2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 #include <linux/module.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
22 #include <asm/pgtable.h>
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
27 * future use of radix_tree tags in the swap cache.
29 static const struct address_space_operations swap_aops
= {
30 .writepage
= swap_writepage
,
31 .sync_page
= block_sync_page
,
32 .set_page_dirty
= __set_page_dirty_nobuffers
,
33 .migratepage
= migrate_page
,
36 static struct backing_dev_info swap_backing_dev_info
= {
37 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
38 .unplug_io_fn
= swap_unplug_io_fn
,
41 struct address_space swapper_space
= {
42 .page_tree
= RADIX_TREE_INIT(GFP_ATOMIC
|__GFP_NOWARN
),
43 .tree_lock
= __SPIN_LOCK_UNLOCKED(swapper_space
.tree_lock
),
45 .i_mmap_nonlinear
= LIST_HEAD_INIT(swapper_space
.i_mmap_nonlinear
),
46 .backing_dev_info
= &swap_backing_dev_info
,
49 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
52 unsigned long add_total
;
53 unsigned long del_total
;
54 unsigned long find_success
;
55 unsigned long find_total
;
58 void show_swap_cache_info(void)
60 printk("%lu pages in swap cache\n", total_swapcache_pages
);
61 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
62 swap_cache_info
.add_total
, swap_cache_info
.del_total
,
63 swap_cache_info
.find_success
, swap_cache_info
.find_total
);
64 printk("Free swap = %ldkB\n", nr_swap_pages
<< (PAGE_SHIFT
- 10));
65 printk("Total swap = %lukB\n", total_swap_pages
<< (PAGE_SHIFT
- 10));
69 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
70 * but sets SwapCache flag and private instead of mapping and index.
72 int add_to_swap_cache(struct page
*page
, swp_entry_t entry
, gfp_t gfp_mask
)
76 VM_BUG_ON(!PageLocked(page
));
77 VM_BUG_ON(PageSwapCache(page
));
78 VM_BUG_ON(!PageSwapBacked(page
));
80 error
= radix_tree_preload(gfp_mask
);
83 SetPageSwapCache(page
);
84 set_page_private(page
, entry
.val
);
86 spin_lock_irq(&swapper_space
.tree_lock
);
87 error
= radix_tree_insert(&swapper_space
.page_tree
,
90 total_swapcache_pages
++;
91 __inc_zone_page_state(page
, NR_FILE_PAGES
);
92 INC_CACHE_INFO(add_total
);
94 spin_unlock_irq(&swapper_space
.tree_lock
);
95 radix_tree_preload_end();
97 if (unlikely(error
)) {
98 set_page_private(page
, 0UL);
99 ClearPageSwapCache(page
);
100 page_cache_release(page
);
107 * This must be called only on pages that have
108 * been verified to be in the swap cache.
110 void __delete_from_swap_cache(struct page
*page
)
112 VM_BUG_ON(!PageLocked(page
));
113 VM_BUG_ON(!PageSwapCache(page
));
114 VM_BUG_ON(PageWriteback(page
));
116 radix_tree_delete(&swapper_space
.page_tree
, page_private(page
));
117 set_page_private(page
, 0);
118 ClearPageSwapCache(page
);
119 total_swapcache_pages
--;
120 __dec_zone_page_state(page
, NR_FILE_PAGES
);
121 INC_CACHE_INFO(del_total
);
125 * add_to_swap - allocate swap space for a page
126 * @page: page we want to move to swap
127 * @gfp_mask: memory allocation flags
129 * Allocate swap space for the page and add the page to the
130 * swap cache. Caller needs to hold the page lock.
132 int add_to_swap(struct page
*page
)
137 VM_BUG_ON(!PageLocked(page
));
138 VM_BUG_ON(!PageUptodate(page
));
141 entry
= get_swap_page();
146 * Radix-tree node allocations from PF_MEMALLOC contexts could
147 * completely exhaust the page allocator. __GFP_NOMEMALLOC
148 * stops emergency reserves from being allocated.
150 * TODO: this could cause a theoretical memory reclaim
151 * deadlock in the swap out path.
154 * Add it to the swap cache and mark it dirty
156 err
= add_to_swap_cache(page
, entry
,
157 __GFP_HIGH
|__GFP_NOMEMALLOC
|__GFP_NOWARN
);
160 case 0: /* Success */
164 /* Raced with "speculative" read_swap_cache_async */
165 swapcache_free(entry
, NULL
);
168 /* -ENOMEM radix-tree allocation failure */
169 swapcache_free(entry
, NULL
);
176 * This must be called only on pages that have
177 * been verified to be in the swap cache and locked.
178 * It will never put the page into the free list,
179 * the caller has a reference on the page.
181 void delete_from_swap_cache(struct page
*page
)
185 entry
.val
= page_private(page
);
187 spin_lock_irq(&swapper_space
.tree_lock
);
188 __delete_from_swap_cache(page
);
189 spin_unlock_irq(&swapper_space
.tree_lock
);
191 swapcache_free(entry
, page
);
192 page_cache_release(page
);
196 * If we are the only user, then try to free up the swap cache.
