2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
41 static int index
= SNDRV_DEFAULT_IDX1
; /* Index 0-MAX */
42 static char *id
= SNDRV_DEFAULT_STR1
; /* ID for this card */
43 static int enable
= 1;
45 module_param(index
, int, 0444);
46 MODULE_PARM_DESC(index
, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id
, charp
, 0444);
48 MODULE_PARM_DESC(id
, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable
, bool, 0444);
50 MODULE_PARM_DESC(enable
, "Enable SiS7019 Audio Accelerator.");
52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids
) = {
53 { PCI_DEVICE(PCI_VENDOR_ID_SI
, 0x7019) },
57 MODULE_DEVICE_TABLE(pci
, snd_sis7019_ids
);
59 /* There are three timing modes for the voices.
61 * For both playback and capture, when the buffer is one or two periods long,
62 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63 * to let us know when the periods have ended.
65 * When performing playback with more than two periods per buffer, we set
66 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67 * reach it. We then update the offset and continue on until we are
68 * interrupted for the next period.
70 * Capture channels do not have a SSO, so we allocate a playback channel to
71 * use as a timer for the capture periods. We use the SSO on the playback
72 * channel to clock out virtual periods, and adjust the virtual period length
73 * to maintain synchronization. This algorithm came from the Trident driver.
75 * FIXME: It'd be nice to make use of some of the synth features in the
76 * hardware, but a woeful lack of documentation is a significant roadblock.
80 #define VOICE_IN_USE 1
81 #define VOICE_CAPTURE 2
82 #define VOICE_SSO_TIMING 4
83 #define VOICE_SYNC_TIMING 8
91 struct snd_pcm_substream
*substream
;
93 void __iomem
*ctrl_base
;
94 void __iomem
*wave_base
;
95 void __iomem
*sync_base
;
99 /* We need four pages to store our wave parameters during a suspend. If
100 * we're not doing power management, we still need to allocate a page
101 * for the silence buffer.
104 #define SIS_SUSPEND_PAGES 4
106 #define SIS_SUSPEND_PAGES 1
110 unsigned long ioport
;
111 void __iomem
*ioaddr
;
117 struct snd_card
*card
;
118 struct snd_ac97
*ac97
[3];
120 /* Protect against more than one thread hitting the AC97
121 * registers (in a more polite manner than pounding the hardware
124 struct mutex ac97_mutex
;
126 /* voice_lock protects allocation/freeing of the voice descriptions
128 spinlock_t voice_lock
;
130 struct voice voices
[64];
131 struct voice capture_voice
;
133 /* Allocate pages to store the internal wave state during
134 * suspends. When we're operating, this can be used as a silence
135 * buffer for a timing channel.
137 void *suspend_state
[SIS_SUSPEND_PAGES
];
140 dma_addr_t silence_dma_addr
;
143 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148 * documented range of 8-0xfff8 samples. Given that they are 0-based,
149 * that places our period/buffer range at 9-0xfff9 samples. That makes the
150 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151 * max samples / min samples gives us the max periods in a buffer.
153 * We'll add a constraint upon open that limits the period and buffer sample
154 * size to values that are legal for the hardware.
156 static struct snd_pcm_hardware sis_playback_hw_info
= {
157 .info
= (SNDRV_PCM_INFO_MMAP
|
158 SNDRV_PCM_INFO_MMAP_VALID
|
159 SNDRV_PCM_INFO_INTERLEAVED
|
160 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
161 SNDRV_PCM_INFO_SYNC_START
|
162 SNDRV_PCM_INFO_RESUME
),
163 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
164 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
165 .rates
= SNDRV_PCM_RATE_8000_48000
| SNDRV_PCM_RATE_CONTINUOUS
,
170 .buffer_bytes_max
= (0xfff9 * 4),
171 .period_bytes_min
= 9,
172 .period_bytes_max
= (0xfff9 * 4),
174 .periods_max
= (0xfff9 / 9),
177 static struct snd_pcm_hardware sis_capture_hw_info
= {
178 .info
= (SNDRV_PCM_INFO_MMAP
|
179 SNDRV_PCM_INFO_MMAP_VALID
|
180 SNDRV_PCM_INFO_INTERLEAVED
|
181 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
182 SNDRV_PCM_INFO_SYNC_START
|
183 SNDRV_PCM_INFO_RESUME
),
184 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
185 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
186 .rates
= SNDRV_PCM_RATE_48000
,
191 .buffer_bytes_max
= (0xfff9 * 4),
192 .period_bytes_min
= 9,
193 .period_bytes_max
= (0xfff9 * 4),
195 .periods_max
= (0xfff9 / 9),
198 static void sis_update_sso(struct voice
*voice
, u16 period
)
200 void __iomem
*base
= voice
->ctrl_base
;
202 voice
->sso
+= period
;
203 if (voice
->sso
>= voice
->buffer_size
)
204 voice
->sso
-= voice
->buffer_size
;
206 /* Enforce the documented hardware minimum offset */
210 /* The SSO is in the upper 16 bits of the register. */
211 writew(voice
->sso
& 0xffff, base
+ SIS_PLAY_DMA_SSO_ESO
+ 2);
214 static void sis_update_voice(struct voice
*voice
)
216 if (voice
->flags
& VOICE_SSO_TIMING
) {
217 sis_update_sso(voice
, voice
->period_size
);
218 } else if (voice
->flags
& VOICE_SYNC_TIMING
) {
221 /* If we've not hit the end of the virtual period, update
222 * our records and keep going.
