Fix gcc 4.5.1 miscompiling drivers/char/i8k.c (again)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / host / xhci-ring.c
blob353459134d06780ed856b239e9a27d01dee8fed9
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include "xhci.h"
71 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
72 * address of the TRB.
74 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
75 union xhci_trb *trb)
77 unsigned long segment_offset;
79 if (!seg || !trb || trb < seg->trbs)
80 return 0;
81 /* offset in TRBs */
82 segment_offset = trb - seg->trbs;
83 if (segment_offset > TRBS_PER_SEGMENT)
84 return 0;
85 return seg->dma + (segment_offset * sizeof(*trb));
88 /* Does this link TRB point to the first segment in a ring,
89 * or was the previous TRB the last TRB on the last segment in the ERST?
91 static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
92 struct xhci_segment *seg, union xhci_trb *trb)
94 if (ring == xhci->event_ring)
95 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
96 (seg->next == xhci->event_ring->first_seg);
97 else
98 return trb->link.control & LINK_TOGGLE;
101 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
102 * segment? I.e. would the updated event TRB pointer step off the end of the
103 * event seg?
105 static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
106 struct xhci_segment *seg, union xhci_trb *trb)
108 if (ring == xhci->event_ring)
109 return trb == &seg->trbs[TRBS_PER_SEGMENT];
110 else
111 return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK);
114 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
115 * TRB is in a new segment. This does not skip over link TRBs, and it does not
116 * effect the ring dequeue or enqueue pointers.
118 static void next_trb(struct xhci_hcd *xhci,
119 struct xhci_ring *ring,
120 struct xhci_segment **seg,
121 union xhci_trb **trb)
123 if (last_trb(xhci, ring, *seg, *trb)) {
124 *seg = (*seg)->next;
125 *trb = ((*seg)->trbs);
126 } else {
127 *trb = (*trb)++;
132 * See Cycle bit rules. SW is the consumer for the event ring only.
133 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
135 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
137 union xhci_trb *next = ++(ring->dequeue);
138 unsigned long long addr;
140 ring->deq_updates++;
141 /* Update the dequeue pointer further if that was a link TRB or we're at
142 * the end of an event ring segment (which doesn't have link TRBS)
144 while (last_trb(xhci, ring, ring->deq_seg, next)) {
145 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
146 ring->cycle_state = (ring->cycle_state ? 0 : 1);
147 if (!in_interrupt())
148 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
149 ring,
150 (unsigned int) ring->cycle_state);
152 ring->deq_seg = ring->deq_seg->next;
153 ring->dequeue = ring->deq_seg->trbs;
154 next = ring->dequeue;
156 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
157 if (ring == xhci->event_ring)
158 xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr);
159 else if (ring == xhci->cmd_ring)
160 xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr);
161 else
162 xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr);
166 * See Cycle bit rules. SW is the consumer for the event ring only.
167 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
169 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
170 * chain bit is set), then set the chain bit in all the following link TRBs.
171 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
172 * have their chain bit cleared (so that each Link TRB is a separate TD).
174 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
175 * set, but other sections talk about dealing with the chain bit set. This was
176 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
177 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
179 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
181 u32 chain;
182 union xhci_trb *next;
183 unsigned long long addr;
185 chain = ring->enqueue->generic.field[3] & TRB_CHAIN;
186 next = ++(ring->enqueue);
188 ring->enq_updates++;
189 /* Update the dequeue pointer further if that was a link TRB or we're at
190 * the end of an event ring segment (which doesn't have link TRBS)
192 while (last_trb(xhci, ring, ring->enq_seg, next)) {
193 if (!consumer) {
194 if (ring != xhci->event_ring) {
195 /* If we're not dealing with 0.95 hardware,
196 * carry over the chain bit of the previous TRB
197 * (which may mean the chain bit is cleared).
199 if (!xhci_link_trb_quirk(xhci)) {
200 next->link.control &= ~TRB_CHAIN;
201 next->link.control |= chain;
203 /* Give this link TRB to the hardware */
204 wmb();
205 if (next->link.control & TRB_CYCLE)
206 next->link.control &= (u32) ~TRB_CYCLE;
207 else
208 next->link.control |= (u32) TRB_CYCLE;
210 /* Toggle the cycle bit after the last ring segment. */
211 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
212 ring->cycle_state = (ring->cycle_state ? 0 : 1);
213 if (!in_interrupt())
214 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
215 ring,
216 (unsigned int) ring->cycle_state);
219 ring->enq_seg = ring->enq_seg->next;
220 ring->enqueue = ring->enq_seg->trbs;
221 next = ring->enqueue;
223 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
224 if (ring == xhci->event_ring)
225 xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr);
226 else if (ring == xhci->cmd_ring)
227 xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr);
228 else
229 xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr);
233 * Check to see if there's room to enqueue num_trbs on the ring. See rules
234 * above.
235 * FIXME: this would be simpler and faster if we just kept track of the number
236 * of free TRBs in a ring.
238 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
239 unsigned int num_trbs)
241 int i;
242 union xhci_trb *enq = ring->enqueue;
243 struct xhci_segment *enq_seg = ring->enq_seg;
244 struct xhci_segment *cur_seg;
245 unsigned int left_on_ring;
247 /* Check if ring is empty */
248 if (enq == ring->dequeue) {
249 /* Can't use link trbs */
250 left_on_ring = TRBS_PER_SEGMENT - 1;
251 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
252 cur_seg = cur_seg->next)
253 left_on_ring += TRBS_PER_SEGMENT - 1;
255 /* Always need one TRB free in the ring. */
256 left_on_ring -= 1;
257 if (num_trbs > left_on_ring) {
258 xhci_warn(xhci, "Not enough room on ring; "
259 "need %u TRBs, %u TRBs left\n",
260 num_trbs, left_on_ring);
261 return 0;
263 return 1;
265 /* Make sure there's an extra empty TRB available */
266 for (i = 0; i <= num_trbs; ++i) {
267 if (enq == ring->dequeue)
268 return 0;
269 enq++;
270 while (last_trb(xhci, ring, enq_seg, enq)) {
271 enq_seg = enq_seg->next;
272 enq = enq_seg->trbs;
275 return 1;
278 void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
280 u64 temp;
281 dma_addr_t deq;
283 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
284 xhci->event_ring->dequeue);
285 if (deq == 0 && !in_interrupt())
286 xhci_warn(xhci, "WARN something wrong with SW event ring "
287 "dequeue ptr.\n");
288 /* Update HC event ring dequeue pointer */
289 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
290 temp &= ERST_PTR_MASK;
291 /* Don't clear the EHB bit (which is RW1C) because
292 * there might be more events to service.
