4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include <linux/cleancache.h>
41 * FIXME: remove all knowledge of the buffer layer from the core VM
43 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * ->i_mmap_mutex (truncate_pagecache)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 * sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
86 * ->anon_vma.lock (vma_adjust)
89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 * ->page_table_lock or pte_lock
92 * ->swap_lock (try_to_unmap_one)
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
97 * ->private_lock (page_remove_rmap->set_page_dirty)
98 * ->tree_lock (page_remove_rmap->set_page_dirty)
99 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
100 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
102 * ->inode->i_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
115 void __delete_from_page_cache(struct page
*page
)
117 struct address_space
*mapping
= page
->mapping
;
120 * if we're uptodate, flush out into the cleancache, otherwise
121 * invalidate any existing cleancache entries. We can't leave
122 * stale data around in the cleancache once our page is gone
124 if (PageUptodate(page
) && PageMappedToDisk(page
))
125 cleancache_put_page(page
);
127 cleancache_flush_page(mapping
, page
);
129 radix_tree_delete(&mapping
->page_tree
, page
->index
);
130 page
->mapping
= NULL
;
131 /* Leave page->index set: truncation lookup relies upon it */
133 __dec_zone_page_state(page
, NR_FILE_PAGES
);
134 if (PageSwapBacked(page
))
135 __dec_zone_page_state(page
, NR_SHMEM
);
136 BUG_ON(page_mapped(page
));
139 * Some filesystems seem to re-dirty the page even after
140 * the VM has canceled the dirty bit (eg ext3 journaling).
142 * Fix it up by doing a final dirty accounting check after
143 * having removed the page entirely.
145 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
146 dec_zone_page_state(page
, NR_FILE_DIRTY
);
147 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
152 * delete_from_page_cache - delete page from page cache
153 * @page: the page which the kernel is trying to remove from page cache
155 * This must be called only on pages that have been verified to be in the page
156 * cache and locked. It will never put the page into the free list, the caller
157 * has a reference on the page.
159 void delete_from_page_cache(struct page
*page
)
161 struct address_space
*mapping
= page
->mapping
;
162 void (*freepage
)(struct page
*);
164 BUG_ON(!PageLocked(page
));
166 freepage
= mapping
->a_ops
->freepage
;
167 spin_lock_irq(&mapping
->tree_lock
);
168 __delete_from_page_cache(page
);
169 spin_unlock_irq(&mapping
->tree_lock
);
170 mem_cgroup_uncharge_cache_page(page
);
174 page_cache_release(page
);
176 EXPORT_SYMBOL(delete_from_page_cache
);
178 static int sleep_on_page(void *word
)
184 static int sleep_on_page_killable(void *word
)
187 return fatal_signal_pending(current
) ? -EINTR
: 0;
191 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
192 * @mapping: address space structure to write
193 * @start: offset in bytes where the range starts
194 * @end: offset in bytes where the range ends (inclusive)
195 * @sync_mode: enable synchronous operation
197 * Start writeback against all of a mapping's dirty pages that lie
198 * within the byte offsets <start, end> inclusive.
200 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
201 * opposed to a regular memory cleansing writeback. The difference between
202 * these two operations is that if a dirty page/buffer is encountered, it must
203 * be waited upon, and not just skipped over.
205 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
206 loff_t end
, int sync_mode
)
209 struct writeback_control wbc
= {
210 .sync_mode
= sync_mode
,
211 .nr_to_write
= LONG_MAX
,
212 .range_start
= start
,
216 if (!mapping_cap_writeback_dirty(mapping
))
219 ret
= do_writepages(mapping
, &wbc
);
223 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
226 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
229 int filemap_fdatawrite(struct address_space
*mapping
)
231 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
233 EXPORT_SYMBOL(filemap_fdatawrite
);
235 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
238 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
240 EXPORT_SYMBOL(filemap_fdatawrite_range
);
243 * filemap_flush - mostly a non-blocking flush
244 * @mapping: target address_space
246 * This is a mostly non-blocking flush. Not suitable for data-integrity
247 * purposes - I/O may not be started against all dirty pages.
249 int filemap_flush(struct address_space
*mapping
)
251 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
253 EXPORT_SYMBOL(filemap_flush
);
256 * filemap_fdatawait_range - wait for writeback to complete
257 * @mapping: address space structure to wait for
258 * @start_byte: offset in bytes where the range starts
259 * @end_byte: offset in bytes where the range ends (inclusive)
261 * Walk the list of under-writeback pages of the given address space
262 * in the given range and wait for all of them.
264 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
267 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
268 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
273 if (end_byte
< start_byte
)
276 pagevec_init(&pvec
, 0);
277 while ((index
<= end
) &&
278 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
279 PAGECACHE_TAG_WRITEBACK
,
280 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
283 for (i
= 0; i
< nr_pages
; i
++) {
284 struct page
*page
= pvec
.pages
[i
];
286 /* until radix tree lookup accepts end_index */
287 if (page
->index
> end
)
290 wait_on_page_writeback(page
);
291 if (TestClearPageError(page
))
294 pagevec_release(&pvec
);
298 /* Check for outstanding write errors */
299 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
301 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
306 EXPORT_SYMBOL(filemap_fdatawait_range
);
309 * filemap_fdatawait - wait for all under-writeback pages to complete
310 * @mapping: address space structure to wait for
312 * Walk the list of under-writeback pages of the given address space
313 * and wait for all of them.
315 int filemap_fdatawait(struct address_space
*mapping
)
317 loff_t i_size
= i_size_read(mapping
->host
);
322 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
324 EXPORT_SYMBOL(filemap_fdatawait
);
326 int filemap_write_and_wait(struct address_space
*mapping
)
330 if (mapping
->nrpages
) {
331 err
= filemap_fdatawrite(mapping
);
333 * Even if the above returned error, the pages may be
334 * written partially (e.g. -ENOSPC), so we wait for it.
335 * But the -EIO is special case, it may indicate the worst
336 * thing (e.g. bug) happened, so we avoid waiting for it.
339 int err2
= filemap_fdatawait(mapping
);
346 EXPORT_SYMBOL(filemap_write_and_wait
);
349 * filemap_write_and_wait_range - write out & wait on a file range
350 * @mapping: the address_space for the pages
351 * @lstart: offset in bytes where the range starts
352 * @lend: offset in bytes where the range ends (inclusive)
354 * Write out and wait upon file offsets lstart->lend, inclusive.
356 * Note that `lend' is inclusive (describes the last byte to be written) so
357 * that this function can be used to write to the very end-of-file (end = -1).
359 int filemap_write_and_wait_range(struct address_space
*mapping
,
360 loff_t lstart
, loff_t lend
)
364 if (mapping
->nrpages
) {
365 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
367 /* See comment of filemap_write_and_wait() */
369 int err2
= filemap_fdatawait_range(mapping
,
377 EXPORT_SYMBOL(filemap_write_and_wait_range
);
380 * replace_page_cache_page - replace a pagecache page with a new one
381 * @old: page to be replaced
382 * @new: page to replace with
383 * @gfp_mask: allocation mode
385 * This function replaces a page in the pagecache with a new one. On
386 * success it acquires the pagecache reference for the new page and
387 * drops it for the old page. Both the old and new pages must be
388 * locked. This function does not add the new page to the LRU, the
389 * caller must do that.