198 * Its ok to check for PageSwapCache without the page lock
199 * here because we are going to recheck again inside
200 * try_to_free_swap() _with_ the lock.
203 static inline void free_swap_cache(struct page
*page
)
205 if (PageSwapCache(page
) && !page_mapped(page
) && trylock_page(page
)) {
206 try_to_free_swap(page
);
212 * Perform a free_page(), also freeing any swap cache associated with
213 * this page if it is the last user of the page.
215 void free_page_and_swap_cache(struct page
*page
)
217 free_swap_cache(page
);
218 page_cache_release(page
);
222 * Passed an array of pages, drop them all from swapcache and then release
223 * them. They are removed from the LRU and freed if this is their last use.
225 void free_pages_and_swap_cache(struct page
**pages
, int nr
)
227 struct page
**pagep
= pages
;
231 int todo
= min(nr
, PAGEVEC_SIZE
);
234 for (i
= 0; i
< todo
; i
++)
235 free_swap_cache(pagep
[i
]);
236 release_pages(pagep
, todo
, 0);
243 * Lookup a swap entry in the swap cache. A found page will be returned
244 * unlocked and with its refcount incremented - we rely on the kernel
245 * lock getting page table operations atomic even if we drop the page
246 * lock before returning.
248 struct page
* lookup_swap_cache(swp_entry_t entry
)
252 page
= find_get_page(&swapper_space
, entry
.val
);
255 INC_CACHE_INFO(find_success
);
257 INC_CACHE_INFO(find_total
);
262 * Locate a page of swap in physical memory, reserving swap cache space
263 * and reading the disk if it is not already cached.
264 * A failure return means that either the page allocation failed or that
265 * the swap entry is no longer in use.
267 struct page
*read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
268 struct vm_area_struct
*vma
, unsigned long addr
)
270 struct page
*found_page
, *new_page
= NULL
;
275 * First check the swap cache. Since this is normally
276 * called after lookup_swap_cache() failed, re-calling
277 * that would confuse statistics.
279 found_page
= find_get_page(&swapper_space
, entry
.val
);
284 * Get a new page to read into from swap.
287 new_page
= alloc_page_vma(gfp_mask
, vma
, addr
);
289 break; /* Out of memory */
293 * Swap entry may have been freed since our caller observed it.
295 err
= swapcache_prepare(entry
);
296 if (err
== -EEXIST
) /* seems racy */
298 if (err
) /* swp entry is obsolete ? */
302 * Associate the page with swap entry in the swap cache.
303 * May fail (-EEXIST) if there is already a page associated
304 * with this entry in the swap cache: added by a racing
305 * read_swap_cache_async, or add_to_swap or shmem_writepage
306 * re-using the just freed swap entry for an existing page.
307 * May fail (-ENOMEM) if radix-tree node allocation failed.
309 __set_page_locked(new_page
);
310 SetPageSwapBacked(new_page
);
311 err
= add_to_swap_cache(new_page
, entry
, gfp_mask
& GFP_KERNEL
);
314 * Initiate read into locked page and return.
316 lru_cache_add_anon(new_page
);
317 swap_readpage(NULL
, new_page
);
320 ClearPageSwapBacked(new_page
);
321 __clear_page_locked(new_page
);
322 swapcache_free(entry
, NULL
);
323 } while (err
!= -ENOMEM
);
326 page_cache_release(new_page
);
331 * swapin_readahead - swap in pages in hope we need them soon
332 * @entry: swap entry of this memory
333 * @gfp_mask: memory allocation flags
334 * @vma: user vma this address belongs to
335 * @addr: target address for mempolicy
337 * Returns the struct page for entry and addr, after queueing swapin.
339 * Primitive swap readahead code. We simply read an aligned block of
340 * (1 << page_cluster) entries in the swap area. This method is chosen
341 * because it doesn't cost us any seek time. We also make sure to queue
342 * the 'original' request together with the readahead ones...
344 * This has been extended to use the NUMA policies from the mm triggering
347 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
349 struct page
*swapin_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
350 struct vm_area_struct
*vma
, unsigned long addr
)
354 unsigned long offset
;
355 unsigned long end_offset
;
358 * Get starting offset for readaround, and number of pages to read.
359 * Adjust starting address by readbehind (for NUMA interleave case)?
360 * No, it's very unlikely that swap layout would follow vma layout,
361 * more likely that neighbouring swap pages came from the same node:
362 * so use the same "addr" to choose the same node for each swap read.
364 nr_pages
= valid_swaphandles(entry
, &offset
);
365 for (end_offset
= offset
+ nr_pages
; offset
< end_offset
; offset
++) {
366 /* Ok, do the async read-ahead now */
367 page
= read_swap_cache_async(swp_entry(swp_type(entry
), offset
),
368 gfp_mask
, vma
, addr
);
371 page_cache_release(page
);
373 lru_add_drain(); /* Push any new pages onto the LRU now */
374 return read_swap_cache_async(entry
, gfp_mask
, vma
, addr
);