294 temp &= ~ERST_EHB;
295 xhci_dbg(xhci, "// Write event ring dequeue pointer, preserving EHB bit\n");
296 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
297 &xhci->ir_set->erst_dequeue);
300 /* Ring the host controller doorbell after placing a command on the ring */
301 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
303 u32 temp;
305 xhci_dbg(xhci, "// Ding dong!\n");
306 temp = xhci_readl(xhci, &xhci->dba->doorbell[0]) & DB_MASK;
307 xhci_writel(xhci, temp | DB_TARGET_HOST, &xhci->dba->doorbell[0]);
308 /* Flush PCI posted writes */
309 xhci_readl(xhci, &xhci->dba->doorbell[0]);
312 static void ring_ep_doorbell(struct xhci_hcd *xhci,
313 unsigned int slot_id,
314 unsigned int ep_index)
316 struct xhci_virt_ep *ep;
317 unsigned int ep_state;
318 u32 field;
319 __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
321 ep = &xhci->devs[slot_id]->eps[ep_index];
322 ep_state = ep->ep_state;
323 /* Don't ring the doorbell for this endpoint if there are pending
324 * cancellations because the we don't want to interrupt processing.
326 if (!(ep_state & EP_HALT_PENDING) && !(ep_state & SET_DEQ_PENDING)
327 && !(ep_state & EP_HALTED)) {
328 field = xhci_readl(xhci, db_addr) & DB_MASK;
329 xhci_writel(xhci, field | EPI_TO_DB(ep_index), db_addr);
330 /* Flush PCI posted writes - FIXME Matthew Wilcox says this
331 * isn't time-critical and we shouldn't make the CPU wait for
332 * the flush.
334 xhci_readl(xhci, db_addr);
339 * Find the segment that trb is in. Start searching in start_seg.
340 * If we must move past a segment that has a link TRB with a toggle cycle state
341 * bit set, then we will toggle the value pointed at by cycle_state.
343 static struct xhci_segment *find_trb_seg(
344 struct xhci_segment *start_seg,
345 union xhci_trb *trb, int *cycle_state)
347 struct xhci_segment *cur_seg = start_seg;
348 struct xhci_generic_trb *generic_trb;
350 while (cur_seg->trbs > trb ||
351 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
352 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
353 if ((generic_trb->field[3] & TRB_TYPE_BITMASK) ==
354 TRB_TYPE(TRB_LINK) &&
355 (generic_trb->field[3] & LINK_TOGGLE))
356 *cycle_state = ~(*cycle_state) & 0x1;
357 cur_seg = cur_seg->next;
358 if (cur_seg == start_seg)
359 /* Looped over the entire list. Oops! */
360 return 0;
362 return cur_seg;
366 * Move the xHC's endpoint ring dequeue pointer past cur_td.
367 * Record the new state of the xHC's endpoint ring dequeue segment,
368 * dequeue pointer, and new consumer cycle state in state.
369 * Update our internal representation of the ring's dequeue pointer.
371 * We do this in three jumps:
372 * - First we update our new ring state to be the same as when the xHC stopped.
373 * - Then we traverse the ring to find the segment that contains
374 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
375 * any link TRBs with the toggle cycle bit set.
376 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
377 * if we've moved it past a link TRB with the toggle cycle bit set.
379 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
380 unsigned int slot_id, unsigned int ep_index,
381 struct xhci_td *cur_td, struct xhci_dequeue_state *state)
383 struct xhci_virt_device *dev = xhci->devs[slot_id];
384 struct xhci_ring *ep_ring = dev->eps[ep_index].ring;
385 struct xhci_generic_trb *trb;
386 struct xhci_ep_ctx *ep_ctx;
387 dma_addr_t addr;
389 state->new_cycle_state = 0;
390 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
391 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
392 dev->eps[ep_index].stopped_trb,
393 &state->new_cycle_state);
394 if (!state->new_deq_seg) {
395 WARN_ON(1);
396 return;
399 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
400 xhci_dbg(xhci, "Finding endpoint context\n");
401 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
402 state->new_cycle_state = 0x1 & ep_ctx->deq;
404 state->new_deq_ptr = cur_td->last_trb;
405 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
406 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
407 state->new_deq_ptr,
408 &state->new_cycle_state);
409 if (!state->new_deq_seg) {
410 WARN_ON(1);
411 return;
414 trb = &state->new_deq_ptr->generic;
415 if ((trb->field[3] & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK) &&
416 (trb->field[3] & LINK_TOGGLE))
417 state->new_cycle_state = ~(state->new_cycle_state) & 0x1;
418 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
421 * If there is only one segment in a ring, find_trb_seg()'s while loop
422 * will not run, and it will return before it has a chance to see if it
423 * needs to toggle the cycle bit. It can't tell if the stalled transfer
424 * ended just before the link TRB on a one-segment ring, or if the TD
425 * wrapped around the top of the ring, because it doesn't have the TD in
426 * question. Look for the one-segment case where stalled TRB's address
427 * is greater than the new dequeue pointer address.
429 if (ep_ring->first_seg == ep_ring->first_seg->next &&
430 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
431 state->new_cycle_state ^= 0x1;
432 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
434 /* Don't update the ring cycle state for the producer (us). */
435 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
436 state->new_deq_seg);
437 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
438 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
439 (unsigned long long) addr);
440 xhci_dbg(xhci, "Setting dequeue pointer in internal ring state.\n");
441 ep_ring->dequeue = state->new_deq_ptr;
442 ep_ring->deq_seg = state->new_deq_seg;
445 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
446 struct xhci_td *cur_td)
448 struct xhci_segment *cur_seg;
449 union xhci_trb *cur_trb;
451 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
452 true;
453 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
454 if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) ==
455 TRB_TYPE(TRB_LINK)) {
456 /* Unchain any chained Link TRBs, but
457 * leave the pointers intact.
459 cur_trb->generic.field[3] &= ~TRB_CHAIN;
460 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
461 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
462 "in seg %p (0x%llx dma)\n",
463 cur_trb,
464 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
465 cur_seg,
466 (unsigned long long)cur_seg->dma);
467 } else {
468 cur_trb->generic.field[0] = 0;
469 cur_trb->generic.field[1] = 0;
470 cur_trb->generic.field[2] = 0;
471 /* Preserve only the cycle bit of this TRB */
472 cur_trb->generic.field[3] &= TRB_CYCLE;
473 cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP);
474 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
475 "in seg %p (0x%llx dma)\n",
476 cur_trb,
477 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
478 cur_seg,
479 (unsigned long long)cur_seg->dma);
481 if (cur_trb == cur_td->last_trb)
482 break;
486 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
487 unsigned int ep_index, struct xhci_segment *deq_seg,
488 union xhci_trb *deq_ptr, u32 cycle_state);
490 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
491 unsigned int slot_id, unsigned int ep_index,
492 struct xhci_dequeue_state *deq_state)
494 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
496 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
497 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
498 deq_state->new_deq_seg,
499 (unsigned long long)deq_state->new_deq_seg->dma,
500 deq_state->new_deq_ptr,
501 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
502 deq_state->new_cycle_state);
503 queue_set_tr_deq(xhci, slot_id, ep_index,
504 deq_state->new_deq_seg,
505 deq_state->new_deq_ptr,
506 (u32) deq_state->new_cycle_state);
507 /* Stop the TD queueing code from ringing the doorbell until
508 * this command completes. The HC won't set the dequeue pointer
509 * if the ring is running, and ringing the doorbell starts the
510 * ring running.
