)logical);
657 WARN_ON(1);
658 return;
661 if (bbio->num_stripes == 1)
662 /* there aren't any replicas */
663 goto uncorrectable;
666 * first find a good copy
668 for (i = 0; i < bbio->num_stripes; ++i) {
669 if (i + 1 == sbio->spag[ix].mirror_num)
670 continue;
672 if (scrub_fixup_io(READ, bbio->stripes[i].dev->bdev,
673 bbio->stripes[i].physical >> 9,
674 sbio->bio->bi_io_vec[ix].bv_page)) {
675 /* I/O-error, this is not a good copy */
676 continue;
679 if (scrub_fixup_check(sbio, ix) == 0)
680 break;
682 if (i == bbio->num_stripes)
683 goto uncorrectable;
685 if (!sdev->readonly) {
687 * bi_io_vec[ix].bv_page now contains good data, write it back
689 if (scrub_fixup_io(WRITE, sdev->dev->bdev,
690 (sbio->physical + ix * PAGE_SIZE) >> 9,
691 sbio->bio->bi_io_vec[ix].bv_page)) {
692 /* I/O-error, writeback failed, give up */
693 goto uncorrectable;
697 kfree(bbio);
698 spin_lock(&sdev->stat_lock);
699 ++sdev->stat.corrected_errors;
700 spin_unlock(&sdev->stat_lock);
702 printk_ratelimited(KERN_ERR "btrfs: fixed up error at logical %llu\n",
703 (unsigned long long)logical);
704 return;
706 uncorrectable:
707 kfree(bbio);
708 spin_lock(&sdev->stat_lock);
709 ++sdev->stat.uncorrectable_errors;
710 spin_unlock(&sdev->stat_lock);
712 printk_ratelimited(KERN_ERR "btrfs: unable to fixup (regular) error at "
713 "logical %llu\n", (unsigned long long)logical);
716 static int scrub_fixup_io(int rw, struct block_device *bdev, sector_t sector,
717 struct page *page)
719 struct bio *bio = NULL;
720 int ret;
721 DECLARE_COMPLETION_ONSTACK(complete);
723 bio = bio_alloc(GFP_NOFS, 1);
724 bio->bi_bdev = bdev;
725 bio->bi_sector = sector;
726 bio_add_page(bio, page, PAGE_SIZE, 0);
727 bio->bi_end_io = scrub_fixup_end_io;
728 bio->bi_private = &complete;
729 submit_bio(rw, bio);
731 /* this will also unplug the queue */
732 wait_for_completion(&complete);
734 ret = !test_bit(BIO_UPTODATE, &bio->bi_flags);
735 bio_put(bio);
736 return ret;
739 static void scrub_bio_end_io(struct bio *bio, int err)
741 struct scrub_bio *sbio = bio->bi_private;
742 struct scrub_dev *sdev = sbio->sdev;
743 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
745 sbio->err = err;
746 sbio->bio = bio;
748 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
751 static void scrub_checksum(struct btrfs_work *work)
753 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
754 struct scrub_dev *sdev = sbio->sdev;
755 struct page *page;
756 void *buffer;
757 int i;
758 u64 flags;
759 u64 logical;
760 int ret;
762 if (sbio->err) {
763 ret = 0;
764 for (i = 0; i < sbio->count; ++i)
765 ret |= scrub_recheck_error(sbio, i);
766 if (!ret) {
767 spin_lock(&sdev->stat_lock);
768 ++sdev->stat.unverified_errors;
769 spin_unlock(&sdev->stat_lock);
772 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
773 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
774 sbio->bio->bi_phys_segments = 0;
775 sbio->bio->bi_idx = 0;
777 for (i = 0; i < sbio->count; i++) {
778 struct bio_vec *bi;
779 bi = &sbio->bio->bi_io_vec[i];
780 bi->bv_offset = 0;
781 bi->bv_len = PAGE_SIZE;
783 goto out;
785 for (i = 0; i < sbio->count; ++i) {
786 page = sbio->bio->bi_io_vec[i].bv_page;
787 buffer = kmap_atomic(page, KM_USER0);
788 flags = sbio->spag[i].flags;
789 logical = sbio->logical + i * PAGE_SIZE;
790 ret = 0;
791 if (flags & BTRFS_EXTENT_FLAG_DATA) {
792 ret = scrub_checksum_data(sdev, sbio->spag + i, buffer);
793 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