391 * The remove + add is atomic. The only way this function can fail is
392 * memory allocation failure.
394 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
397 struct mem_cgroup
*memcg
= NULL
;
399 VM_BUG_ON(!PageLocked(old
));
400 VM_BUG_ON(!PageLocked(new));
401 VM_BUG_ON(new->mapping
);
404 * This is not page migration, but prepare_migration and
405 * end_migration does enough work for charge replacement.
407 * In the longer term we probably want a specialized function
408 * for moving the charge from old to new in a more efficient
411 error
= mem_cgroup_prepare_migration(old
, new, &memcg
, gfp_mask
);
415 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
417 struct address_space
*mapping
= old
->mapping
;
418 void (*freepage
)(struct page
*);
420 pgoff_t offset
= old
->index
;
421 freepage
= mapping
->a_ops
->freepage
;
424 new->mapping
= mapping
;
427 spin_lock_irq(&mapping
->tree_lock
);
428 __delete_from_page_cache(old
);
429 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
432 __inc_zone_page_state(new, NR_FILE_PAGES
);
433 if (PageSwapBacked(new))
434 __inc_zone_page_state(new, NR_SHMEM
);
435 spin_unlock_irq(&mapping
->tree_lock
);
436 radix_tree_preload_end();
439 page_cache_release(old
);
440 mem_cgroup_end_migration(memcg
, old
, new, true);
442 mem_cgroup_end_migration(memcg
, old
, new, false);
447 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
450 * add_to_page_cache_locked - add a locked page to the pagecache
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
456 * This function is used to add a page to the pagecache. It must be locked.
457 * This function does not add the page to the LRU. The caller must do that.
459 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
460 pgoff_t offset
, gfp_t gfp_mask
)
464 VM_BUG_ON(!PageLocked(page
));
466 error
= mem_cgroup_cache_charge(page
, current
->mm
,
467 gfp_mask
& GFP_RECLAIM_MASK
);
471 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
473 page_cache_get(page
);
474 page
->mapping
= mapping
;
475 page
->index
= offset
;
477 spin_lock_irq(&mapping
->tree_lock
);
478 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
479 if (likely(!error
)) {
481 __inc_zone_page_state(page
, NR_FILE_PAGES
);
482 if (PageSwapBacked(page
))
483 __inc_zone_page_state(page
, NR_SHMEM
);
484 spin_unlock_irq(&mapping
->tree_lock
);
486 page
->mapping
= NULL
;
487 /* Leave page->index set: truncation relies upon it */
488 spin_unlock_irq(&mapping
->tree_lock
);
489 mem_cgroup_uncharge_cache_page(page
);
490 page_cache_release(page
);
492 radix_tree_preload_end();
494 mem_cgroup_uncharge_cache_page(page
);
498 EXPORT_SYMBOL(add_to_page_cache_locked
);
500 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
501 pgoff_t offset
, gfp_t gfp_mask
)
506 * Splice_read and readahead add shmem/tmpfs pages into the page cache
507 * before shmem_readpage has a chance to mark them as SwapBacked: they
508 * need to go on the anon lru below, and mem_cgroup_cache_charge
509 * (called in add_to_page_cache) needs to know where they're going too.
511 if (mapping_cap_swap_backed(mapping
))
512 SetPageSwapBacked(page
);
514 ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
516 if (page_is_file_cache(page
))
517 lru_cache_add_file(page
);
519 lru_cache_add_anon(page
);
523 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
526 struct page
*__page_cache_alloc(gfp_t gfp
)
531 if (cpuset_do_page_mem_spread()) {
533 n
= cpuset_mem_spread_node();
534 page
= alloc_pages_exact_node(n
, gfp
, 0);
538 return alloc_pages(gfp
, 0);
540 EXPORT_SYMBOL(__page_cache_alloc
);
544 * In order to wait for pages to become available there must be
545 * waitqueues associated with pages. By using a hash table of
546 * waitqueues where the bucket discipline is to maintain all
547 * waiters on the same queue and wake all when any of the pages
548 * become available, and for the woken contexts to check to be
549 * sure the appropriate page became available, this saves space
550 * at a cost of "thundering herd" phenomena during rare hash
553 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
555 const struct zone
*zone
= page_zone(page
);
557 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
560 static inline void wake_up_page(struct page
*page
, int bit
)
562 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
565 void wait_on_page_bit(struct page
*page
, int bit_nr
)
567 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
569 if (test_bit(bit_nr
, &page
->flags
))
570 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
571 TASK_UNINTERRUPTIBLE
);
573 EXPORT_SYMBOL(wait_on_page_bit
);
575 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
577 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
579 if (!test_bit(bit_nr
, &page
->flags
))
582 return __wait_on_bit(page_waitqueue(page
), &wait
,
583 sleep_on_page_killable
, TASK_KILLABLE
);
587 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
588 * @page: Page defining the wait queue of interest
589 * @waiter: Waiter to add to the queue
591 * Add an arbitrary @waiter to the wait queue for the nominated @page.
593 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
595 wait_queue_head_t
*q
= page_waitqueue(page
);
598 spin_lock_irqsave(&q
->lock
, flags
);
599 __add_wait_queue(q
, waiter
);
600 spin_unlock_irqrestore(&q
->lock
, flags
);
602 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
605 * unlock_page - unlock a locked page
608 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
609 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
610 * mechananism between PageLocked pages and PageWriteback pages is shared.
611 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
613 * The mb is necessary to enforce ordering between the clear_bit and the read
614 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
616 void unlock_page(struct page
*page
)
618 VM_BUG_ON(!PageLocked(page
));
619 clear_bit_unlock(PG_locked
, &page
->flags
);
620 smp_mb__after_clear_bit();
621 wake_up_page(page
, PG_locked
);
623 EXPORT_SYMBOL(unlock_page
);
626 * end_page_writeback - end writeback against a page
629 void end_page_writeback(struct page
*page
)
631 if (TestClearPageReclaim(page
))
632 rotate_reclaimable_page(page
);
634 if (!test_clear_page_writeback(page
))
637 smp_mb__after_clear_bit();
638 wake_up_page(page
, PG_writeback
);
640 EXPORT_SYMBOL(end_page_writeback
);
643 * __lock_page - get a lock on the page, assuming we need to sleep to get it
644 * @page: the page to lock
646 void __lock_page(struct page
*page
)
648 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
650 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
651 TASK_UNINTERRUPTIBLE
);
653 EXPORT_SYMBOL(__lock_page
);
655 int __lock_page_killable(struct page
*page
)
657 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
659 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
660 sleep_on_page_killable
, TASK_KILLABLE
);
662 EXPORT_SYMBOL_GPL(__lock_page_killable
);
664 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
667 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
669 * CAUTION! In this case, mmap_sem is not released
670 * even though return 0.
672 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
675 up_read(&mm
->mmap_sem
);
676 if (flags
& FAULT_FLAG_KILLABLE
)
677 wait_on_page_locked_killable(page
);
679 wait_on_page_locked(page
);
682 if (flags
& FAULT_FLAG_KILLABLE
) {
685 ret
= __lock_page_killable(page
);
687 up_read(&mm
->mmap_sem
);
697 * find_get_page - find and get a page reference
698 * @mapping: the address_space to search
699 * @offset: the page index
701 * Is there a pagecache struct page at the given (mapping, offset) tuple?