512 ep->ep_state |= SET_DEQ_PENDING;
515 static inline void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
516 struct xhci_virt_ep *ep)
518 ep->ep_state &= ~EP_HALT_PENDING;
519 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
520 * timer is running on another CPU, we don't decrement stop_cmds_pending
521 * (since we didn't successfully stop the watchdog timer).
523 if (del_timer(&ep->stop_cmd_timer))
524 ep->stop_cmds_pending--;
527 /* Must be called with xhci->lock held in interrupt context */
528 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
529 struct xhci_td *cur_td, int status, char *adjective)
531 struct usb_hcd *hcd = xhci_to_hcd(xhci);
533 cur_td->urb->hcpriv = NULL;
534 usb_hcd_unlink_urb_from_ep(hcd, cur_td->urb);
535 xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, cur_td->urb);
537 spin_unlock(&xhci->lock);
538 usb_hcd_giveback_urb(hcd, cur_td->urb, status);
539 kfree(cur_td);
540 spin_lock(&xhci->lock);
541 xhci_dbg(xhci, "%s URB given back\n", adjective);
545 * When we get a command completion for a Stop Endpoint Command, we need to
546 * unlink any cancelled TDs from the ring. There are two ways to do that:
548 * 1. If the HW was in the middle of processing the TD that needs to be
549 * cancelled, then we must move the ring's dequeue pointer past the last TRB
550 * in the TD with a Set Dequeue Pointer Command.
551 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
552 * bit cleared) so that the HW will skip over them.
554 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
555 union xhci_trb *trb)
557 unsigned int slot_id;
558 unsigned int ep_index;
559 struct xhci_ring *ep_ring;
560 struct xhci_virt_ep *ep;
561 struct list_head *entry;
562 struct xhci_td *cur_td = 0;
563 struct xhci_td *last_unlinked_td;
565 struct xhci_dequeue_state deq_state;
567 memset(&deq_state, 0, sizeof(deq_state));
568 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
569 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
570 ep = &xhci->devs[slot_id]->eps[ep_index];
571 ep_ring = ep->ring;
573 if (list_empty(&ep->cancelled_td_list)) {
574 xhci_stop_watchdog_timer_in_irq(xhci, ep);
575 ring_ep_doorbell(xhci, slot_id, ep_index);
576 return;
579 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
580 * We have the xHCI lock, so nothing can modify this list until we drop
581 * it. We're also in the event handler, so we can't get re-interrupted
582 * if another Stop Endpoint command completes
584 list_for_each(entry, &ep->cancelled_td_list) {
585 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
586 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
587 cur_td->first_trb,
588 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
590 * If we stopped on the TD we need to cancel, then we have to
591 * move the xHC endpoint ring dequeue pointer past this TD.
593 if (cur_td == ep->stopped_td)
594 xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td,
595 &deq_state);
596 else
597 td_to_noop(xhci, ep_ring, cur_td);
599 * The event handler won't see a completion for this TD anymore,
600 * so remove it from the endpoint ring's TD list. Keep it in
601 * the cancelled TD list for URB completion later.
603 list_del(&cur_td->td_list);
605 last_unlinked_td = cur_td;
606 xhci_stop_watchdog_timer_in_irq(xhci, ep);
608 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
609 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
610 xhci_queue_new_dequeue_state(xhci,
611 slot_id, ep_index, &deq_state);
612 xhci_ring_cmd_db(xhci);
613 } else {
614 /* Otherwise just ring the doorbell to restart the ring */
615 ring_ep_doorbell(xhci, slot_id, ep_index);
617 ep->stopped_td = NULL;
618 ep->stopped_trb = NULL;
621 * Drop the lock and complete the URBs in the cancelled TD list.
622 * New TDs to be cancelled might be added to the end of the list before
623 * we can complete all the URBs for the TDs we already unlinked.
624 * So stop when we've completed the URB for the last TD we unlinked.
626 do {
627 cur_td = list_entry(ep->cancelled_td_list.next,
628 struct xhci_td, cancelled_td_list);
629 list_del(&cur_td->cancelled_td_list);
631 /* Clean up the cancelled URB */
632 /* Doesn't matter what we pass for status, since the core will
633 * just overwrite it (because the URB has been unlinked).
635 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
637 /* Stop processing the cancelled list if the watchdog timer is
638 * running.
640 if (xhci->xhc_state & XHCI_STATE_DYING)
641 return;
642 } while (cur_td != last_unlinked_td);
644 /* Return to the event handler with xhci->lock re-acquired */
647 /* Watchdog timer function for when a stop endpoint command fails to complete.
648 * In this case, we assume the host controller is broken or dying or dead. The
649 * host may still be completing some other events, so we have to be careful to
650 * let the event ring handler and the URB dequeueing/enqueueing functions know
651 * through xhci->state.
653 * The timer may also fire if the host takes a very long time to respond to the
654 * command, and the stop endpoint command completion handler cannot delete the
655 * timer before the timer function is called. Another endpoint cancellation may
656 * sneak in before the timer function can grab the lock, and that may queue
657 * another stop endpoint command and add the timer back. So we cannot use a
658 * simple flag to say whether there is a pending stop endpoint command for a
659 * particular endpoint.
661 * Instead we use a combination of that flag and a counter for the number of
662 * pending stop endpoint commands. If the timer is the tail end of the last
663 * stop endpoint command, and the endpoint's command is still pending, we assume
664 * the host is dying.
666 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
668 struct xhci_hcd *xhci;
669 struct xhci_virt_ep *ep;
670 struct xhci_virt_ep *temp_ep;
671 struct xhci_ring *ring;
672 struct xhci_td *cur_td;
673 int ret, i, j;
675 ep = (struct xhci_virt_ep *) arg;
676 xhci = ep->xhci;
678 spin_lock(&xhci->lock);
680 ep->stop_cmds_pending--;
681 if (xhci->xhc_state & XHCI_STATE_DYING) {
682 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
683 "xHCI as DYING, exiting.\n");
684 spin_unlock(&xhci->lock);
685 return;
687 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
688 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
689 "exiting.\n");
690 spin_unlock(&xhci->lock);
691 return;
694 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
695 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
696 /* Oops, HC is dead or dying or at least not responding to the stop
697 * endpoint command.