224 if (voice
->vperiod
> voice
->period_size
) {
225 voice
->vperiod
-= voice
->period_size
;
226 if (voice
->vperiod
< voice
->period_size
)
227 sis_update_sso(voice
, voice
->vperiod
);
229 sis_update_sso(voice
, voice
->period_size
);
233 /* Calculate our relative offset between the target and
234 * the actual CSO value. Since we're operating in a loop,
235 * if the value is more than half way around, we can
236 * consider ourselves wrapped.
238 sync
= voice
->sync_cso
;
239 sync
-= readw(voice
->sync_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
240 if (sync
> (voice
->sync_buffer_size
/ 2))
241 sync
-= voice
->sync_buffer_size
;
243 /* If sync is positive, then we interrupted too early, and
244 * we'll need to come back in a few samples and try again.
245 * There's a minimum wait, as it takes some time for the DMA
246 * engine to startup, etc...
251 sis_update_sso(voice
, sync
);
255 /* Ok, we interrupted right on time, or (hopefully) just
256 * a bit late. We'll adjst our next waiting period based
257 * on how close we got.
259 * We need to stay just behind the actual channel to ensure
260 * it really is past a period when we get our interrupt --
261 * otherwise we'll fall into the early code above and have
262 * a minimum wait time, which makes us quite late here,
263 * eating into the user's time to refresh the buffer, esp.
264 * if using small periods.
266 * If we're less than 9 samples behind, we're on target.
267 * Otherwise, shorten the next vperiod by the amount we've
271 voice
->vperiod
= voice
->sync_period_size
+ 1;
273 voice
->vperiod
= voice
->sync_period_size
+ sync
+ 10;
275 if (voice
->vperiod
< voice
->buffer_size
) {
276 sis_update_sso(voice
, voice
->vperiod
);
279 sis_update_sso(voice
, voice
->period_size
);
281 sync
= voice
->sync_cso
+ voice
->sync_period_size
;
282 if (sync
>= voice
->sync_buffer_size
)
283 sync
-= voice
->sync_buffer_size
;
284 voice
->sync_cso
= sync
;
287 snd_pcm_period_elapsed(voice
->substream
);
290 static void sis_voice_irq(u32 status
, struct voice
*voice
)
298 sis_update_voice(voice
);
303 static irqreturn_t
sis_interrupt(int irq
, void *dev
)
305 struct sis7019
*sis
= dev
;
306 unsigned long io
= sis
->ioport
;
310 /* We only use the DMA interrupts, and we don't enable any other
311 * source of interrupts. But, it is possible to see an interrupt
312 * status that didn't actually interrupt us, so eliminate anything
313 * we're not expecting to avoid falsely claiming an IRQ, and an
314 * ensuing endless loop.
316 intr
= inl(io
+ SIS_GISR
);
317 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
318 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
323 status
= inl(io
+ SIS_PISR_A
);
325 sis_voice_irq(status
, sis
->voices
);
326 outl(status
, io
+ SIS_PISR_A
);
329 status
= inl(io
+ SIS_PISR_B
);
331 sis_voice_irq(status
, &sis
->voices
[32]);
332 outl(status
, io
+ SIS_PISR_B
);
335 status
= inl(io
+ SIS_RISR
);
337 voice
= &sis
->capture_voice
;
339 snd_pcm_period_elapsed(voice
->substream
);
341 outl(status
, io
+ SIS_RISR
);
344 outl(intr
, io
+ SIS_GISR
);
345 intr
= inl(io
+ SIS_GISR
);
346 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
347 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
353 static u32
sis_rate_to_delta(unsigned int rate
)
357 /* This was copied from the trident driver, but it seems its gotten
358 * around a bit... nevertheless, it works well.
360 * We special case 44100 and 8000 since rounding with the equation
361 * does not give us an accurate enough value. For 11025 and 22050
362 * the equation gives us the best answer. All other frequencies will
363 * also use the equation. JDW
367 else if (rate
== 8000)
369 else if (rate
== 48000)
372 delta
= (((rate
<< 12) + 24000) / 48000) & 0x0000ffff;
376 static void __sis_map_silence(struct sis7019
*sis
)
378 /* Helper function: must hold sis->voice_lock on entry */
379 if (!sis
->silence_users
)
380 sis
->silence_dma_addr
= pci_map_single(sis
->pci
,
381 sis
->suspend_state
[0],
382 4096, PCI_DMA_TODEVICE
);
383 sis
->silence_users
++;
386 static void __sis_unmap_silence(struct sis7019
*sis
)
388 /* Helper function: must hold sis->voice_lock on entry */
389 sis
->silence_users
--;
390 if (!sis
->silence_users
)
391 pci_unmap_single(sis
->pci
, sis
->silence_dma_addr
, 4096,
395 static void sis_free_voice(struct sis7019
*sis
, struct voice
*voice
)
399 spin_lock_irqsave(&sis
->voice_lock
, flags
);
401 __sis_unmap_silence(sis
);
402 voice
->timing
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
|
404 voice
->timing
= NULL
;
406 voice
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
| VOICE_SYNC_TIMING
);
407 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
410 static struct voice
*__sis_alloc_playback_voice(struct sis7019
*sis
)
412 /* Must hold the voice_lock on entry */
416 for (i
= 0; i
< 64; i
++) {
417 voice
= &sis
->voices
[i
];
418 if (voice
->flags
& VOICE_IN_USE
)
420 voice
->flags
|= VOICE_IN_USE
;
429 static struct voice
*sis_alloc_playback_voice(struct sis7019
*sis
)
434 spin_lock_irqsave(&sis
->voice_lock
, flags
);
435 voice
= __sis_alloc_playback_voice(sis
);
436 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
441 static int sis_alloc_timing_voice(struct snd_pcm_substream
*substream
,
442 struct snd_pcm_hw_params
*hw_params
)
444 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
445 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
446 struct voice
*voice
= runtime
->private_data
;
447 unsigned int period_size
, buffer_size
;
451 /* If there are one or two periods per buffer, we don't need a
452 * timing voice, as we can use the capture channel's interrupts
453 * to clock out the periods.