794 ret = scrub_checksum_tree_block(sdev, sbio->spag + i,
795 logical, buffer);
796 } else if (flags & BTRFS_EXTENT_FLAG_SUPER) {
797 BUG_ON(i);
798 (void)scrub_checksum_super(sbio, buffer);
799 } else {
800 WARN_ON(1);
802 kunmap_atomic(buffer, KM_USER0);
803 if (ret) {
804 ret = scrub_recheck_error(sbio, i);
805 if (!ret) {
806 spin_lock(&sdev->stat_lock);
807 ++sdev->stat.unverified_errors;
808 spin_unlock(&sdev->stat_lock);
813 out:
814 scrub_free_bio(sbio->bio);
815 sbio->bio = NULL;
816 spin_lock(&sdev->list_lock);
817 sbio->next_free = sdev->first_free;
818 sdev->first_free = sbio->index;
819 spin_unlock(&sdev->list_lock);
820 atomic_dec(&sdev->in_flight);
821 wake_up(&sdev->list_wait);
824 static int scrub_checksum_data(struct scrub_dev *sdev,
825 struct scrub_page *spag, void *buffer)
827 u8 csum[BTRFS_CSUM_SIZE];
828 u32 crc = ~(u32)0;
829 int fail = 0;
830 struct btrfs_root *root = sdev->dev->dev_root;
832 if (!spag->have_csum)
833 return 0;
835 crc = btrfs_csum_data(root, buffer, crc, PAGE_SIZE);
836 btrfs_csum_final(crc, csum);
837 if (memcmp(csum, spag->csum, sdev->csum_size))
838 fail = 1;
840 spin_lock(&sdev->stat_lock);
841 ++sdev->stat.data_extents_scrubbed;
842 sdev->stat.data_bytes_scrubbed += PAGE_SIZE;
843 if (fail)
844 ++sdev->stat.csum_errors;
845 spin_unlock(&sdev->stat_lock);
847 return fail;
850 static int scrub_checksum_tree_block(struct scrub_dev *sdev,
851 struct scrub_page *spag, u64 logical,
852 void *buffer)
854 struct btrfs_header *h;
855 struct btrfs_root *root = sdev->dev->dev_root;
856 struct btrfs_fs_info *fs_info = root->fs_info;
857 u8 csum[BTRFS_CSUM_SIZE];
858 u32 crc = ~(u32)0;
859 int fail = 0;
860 int crc_fail = 0;
863 * we don't use the getter functions here, as we
864 * a) don't have an extent buffer and
865 * b) the page is already kmapped
867 h = (struct btrfs_header *)buffer;
869 if (logical != le64_to_cpu(h->bytenr))
870 ++fail;
872 if (spag->generation != le64_to_cpu(h->generation))
873 ++fail;
875 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
876 ++fail;
878 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
879 BTRFS_UUID_SIZE))
880 ++fail;
882 crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
883 PAGE_SIZE - BTRFS_CSUM_SIZE);
884 btrfs_csum_final(crc, csum);
885 if (memcmp(csum, h->csum, sdev->csum_size))
886 ++crc_fail;
888 spin_lock(&sdev->stat_lock);
889 ++sdev->stat.tree_extents_scrubbed;
890 sdev->stat.tree_bytes_scrubbed += PAGE_SIZE;
891 if (crc_fail)
892 ++sdev->stat.csum_errors;
893 if (fail)
894 ++sdev->stat.verify_errors;
895 spin_unlock(&sdev->stat_lock);
897 return fail || crc_fail;
900 static int scrub_checksum_super(struct scrub_bio *sbio, void *buffer)
902 struct btrfs_super_block *s;
903 u64 logical;
904 struct scrub_dev *sdev = sbio->sdev;
905 struct btrfs_root *root = sdev->dev->dev_root;
906 struct btrfs_fs_info *fs_info = root->fs_info;
907 u8 csum[BTRFS_CSUM_SIZE];
908 u32 crc = ~(u32)0;
909 int fail = 0;
911 s = (struct btrfs_super_block *)buffer;
912 logical = sbio->logical;
914 if (logical != le64_to_cpu(s->bytenr))
915 ++fail;
917 if (sbio->spag[0].generation != le64_to_cpu(s->generation))
918 ++fail;
920 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
921 ++fail;
923 crc = btrfs_csum_data(root, buffer + BTRFS_CSUM_SIZE, crc,
924 PAGE_SIZE - BTRFS_CSUM_SIZE);
925 btrfs_csum_final(crc, csum);
926 if (memcmp(csum, s->csum, sbio->sdev->csum_size))
927 ++fail;
929 if (fail) {
931 * if we find an error in a super block, we just report it.