699 xhci->xhc_state |= XHCI_STATE_DYING;
700 /* Disable interrupts from the host controller and start halting it */
701 xhci_quiesce(xhci);
702 spin_unlock(&xhci->lock);
704 ret = xhci_halt(xhci);
706 spin_lock(&xhci->lock);
707 if (ret < 0) {
708 /* This is bad; the host is not responding to commands and it's
709 * not allowing itself to be halted. At least interrupts are
710 * disabled, so we can set HC_STATE_HALT and notify the
711 * USB core. But if we call usb_hc_died(), it will attempt to
712 * disconnect all device drivers under this host. Those
713 * disconnect() methods will wait for all URBs to be unlinked,
714 * so we must complete them.
716 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
717 xhci_warn(xhci, "Completing active URBs anyway.\n");
718 /* We could turn all TDs on the rings to no-ops. This won't
719 * help if the host has cached part of the ring, and is slow if
720 * we want to preserve the cycle bit. Skip it and hope the host
721 * doesn't touch the memory.
724 for (i = 0; i < MAX_HC_SLOTS; i++) {
725 if (!xhci->devs[i])
726 continue;
727 for (j = 0; j < 31; j++) {
728 temp_ep = &xhci->devs[i]->eps[j];
729 ring = temp_ep->ring;
730 if (!ring)
731 continue;
732 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
733 "ep index %u\n", i, j);
734 while (!list_empty(&ring->td_list)) {
735 cur_td = list_first_entry(&ring->td_list,
736 struct xhci_td,
737 td_list);
738 list_del(&cur_td->td_list);
739 if (!list_empty(&cur_td->cancelled_td_list))
740 list_del(&cur_td->cancelled_td_list);
741 xhci_giveback_urb_in_irq(xhci, cur_td,
742 -ESHUTDOWN, "killed");
744 while (!list_empty(&temp_ep->cancelled_td_list)) {
745 cur_td = list_first_entry(
746 &temp_ep->cancelled_td_list,
747 struct xhci_td,
748 cancelled_td_list);
749 list_del(&cur_td->cancelled_td_list);
750 xhci_giveback_urb_in_irq(xhci, cur_td,
751 -ESHUTDOWN, "killed");
755 spin_unlock(&xhci->lock);
756 xhci_to_hcd(xhci)->state = HC_STATE_HALT;
757 xhci_dbg(xhci, "Calling usb_hc_died()\n");
758 usb_hc_died(xhci_to_hcd(xhci));
759 xhci_dbg(xhci, "xHCI host controller is dead.\n");
763 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
764 * we need to clear the set deq pending flag in the endpoint ring state, so that
765 * the TD queueing code can ring the doorbell again. We also need to ring the
766 * endpoint doorbell to restart the ring, but only if there aren't more
767 * cancellations pending.
769 static void handle_set_deq_completion(struct xhci_hcd *xhci,
770 struct xhci_event_cmd *event,
771 union xhci_trb *trb)
773 unsigned int slot_id;
774 unsigned int ep_index;
775 struct xhci_ring *ep_ring;
776 struct xhci_virt_device *dev;
777 struct xhci_ep_ctx *ep_ctx;
778 struct xhci_slot_ctx *slot_ctx;
780 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
781 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
782 dev = xhci->devs[slot_id];
783 ep_ring = dev->eps[ep_index].ring;
784 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
785 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
787 if (GET_COMP_CODE(event->status) != COMP_SUCCESS) {
788 unsigned int ep_state;
789 unsigned int slot_state;
791 switch (GET_COMP_CODE(event->status)) {
792 case COMP_TRB_ERR:
793 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
794 "of stream ID configuration\n");
795 break;
796 case COMP_CTX_STATE:
797 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
798 "to incorrect slot or ep state.\n");
799 ep_state = ep_ctx->ep_info;
800 ep_state &= EP_STATE_MASK;
801 slot_state = slot_ctx->dev_state;
802 slot_state = GET_SLOT_STATE(slot_state);
803 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
804 slot_state, ep_state);
805 break;
806 case COMP_EBADSLT:
807 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
808 "slot %u was not enabled.\n", slot_id);
809 break;
810 default:
811 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
812 "completion code of %u.\n",
813 GET_COMP_CODE(event->status));
814 break;
816 /* OK what do we do now? The endpoint state is hosed, and we
817 * should never get to this point if the synchronization between
818 * queueing, and endpoint state are correct. This might happen
819 * if the device gets disconnected after we've finished
820 * cancelling URBs, which might not be an error...
822 } else {
823 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
824 ep_ctx->deq);
827 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
828 ring_ep_doorbell(xhci, slot_id, ep_index);
831 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
832 struct xhci_event_cmd *event,
833 union xhci_trb *trb)
835 int slot_id;
836 unsigned int ep_index;
837 struct xhci_ring *ep_ring;
839 slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]);
840 ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]);
841 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
842 /* This command will only fail if the endpoint wasn't halted,
843 * but we don't care.
845 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
846 (unsigned int) GET_COMP_CODE(event->status));
848 /* HW with the reset endpoint quirk needs to have a configure endpoint
849 * command complete before the endpoint can be used. Queue that here
850 * because the HW can't handle two commands being queued in a row.
852 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
853 xhci_dbg(xhci, "Queueing configure endpoint command\n");
854 xhci_queue_configure_endpoint(xhci,
855 xhci->devs[slot_id]->in_ctx->dma, slot_id,
856 false);
857 xhci_ring_cmd_db(xhci);
858 } else {
859 /* Clear our internal halted state and restart the ring */
860 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
861 ring_ep_doorbell(xhci, slot_id, ep_index);
865 /* Check to see if a command in the device's command queue matches this one.
866 * Signal the completion or free the command, and return 1. Return 0 if the
867 * completed command isn't at the head of the command list.