455 period_size
= params_period_size(hw_params
);
456 buffer_size
= params_buffer_size(hw_params
);
457 needed
= (period_size
!= buffer_size
&&
458 period_size
!= (buffer_size
/ 2));
460 if (needed
&& !voice
->timing
) {
461 spin_lock_irqsave(&sis
->voice_lock
, flags
);
462 voice
->timing
= __sis_alloc_playback_voice(sis
);
464 __sis_map_silence(sis
);
465 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
468 voice
->timing
->substream
= substream
;
469 } else if (!needed
&& voice
->timing
) {
470 sis_free_voice(sis
, voice
);
471 voice
->timing
= NULL
;
477 static int sis_playback_open(struct snd_pcm_substream
*substream
)
479 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
480 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
483 voice
= sis_alloc_playback_voice(sis
);
487 voice
->substream
= substream
;
488 runtime
->private_data
= voice
;
489 runtime
->hw
= sis_playback_hw_info
;
490 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
492 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
494 snd_pcm_set_sync(substream
);
498 static int sis_substream_close(struct snd_pcm_substream
*substream
)
500 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
501 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
502 struct voice
*voice
= runtime
->private_data
;
504 sis_free_voice(sis
, voice
);
508 static int sis_playback_hw_params(struct snd_pcm_substream
*substream
,
509 struct snd_pcm_hw_params
*hw_params
)
511 return snd_pcm_lib_malloc_pages(substream
,
512 params_buffer_bytes(hw_params
));
515 static int sis_hw_free(struct snd_pcm_substream
*substream
)
517 return snd_pcm_lib_free_pages(substream
);
520 static int sis_pcm_playback_prepare(struct snd_pcm_substream
*substream
)
522 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
523 struct voice
*voice
= runtime
->private_data
;
524 void __iomem
*ctrl_base
= voice
->ctrl_base
;
525 void __iomem
*wave_base
= voice
->wave_base
;
526 u32 format
, dma_addr
, control
, sso_eso
, delta
, reg
;
529 /* We rely on the PCM core to ensure that the parameters for this
530 * substream do not change on us while we're programming the HW.
533 if (snd_pcm_format_width(runtime
->format
) == 8)
534 format
|= SIS_PLAY_DMA_FORMAT_8BIT
;
535 if (!snd_pcm_format_signed(runtime
->format
))
536 format
|= SIS_PLAY_DMA_FORMAT_UNSIGNED
;
537 if (runtime
->channels
== 1)
538 format
|= SIS_PLAY_DMA_FORMAT_MONO
;
540 /* The baseline setup is for a single period per buffer, and
541 * we add bells and whistles as needed from there.
543 dma_addr
= runtime
->dma_addr
;
544 leo
= runtime
->buffer_size
- 1;
545 control
= leo
| SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_LEO
;
548 if (runtime
->period_size
== (runtime
->buffer_size
/ 2)) {
549 control
|= SIS_PLAY_DMA_INTR_AT_MLP
;
550 } else if (runtime
->period_size
!= runtime
->buffer_size
) {
551 voice
->flags
|= VOICE_SSO_TIMING
;
552 voice
->sso
= runtime
->period_size
- 1;
553 voice
->period_size
= runtime
->period_size
;
554 voice
->buffer_size
= runtime
->buffer_size
;
556 control
&= ~SIS_PLAY_DMA_INTR_AT_LEO
;
557 control
|= SIS_PLAY_DMA_INTR_AT_SSO
;
558 sso_eso
|= (runtime
->period_size
- 1) << 16;
561 delta
= sis_rate_to_delta(runtime
->rate
);
563 /* Ok, we're ready to go, set up the channel.