702 * If yes, increment its refcount and return it; if no, return NULL.
704 struct page
*find_get_page(struct address_space
*mapping
, pgoff_t offset
)
712 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
714 page
= radix_tree_deref_slot(pagep
);
717 if (radix_tree_deref_retry(page
))
720 if (!page_cache_get_speculative(page
))
724 * Has the page moved?
725 * This is part of the lockless pagecache protocol. See
726 * include/linux/pagemap.h for details.
728 if (unlikely(page
!= *pagep
)) {
729 page_cache_release(page
);
738 EXPORT_SYMBOL(find_get_page
);
741 * find_lock_page - locate, pin and lock a pagecache page
742 * @mapping: the address_space to search
743 * @offset: the page index
745 * Locates the desired pagecache page, locks it, increments its reference
746 * count and returns its address.
748 * Returns zero if the page was not present. find_lock_page() may sleep.
750 struct page
*find_lock_page(struct address_space
*mapping
, pgoff_t offset
)
755 page
= find_get_page(mapping
, offset
);
758 /* Has the page been truncated? */
759 if (unlikely(page
->mapping
!= mapping
)) {
761 page_cache_release(page
);
764 VM_BUG_ON(page
->index
!= offset
);
768 EXPORT_SYMBOL(find_lock_page
);
771 * find_or_create_page - locate or add a pagecache page
772 * @mapping: the page's address_space
773 * @index: the page's index into the mapping
774 * @gfp_mask: page allocation mode
776 * Locates a page in the pagecache. If the page is not present, a new page
777 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
778 * LRU list. The returned page is locked and has its reference count
781 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
784 * find_or_create_page() returns the desired page's address, or zero on
787 struct page
*find_or_create_page(struct address_space
*mapping
,
788 pgoff_t index
, gfp_t gfp_mask
)
793 page
= find_lock_page(mapping
, index
);
795 page
= __page_cache_alloc(gfp_mask
);
799 * We want a regular kernel memory (not highmem or DMA etc)
800 * allocation for the radix tree nodes, but we need to honour
801 * the context-specific requirements the caller has asked for.
802 * GFP_RECLAIM_MASK collects those requirements.
804 err
= add_to_page_cache_lru(page
, mapping
, index
,
805 (gfp_mask
& GFP_RECLAIM_MASK
));
807 page_cache_release(page
);
815 EXPORT_SYMBOL(find_or_create_page
);
818 * find_get_pages - gang pagecache lookup
819 * @mapping: The address_space to search
820 * @start: The starting page index
821 * @nr_pages: The maximum number of pages
822 * @pages: Where the resulting pages are placed
824 * find_get_pages() will search for and return a group of up to
825 * @nr_pages pages in the mapping. The pages are placed at @pages.
826 * find_get_pages() takes a reference against the returned pages.
828 * The search returns a group of mapping-contiguous pages with ascending
829 * indexes. There may be holes in the indices due to not-present pages.
831 * find_get_pages() returns the number of pages which were found.
833 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
834 unsigned int nr_pages
, struct page
**pages
)
838 unsigned int nr_found
;
842 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
843 (void ***)pages
, start
, nr_pages
);
845 for (i
= 0; i
< nr_found
; i
++) {
848 page
= radix_tree_deref_slot((void **)pages
[i
]);
853 * This can only trigger when the entry at index 0 moves out
854 * of or back to the root: none yet gotten, safe to restart.
856 if (radix_tree_deref_retry(page
)) {
861 if (!page_cache_get_speculative(page
))
864 /* Has the page moved? */
865 if (unlikely(page
!= *((void **)pages
[i
]))) {
866 page_cache_release(page
);
875 * If all entries were removed before we could secure them,
876 * try again, because callers stop trying once 0 is returned.
878 if (unlikely(!ret
&& nr_found
))
885 * find_get_pages_contig - gang contiguous pagecache lookup
886 * @mapping: The address_space to search
887 * @index: The starting page index
888 * @nr_pages: The maximum number of pages
889 * @pages: Where the resulting pages are placed
891 * find_get_pages_contig() works exactly like find_get_pages(), except
892 * that the returned number of pages are guaranteed to be contiguous.
894 * find_get_pages_contig() returns the number of pages which were found.
896 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
897 unsigned int nr_pages
, struct page
**pages
)
901 unsigned int nr_found
;
905 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
906 (void ***)pages
, index
, nr_pages
);
908 for (i
= 0; i
< nr_found
; i
++) {
911 page
= radix_tree_deref_slot((void **)pages
[i
]);
916 * This can only trigger when the entry at index 0 moves out
917 * of or back to the root: none yet gotten, safe to restart.
919 if (radix_tree_deref_retry(page
))
922 if (!page_cache_get_speculative(page
))
925 /* Has the page moved? */
926 if (unlikely(page
!= *((void **)pages
[i
]))) {
927 page_cache_release(page
);
932 * must check mapping and index after taking the ref.
933 * otherwise we can get both false positives and false
934 * negatives, which is just confusing to the caller.
936 if (page
->mapping
== NULL
|| page
->index
!= index
) {
937 page_cache_release(page
);
948 EXPORT_SYMBOL(find_get_pages_contig
);
951 * find_get_pages_tag - find and return pages that match @tag
952 * @mapping: the address_space to search
953 * @index: the starting page index
954 * @tag: the tag index
955 * @nr_pages: the maximum number of pages
956 * @pages: where the resulting pages are placed
958 * Like find_get_pages, except we only return pages which are tagged with
959 * @tag. We update @index to index the next page for the traversal.
961 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
962 int tag
, unsigned int nr_pages
, struct page
**pages
)
966 unsigned int nr_found
;
970 nr_found
= radix_tree_gang_lookup_tag_slot(&mapping
->page_tree
,
971 (void ***)pages
, *index
, nr_pages
, tag
);
973 for (i
= 0; i
< nr_found
; i
++) {
976 page
= radix_tree_deref_slot((void **)pages
[i
]);
981 * This can only trigger when the entry at index 0 moves out
982 * of or back to the root: none yet gotten, safe to restart.
984 if (radix_tree_deref_retry(page
))
987 if (!page_cache_get_speculative(page
))
990 /* Has the page moved? */
991 if (unlikely(page
!= *((void **)pages
[i
]))) {
992 page_cache_release(page
);
1001 * If all entries were removed before we could secure them,
1002 * try again, because callers stop trying once 0 is returned.
1004 if (unlikely(!ret
&& nr_found
))
1009 *index
= pages
[ret
- 1]->index
+ 1;
1013 EXPORT_SYMBOL(find_get_pages_tag
);
1016 * grab_cache_page_nowait - returns locked page at given index in given cache
1017 * @mapping: target address_space
1018 * @index: the page index
1020 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1021 * This is intended for speculative data generators, where the data can
1022 * be regenerated if the page couldn't be grabbed. This routine should
1023 * be safe to call while holding the lock for another page.
1025 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1026 * and deadlock against the caller's locked page.