932 * They will get written with the next transaction commit
933 * anyway
935 spin_lock(&sdev->stat_lock);
936 ++sdev->stat.super_errors;
937 spin_unlock(&sdev->stat_lock);
940 return fail;
943 static int scrub_submit(struct scrub_dev *sdev)
945 struct scrub_bio *sbio;
946 struct bio *bio;
947 int i;
949 if (sdev->curr == -1)
950 return 0;
952 sbio = sdev->bios[sdev->curr];
954 bio = bio_alloc(GFP_NOFS, sbio->count);
955 if (!bio)
956 goto nomem;
958 bio->bi_private = sbio;
959 bio->bi_end_io = scrub_bio_end_io;
960 bio->bi_bdev = sdev->dev->bdev;
961 bio->bi_sector = sbio->physical >> 9;
963 for (i = 0; i < sbio->count; ++i) {
964 struct page *page;
965 int ret;
967 page = alloc_page(GFP_NOFS);
968 if (!page)
969 goto nomem;
971 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
972 if (!ret) {
973 __free_page(page);
974 goto nomem;
978 sbio->err = 0;
979 sdev->curr = -1;
980 atomic_inc(&sdev->in_flight);
982 submit_bio(READ, bio);
984 return 0;
986 nomem:
987 scrub_free_bio(bio);
989 return -ENOMEM;
992 static int scrub_page(struct scrub_dev *sdev, u64 logical, u64 len,
993 u64 physical, u64 flags, u64 gen, int mirror_num,
994 u8 *csum, int force)
996 struct scrub_bio *sbio;
998 again:
1000 * grab a fresh bio or wait for one to become available
1002 while (sdev->curr == -1) {
1003 spin_lock(&sdev->list_lock);
1004 sdev->curr = sdev->first_free;
1005 if (sdev->curr != -1) {
1006 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1007 sdev->bios[sdev->curr]->next_free = -1;
1008 sdev->bios[sdev->curr]->count = 0;
1009 spin_unlock(&sdev->list_lock);
1010 } else {
1011 spin_unlock(&sdev->list_lock);
1012 wait_event(sdev->list_wait, sdev->first_free != -1);
1015 sbio = sdev->bios[sdev->curr];
1016 if (sbio->count == 0) {
1017 sbio->physical = physical;
1018 sbio->logical = logical;
1019 } else if (sbio->physical + sbio->count * PAGE_SIZE != physical ||
1020 sbio->logical + sbio->count * PAGE_SIZE != logical) {
1021 int ret;
1023 ret = scrub_submit(sdev);
1024 if (ret)
1025 return ret;
1026 goto again;
1028 sbio->spag[sbio->count].flags = flags;
1029 sbio->spag[sbio->count].generation = gen;
1030 sbio->spag[sbio->count].have_csum = 0;
1031 sbio->spag[sbio->count].mirror_num = mirror_num;
1032 if (csum) {
1033 sbio->spag[sbio->count].have_csum = 1;
1034 memcpy(sbio->spag[sbio->count].csum, csum, sdev->csum_size);
1036 ++sbio->count;
1037 if (sbio->count == SCRUB_PAGES_PER_BIO || force) {
1038 int ret;
1040 ret = scrub_submit(sdev);
1041 if (ret)
1042 return ret;
1045 return 0;
1048 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1049 u8 *csum)
1051 struct btrfs_ordered_sum *sum = NULL;
1052 int ret = 0;
1053 unsigned long i;
1054 unsigned long num_sectors;
1055 u32 sectorsize = sdev->dev->dev_root->sectorsize;
1057 while (!list_empty(&sdev->csum_list)) {
1058 sum = list_first_entry(&sdev->csum_list,
1059 struct btrfs_ordered_sum, list);
1060 if (sum->bytenr > logical)
1061 return 0;
1062 if (sum->bytenr + sum->len > logical)
1063 break;
1065 ++sdev->stat.csum_discards;
1066 list_del(&sum->list);
1067 kfree(sum);
1068 sum = NULL;
1070 if (!sum)
1071 return 0;
1073 num_sectors = sum->len / sectorsize;
1074 for (i = 0; i < num_sectors; ++i) {
1075 if (sum->sums[i].bytenr == logical) {
1076 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1077 ret = 1;
1078 break;
1081 if (ret && i == num_sectors - 1) {
1082 list_del(&sum->list);
1083 kfree(sum);
1085 return ret;
1088 /* scrub extent tries to collect up to 64 kB for each bio */
1089 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1090 u64 physical, u64 flags, u64 gen, int mirror_num)
1092 int ret;
1093 u8 csum[BTRFS_CSUM_SIZE];
1095 while (len) {
1096 u64 l = min_t(u64, len, PAGE_SIZE);
1097 int have_csum = 0;
1099 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1100 /* push csums to sbio */
1101 have_csum = scrub_find_csum(sdev, logical, l, csum);
1102 if (have_csum == 0)
1103 ++sdev->stat.no_csum;
1105 ret = scrub_page(sdev, logical, l, physical, flags, gen,