869 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
870 struct xhci_virt_device *virt_dev,
871 struct xhci_event_cmd *event)
873 struct xhci_command *command;
875 if (list_empty(&virt_dev->cmd_list))
876 return 0;
878 command = list_entry(virt_dev->cmd_list.next,
879 struct xhci_command, cmd_list);
880 if (xhci->cmd_ring->dequeue != command->command_trb)
881 return 0;
883 command->status =
884 GET_COMP_CODE(event->status);
885 list_del(&command->cmd_list);
886 if (command->completion)
887 complete(command->completion);
888 else
889 xhci_free_command(xhci, command);
890 return 1;
893 static void handle_cmd_completion(struct xhci_hcd *xhci,
894 struct xhci_event_cmd *event)
896 int slot_id = TRB_TO_SLOT_ID(event->flags);
897 u64 cmd_dma;
898 dma_addr_t cmd_dequeue_dma;
899 struct xhci_input_control_ctx *ctrl_ctx;
900 struct xhci_virt_device *virt_dev;
901 unsigned int ep_index;
902 struct xhci_ring *ep_ring;
903 unsigned int ep_state;
905 cmd_dma = event->cmd_trb;
906 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
907 xhci->cmd_ring->dequeue);
908 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
909 if (cmd_dequeue_dma == 0) {
910 xhci->error_bitmask |= 1 << 4;
911 return;
913 /* Does the DMA address match our internal dequeue pointer address? */
914 if (cmd_dma != (u64) cmd_dequeue_dma) {
915 xhci->error_bitmask |= 1 << 5;
916 return;
918 switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) {
919 case TRB_TYPE(TRB_ENABLE_SLOT):
920 if (GET_COMP_CODE(event->status) == COMP_SUCCESS)
921 xhci->slot_id = slot_id;
922 else
923 xhci->slot_id = 0;
924 complete(&xhci->addr_dev);
925 break;
926 case TRB_TYPE(TRB_DISABLE_SLOT):
927 if (xhci->devs[slot_id])
928 xhci_free_virt_device(xhci, slot_id);
929 break;
930 case TRB_TYPE(TRB_CONFIG_EP):
931 virt_dev = xhci->devs[slot_id];
932 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
933 break;
935 * Configure endpoint commands can come from the USB core
936 * configuration or alt setting changes, or because the HW
937 * needed an extra configure endpoint command after a reset
938 * endpoint command. In the latter case, the xHCI driver is
939 * not waiting on the configure endpoint command.
941 ctrl_ctx = xhci_get_input_control_ctx(xhci,
942 virt_dev->in_ctx);
943 /* Input ctx add_flags are the endpoint index plus one */
944 ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1;
945 /* A usb_set_interface() call directly after clearing a halted
946 * condition may race on this quirky hardware.
947 * Not worth worrying about, since this is prototype hardware.
949 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
950 ep_index != (unsigned int) -1 &&
951 ctrl_ctx->add_flags - SLOT_FLAG ==
952 ctrl_ctx->drop_flags) {
953 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
954 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
955 if (!(ep_state & EP_HALTED))
956 goto bandwidth_change;
957 xhci_dbg(xhci, "Completed config ep cmd - "
958 "last ep index = %d, state = %d\n",
959 ep_index, ep_state);
960 /* Clear our internal halted state and restart ring */
961 xhci->devs[slot_id]->eps[ep_index].ep_state &=
962 ~EP_HALTED;
963 ring_ep_doorbell(xhci, slot_id, ep_index);
964 break;
966 bandwidth_change:
967 xhci_dbg(xhci, "Completed config ep cmd\n");
968 xhci->devs[slot_id]->cmd_status =
969 GET_COMP_CODE(event->status);
970 complete(&xhci->devs[slot_id]->cmd_completion);
971 break;
972 case TRB_TYPE(TRB_EVAL_CONTEXT):
973 virt_dev = xhci->devs[slot_id];
974 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
975 break;
976 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
977 complete(&xhci->devs[slot_id]->cmd_completion);
978 break;
979 case TRB_TYPE(TRB_ADDR_DEV):
980 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status);
981 complete(&xhci->addr_dev);
982 break;
983 case TRB_TYPE(TRB_STOP_RING):
984 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue);
985 break;
986 case TRB_TYPE(TRB_SET_DEQ):
987 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
988 break;
989 case TRB_TYPE(TRB_CMD_NOOP):
990 ++xhci->noops_handled;
991 break;
992 case TRB_TYPE(TRB_RESET_EP):
993 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
994 break;
995 default:
996 /* Skip over unknown commands on the event ring */
997 xhci->error_bitmask |= 1 << 6;
998 break;
1000 inc_deq(xhci, xhci->cmd_ring, false);
1003 static void handle_port_status(struct xhci_hcd *xhci,
1004 union xhci_trb *event)
1006 u32 port_id;
1008 /* Port status change events always have a successful completion code */
1009 if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) {
1010 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1011 xhci->error_bitmask |= 1 << 8;
1013 /* FIXME: core doesn't care about all port link state changes yet */
1014 port_id = GET_PORT_ID(event->generic.field[0]);
1015 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1017 /* Update event ring dequeue pointer before dropping the lock */
1018 inc_deq(xhci, xhci->event_ring, true);
1019 xhci_set_hc_event_deq(xhci);
1021 spin_unlock(&xhci->lock);
1022 /* Pass this up to the core */
1023 usb_hcd_poll_rh_status(xhci_to_hcd(xhci));
1024 spin_lock(&xhci->lock);
1028 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1029 * at end_trb, which may be in another segment. If the suspect DMA address is a
1030 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1031 * returns 0.
1033 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1034 union xhci_trb *start_trb,
1035 union xhci_trb *end_trb,
1036 dma_addr_t suspect_dma)
1038 dma_addr_t start_dma;
1039 dma_addr_t end_seg_dma;
1040 dma_addr_t end_trb_dma;
1041 struct xhci_segment *cur_seg;
1043 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1044 cur_seg = start_seg;
1046 do {
1047 if (start_dma == 0)
1048 return 0;
1049 /* We may get an event for a Link TRB in the middle of a TD */
1050 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1051 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1052 /* If the end TRB isn't in this segment, this is set to 0 */
1053 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1055 if (end_trb_dma > 0) {
1056 /* The end TRB is in this segment, so suspect should be here */
1057 if (start_dma <= end_trb_dma) {
1058 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1059 return cur_seg;
1060 } else {
1061 /* Case for one segment with
1062 * a TD wrapped around to the top
1064 if ((suspect_dma >= start_dma &&
1065 suspect_dma <= end_seg_dma) ||
1066 (suspect_dma >= cur_seg->dma &&
1067 suspect_dma <= end_trb_dma))
1068 return cur_seg;
1070 return 0;
1071 } else {
1072 /* Might still be somewhere in this segment */
1073 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1074 return cur_seg;
1076 cur_seg = cur_seg->next;
1077 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1078 } while (cur_seg != start_seg);
1080 return 0;
1083 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1084 unsigned int slot_id, unsigned int ep_index,
1085 struct xhci_td *td, union xhci_trb *event_trb)
1087 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1088 ep->ep_state |= EP_HALTED;
1089 ep->stopped_td = td;
1090 ep->stopped_trb = event_trb;
1092 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1093 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1095 ep->stopped_td = NULL;
1096 ep->stopped_trb = NULL;
1098 xhci_ring_cmd_db(xhci);
1101 /* Check if an error has halted the endpoint ring. The class driver will
1102 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1103 * However, a babble and other errors also halt the endpoint ring, and the class
1104 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1105 * Ring Dequeue Pointer command manually.
1107 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1108 struct xhci_ep_ctx *ep_ctx,
1109 unsigned int trb_comp_code)
1111 /* TRB completion codes that may require a manual halt cleanup */
1112 if (trb_comp_code == COMP_TX_ERR ||
1113 trb_comp_code == COMP_BABBLE ||
1114 trb_comp_code == COMP_SPLIT_ERR)
1115 /* The 0.96 spec says a babbling control endpoint
1116 * is not halted. The 0.96 spec says it is. Some HW
1117 * claims to be 0.95 compliant, but it halts the control
1118 * endpoint anyway. Check if a babble halted the
1119 * endpoint.