1029 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
1031 struct page
*page
= find_get_page(mapping
, index
);
1034 if (trylock_page(page
))
1036 page_cache_release(page
);
1039 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
1040 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_NOFS
)) {
1041 page_cache_release(page
);
1046 EXPORT_SYMBOL(grab_cache_page_nowait
);
1049 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1050 * a _large_ part of the i/o request. Imagine the worst scenario:
1052 * ---R__________________________________________B__________
1053 * ^ reading here ^ bad block(assume 4k)
1055 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1056 * => failing the whole request => read(R) => read(R+1) =>
1057 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1058 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1059 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061 * It is going insane. Fix it by quickly scaling down the readahead size.
1063 static void shrink_readahead_size_eio(struct file
*filp
,
1064 struct file_ra_state
*ra
)
1070 * do_generic_file_read - generic file read routine
1071 * @filp: the file to read
1072 * @ppos: current file position
1073 * @desc: read_descriptor
1074 * @actor: read method
1076 * This is a generic file read routine, and uses the
1077 * mapping->a_ops->readpage() function for the actual low-level stuff.
1079 * This is really ugly. But the goto's actually try to clarify some
1080 * of the logic when it comes to error handling etc.
1082 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1083 read_descriptor_t
*desc
, read_actor_t actor
)
1085 struct address_space
*mapping
= filp
->f_mapping
;
1086 struct inode
*inode
= mapping
->host
;
1087 struct file_ra_state
*ra
= &filp
->f_ra
;
1091 unsigned long offset
; /* offset into pagecache page */
1092 unsigned int prev_offset
;
1095 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1096 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1097 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1098 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1099 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1105 unsigned long nr
, ret
;
1109 page
= find_get_page(mapping
, index
);
1111 page_cache_sync_readahead(mapping
,
1113 index
, last_index
- index
);
1114 page
= find_get_page(mapping
, index
);
1115 if (unlikely(page
== NULL
))
1116 goto no_cached_page
;
1118 if (PageReadahead(page
)) {
1119 page_cache_async_readahead(mapping
,
1121 index
, last_index
- index
);
1123 if (!PageUptodate(page
)) {
1124 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1125 !mapping
->a_ops
->is_partially_uptodate
)
1126 goto page_not_up_to_date
;
1127 if (!trylock_page(page
))
1128 goto page_not_up_to_date
;
1129 /* Did it get truncated before we got the lock? */
1131 goto page_not_up_to_date_locked
;
1132 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1134 goto page_not_up_to_date_locked
;
1139 * i_size must be checked after we know the page is Uptodate.
1141 * Checking i_size after the check allows us to calculate
1142 * the correct value for "nr", which means the zero-filled
1143 * part of the page is not copied back to userspace (unless
1144 * another truncate extends the file - this is desired though).
1147 isize
= i_size_read(inode
);
1148 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1149 if (unlikely(!isize
|| index
> end_index
)) {
1150 page_cache_release(page
);
1154 /* nr is the maximum number of bytes to copy from this page */
1155 nr
= PAGE_CACHE_SIZE
;
1156 if (index
== end_index
) {
1157 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1159 page_cache_release(page
);
1165 /* If users can be writing to this page using arbitrary
1166 * virtual addresses, take care about potential aliasing
1167 * before reading the page on the kernel side.
1169 if (mapping_writably_mapped(mapping
))
1170 flush_dcache_page(page
);
1173 * When a sequential read accesses a page several times,
1174 * only mark it as accessed the first time.
1176 if (prev_index
!= index
|| offset
!= prev_offset
)
1177 mark_page_accessed(page
);
1181 * Ok, we have the page, and it's up-to-date, so
1182 * now we can copy it to user space...
1184 * The actor routine returns how many bytes were actually used..
1185 * NOTE! This may not be the same as how much of a user buffer
1186 * we filled up (we may be padding etc), so we can only update
1187 * "pos" here (the actor routine has to update the user buffer
1188 * pointers and the remaining count).
1190 ret
= actor(desc
, page
, offset
, nr
);
1192 index
+= offset
>> PAGE_CACHE_SHIFT
;
1193 offset
&= ~PAGE_CACHE_MASK
;
1194 prev_offset
= offset
;
1196 page_cache_release(page
);
1197 if (ret
== nr
&& desc
->count
)
1201 page_not_up_to_date
:
1202 /* Get exclusive access to the page ... */
1203 error
= lock_page_killable(page
);
1204 if (unlikely(error
))
1205 goto readpage_error
;
1207 page_not_up_to_date_locked
:
1208 /* Did it get truncated before we got the lock? */
1209 if (!page
->mapping
) {
1211 page_cache_release(page
);
1215 /* Did somebody else fill it already? */
1216 if (PageUptodate(page
)) {
1223 * A previous I/O error may have been due to temporary
1224 * failures, eg. multipath errors.
1225 * PG_error will be set again if readpage fails.
1227 ClearPageError(page
);
1228 /* Start the actual read. The read will unlock the page. */
1229 error
= mapping
->a_ops
->readpage(filp
, page
);
1231 if (unlikely(error
)) {
1232 if (error
== AOP_TRUNCATED_PAGE
) {
1233 page_cache_release(page
);
1236 goto readpage_error
;
1239 if (!PageUptodate(page
)) {
1240 error
= lock_page_killable(page
);
1241 if (unlikely(error
))
1242 goto readpage_error
;
1243 if (!PageUptodate(page
)) {
1244 if (page
->mapping
== NULL
) {
1246 * invalidate_mapping_pages got it
1249 page_cache_release(page
);
1253 shrink_readahead_size_eio(filp
, ra
);
1255 goto readpage_error
;
1263 /* UHHUH! A synchronous read error occurred. Report it */
1264 desc
->error
= error
;
1265 page_cache_release(page
);
1270 * Ok, it wasn't cached, so we need to create a new
1273 page
= page_cache_alloc_cold(mapping
);
1275 desc
->error
= -ENOMEM
;
1278 error
= add_to_page_cache_lru(page
, mapping
,
1281 page_cache_release(page
);
1282 if (error
== -EEXIST
)
1284 desc
->error
= error
;
1291 ra
->prev_pos
= prev_index
;
1292 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1293 ra
->prev_pos
|= prev_offset
;
1295 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1296 file_accessed(filp
);
1299 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1300 unsigned long offset
, unsigned long size
)
1303 unsigned long left
, count
= desc
->count
;
1309 * Faults on the destination of a read are common, so do it before
1312 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1313 kaddr
= kmap_atomic(page
, KM_USER0
);
1314 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1315 kaddr
+ offset
, size
);
1316 kunmap_atomic(kaddr
, KM_USER0
);
1321 /* Do it the slow way */
1323 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1328 desc
->error
= -EFAULT
;
1331 desc
->count
= count
- size
;
1332 desc
->written
+= size
;
1333 desc
->arg
.buf
+= size
;
1338 * Performs necessary checks before doing a write
1339 * @iov: io vector request
1340 * @nr_segs: number of segments in the iovec
1341 * @count: number of bytes to write
1342 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344 * Adjust number of segments and amount of bytes to write (nr_segs should be
1345 * properly initialized first). Returns appropriate error code that caller
1346 * should return or zero in case that write should be allowed.