565 writel(format
, ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
566 writel(dma_addr
, ctrl_base
+ SIS_PLAY_DMA_BASE
);
567 writel(control
, ctrl_base
+ SIS_PLAY_DMA_CONTROL
);
568 writel(sso_eso
, ctrl_base
+ SIS_PLAY_DMA_SSO_ESO
);
570 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
571 writel(0, wave_base
+ reg
);
573 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
574 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
575 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
576 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
577 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
578 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
580 /* Force PCI writes to post. */
586 static int sis_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
588 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
589 unsigned long io
= sis
->ioport
;
590 struct snd_pcm_substream
*s
;
595 u32 play
[2] = { 0, 0 };
597 /* No locks needed, as the PCM core will hold the locks on the
598 * substreams, and the HW will only start/stop the indicated voices
599 * without changing the state of the others.
602 case SNDRV_PCM_TRIGGER_START
:
603 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
604 case SNDRV_PCM_TRIGGER_RESUME
:
607 case SNDRV_PCM_TRIGGER_STOP
:
608 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
609 case SNDRV_PCM_TRIGGER_SUSPEND
:
616 snd_pcm_group_for_each_entry(s
, substream
) {
617 /* Make sure it is for us... */
618 chip
= snd_pcm_substream_chip(s
);
622 voice
= s
->runtime
->private_data
;
623 if (voice
->flags
& VOICE_CAPTURE
) {
624 record
|= 1 << voice
->num
;
625 voice
= voice
->timing
;
628 /* voice could be NULL if this a recording stream, and it
629 * doesn't have an external timing channel.
632 play
[voice
->num
/ 32] |= 1 << (voice
->num
& 0x1f);
634 snd_pcm_trigger_done(s
, substream
);
639 outl(record
, io
+ SIS_RECORD_START_REG
);
641 outl(play
[0], io
+ SIS_PLAY_START_A_REG
);
643 outl(play
[1], io
+ SIS_PLAY_START_B_REG
);
646 outl(record
, io
+ SIS_RECORD_STOP_REG
);
648 outl(play
[0], io
+ SIS_PLAY_STOP_A_REG
);
650 outl(play
[1], io
+ SIS_PLAY_STOP_B_REG
);
655 static snd_pcm_uframes_t
sis_pcm_pointer(struct snd_pcm_substream
*substream
)
657 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
658 struct voice
*voice
= runtime
->private_data
;
661 cso
= readl(voice
->ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
666 static int sis_capture_open(struct snd_pcm_substream
*substream
)
668 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
669 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
670 struct voice
*voice
= &sis
->capture_voice
;
673 /* FIXME: The driver only supports recording from one channel
674 * at the moment, but it could support more.
676 spin_lock_irqsave(&sis
->voice_lock
, flags
);
677 if (voice
->flags
& VOICE_IN_USE
)
680 voice
->flags
|= VOICE_IN_USE
;
681 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
686 voice
->substream
= substream
;
687 runtime
->private_data
= voice
;
688 runtime
->hw
= sis_capture_hw_info
;
689 runtime
->hw
.rates
= sis
->ac97
[0]->rates
[AC97_RATES_ADC
];
690 snd_pcm_limit_hw_rates(runtime
);
691 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
693 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
695 snd_pcm_set_sync(substream
);
699 static int sis_capture_hw_params(struct snd_pcm_substream
*substream
,
700 struct snd_pcm_hw_params
*hw_params
)
702 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
705 rc
= snd_ac97_set_rate(sis
->ac97
[0], AC97_PCM_LR_ADC_RATE
,
706 params_rate(hw_params
));
710 rc
= snd_pcm_lib_malloc_pages(substream
,
711 params_buffer_bytes(hw_params
));
715 rc
= sis_alloc_timing_voice(substream
, hw_params
);
721 static void sis_prepare_timing_voice(struct voice
*voice
,
722 struct snd_pcm_substream
*substream
)
724 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
725 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
726 struct voice
*timing
= voice
->timing
;
727 void __iomem
*play_base
= timing
->ctrl_base
;
728 void __iomem
*wave_base
= timing
->wave_base
;
729 u16 buffer_size
, period_size
;
730 u32 format
, control
, sso_eso
, delta
;
731 u32 vperiod
, sso
, reg
;
733 /* Set our initial buffer and period as large as we can given a
734 * single page of silence.
736 buffer_size
= 4096 / runtime
->channels
;
737 buffer_size
/= snd_pcm_format_size(runtime
->format
, 1);
738 period_size
= buffer_size
;
740 /* Initially, we want to interrupt just a bit behind the end of
741 * the period we're clocking out. 12 samples seems to give a good
744 * We want to spread our interrupts throughout the virtual period,
745 * so that we don't end up with two interrupts back to back at the
746 * end -- this helps minimize the effects of any jitter. Adjust our
747 * clocking period size so that the last period is at least a fourth
750 * This is all moot if we don't need to use virtual periods.
752 vperiod
= runtime
->period_size
+ 12;
753 if (vperiod
> period_size
) {
754 u16 tail
= vperiod
% period_size
;
755 u16 quarter_period
= period_size
/ 4;
757 if (tail
&& tail
< quarter_period
) {
758 u16 loops
= vperiod
/ period_size
;
760 tail
= quarter_period
- tail
;
766 sso
= period_size
- 1;
768 /* The initial period will fit inside the buffer, so we
769 * don't need to use virtual periods -- disable them.