1106 mirror_num, have_csum ? csum : NULL, 0);
1107 if (ret)
1108 return ret;
1109 len -= l;
1110 logical += l;
1111 physical += l;
1113 return 0;
1116 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1117 struct map_lookup *map, int num, u64 base, u64 length)
1119 struct btrfs_path *path;
1120 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1121 struct btrfs_root *root = fs_info->extent_root;
1122 struct btrfs_root *csum_root = fs_info->csum_root;
1123 struct btrfs_extent_item *extent;
1124 struct blk_plug plug;
1125 u64 flags;
1126 int ret;
1127 int slot;
1128 int i;
1129 u64 nstripes;
1130 struct extent_buffer *l;
1131 struct btrfs_key key;
1132 u64 physical;
1133 u64 logical;
1134 u64 generation;
1135 int mirror_num;
1136 struct reada_control *reada1;
1137 struct reada_control *reada2;
1138 struct btrfs_key key_start;
1139 struct btrfs_key key_end;
1141 u64 increment = map->stripe_len;
1142 u64 offset;
1144 nstripes = length;
1145 offset = 0;
1146 do_div(nstripes, map->stripe_len);
1147 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1148 offset = map->stripe_len * num;
1149 increment = map->stripe_len * map->num_stripes;
1150 mirror_num = 1;
1151 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1152 int factor = map->num_stripes / map->sub_stripes;
1153 offset = map->stripe_len * (num / map->sub_stripes);
1154 increment = map->stripe_len * factor;
1155 mirror_num = num % map->sub_stripes + 1;
1156 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1157 increment = map->stripe_len;
1158 mirror_num = num % map->num_stripes + 1;
1159 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1160 increment = map->stripe_len;
1161 mirror_num = num % map->num_stripes + 1;
1162 } else {
1163 increment = map->stripe_len;
1164 mirror_num = 1;
1167 path = btrfs_alloc_path();
1168 if (!path)
1169 return -ENOMEM;
1171 path->search_commit_root = 1;
1172 path->skip_locking = 1;
1175 * trigger the readahead for extent tree csum tree and wait for
1176 * completion. During readahead, the scrub is officially paused
1177 * to not hold off transaction commits
1179 logical = base + offset;
1181 wait_event(sdev->list_wait,
1182 atomic_read(&sdev->in_flight) == 0);
1183 atomic_inc(&fs_info->scrubs_paused);
1184 wake_up(&fs_info->scrub_pause_wait);
1186 /* FIXME it might be better to start readahead at commit root */
1187 key_start.objectid = logical;
1188 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1189 key_start.offset = (u64)0;
1190 key_end.objectid = base + offset + nstripes * increment;
1191 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1192 key_end.offset = (u64)0;
1193 reada1 = btrfs_reada_add(root, &key_start, &key_end);
1195 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1196 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1197 key_start.offset = logical;
1198 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1199 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1200 key_end.offset = base + offset + nstripes * increment;
1201 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1203 if (!IS_ERR(reada1))
1204 btrfs_reada_wait(reada1);
1205 if (!IS_ERR(reada2))
1206 btrfs_reada_wait(reada2);
1208 mutex_lock(&fs_info->scrub_lock);
1209 while (atomic_read(&fs_info->scrub_pause_req)) {
1210 mutex_unlock(&fs_info->scrub_lock);
1211 wait_event(fs_info->scrub_pause_wait,
1212 atomic_read(&fs_info->scrub_pause_req) == 0);
1213 mutex_lock(&fs_info->scrub_lock);
1215 atomic_dec(&fs_info->scrubs_paused);
1216 mutex_unlock(&fs_info->scrub_lock);
1217 wake_up(&fs_info->scrub_pause_wait);
1220 * collect all data csums for the stripe to avoid seeking during
1221 * the scrub. This might currently (crc32) end up to be about 1MB
1223 blk_start_plug(&plug);
1226 * now find all extents for each stripe and scrub them
1228 logical = base + offset;
1229 physical = map->stripes[num].physical;
1230 ret = 0;
1231 for (i = 0; i < nstripes; ++i) {
1233 * canceled?