1348 int generic_segment_checks(const struct iovec
*iov
,
1349 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1353 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1354 const struct iovec
*iv
= &iov
[seg
];
1357 * If any segment has a negative length, or the cumulative
1358 * length ever wraps negative then return -EINVAL.
1361 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1363 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1368 cnt
-= iv
->iov_len
; /* This segment is no good */
1374 EXPORT_SYMBOL(generic_segment_checks
);
1377 * generic_file_aio_read - generic filesystem read routine
1378 * @iocb: kernel I/O control block
1379 * @iov: io vector request
1380 * @nr_segs: number of segments in the iovec
1381 * @pos: current file position
1383 * This is the "read()" routine for all filesystems
1384 * that can use the page cache directly.
1387 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1388 unsigned long nr_segs
, loff_t pos
)
1390 struct file
*filp
= iocb
->ki_filp
;
1392 unsigned long seg
= 0;
1394 loff_t
*ppos
= &iocb
->ki_pos
;
1395 struct blk_plug plug
;
1398 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1402 blk_start_plug(&plug
);
1404 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1405 if (filp
->f_flags
& O_DIRECT
) {
1407 struct address_space
*mapping
;
1408 struct inode
*inode
;
1410 mapping
= filp
->f_mapping
;
1411 inode
= mapping
->host
;
1413 goto out
; /* skip atime */
1414 size
= i_size_read(inode
);
1416 retval
= filemap_write_and_wait_range(mapping
, pos
,
1417 pos
+ iov_length(iov
, nr_segs
) - 1);
1419 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
,
1423 *ppos
= pos
+ retval
;
1428 * Btrfs can have a short DIO read if we encounter
1429 * compressed extents, so if there was an error, or if
1430 * we've already read everything we wanted to, or if
1431 * there was a short read because we hit EOF, go ahead
1432 * and return. Otherwise fallthrough to buffered io for
1433 * the rest of the read.
1435 if (retval
< 0 || !count
|| *ppos
>= size
) {
1436 file_accessed(filp
);
1443 for (seg
= 0; seg
< nr_segs
; seg
++) {
1444 read_descriptor_t desc
;
1448 * If we did a short DIO read we need to skip the section of the
1449 * iov that we've already read data into.
1452 if (count
> iov
[seg
].iov_len
) {
1453 count
-= iov
[seg
].iov_len
;
1461 desc
.arg
.buf
= iov
[seg
].iov_base
+ offset
;
1462 desc
.count
= iov
[seg
].iov_len
- offset
;
1463 if (desc
.count
== 0)
1466 do_generic_file_read(filp
, ppos
, &desc
, file_read_actor
);
1467 retval
+= desc
.written
;
1469 retval
= retval
?: desc
.error
;
1476 blk_finish_plug(&plug
);
1479 EXPORT_SYMBOL(generic_file_aio_read
);
1482 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1483 pgoff_t index
, unsigned long nr
)
1485 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1488 force_page_cache_readahead(mapping
, filp
, index
, nr
);
1492 SYSCALL_DEFINE(readahead
)(int fd
, loff_t offset
, size_t count
)
1500 if (file
->f_mode
& FMODE_READ
) {
1501 struct address_space
*mapping
= file
->f_mapping
;
1502 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1503 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1504 unsigned long len
= end
- start
+ 1;
1505 ret
= do_readahead(mapping
, file
, start
, len
);
1511 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1512 asmlinkage
long SyS_readahead(long fd
, loff_t offset
, long count
)
1514 return SYSC_readahead((int) fd
, offset
, (size_t) count
);
1516 SYSCALL_ALIAS(sys_readahead
, SyS_readahead
);
1521 * page_cache_read - adds requested page to the page cache if not already there
1522 * @file: file to read
1523 * @offset: page index
1525 * This adds the requested page to the page cache if it isn't already there,
1526 * and schedules an I/O to read in its contents from disk.
1528 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1530 struct address_space
*mapping
= file
->f_mapping
;
1535 page
= page_cache_alloc_cold(mapping
);
1539 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1541 ret
= mapping
->a_ops
->readpage(file
, page
);
1542 else if (ret
== -EEXIST
)
1543 ret
= 0; /* losing race to add is OK */
1545 page_cache_release(page
);
1547 } while (ret
== AOP_TRUNCATED_PAGE
);
1552 #define MMAP_LOTSAMISS (100)
1555 * Synchronous readahead happens when we don't even find
1556 * a page in the page cache at all.
1558 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1559 struct file_ra_state
*ra
,
1563 unsigned long ra_pages
;
1564 struct address_space
*mapping
= file
->f_mapping
;
1566 /* If we don't want any read-ahead, don't bother */
1567 if (VM_RandomReadHint(vma
))
1572 if (VM_SequentialReadHint(vma
)) {
1573 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1578 /* Avoid banging the cache line if not needed */
1579 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1583 * Do we miss much more than hit in this file? If so,
1584 * stop bothering with read-ahead. It will only hurt.
1586 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1592 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1593 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1594 ra
->size
= ra_pages
;
1595 ra
->async_size
= ra_pages
/ 4;
1596 ra_submit(ra
, mapping
, file
);
1600 * Asynchronous readahead happens when we find the page and PG_readahead,
1601 * so we want to possibly extend the readahead further..
1603 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1604 struct file_ra_state
*ra
,
1609 struct address_space
*mapping
= file
->f_mapping
;
1611 /* If we don't want any read-ahead, don't bother */
1612 if (VM_RandomReadHint(vma
))
1614 if (ra
->mmap_miss
> 0)
1616 if (PageReadahead(page
))
1617 page_cache_async_readahead(mapping
, ra
, file
,
1618 page
, offset
, ra
->ra_pages
);
1622 * filemap_fault - read in file data for page fault handling
1623 * @vma: vma in which the fault was taken
1624 * @vmf: struct vm_fault containing details of the fault
1626 * filemap_fault() is invoked via the vma operations vector for a
1627 * mapped memory region to read in file data during a page fault.
1629 * The goto's are kind of ugly, but this streamlines the normal case of having
1630 * it in the page cache, and handles the special cases reasonably without
1631 * having a lot of duplicated code.
1633 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1636 struct file
*file
= vma
->vm_file
;
1637 struct address_space
*mapping
= file
->f_mapping
;
1638 struct file_ra_state
*ra
= &file
->f_ra
;
1639 struct inode
*inode
= mapping
->host
;
1640 pgoff_t offset
= vmf
->pgoff
;
1645 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1647 return VM_FAULT_SIGBUS
;
1650 * Do we have something in the page cache already?
1652 page
= find_get_page(mapping
, offset
);
1655 * We found the page, so try async readahead before
1656 * waiting for the lock.
1658 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1660 /* No page in the page cache at all */
1661 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1662 count_vm_event(PGMAJFAULT
);
1663 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1664 ret
= VM_FAULT_MAJOR
;
1666 page
= find_get_page(mapping
, offset
);
1668 goto no_cached_page
;
1671 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1672 page_cache_release(page
);
1673 return ret
| VM_FAULT_RETRY
;
1676 /* Did it get truncated? */
1677 if (unlikely(page
->mapping
!= mapping
)) {
1682 VM_BUG_ON(page
->index
!= offset
);
1685 * We have a locked page in the page cache, now we need to check
1686 * that it's up-to-date. If not, it is going to be due to an error.