771 period_size
= runtime
->period_size
;
776 /* The interrupt handler implements the timing synchronization, so
779 timing
->flags
|= VOICE_SYNC_TIMING
;
780 timing
->sync_base
= voice
->ctrl_base
;
781 timing
->sync_cso
= runtime
->period_size
;
782 timing
->sync_period_size
= runtime
->period_size
;
783 timing
->sync_buffer_size
= runtime
->buffer_size
;
784 timing
->period_size
= period_size
;
785 timing
->buffer_size
= buffer_size
;
787 timing
->vperiod
= vperiod
;
789 /* Using unsigned samples with the all-zero silence buffer
790 * forces the output to the lower rail, killing playback.
791 * So ignore unsigned vs signed -- it doesn't change the timing.
794 if (snd_pcm_format_width(runtime
->format
) == 8)
795 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
796 if (runtime
->channels
== 1)
797 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
799 control
= timing
->buffer_size
- 1;
800 control
|= SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_SSO
;
801 sso_eso
= timing
->buffer_size
- 1;
802 sso_eso
|= timing
->sso
<< 16;
804 delta
= sis_rate_to_delta(runtime
->rate
);
806 /* We've done the math, now configure the channel.
808 writel(format
, play_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
809 writel(sis
->silence_dma_addr
, play_base
+ SIS_PLAY_DMA_BASE
);
810 writel(control
, play_base
+ SIS_PLAY_DMA_CONTROL
);
811 writel(sso_eso
, play_base
+ SIS_PLAY_DMA_SSO_ESO
);
813 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
814 writel(0, wave_base
+ reg
);
816 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
817 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
818 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
819 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
820 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
821 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
824 static int sis_pcm_capture_prepare(struct snd_pcm_substream
*substream
)
826 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
827 struct voice
*voice
= runtime
->private_data
;
828 void __iomem
*rec_base
= voice
->ctrl_base
;
829 u32 format
, dma_addr
, control
;
832 /* We rely on the PCM core to ensure that the parameters for this
833 * substream do not change on us while we're programming the HW.
836 if (snd_pcm_format_width(runtime
->format
) == 8)
837 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
838 if (!snd_pcm_format_signed(runtime
->format
))
839 format
|= SIS_CAPTURE_DMA_FORMAT_UNSIGNED
;
840 if (runtime
->channels
== 1)
841 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
843 dma_addr
= runtime
->dma_addr
;
844 leo
= runtime
->buffer_size
- 1;
845 control
= leo
| SIS_CAPTURE_DMA_LOOP
;
847 /* If we've got more than two periods per buffer, then we have
848 * use a timing voice to clock out the periods. Otherwise, we can
849 * use the capture channel's interrupts.
852 sis_prepare_timing_voice(voice
, substream
);
854 control
|= SIS_CAPTURE_DMA_INTR_AT_LEO
;
855 if (runtime
->period_size
!= runtime
->buffer_size
)
856 control
|= SIS_CAPTURE_DMA_INTR_AT_MLP
;
859 writel(format
, rec_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
860 writel(dma_addr
, rec_base
+ SIS_CAPTURE_DMA_BASE
);
861 writel(control
, rec_base
+ SIS_CAPTURE_DMA_CONTROL
);
863 /* Force the writes to post. */
869 static struct snd_pcm_ops sis_playback_ops
= {
870 .open
= sis_playback_open
,
871 .close
= sis_substream_close
,
872 .ioctl
= snd_pcm_lib_ioctl
,
873 .hw_params
= sis_playback_hw_params
,
874 .hw_free
= sis_hw_free
,
875 .prepare
= sis_pcm_playback_prepare
,
876 .trigger
= sis_pcm_trigger
,
877 .pointer
= sis_pcm_pointer
,
880 static struct snd_pcm_ops sis_capture_ops
= {
881 .open
= sis_capture_open
,
882 .close
= sis_substream_close
,
883 .ioctl
= snd_pcm_lib_ioctl
,
884 .hw_params
= sis_capture_hw_params
,
885 .hw_free
= sis_hw_free
,
886 .prepare
= sis_pcm_capture_prepare
,
887 .trigger
= sis_pcm_trigger
,
888 .pointer
= sis_pcm_pointer
,
891 static int __devinit
sis_pcm_create(struct sis7019
*sis
)
896 /* We have 64 voices, and the driver currently records from
897 * only one channel, though that could change in the future.
899 rc
= snd_pcm_new(sis
->card
, "SiS7019", 0, 64, 1, &pcm
);
903 pcm
->private_data
= sis
;
904 strcpy(pcm
->name
, "SiS7019");
907 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &sis_playback_ops
);
908 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &sis_capture_ops
);
910 /* Try to preallocate some memory, but it's not the end of the
911 * world if this fails.
913 snd_pcm_lib_preallocate_pages_for_all(pcm
, SNDRV_DMA_TYPE_DEV
,
914 snd_dma_pci_data(sis
->pci
), 64*1024, 128*1024);
919 static unsigned short sis_ac97_rw(struct sis7019
*sis
, int codec
, u32 cmd
)
921 unsigned long io
= sis
->ioport
;
922 unsigned short val
= 0xffff;
926 static const u16 codec_ready
[3] = {
927 SIS_AC97_STATUS_CODEC_READY
,
928 SIS_AC97_STATUS_CODEC2_READY
,
929 SIS_AC97_STATUS_CODEC3_READY
,
932 rdy
= codec_ready
[codec
];
935 /* Get the AC97 semaphore -- software first, so we don't spin
936 * pounding out IO reads on the hardware semaphore...