1235 if (atomic_read(&fs_info->scrub_cancel_req) ||
1236 atomic_read(&sdev->cancel_req)) {
1237 ret = -ECANCELED;
1238 goto out;
1241 * check to see if we have to pause
1243 if (atomic_read(&fs_info->scrub_pause_req)) {
1244 /* push queued extents */
1245 scrub_submit(sdev);
1246 wait_event(sdev->list_wait,
1247 atomic_read(&sdev->in_flight) == 0);
1248 atomic_inc(&fs_info->scrubs_paused);
1249 wake_up(&fs_info->scrub_pause_wait);
1250 mutex_lock(&fs_info->scrub_lock);
1251 while (atomic_read(&fs_info->scrub_pause_req)) {
1252 mutex_unlock(&fs_info->scrub_lock);
1253 wait_event(fs_info->scrub_pause_wait,
1254 atomic_read(&fs_info->scrub_pause_req) == 0);
1255 mutex_lock(&fs_info->scrub_lock);
1257 atomic_dec(&fs_info->scrubs_paused);
1258 mutex_unlock(&fs_info->scrub_lock);
1259 wake_up(&fs_info->scrub_pause_wait);
1262 ret = btrfs_lookup_csums_range(csum_root, logical,
1263 logical + map->stripe_len - 1,
1264 &sdev->csum_list, 1);
1265 if (ret)
1266 goto out;
1268 key.objectid = logical;
1269 key.type = BTRFS_EXTENT_ITEM_KEY;
1270 key.offset = (u64)0;
1272 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1273 if (ret < 0)
1274 goto out;
1275 if (ret > 0) {
1276 ret = btrfs_previous_item(root, path, 0,
1277 BTRFS_EXTENT_ITEM_KEY);
1278 if (ret < 0)
1279 goto out;
1280 if (ret > 0) {
1281 /* there's no smaller item, so stick with the
1282 * larger one */
1283 btrfs_release_path(path);
1284 ret = btrfs_search_slot(NULL, root, &key,
1285 path, 0, 0);
1286 if (ret < 0)
1287 goto out;
1291 while (1) {
1292 l = path->nodes[0];
1293 slot = path->slots[0];
1294 if (slot >= btrfs_header_nritems(l)) {
1295 ret = btrfs_next_leaf(root, path);
1296 if (ret == 0)
1297 continue;
1298 if (ret < 0)
1299 goto out;
1301 break;
1303 btrfs_item_key_to_cpu(l, &key, slot);
1305 if (key.objectid + key.offset <= logical)
1306 goto next;
1308 if (key.objectid >= logical + map->stripe_len)
1309 break;
1311 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1312 goto next;
1314 extent = btrfs_item_ptr(l, slot,
1315 struct btrfs_extent_item);
1316 flags = btrfs_extent_flags(l, extent);
1317 generation = btrfs_extent_generation(l, extent);
1319 if (key.objectid < logical &&
1320 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1321 printk(KERN_ERR
1322 "btrfs scrub: tree block %llu spanning "
1323 "stripes, ignored. logical=%llu\n",
1324 (unsigned long long)key.objectid,
1325 (unsigned long long)logical);
1326 goto next;
1330 * trim extent to this stripe
1332 if (key.objectid < logical) {
1333 key.offset -= logical - key.objectid;
1334 key.objectid = logical;
1336 if (key.objectid + key.offset >
1337 logical + map->stripe_len) {
1338 key.offset = logical + map->stripe_len -
1339 key.objectid;
1342 ret = scrub_extent(sdev, key.objectid, key.offset,
1343 key.objectid - logical + physical,
1344 flags, generation, mirror_num);
1345 if (ret)
1346 goto out;
1348 next:
1349 path->slots[0]++;
1351 btrfs_release_path(path);
1352 logical += increment;
1353 physical += map->stripe_len;
1354 spin_lock(&sdev->stat_lock);
1355 sdev->stat.last_physical = physical;
1356 spin_unlock(&sdev->stat_lock);
1358 /* push queued extents */
1359 scrub_submit(sdev);
1361 out:
1362 blk_finish_plug(&plug);
1363 btrfs_free_path(path);
1364 return ret < 0 ? ret : 0;
1367 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
1368 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length)
1370 struct btrfs_mapping_tree *map_tree =