1688 if (unlikely(!PageUptodate(page
)))
1689 goto page_not_uptodate
;
1692 * Found the page and have a reference on it.
1693 * We must recheck i_size under page lock.
1695 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1696 if (unlikely(offset
>= size
)) {
1698 page_cache_release(page
);
1699 return VM_FAULT_SIGBUS
;
1703 return ret
| VM_FAULT_LOCKED
;
1707 * We're only likely to ever get here if MADV_RANDOM is in
1710 error
= page_cache_read(file
, offset
);
1713 * The page we want has now been added to the page cache.
1714 * In the unlikely event that someone removed it in the
1715 * meantime, we'll just come back here and read it again.
1721 * An error return from page_cache_read can result if the
1722 * system is low on memory, or a problem occurs while trying
1725 if (error
== -ENOMEM
)
1726 return VM_FAULT_OOM
;
1727 return VM_FAULT_SIGBUS
;
1731 * Umm, take care of errors if the page isn't up-to-date.
1732 * Try to re-read it _once_. We do this synchronously,
1733 * because there really aren't any performance issues here
1734 * and we need to check for errors.
1736 ClearPageError(page
);
1737 error
= mapping
->a_ops
->readpage(file
, page
);
1739 wait_on_page_locked(page
);
1740 if (!PageUptodate(page
))
1743 page_cache_release(page
);
1745 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1748 /* Things didn't work out. Return zero to tell the mm layer so. */
1749 shrink_readahead_size_eio(file
, ra
);
1750 return VM_FAULT_SIGBUS
;
1752 EXPORT_SYMBOL(filemap_fault
);
1754 const struct vm_operations_struct generic_file_vm_ops
= {
1755 .fault
= filemap_fault
,
1758 /* This is used for a general mmap of a disk file */
1760 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1762 struct address_space
*mapping
= file
->f_mapping
;
1764 if (!mapping
->a_ops
->readpage
)
1766 file_accessed(file
);
1767 vma
->vm_ops
= &generic_file_vm_ops
;
1768 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1773 * This is for filesystems which do not implement ->writepage.
1775 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1777 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1779 return generic_file_mmap(file
, vma
);
1782 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1786 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1790 #endif /* CONFIG_MMU */
1792 EXPORT_SYMBOL(generic_file_mmap
);
1793 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1795 static struct page
*__read_cache_page(struct address_space
*mapping
,
1797 int (*filler
)(void *, struct page
*),
1804 page
= find_get_page(mapping
, index
);
1806 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
1808 return ERR_PTR(-ENOMEM
);
1809 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1810 if (unlikely(err
)) {
1811 page_cache_release(page
);
1814 /* Presumably ENOMEM for radix tree node */
1815 return ERR_PTR(err
);
1817 err
= filler(data
, page
);
1819 page_cache_release(page
);
1820 page
= ERR_PTR(err
);
1826 static struct page
*do_read_cache_page(struct address_space
*mapping
,
1828 int (*filler
)(void *, struct page
*),
1837 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
1840 if (PageUptodate(page
))
1844 if (!page
->mapping
) {
1846 page_cache_release(page
);
1849 if (PageUptodate(page
)) {
1853 err
= filler(data
, page
);
1855 page_cache_release(page
);
1856 return ERR_PTR(err
);
1859 mark_page_accessed(page
);
1864 * read_cache_page_async - read into page cache, fill it if needed
1865 * @mapping: the page's address_space
1866 * @index: the page index
1867 * @filler: function to perform the read
1868 * @data: first arg to filler(data, page) function, often left as NULL
1870 * Same as read_cache_page, but don't wait for page to become unlocked
1871 * after submitting it to the filler.
1873 * Read into the page cache. If a page already exists, and PageUptodate() is
1874 * not set, try to fill the page but don't wait for it to become unlocked.
1876 * If the page does not get brought uptodate, return -EIO.
1878 struct page
*read_cache_page_async(struct address_space
*mapping
,
1880 int (*filler
)(void *, struct page
*),
1883 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
1885 EXPORT_SYMBOL(read_cache_page_async
);
1887 static struct page
*wait_on_page_read(struct page
*page
)
1889 if (!IS_ERR(page
)) {
1890 wait_on_page_locked(page
);
1891 if (!PageUptodate(page
)) {
1892 page_cache_release(page
);
1893 page
= ERR_PTR(-EIO
);
1900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1901 * @mapping: the page's address_space
1902 * @index: the page index
1903 * @gfp: the page allocator flags to use if allocating
1905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1906 * any new page allocations done using the specified allocation flags. Note
1907 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1908 * expect to do this atomically or anything like that - but you can pass in
1909 * other page requirements.
1911 * If the page does not get brought uptodate, return -EIO.
1913 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
1917 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
1919 return wait_on_page_read(do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
));
1921 EXPORT_SYMBOL(read_cache_page_gfp
);
1924 * read_cache_page - read into page cache, fill it if needed
1925 * @mapping: the page's address_space
1926 * @index: the page index
1927 * @filler: function to perform the read
1928 * @data: first arg to filler(data, page) function, often left as NULL
1930 * Read into the page cache. If a page already exists, and PageUptodate() is
1931 * not set, try to fill the page then wait for it to become unlocked.
1933 * If the page does not get brought uptodate, return -EIO.
1935 struct page
*read_cache_page(struct address_space
*mapping
,
1937 int (*filler
)(void *, struct page
*),
1940 return wait_on_page_read(read_cache_page_async(mapping
, index
, filler
, data
));
1942 EXPORT_SYMBOL(read_cache_page
);
1945 * The logic we want is
1947 * if suid or (sgid and xgrp)
1950 int should_remove_suid(struct dentry
*dentry
)
1952 mode_t mode
= dentry
->d_inode
->i_mode
;
1955 /* suid always must be killed */
1956 if (unlikely(mode
& S_ISUID
))
1957 kill
= ATTR_KILL_SUID
;
1960 * sgid without any exec bits is just a mandatory locking mark; leave
1961 * it alone. If some exec bits are set, it's a real sgid; kill it.
1963 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1964 kill
|= ATTR_KILL_SGID
;
1966 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1971 EXPORT_SYMBOL(should_remove_suid
);
1973 static int __remove_suid(struct dentry
*dentry
, int kill
)
1975 struct iattr newattrs
;
1977 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1978 return notify_change(dentry
, &newattrs
);
1981 int file_remove_suid(struct file
*file
)
1983 struct dentry
*dentry
= file
->f_path
.dentry
;
1984 struct inode
*inode
= dentry
->d_inode
;
1989 /* Fast path for nothing security related */
1990 if (IS_NOSEC(inode
))
1993 killsuid
= should_remove_suid(dentry
);
1994 killpriv
= security_inode_need_killpriv(dentry
);
1999 error
= security_inode_killpriv(dentry
);
2000 if (!error
&& killsuid
)
2001 error
= __remove_suid(dentry
, killsuid
);
2002 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
2003 inode
->i_flags
|= S_NOSEC
;
2007 EXPORT_SYMBOL(file_remove_suid
);
2009 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
2010 const struct iovec
*iov
, size_t base
, size_t bytes
)
2012 size_t copied
= 0, left
= 0;
2015 char __user
*buf
= iov
->iov_base
+ base
;
2016 int copy
= min(bytes
, iov
->iov_len
- base
);
2019 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
2028 return copied
- left
;
2032 * Copy as much as we can into the page and return the number of bytes which
2033 * were successfully copied. If a fault is encountered then return the number of
2034 * bytes which were copied.