938 mutex_lock(&sis
->ac97_mutex
);
941 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
947 /* ... and wait for any outstanding commands to complete ...
951 status
= inw(io
+ SIS_AC97_STATUS
);
952 if ((status
& rdy
) && !(status
& SIS_AC97_STATUS_BUSY
))
961 /* ... before sending our command and waiting for it to finish ...
963 outl(cmd
, io
+ SIS_AC97_CMD
);
967 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
970 /* ... and reading the results (if any).
972 val
= inl(io
+ SIS_AC97_CMD
) >> 16;
975 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
977 mutex_unlock(&sis
->ac97_mutex
);
980 printk(KERN_ERR
"sis7019: ac97 codec %d timeout cmd 0x%08x\n",
987 static void sis_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
990 static const u32 cmd
[3] = {
991 SIS_AC97_CMD_CODEC_WRITE
,
992 SIS_AC97_CMD_CODEC2_WRITE
,
993 SIS_AC97_CMD_CODEC3_WRITE
,
995 sis_ac97_rw(ac97
->private_data
, ac97
->num
,
996 (val
<< 16) | (reg
<< 8) | cmd
[ac97
->num
]);
999 static unsigned short sis_ac97_read(struct snd_ac97
*ac97
, unsigned short reg
)
1001 static const u32 cmd
[3] = {
1002 SIS_AC97_CMD_CODEC_READ
,
1003 SIS_AC97_CMD_CODEC2_READ
,
1004 SIS_AC97_CMD_CODEC3_READ
,
1006 return sis_ac97_rw(ac97
->private_data
, ac97
->num
,
1007 (reg
<< 8) | cmd
[ac97
->num
]);
1010 static int __devinit
sis_mixer_create(struct sis7019
*sis
)
1012 struct snd_ac97_bus
*bus
;
1013 struct snd_ac97_template ac97
;
1014 static struct snd_ac97_bus_ops ops
= {
1015 .write
= sis_ac97_write
,
1016 .read
= sis_ac97_read
,
1020 memset(&ac97
, 0, sizeof(ac97
));
1021 ac97
.private_data
= sis
;
1023 rc
= snd_ac97_bus(sis
->card
, 0, &ops
, NULL
, &bus
);
1024 if (!rc
&& sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1025 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[0]);
1027 if (!rc
&& (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
))
1028 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[1]);
1030 if (!rc
&& (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
))
1031 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[2]);
1033 /* If we return an error here, then snd_card_free() should
1034 * free up any ac97 codecs that got created, as well as the bus.
1039 static void sis_free_suspend(struct sis7019
*sis
)
1043 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++)
1044 kfree(sis
->suspend_state
[i
]);
1047 static int sis_chip_free(struct sis7019
*sis
)
1049 /* Reset the chip, and disable all interrputs.
1051 outl(SIS_GCR_SOFTWARE_RESET
, sis
->ioport
+ SIS_GCR
);
1053 outl(0, sis
->ioport
+ SIS_GCR
);
1054 outl(0, sis
->ioport
+ SIS_GIER
);
1056 /* Now, free everything we allocated.
1059 free_irq(sis
->irq
, sis
);
1062 iounmap(sis
->ioaddr
);
1064 pci_release_regions(sis
->pci
);
1065 pci_disable_device(sis
->pci
);
1067 sis_free_suspend(sis
);
1071 static int sis_dev_free(struct snd_device
*dev
)
1073 struct sis7019
*sis
= dev
->device_data
;
1074 return sis_chip_free(sis
);
1077 static int sis_chip_init(struct sis7019
*sis
)
1079 unsigned long io
= sis
->ioport
;
1080 void __iomem
*ioaddr
= sis
->ioaddr
;
1085 /* Reset the audio controller
1087 outl(SIS_GCR_SOFTWARE_RESET
, io
+ SIS_GCR
);
1089 outl(0, io
+ SIS_GCR
);
1091 /* Get the AC-link semaphore, and reset the codecs
1094 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
1100 outl(SIS_AC97_CMD_CODEC_COLD_RESET
, io
+ SIS_AC97_CMD
);
1104 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
1107 /* Now that we've finished the reset, find out what's attached.
1109 status
= inl(io
+ SIS_AC97_STATUS
);
1110 if (status
& SIS_AC97_STATUS_CODEC_READY
)
1111 sis
->codecs_present
|= SIS_PRIMARY_CODEC_PRESENT
;
1112 if (status
& SIS_AC97_STATUS_CODEC2_READY
)
1113 sis
->codecs_present
|= SIS_SECONDARY_CODEC_PRESENT
;
1114 if (status
& SIS_AC97_STATUS_CODEC3_READY
)
1115 sis
->codecs_present
|= SIS_TERTIARY_CODEC_PRESENT
;
1117 /* All done, let go of the semaphore, and check for errors
1119 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
1120 if (!sis
->codecs_present
|| !count
)
1123 /* Let the hardware know that the audio driver is alive,
1124 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1125 * record channels. We're going to want to use Variable Rate Audio
1126 * for recording, to avoid needlessly resampling from 48kHZ.