1371 &sdev->dev->dev_root->fs_info->mapping_tree;
1372 struct map_lookup *map;
1373 struct extent_map *em;
1374 int i;
1375 int ret = -EINVAL;
1377 read_lock(&map_tree->map_tree.lock);
1378 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
1379 read_unlock(&map_tree->map_tree.lock);
1381 if (!em)
1382 return -EINVAL;
1384 map = (struct map_lookup *)em->bdev;
1385 if (em->start != chunk_offset)
1386 goto out;
1388 if (em->len < length)
1389 goto out;
1391 for (i = 0; i < map->num_stripes; ++i) {
1392 if (map->stripes[i].dev == sdev->dev) {
1393 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
1394 if (ret)
1395 goto out;
1398 out:
1399 free_extent_map(em);
1401 return ret;
1404 static noinline_for_stack
1405 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
1407 struct btrfs_dev_extent *dev_extent = NULL;
1408 struct btrfs_path *path;
1409 struct btrfs_root *root = sdev->dev->dev_root;
1410 struct btrfs_fs_info *fs_info = root->fs_info;
1411 u64 length;
1412 u64 chunk_tree;
1413 u64 chunk_objectid;
1414 u64 chunk_offset;
1415 int ret;
1416 int slot;
1417 struct extent_buffer *l;
1418 struct btrfs_key key;
1419 struct btrfs_key found_key;
1420 struct btrfs_block_group_cache *cache;
1422 path = btrfs_alloc_path();
1423 if (!path)
1424 return -ENOMEM;
1426 path->reada = 2;
1427 path->search_commit_root = 1;
1428 path->skip_locking = 1;
1430 key.objectid = sdev->dev->devid;
1431 key.offset = 0ull;
1432 key.type = BTRFS_DEV_EXTENT_KEY;
1435 while (1) {
1436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1437 if (ret < 0)
1438 break;
1439 if (ret > 0) {
1440 if (path->slots[0] >=
1441 btrfs_header_nritems(path->nodes[0])) {
1442 ret = btrfs_next_leaf(root, path);
1443 if (ret)
1444 break;
1448 l = path->nodes[0];
1449 slot = path->slots[0];
1451 btrfs_item_key_to_cpu(l, &found_key, slot);
1453 if (found_key.objectid != sdev->dev->devid)
1454 break;
1456 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
1457 break;
1459 if (found_key.offset >= end)
1460 break;
1462 if (found_key.offset < key.offset)
1463 break;
1465 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1466 length = btrfs_dev_extent_length(l, dev_extent);
1468 if (found_key.offset + length <= start) {
1469 key.offset = found_key.offset + length;
1470 btrfs_release_path(path);
1471 continue;
1474 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
1475 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
1476 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
1479 * get a reference on the corresponding block group to prevent
1480 * the chunk from going away while we scrub it
1482 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
1483 if (!cache) {
1484 ret = -ENOENT;
1485 break;
1487 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
1488 chunk_offset, length);
1489 btrfs_put_block_group(cache);
1490 if (ret)
1491 break;
1493 key.offset = found_key.offset + length;
1494 btrfs_release_path(path);
1497 btrfs_free_path(path);
1500 * ret can still be 1 from search_slot or next_leaf,
1501 * that's not an error
1503 return ret < 0 ? ret : 0;
1506 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
1508 int i;
1509 u64 bytenr;
1510 u64 gen;
1511 int ret;
1512 struct btrfs_device *device = sdev->dev;
1513 struct btrfs_root *root = device->dev_root;
1515 gen = root->fs_info->last_trans_committed;
1517 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1518 bytenr = btrfs_sb_offset(i);