1121 if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED)
1122 return 1;
1124 return 0;
1128 * If this function returns an error condition, it means it got a Transfer
1129 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1130 * At this point, the host controller is probably hosed and should be reset.
1132 static int handle_tx_event(struct xhci_hcd *xhci,
1133 struct xhci_transfer_event *event)
1135 struct xhci_virt_device *xdev;
1136 struct xhci_virt_ep *ep;
1137 struct xhci_ring *ep_ring;
1138 unsigned int slot_id;
1139 int ep_index;
1140 struct xhci_td *td = 0;
1141 dma_addr_t event_dma;
1142 struct xhci_segment *event_seg;
1143 union xhci_trb *event_trb;
1144 struct urb *urb = 0;
1145 int status = -EINPROGRESS;
1146 struct xhci_ep_ctx *ep_ctx;
1147 u32 trb_comp_code;
1149 xhci_dbg(xhci, "In %s\n", __func__);
1150 slot_id = TRB_TO_SLOT_ID(event->flags);
1151 xdev = xhci->devs[slot_id];
1152 if (!xdev) {
1153 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1154 return -ENODEV;
1157 /* Endpoint ID is 1 based, our index is zero based */
1158 ep_index = TRB_TO_EP_ID(event->flags) - 1;
1159 xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index);
1160 ep = &xdev->eps[ep_index];
1161 ep_ring = ep->ring;
1162 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1163 if (!ep_ring || (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) {
1164 xhci_err(xhci, "ERROR Transfer event pointed to disabled endpoint\n");
1165 return -ENODEV;
1168 event_dma = event->buffer;
1169 /* This TRB should be in the TD at the head of this ring's TD list */
1170 xhci_dbg(xhci, "%s - checking for list empty\n", __func__);
1171 if (list_empty(&ep_ring->td_list)) {
1172 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
1173 TRB_TO_SLOT_ID(event->flags), ep_index);
1174 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
1175 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
1176 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
1177 urb = NULL;
1178 goto cleanup;
1180 xhci_dbg(xhci, "%s - getting list entry\n", __func__);
1181 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
1183 /* Is this a TRB in the currently executing TD? */
1184 xhci_dbg(xhci, "%s - looking for TD\n", __func__);
1185 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
1186 td->last_trb, event_dma);
1187 xhci_dbg(xhci, "%s - found event_seg = %p\n", __func__, event_seg);
1188 if (!event_seg) {
1189 /* HC is busted, give up! */
1190 xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not part of current TD\n");
1191 return -ESHUTDOWN;
1193 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)];
1194 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
1195 (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10);
1196 xhci_dbg(xhci, "Offset 0x00 (buffer lo) = 0x%x\n",
1197 lower_32_bits(event->buffer));
1198 xhci_dbg(xhci, "Offset 0x04 (buffer hi) = 0x%x\n",
1199 upper_32_bits(event->buffer));
1200 xhci_dbg(xhci, "Offset 0x08 (transfer length) = 0x%x\n",
1201 (unsigned int) event->transfer_len);
1202 xhci_dbg(xhci, "Offset 0x0C (flags) = 0x%x\n",
1203 (unsigned int) event->flags);
1205 /* Look for common error cases */
1206 trb_comp_code = GET_COMP_CODE(event->transfer_len);
1207 switch (trb_comp_code) {
1208 /* Skip codes that require special handling depending on
1209 * transfer type
1211 case COMP_SUCCESS:
1212 case COMP_SHORT_TX:
1213 break;
1214 case COMP_STOP:
1215 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1216 break;
1217 case COMP_STOP_INVAL:
1218 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1219 break;
1220 case COMP_STALL:
1221 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1222 ep->ep_state |= EP_HALTED;
1223 status = -EPIPE;
1224 break;
1225 case COMP_TRB_ERR:
1226 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1227 status = -EILSEQ;
1228 break;
1229 case COMP_SPLIT_ERR:
1230 case COMP_TX_ERR:
1231 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1232 status = -EPROTO;
1233 break;
1234 case COMP_BABBLE:
1235 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1236 status = -EOVERFLOW;
1237 break;
1238 case COMP_DB_ERR:
1239 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1240 status = -ENOSR;
1241 break;
1242 default:
1243 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1244 /* Vendor defined "informational" completion code,
1245 * treat as not-an-error.
1247 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1248 trb_comp_code);
1249 xhci_dbg(xhci, "Treating code as success.\n");
1250 status = 0;
1251 break;
1253 xhci_warn(xhci, "ERROR Unknown event condition, HC probably busted\n");
1254 urb = NULL;
1255 goto cleanup;
1257 /* Now update the urb's actual_length and give back to the core */
1258 /* Was this a control transfer? */
1259 if (usb_endpoint_xfer_control(&td->urb->ep->desc)) {
1260 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1261 switch (trb_comp_code) {
1262 case COMP_SUCCESS:
1263 if (event_trb == ep_ring->dequeue) {
1264 xhci_warn(xhci, "WARN: Success on ctrl setup TRB without IOC set??\n");
1265 status = -ESHUTDOWN;
1266 } else if (event_trb != td->last_trb) {
1267 xhci_warn(xhci, "WARN: Success on ctrl data TRB without IOC set??\n");
1268 status = -ESHUTDOWN;
1269 } else {
1270 xhci_dbg(xhci, "Successful control transfer!\n");
1271 status = 0;
1273 break;
1274 case COMP_SHORT_TX:
1275 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1276 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1277 status = -EREMOTEIO;
1278 else
1279 status = 0;
1280 break;
1282 default:
1283 if (!xhci_requires_manual_halt_cleanup(xhci,
1284 ep_ctx, trb_comp_code))
1285 break;
1286 xhci_dbg(xhci, "TRB error code %u, "
1287 "halted endpoint index = %u\n",
1288 trb_comp_code, ep_index);
1289 /* else fall through */
1290 case COMP_STALL:
1291 /* Did we transfer part of the data (middle) phase? */
1292 if (event_trb != ep_ring->dequeue &&
1293 event_trb != td->last_trb)
1294 td->urb->actual_length =
1295 td->urb->transfer_buffer_length
1296 - TRB_LEN(event->transfer_len);
1297 else
1298 td->urb->actual_length = 0;
1300 xhci_cleanup_halted_endpoint(xhci,
1301 slot_id, ep_index, td, event_trb);
1302 goto td_cleanup;
1305 * Did we transfer any data, despite the errors that might have
1306 * happened? I.e. did we get past the setup stage?