1128 outl(SIS_AC97_CONF_AUDIO_ALIVE
, io
+ SIS_AC97_CONF
);
1129 outl(SIS_AC97_CONF_AUDIO_ALIVE
| SIS_AC97_CONF_PCM_LR_ENABLE
|
1130 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE
|
1131 SIS_AC97_CONF_PCM_CAP_LR_ENABLE
|
1132 SIS_AC97_CONF_CODEC_VRA_ENABLE
, io
+ SIS_AC97_CONF
);
1134 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1136 outl(0, io
+ SIS_AC97_PSR
);
1138 /* There is only one valid DMA setup for a PCI environment.
1140 outl(SIS_DMA_CSR_PCI_SETTINGS
, io
+ SIS_DMA_CSR
);
1142 /* Reset the synchronization groups for all of the channels
1143 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1144 * we'll need to change how we handle these. Until then, we just
1145 * assign sub-mixer 0 to all playback channels, and avoid any
1146 * attenuation on the audio.
1148 outl(0, io
+ SIS_PLAY_SYNC_GROUP_A
);
1149 outl(0, io
+ SIS_PLAY_SYNC_GROUP_B
);
1150 outl(0, io
+ SIS_PLAY_SYNC_GROUP_C
);
1151 outl(0, io
+ SIS_PLAY_SYNC_GROUP_D
);
1152 outl(0, io
+ SIS_MIXER_SYNC_GROUP
);
1154 for (i
= 0; i
< 64; i
++) {
1155 writel(i
, SIS_MIXER_START_ADDR(ioaddr
, i
));
1156 writel(SIS_MIXER_RIGHT_NO_ATTEN
| SIS_MIXER_LEFT_NO_ATTEN
|
1157 SIS_MIXER_DEST_0
, SIS_MIXER_ADDR(ioaddr
, i
));
1160 /* Don't attenuate any audio set for the wave amplifier.
1162 * FIXME: Maximum attenuation is set for the music amp, which will
1163 * need to change if we start using the synth engine.
1165 outl(0xffff0000, io
+ SIS_WEVCR
);
1167 /* Ensure that the wave engine is in normal operating mode.
1169 outl(0, io
+ SIS_WECCR
);
1171 /* Go ahead and enable the DMA interrupts. They won't go live
1172 * until we start a channel.
1174 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE
|
1175 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE
, io
+ SIS_GIER
);
1181 static int sis_suspend(struct pci_dev
*pci
, pm_message_t state
)
1183 struct snd_card
*card
= pci_get_drvdata(pci
);
1184 struct sis7019
*sis
= card
->private_data
;
1185 void __iomem
*ioaddr
= sis
->ioaddr
;
1188 snd_power_change_state(card
, SNDRV_CTL_POWER_D3hot
);
1189 snd_pcm_suspend_all(sis
->pcm
);
1190 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1191 snd_ac97_suspend(sis
->ac97
[0]);
1192 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1193 snd_ac97_suspend(sis
->ac97
[1]);
1194 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1195 snd_ac97_suspend(sis
->ac97
[2]);
1197 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1199 if (sis
->irq
>= 0) {
1200 free_irq(sis
->irq
, sis
);
1204 /* Save the internal state away
1206 for (i
= 0; i
< 4; i
++) {
1207 memcpy_fromio(sis
->suspend_state
[i
], ioaddr
, 4096);
1211 pci_disable_device(pci
);
1212 pci_save_state(pci
);
1213 pci_set_power_state(pci
, pci_choose_state(pci
, state
));
1217 static int sis_resume(struct pci_dev
*pci
)
1219 struct snd_card
*card
= pci_get_drvdata(pci
);
1220 struct sis7019
*sis
= card
->private_data
;
1221 void __iomem
*ioaddr
= sis
->ioaddr
;
1224 pci_set_power_state(pci
, PCI_D0
);
1225 pci_restore_state(pci
);
1227 if (pci_enable_device(pci
) < 0) {
1228 printk(KERN_ERR
"sis7019: unable to re-enable device\n");
1232 if (sis_chip_init(sis
)) {
1233 printk(KERN_ERR
"sis7019: unable to re-init controller\n");
1237 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1238 KBUILD_MODNAME
, sis
)) {
1239 printk(KERN_ERR
"sis7019: unable to regain IRQ %d\n", pci
->irq
);
1243 /* Restore saved state, then clear out the page we use for the
1246 for (i
= 0; i
< 4; i
++) {
1247 memcpy_toio(ioaddr
, sis
->suspend_state
[i
], 4096);
1251 memset(sis
->suspend_state
[0], 0, 4096);
1253 sis
->irq
= pci
->irq
;
1254 pci_set_master(pci
);
1256 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1257 snd_ac97_resume(sis
->ac97
[0]);
1258 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1259 snd_ac97_resume(sis
->ac97
[1]);
1260 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1261 snd_ac97_resume(sis
->ac97
[2]);
1263 snd_power_change_state(card
, SNDRV_CTL_POWER_D0
);