1519 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1520 break;
1522 ret = scrub_page(sdev, bytenr, PAGE_SIZE, bytenr,
1523 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
1524 if (ret)
1525 return ret;
1527 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1529 return 0;
1533 * get a reference count on fs_info->scrub_workers. start worker if necessary
1535 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
1537 struct btrfs_fs_info *fs_info = root->fs_info;
1539 mutex_lock(&fs_info->scrub_lock);
1540 if (fs_info->scrub_workers_refcnt == 0) {
1541 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
1542 fs_info->thread_pool_size, &fs_info->generic_worker);
1543 fs_info->scrub_workers.idle_thresh = 4;
1544 btrfs_start_workers(&fs_info->scrub_workers, 1);
1546 ++fs_info->scrub_workers_refcnt;
1547 mutex_unlock(&fs_info->scrub_lock);
1549 return 0;
1552 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
1554 struct btrfs_fs_info *fs_info = root->fs_info;
1556 mutex_lock(&fs_info->scrub_lock);
1557 if (--fs_info->scrub_workers_refcnt == 0)
1558 btrfs_stop_workers(&fs_info->scrub_workers);
1559 WARN_ON(fs_info->scrub_workers_refcnt < 0);
1560 mutex_unlock(&fs_info->scrub_lock);
1564 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
1565 struct btrfs_scrub_progress *progress, int readonly)
1567 struct scrub_dev *sdev;
1568 struct btrfs_fs_info *fs_info = root->fs_info;
1569 int ret;
1570 struct btrfs_device *dev;
1572 if (btrfs_fs_closing(root->fs_info))
1573 return -EINVAL;
1576 * check some assumptions
1578 if (root->sectorsize != PAGE_SIZE ||
1579 root->sectorsize != root->leafsize ||
1580 root->sectorsize != root->nodesize) {
1581 printk(KERN_ERR "btrfs_scrub: size assumptions fail\n");
1582 return -EINVAL;
1585 ret = scrub_workers_get(root);
1586 if (ret)
1587 return ret;
1589 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1590 dev = btrfs_find_device(root, devid, NULL, NULL);
1591 if (!dev || dev->missing) {
1592 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1593 scrub_workers_put(root);
1594 return -ENODEV;
1596 mutex_lock(&fs_info->scrub_lock);
1598 if (!dev->in_fs_metadata) {
1599 mutex_unlock(&fs_info->scrub_lock);
1600 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1601 scrub_workers_put(root);
1602 return -ENODEV;
1605 if (dev->scrub_device) {
1606 mutex_unlock(&fs_info->scrub_lock);
1607 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1608 scrub_workers_put(root);
1609 return -EINPROGRESS;
1611 sdev = scrub_setup_dev(dev);
1612 if (IS_ERR(sdev)) {
1613 mutex_unlock(&fs_info->scrub_lock);
1614 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1615 scrub_workers_put(root);
1616 return PTR_ERR(sdev);
1618 sdev->readonly = readonly;
1619 dev->scrub_device = sdev;
1621 atomic_inc(&fs_info->scrubs_running);
1622 mutex_unlock(&fs_info->scrub_lock);
1623 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1625 down_read(&fs_info->scrub_super_lock);
1626 ret = scrub_supers(sdev);
1627 up_read(&fs_info->scrub_super_lock);
1629 if (!ret)
1630 ret = scrub_enumerate_chunks(sdev, start, end);
1632 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
1633 atomic_dec(&fs_info->scrubs_running);
1634 wake_up(&fs_info->scrub_pause_wait);
1636 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
1638 if (progress)
1639 memcpy(progress, &sdev->stat, sizeof(*progress));
1641 mutex_lock(&fs_info->scrub_lock);
1642 dev->scrub_device = NULL;