2036 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
2037 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2042 BUG_ON(!in_atomic());
2043 kaddr
= kmap_atomic(page
, KM_USER0
);
2044 if (likely(i
->nr_segs
== 1)) {
2046 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2047 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
2048 copied
= bytes
- left
;
2050 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2051 i
->iov
, i
->iov_offset
, bytes
);
2053 kunmap_atomic(kaddr
, KM_USER0
);
2057 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
2060 * This has the same sideeffects and return value as
2061 * iov_iter_copy_from_user_atomic().
2062 * The difference is that it attempts to resolve faults.
2063 * Page must not be locked.
2065 size_t iov_iter_copy_from_user(struct page
*page
,
2066 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
2072 if (likely(i
->nr_segs
== 1)) {
2074 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2075 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
2076 copied
= bytes
- left
;
2078 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
2079 i
->iov
, i
->iov_offset
, bytes
);
2084 EXPORT_SYMBOL(iov_iter_copy_from_user
);
2086 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
2088 BUG_ON(i
->count
< bytes
);
2090 if (likely(i
->nr_segs
== 1)) {
2091 i
->iov_offset
+= bytes
;
2094 const struct iovec
*iov
= i
->iov
;
2095 size_t base
= i
->iov_offset
;
2098 * The !iov->iov_len check ensures we skip over unlikely
2099 * zero-length segments (without overruning the iovec).
2101 while (bytes
|| unlikely(i
->count
&& !iov
->iov_len
)) {
2104 copy
= min(bytes
, iov
->iov_len
- base
);
2105 BUG_ON(!i
->count
|| i
->count
< copy
);
2109 if (iov
->iov_len
== base
) {
2115 i
->iov_offset
= base
;
2118 EXPORT_SYMBOL(iov_iter_advance
);
2121 * Fault in the first iovec of the given iov_iter, to a maximum length
2122 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2123 * accessed (ie. because it is an invalid address).
2125 * writev-intensive code may want this to prefault several iovecs -- that
2126 * would be possible (callers must not rely on the fact that _only_ the
2127 * first iovec will be faulted with the current implementation).
2129 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
2131 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
2132 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
2133 return fault_in_pages_readable(buf
, bytes
);
2135 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
2138 * Return the count of just the current iov_iter segment.
2140 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
2142 const struct iovec
*iov
= i
->iov
;
2143 if (i
->nr_segs
== 1)
2146 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
2148 EXPORT_SYMBOL(iov_iter_single_seg_count
);
2151 * Performs necessary checks before doing a write
2153 * Can adjust writing position or amount of bytes to write.
2154 * Returns appropriate error code that caller should return or
2155 * zero in case that write should be allowed.
2157 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2159 struct inode
*inode
= file
->f_mapping
->host
;
2160 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2162 if (unlikely(*pos
< 0))
2166 /* FIXME: this is for backwards compatibility with 2.4 */
2167 if (file
->f_flags
& O_APPEND
)
2168 *pos
= i_size_read(inode
);
2170 if (limit
!= RLIM_INFINITY
) {
2171 if (*pos
>= limit
) {
2172 send_sig(SIGXFSZ
, current
, 0);
2175 if (*count
> limit
- (typeof(limit
))*pos
) {
2176 *count
= limit
- (typeof(limit
))*pos
;
2184 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2185 !(file
->f_flags
& O_LARGEFILE
))) {
2186 if (*pos
>= MAX_NON_LFS
) {
2189 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2190 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2195 * Are we about to exceed the fs block limit ?
2197 * If we have written data it becomes a short write. If we have
2198 * exceeded without writing data we send a signal and return EFBIG.
2199 * Linus frestrict idea will clean these up nicely..
2201 if (likely(!isblk
)) {
2202 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2203 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2206 /* zero-length writes at ->s_maxbytes are OK */
2209 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2210 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2214 if (bdev_read_only(I_BDEV(inode
)))
2216 isize
= i_size_read(inode
);
2217 if (*pos
>= isize
) {
2218 if (*count
|| *pos
> isize
)
2222 if (*pos
+ *count
> isize
)
2223 *count
= isize
- *pos
;
2230 EXPORT_SYMBOL(generic_write_checks
);
2232 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2233 loff_t pos
, unsigned len
, unsigned flags
,
2234 struct page
**pagep
, void **fsdata
)
2236 const struct address_space_operations
*aops
= mapping
->a_ops
;
2238 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2241 EXPORT_SYMBOL(pagecache_write_begin
);
2243 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2244 loff_t pos
, unsigned len
, unsigned copied
,
2245 struct page
*page
, void *fsdata
)
2247 const struct address_space_operations
*aops
= mapping
->a_ops
;
2249 mark_page_accessed(page
);
2250 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2252 EXPORT_SYMBOL(pagecache_write_end
);
2255 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2256 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2257 size_t count
, size_t ocount
)
2259 struct file
*file
= iocb
->ki_filp
;
2260 struct address_space
*mapping
= file
->f_mapping
;
2261 struct inode
*inode
= mapping
->host
;
2266 if (count
!= ocount
)
2267 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2269 write_len
= iov_length(iov
, *nr_segs
);
2270 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2272 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2277 * After a write we want buffered reads to be sure to go to disk to get
2278 * the new data. We invalidate clean cached page from the region we're
2279 * about to write. We do this *before* the write so that we can return
2280 * without clobbering -EIOCBQUEUED from ->direct_IO().
2282 if (mapping
->nrpages
) {
2283 written
= invalidate_inode_pages2_range(mapping
,
2284 pos
>> PAGE_CACHE_SHIFT
, end
);
2286 * If a page can not be invalidated, return 0 to fall back
2287 * to buffered write.
2290 if (written
== -EBUSY
)
2296 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2299 * Finally, try again to invalidate clean pages which might have been
2300 * cached by non-direct readahead, or faulted in by get_user_pages()
2301 * if the source of the write was an mmap'ed region of the file
2302 * we're writing. Either one is a pretty crazy thing to do,
2303 * so we don't support it 100%. If this invalidation
2304 * fails, tough, the write still worked...
2306 if (mapping
->nrpages
) {
2307 invalidate_inode_pages2_range(mapping
,
2308 pos
>> PAGE_CACHE_SHIFT
, end
);
2313 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2314 i_size_write(inode
, pos
);
2315 mark_inode_dirty(inode
);
2322 EXPORT_SYMBOL(generic_file_direct_write
);
2325 * Find or create a page at the given pagecache position. Return the locked
2326 * page. This function is specifically for buffered writes.