1308 if (event_trb != ep_ring->dequeue) {
1309 /* The event was for the status stage */
1310 if (event_trb == td->last_trb) {
1311 if (td->urb->actual_length != 0) {
1312 /* Don't overwrite a previously set error code */
1313 if ((status == -EINPROGRESS ||
1314 status == 0) &&
1315 (td->urb->transfer_flags
1316 & URB_SHORT_NOT_OK))
1317 /* Did we already see a short data stage? */
1318 status = -EREMOTEIO;
1319 } else {
1320 td->urb->actual_length =
1321 td->urb->transfer_buffer_length;
1323 } else {
1324 /* Maybe the event was for the data stage? */
1325 if (trb_comp_code != COMP_STOP_INVAL) {
1326 /* We didn't stop on a link TRB in the middle */
1327 td->urb->actual_length =
1328 td->urb->transfer_buffer_length -
1329 TRB_LEN(event->transfer_len);
1330 xhci_dbg(xhci, "Waiting for status stage event\n");
1331 urb = NULL;
1332 goto cleanup;
1336 } else {
1337 switch (trb_comp_code) {
1338 case COMP_SUCCESS:
1339 /* Double check that the HW transferred everything. */
1340 if (event_trb != td->last_trb) {
1341 xhci_warn(xhci, "WARN Successful completion "
1342 "on short TX\n");
1343 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1344 status = -EREMOTEIO;
1345 else
1346 status = 0;
1347 } else {
1348 if (usb_endpoint_xfer_bulk(&td->urb->ep->desc))
1349 xhci_dbg(xhci, "Successful bulk "
1350 "transfer!\n");
1351 else
1352 xhci_dbg(xhci, "Successful interrupt "
1353 "transfer!\n");
1354 status = 0;
1356 break;
1357 case COMP_SHORT_TX:
1358 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1359 status = -EREMOTEIO;
1360 else
1361 status = 0;
1362 break;
1363 default:
1364 /* Others already handled above */
1365 break;
1367 dev_dbg(&td->urb->dev->dev,
1368 "ep %#x - asked for %d bytes, "
1369 "%d bytes untransferred\n",
1370 td->urb->ep->desc.bEndpointAddress,
1371 td->urb->transfer_buffer_length,
1372 TRB_LEN(event->transfer_len));
1373 /* Fast path - was this the last TRB in the TD for this URB? */
1374 if (event_trb == td->last_trb) {
1375 if (TRB_LEN(event->transfer_len) != 0) {
1376 td->urb->actual_length =
1377 td->urb->transfer_buffer_length -
1378 TRB_LEN(event->transfer_len);
1379 if (td->urb->transfer_buffer_length <
1380 td->urb->actual_length) {
1381 xhci_warn(xhci, "HC gave bad length "
1382 "of %d bytes left\n",
1383 TRB_LEN(event->transfer_len));
1384 td->urb->actual_length = 0;
1385 if (td->urb->transfer_flags &
1386 URB_SHORT_NOT_OK)
1387 status = -EREMOTEIO;
1388 else
1389 status = 0;
1391 /* Don't overwrite a previously set error code */
1392 if (status == -EINPROGRESS) {
1393 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1394 status = -EREMOTEIO;
1395 else
1396 status = 0;
1398 } else {
1399 td->urb->actual_length = td->urb->transfer_buffer_length;
1400 /* Ignore a short packet completion if the
1401 * untransferred length was zero.
1403 if (status == -EREMOTEIO)
1404 status = 0;
1406 } else {
1407 /* Slow path - walk the list, starting from the dequeue
1408 * pointer, to get the actual length transferred.
1410 union xhci_trb *cur_trb;
1411 struct xhci_segment *cur_seg;
1413 td->urb->actual_length = 0;
1414 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1415 cur_trb != event_trb;
1416 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1417 if ((cur_trb->generic.field[3] &
1418 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) &&
1419 (cur_trb->generic.field[3] &
1420 TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK))
1421 td->urb->actual_length +=
1422 TRB_LEN(cur_trb->generic.field[2]);
1424 /* If the ring didn't stop on a Link or No-op TRB, add
1425 * in the actual bytes transferred from the Normal TRB
1427 if (trb_comp_code != COMP_STOP_INVAL)
1428 td->urb->actual_length +=
1429 TRB_LEN(cur_trb->generic.field[2]) -
1430 TRB_LEN(event->transfer_len);
1433 if (trb_comp_code == COMP_STOP_INVAL ||
1434 trb_comp_code == COMP_STOP) {
1435 /* The Endpoint Stop Command completion will take care of any
1436 * stopped TDs. A stopped TD may be restarted, so don't update
1437 * the ring dequeue pointer or take this TD off any lists yet.
1439 ep->stopped_td = td;
1440 ep->stopped_trb = event_trb;
1441 } else {
1442 if (trb_comp_code == COMP_STALL) {
1443 /* The transfer is completed from the driver's
1444 * perspective, but we need to issue a set dequeue
1445 * command for this stalled endpoint to move the dequeue
1446 * pointer past the TD. We can't do that here because
1447 * the halt condition must be cleared first. Let the
1448 * USB class driver clear the stall later.
1450 ep->stopped_td = td;
1451 ep->stopped_trb = event_trb;
1452 } else if (xhci_requires_manual_halt_cleanup(xhci,
1453 ep_ctx, trb_comp_code)) {
1454 /* Other types of errors halt the endpoint, but the
1455 * class driver doesn't call usb_reset_endpoint() unless
1456 * the error is -EPIPE. Clear the halted status in the
1457 * xHCI hardware manually.
1459 xhci_cleanup_halted_endpoint(xhci,
1460 slot_id, ep_index, td, event_trb);
1461 } else {
1462 /* Update ring dequeue pointer */
1463 while (ep_ring->dequeue != td->last_trb)
1464 inc_deq(xhci, ep_ring, false);
1465 inc_deq(xhci, ep_ring, false);
1468 td_cleanup:
1469 /* Clean up the endpoint's TD list */
1470 urb = td->urb;
1471 /* Do one last check of the actual transfer length.
1472 * If the host controller said we transferred more data than
1473 * the buffer length, urb->actual_length will be a very big
1474 * number (since it's unsigned). Play it safe and say we didn't
1475 * transfer anything.
1477 if (urb->actual_length > urb->transfer_buffer_length) {
1478 xhci_warn(xhci, "URB transfer length is wrong, "
1479 "xHC issue? req. len = %u, "
1480 "act. len = %u\n",
1481 urb->transfer_buffer_length,
1482 urb->actual_length);
1483 urb->actual_length = 0;
1484 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1485 status = -EREMOTEIO;
1486 else
1487 status = 0;
1489 list_del(&td->td_list);
1490 /* Was this TD slated to be cancelled but completed anyway? */
1491 if (!list_empty(&td->cancelled_td_list))
1492 list_del(&td->cancelled_td_list);
1494 /* Leave the TD around for the reset endpoint function to use
1495 * (but only if it's not a control endpoint, since we already
1496 * queued the Set TR dequeue pointer command for stalled
1497 * control endpoints).