1643 mutex_unlock(&fs_info->scrub_lock);
1645 scrub_free_dev(sdev);
1646 scrub_workers_put(root);
1648 return ret;
1651 int btrfs_scrub_pause(struct btrfs_root *root)
1653 struct btrfs_fs_info *fs_info = root->fs_info;
1655 mutex_lock(&fs_info->scrub_lock);
1656 atomic_inc(&fs_info->scrub_pause_req);
1657 while (atomic_read(&fs_info->scrubs_paused) !=
1658 atomic_read(&fs_info->scrubs_running)) {
1659 mutex_unlock(&fs_info->scrub_lock);
1660 wait_event(fs_info->scrub_pause_wait,
1661 atomic_read(&fs_info->scrubs_paused) ==
1662 atomic_read(&fs_info->scrubs_running));
1663 mutex_lock(&fs_info->scrub_lock);
1665 mutex_unlock(&fs_info->scrub_lock);
1667 return 0;
1670 int btrfs_scrub_continue(struct btrfs_root *root)
1672 struct btrfs_fs_info *fs_info = root->fs_info;
1674 atomic_dec(&fs_info->scrub_pause_req);
1675 wake_up(&fs_info->scrub_pause_wait);
1676 return 0;
1679 int btrfs_scrub_pause_super(struct btrfs_root *root)
1681 down_write(&root->fs_info->scrub_super_lock);
1682 return 0;
1685 int btrfs_scrub_continue_super(struct btrfs_root *root)
1687 up_write(&root->fs_info->scrub_super_lock);
1688 return 0;
1691 int btrfs_scrub_cancel(struct btrfs_root *root)
1693 struct btrfs_fs_info *fs_info = root->fs_info;
1695 mutex_lock(&fs_info->scrub_lock);
1696 if (!atomic_read(&fs_info->scrubs_running)) {
1697 mutex_unlock(&fs_info->scrub_lock);
1698 return -ENOTCONN;
1701 atomic_inc(&fs_info->scrub_cancel_req);
1702 while (atomic_read(&fs_info->scrubs_running)) {
1703 mutex_unlock(&fs_info->scrub_lock);
1704 wait_event(fs_info->scrub_pause_wait,
1705 atomic_read(&fs_info->scrubs_running) == 0);
1706 mutex_lock(&fs_info->scrub_lock);
1708 atomic_dec(&fs_info->scrub_cancel_req);
1709 mutex_unlock(&fs_info->scrub_lock);
1711 return 0;
1714 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
1716 struct btrfs_fs_info *fs_info = root->fs_info;
1717 struct scrub_dev *sdev;
1719 mutex_lock(&fs_info->scrub_lock);
1720 sdev = dev->scrub_device;
1721 if (!sdev) {
1722 mutex_unlock(&fs_info->scrub_lock);
1723 return -ENOTCONN;
1725 atomic_inc(&sdev->cancel_req);
1726 while (dev->scrub_device) {
1727 mutex_unlock(&fs_info->scrub_lock);
1728 wait_event(fs_info->scrub_pause_wait,
1729 dev->scrub_device == NULL);
1730 mutex_lock(&fs_info->scrub_lock);
1732 mutex_unlock(&fs_info->scrub_lock);
1734 return 0;
1736 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
1738 struct btrfs_fs_info *fs_info = root->fs_info;
1739 struct btrfs_device *dev;
1740 int ret;
1743 * we have to hold the device_list_mutex here so the device
1744 * does not go away in cancel_dev. FIXME: find a better solution
1746 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1747 dev = btrfs_find_device(root, devid, NULL, NULL);
1748 if (!dev) {
1749 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1750 return -ENODEV;
1752 ret = btrfs_scrub_cancel_dev(root, dev);
1753 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1755 return ret;
1758 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
1759 struct btrfs_scrub_progress *progress)
1761 struct btrfs_device *dev;
1762 struct scrub_dev *sdev = NULL;
1764 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1765 dev = btrfs_find_device(root, devid, NULL, NULL);
1766 if (dev)
1767 sdev = dev->scrub_device;
1768 if (sdev)
1769 memcpy(progress, &sdev->stat, sizeof(*progress));
1770 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1772 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;