1267 snd_card_disconnect(card
);
1270 #endif /* CONFIG_PM */
1272 static int sis_alloc_suspend(struct sis7019
*sis
)
1276 /* We need 16K to store the internal wave engine state during a
1277 * suspend, but we don't need it to be contiguous, so play nice
1278 * with the memory system. We'll also use this area for a silence
1281 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++) {
1282 sis
->suspend_state
[i
] = kmalloc(4096, GFP_KERNEL
);
1283 if (!sis
->suspend_state
[i
])
1286 memset(sis
->suspend_state
[0], 0, 4096);
1291 static int __devinit
sis_chip_create(struct snd_card
*card
,
1292 struct pci_dev
*pci
)
1294 struct sis7019
*sis
= card
->private_data
;
1295 struct voice
*voice
;
1296 static struct snd_device_ops ops
= {
1297 .dev_free
= sis_dev_free
,
1302 rc
= pci_enable_device(pci
);
1306 if (pci_set_dma_mask(pci
, DMA_BIT_MASK(30)) < 0) {
1307 printk(KERN_ERR
"sis7019: architecture does not support "
1308 "30-bit PCI busmaster DMA");
1309 goto error_out_enabled
;
1312 memset(sis
, 0, sizeof(*sis
));
1313 mutex_init(&sis
->ac97_mutex
);
1314 spin_lock_init(&sis
->voice_lock
);
1318 sis
->ioport
= pci_resource_start(pci
, 0);
1320 rc
= pci_request_regions(pci
, "SiS7019");
1322 printk(KERN_ERR
"sis7019: unable request regions\n");
1323 goto error_out_enabled
;
1327 sis
->ioaddr
= ioremap_nocache(pci_resource_start(pci
, 1), 0x4000);
1329 printk(KERN_ERR
"sis7019: unable to remap MMIO, aborting\n");
1330 goto error_out_cleanup
;
1333 rc
= sis_alloc_suspend(sis
);
1335 printk(KERN_ERR
"sis7019: unable to allocate state storage\n");
1336 goto error_out_cleanup
;
1339 rc
= sis_chip_init(sis
);
1341 goto error_out_cleanup
;
1343 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1344 KBUILD_MODNAME
, sis
)) {
1345 printk(KERN_ERR
"unable to allocate irq %d\n", sis
->irq
);
1346 goto error_out_cleanup
;
1349 sis
->irq
= pci
->irq
;
1350 pci_set_master(pci
);
1352 for (i
= 0; i
< 64; i
++) {
1353 voice
= &sis
->voices
[i
];
1355 voice
->ctrl_base
= SIS_PLAY_DMA_ADDR(sis
->ioaddr
, i
);
1356 voice
->wave_base
= SIS_WAVE_ADDR(sis
->ioaddr
, i
);
1359 voice
= &sis
->capture_voice
;
1360 voice
->flags
= VOICE_CAPTURE
;
1361 voice
->num
= SIS_CAPTURE_CHAN_AC97_PCM_IN
;
1362 voice
->ctrl_base
= SIS_CAPTURE_DMA_ADDR(sis
->ioaddr
, voice
->num
);
1364 rc
= snd_device_new(card
, SNDRV_DEV_LOWLEVEL
, sis
, &ops
);
1366 goto error_out_cleanup
;
1368 snd_card_set_dev(card
, &pci
->dev
);
1376 pci_disable_device(pci
);
1382 static int __devinit
snd_sis7019_probe(struct pci_dev
*pci
,
1383 const struct pci_device_id
*pci_id
)
1385 struct snd_card
*card
;
1386 struct sis7019
*sis
;
1393 rc
= snd_card_create(index
, id
, THIS_MODULE
, sizeof(*sis
), &card
);
1397 strcpy(card
->driver
, "SiS7019");
1398 strcpy(card
->shortname
, "SiS7019");
1399 rc
= sis_chip_create(card
, pci
);
1401 goto card_error_out
;
1403 sis
= card
->private_data
;
1405 rc
= sis_mixer_create(sis
);
1407 goto card_error_out
;
1409 rc
= sis_pcm_create(sis
);
1411 goto card_error_out
;
1413 snprintf(card
->longname
, sizeof(card
->longname
),
1414 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1415 card
->shortname
, snd_ac97_get_short_name(sis
->ac97
[0]),
1416 sis
->ioport
, sis
->irq
);
1418 rc
= snd_card_register(card
);
1420 goto card_error_out
;
1422 pci_set_drvdata(pci
, card
);
1426 snd_card_free(card
);
1432 static void __devexit
snd_sis7019_remove(struct pci_dev
*pci
)
1434 snd_card_free(pci_get_drvdata(pci
));
1435 pci_set_drvdata(pci
, NULL
);
1438 static struct pci_driver sis7019_driver
= {
1439 .name
= KBUILD_MODNAME
,
1440 .id_table
= snd_sis7019_ids
,
1441 .probe
= snd_sis7019_probe
,
1442 .remove
= __devexit_p(snd_sis7019_remove
),
1445 .suspend
= sis_suspend
,
1446 .resume
= sis_resume
,
1450 static int __init
sis7019_init(void)
1452 return pci_register_driver(&sis7019_driver
);
1455 static void __exit
sis7019_exit(void)
1457 pci_unregister_driver(&sis7019_driver
);
1460 module_init(sis7019_init
);
1461 module_exit(sis7019_exit
);