2328 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2329 pgoff_t index
, unsigned flags
)
2333 gfp_t gfp_notmask
= 0;
2334 if (flags
& AOP_FLAG_NOFS
)
2335 gfp_notmask
= __GFP_FS
;
2337 page
= find_lock_page(mapping
, index
);
2341 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~gfp_notmask
);
2344 status
= add_to_page_cache_lru(page
, mapping
, index
,
2345 GFP_KERNEL
& ~gfp_notmask
);
2346 if (unlikely(status
)) {
2347 page_cache_release(page
);
2348 if (status
== -EEXIST
)
2353 wait_on_page_writeback(page
);
2356 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2358 static ssize_t
generic_perform_write(struct file
*file
,
2359 struct iov_iter
*i
, loff_t pos
)
2361 struct address_space
*mapping
= file
->f_mapping
;
2362 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2364 ssize_t written
= 0;
2365 unsigned int flags
= 0;
2368 * Copies from kernel address space cannot fail (NFSD is a big user).
2370 if (segment_eq(get_fs(), KERNEL_DS
))
2371 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2375 unsigned long offset
; /* Offset into pagecache page */
2376 unsigned long bytes
; /* Bytes to write to page */
2377 size_t copied
; /* Bytes copied from user */
2380 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2381 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2387 * Bring in the user page that we will copy from _first_.
2388 * Otherwise there's a nasty deadlock on copying from the
2389 * same page as we're writing to, without it being marked
2392 * Not only is this an optimisation, but it is also required
2393 * to check that the address is actually valid, when atomic
2394 * usercopies are used, below.
2396 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2401 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2403 if (unlikely(status
))
2406 if (mapping_writably_mapped(mapping
))
2407 flush_dcache_page(page
);
2409 pagefault_disable();
2410 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2412 flush_dcache_page(page
);
2414 mark_page_accessed(page
);
2415 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2417 if (unlikely(status
< 0))
2423 iov_iter_advance(i
, copied
);
2424 if (unlikely(copied
== 0)) {
2426 * If we were unable to copy any data at all, we must
2427 * fall back to a single segment length write.
2429 * If we didn't fallback here, we could livelock
2430 * because not all segments in the iov can be copied at
2431 * once without a pagefault.
2433 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2434 iov_iter_single_seg_count(i
));
2440 balance_dirty_pages_ratelimited(mapping
);
2442 } while (iov_iter_count(i
));
2444 return written
? written
: status
;
2448 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2449 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2450 size_t count
, ssize_t written
)
2452 struct file
*file
= iocb
->ki_filp
;
2456 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2457 status
= generic_perform_write(file
, &i
, pos
);
2459 if (likely(status
>= 0)) {
2461 *ppos
= pos
+ status
;
2464 return written
? written
: status
;
2466 EXPORT_SYMBOL(generic_file_buffered_write
);
2469 * __generic_file_aio_write - write data to a file
2470 * @iocb: IO state structure (file, offset, etc.)
2471 * @iov: vector with data to write
2472 * @nr_segs: number of segments in the vector
2473 * @ppos: position where to write
2475 * This function does all the work needed for actually writing data to a
2476 * file. It does all basic checks, removes SUID from the file, updates
2477 * modification times and calls proper subroutines depending on whether we
2478 * do direct IO or a standard buffered write.
2480 * It expects i_mutex to be grabbed unless we work on a block device or similar
2481 * object which does not need locking at all.
2483 * This function does *not* take care of syncing data in case of O_SYNC write.
2484 * A caller has to handle it. This is mainly due to the fact that we want to
2485 * avoid syncing under i_mutex.
2487 ssize_t
__generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2488 unsigned long nr_segs
, loff_t
*ppos
)
2490 struct file
*file
= iocb
->ki_filp
;
2491 struct address_space
* mapping
= file
->f_mapping
;
2492 size_t ocount
; /* original count */
2493 size_t count
; /* after file limit checks */
2494 struct inode
*inode
= mapping
->host
;
2500 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2507 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2509 /* We can write back this queue in page reclaim */
2510 current
->backing_dev_info
= mapping
->backing_dev_info
;
2513 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2520 err
= file_remove_suid(file
);
2524 file_update_time(file
);
2526 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2527 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2529 ssize_t written_buffered
;
2531 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2532 ppos
, count
, ocount
);
2533 if (written
< 0 || written
== count
)
2536 * direct-io write to a hole: fall through to buffered I/O
2537 * for completing the rest of the request.
2541 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2542 nr_segs
, pos
, ppos
, count
,
2545 * If generic_file_buffered_write() retuned a synchronous error
2546 * then we want to return the number of bytes which were
2547 * direct-written, or the error code if that was zero. Note
2548 * that this differs from normal direct-io semantics, which
2549 * will return -EFOO even if some bytes were written.
2551 if (written_buffered
< 0) {
2552 err
= written_buffered
;
2557 * We need to ensure that the page cache pages are written to
2558 * disk and invalidated to preserve the expected O_DIRECT
2561 endbyte
= pos
+ written_buffered
- written
- 1;
2562 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2564 written
= written_buffered
;
2565 invalidate_mapping_pages(mapping
,
2566 pos
>> PAGE_CACHE_SHIFT
,
2567 endbyte
>> PAGE_CACHE_SHIFT
);
2570 * We don't know how much we wrote, so just return
2571 * the number of bytes which were direct-written
2575 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2576 pos
, ppos
, count
, written
);
2579 current
->backing_dev_info
= NULL
;
2580 return written
? written
: err
;
2582 EXPORT_SYMBOL(__generic_file_aio_write
);
2585 * generic_file_aio_write - write data to a file
2586 * @iocb: IO state structure
2587 * @iov: vector with data to write
2588 * @nr_segs: number of segments in the vector
2589 * @pos: position in file where to write
2591 * This is a wrapper around __generic_file_aio_write() to be used by most
2592 * filesystems. It takes care of syncing the file in case of O_SYNC file
2593 * and acquires i_mutex as needed.
2595 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2596 unsigned long nr_segs
, loff_t pos
)
2598 struct file
*file
= iocb
->ki_filp
;
2599 struct inode
*inode
= file
->f_mapping
->host
;
2600 struct blk_plug plug
;
2603 BUG_ON(iocb
->ki_pos
!= pos
);
2605 mutex_lock(&inode
->i_mutex
);
2606 blk_start_plug(&plug
);
2607 ret
= __generic_file_aio_write(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2608 mutex_unlock(&inode
->i_mutex
);
2610 if (ret
> 0 || ret
== -EIOCBQUEUED
) {
2613 err
= generic_write_sync(file
, pos
, ret
);
2614 if (err
< 0 && ret
> 0)
2617 blk_finish_plug(&plug
);
2620 EXPORT_SYMBOL(generic_file_aio_write
);
2623 * try_to_release_page() - release old fs-specific metadata on a page
2625 * @page: the page which the kernel is trying to free
2626 * @gfp_mask: memory allocation flags (and I/O mode)
2628 * The address_space is to try to release any data against the page
2629 * (presumably at page->private). If the release was successful, return `1'.
2630 * Otherwise return zero.
2632 * This may also be called if PG_fscache is set on a page, indicating that the
2633 * page is known to the local caching routines.
2635 * The @gfp_mask argument specifies whether I/O may be performed to release
2636 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2639 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2641 struct address_space
* const mapping
= page
->mapping
;
2643 BUG_ON(!PageLocked(page
));
2644 if (PageWriteback(page
))
2647 if (mapping
&& mapping
->a_ops
->releasepage
)
2648 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2649 return try_to_free_buffers(page
);
2652 EXPORT_SYMBOL(try_to_release_page
);