1499 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
1500 (trb_comp_code != COMP_STALL &&
1501 trb_comp_code != COMP_BABBLE)) {
1502 kfree(td);
1504 urb->hcpriv = NULL;
1506 cleanup:
1507 inc_deq(xhci, xhci->event_ring, true);
1508 xhci_set_hc_event_deq(xhci);
1510 /* FIXME for multi-TD URBs (who have buffers bigger than 64MB) */
1511 if (urb) {
1512 usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb);
1513 xhci_dbg(xhci, "Giveback URB %p, len = %d, status = %d\n",
1514 urb, urb->actual_length, status);
1515 spin_unlock(&xhci->lock);
1516 usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status);
1517 spin_lock(&xhci->lock);
1519 return 0;
1523 * This function handles all OS-owned events on the event ring. It may drop
1524 * xhci->lock between event processing (e.g. to pass up port status changes).
1526 void xhci_handle_event(struct xhci_hcd *xhci)
1528 union xhci_trb *event;
1529 int update_ptrs = 1;
1530 int ret;
1532 xhci_dbg(xhci, "In %s\n", __func__);
1533 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
1534 xhci->error_bitmask |= 1 << 1;
1535 return;
1538 event = xhci->event_ring->dequeue;
1539 /* Does the HC or OS own the TRB? */
1540 if ((event->event_cmd.flags & TRB_CYCLE) !=
1541 xhci->event_ring->cycle_state) {
1542 xhci->error_bitmask |= 1 << 2;
1543 return;
1545 xhci_dbg(xhci, "%s - OS owns TRB\n", __func__);
1547 /* FIXME: Handle more event types. */
1548 switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) {
1549 case TRB_TYPE(TRB_COMPLETION):
1550 xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__);
1551 handle_cmd_completion(xhci, &event->event_cmd);
1552 xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__);
1553 break;
1554 case TRB_TYPE(TRB_PORT_STATUS):
1555 xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__);
1556 handle_port_status(xhci, event);
1557 xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__);
1558 update_ptrs = 0;
1559 break;
1560 case TRB_TYPE(TRB_TRANSFER):
1561 xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__);
1562 ret = handle_tx_event(xhci, &event->trans_event);
1563 xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__);
1564 if (ret < 0)
1565 xhci->error_bitmask |= 1 << 9;
1566 else
1567 update_ptrs = 0;
1568 break;
1569 default:
1570 xhci->error_bitmask |= 1 << 3;
1572 /* Any of the above functions may drop and re-acquire the lock, so check
1573 * to make sure a watchdog timer didn't mark the host as non-responsive.
1575 if (xhci->xhc_state & XHCI_STATE_DYING) {
1576 xhci_dbg(xhci, "xHCI host dying, returning from "
1577 "event handler.\n");
1578 return;
1581 if (update_ptrs) {
1582 /* Update SW and HC event ring dequeue pointer */
1583 inc_deq(xhci, xhci->event_ring, true);
1584 xhci_set_hc_event_deq(xhci);
1586 /* Are there more items on the event ring? */
1587 xhci_handle_event(xhci);
1590 /**** Endpoint Ring Operations ****/
1593 * Generic function for queueing a TRB on a ring.
1594 * The caller must have checked to make sure there's room on the ring.
1596 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
1597 bool consumer,
1598 u32 field1, u32 field2, u32 field3, u32 field4)
1600 struct xhci_generic_trb *trb;
1602 trb = &ring->enqueue->generic;
1603 trb->field[0] = field1;
1604 trb->field[1] = field2;
1605 trb->field[2] = field3;
1606 trb->field[3] = field4;
1607 inc_enq(xhci, ring, consumer);
1611 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
1612 * FIXME allocate segments if the ring is full.
1614 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
1615 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
1617 /* Make sure the endpoint has been added to xHC schedule */
1618 xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state);
1619 switch (ep_state) {
1620 case EP_STATE_DISABLED:
1622 * USB core changed config/interfaces without notifying us,
1623 * or hardware is reporting the wrong state.
1625 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
1626 return -ENOENT;
1627 case EP_STATE_ERROR:
1628 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
1629 /* FIXME event handling code for error needs to clear it */
1630 /* XXX not sure if this should be -ENOENT or not */
1631 return -EINVAL;
1632 case EP_STATE_HALTED:
1633 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
1634 case EP_STATE_STOPPED:
1635 case EP_STATE_RUNNING:
1636 break;
1637 default:
1638 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
1640 * FIXME issue Configure Endpoint command to try to get the HC
1641 * back into a known state.
1643 return -EINVAL;
1645 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
1646 /* FIXME allocate more room */
1647 xhci_err(xhci, "ERROR no room on ep ring\n");
1648 return -ENOMEM;
1650 return 0;
1653 static int prepare_transfer(struct xhci_hcd *xhci,
1654 struct xhci_virt_device *xdev,
1655 unsigned int ep_index,
1656 unsigned int num_trbs,
1657 struct urb *urb,
1658 struct xhci_td **td,
1659 gfp_t mem_flags)
1661 int ret;
1662 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1663 ret = prepare_ring(xhci, xdev->eps[ep_index].ring,
1664 ep_ctx->ep_info & EP_STATE_MASK,
1665 num_trbs, mem_flags);
1666 if (ret)
1667 return ret;
1668 *td = kzalloc(sizeof(struct xhci_td), mem_flags);
1669 if (!*td)
1670 return -ENOMEM;
1671 INIT_LIST_HEAD(&(*td)->td_list);
1672 INIT_LIST_HEAD(&(*td)->cancelled_td_list);
1674 ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb);
1675 if (unlikely(ret)) {
1676 kfree(*td);
1677 return ret;
1680 (*td)->urb = urb;
1681 urb->hcpriv = (void *) (*td);
1682 /* Add this TD to the tail of the endpoint ring's TD list */
1683 list_add_tail(&(*td)->td_list, &xdev->eps[ep_index].ring->td_list);
1684 (*td)->start_seg = xdev->eps[ep_index].ring->enq_seg;
1685 (*td)->first_trb = xdev->eps[ep_index].ring->enqueue;
1687 return 0;
1690 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
1692 int num_sgs, num_trbs, running_total, temp, i;
1693 struct scatterlist *sg;
1695 sg = NULL;
1696 num_sgs = urb->num_sgs;
1697 temp = urb->transfer_buffer_length;
1699 xhci_dbg(xhci, "count sg list trbs: \n");
1700 num_trbs = 0;
1701 for_each_sg(urb->sg->sg, sg, num_sgs, i) {
1702 unsigned int previous_total_trbs = num_trbs;
1703 unsigned int len = sg_dma_len(sg);
1705 /* Scatter gather list entries may cross 64KB boundaries */
1706 running_total = TRB_MAX_BUFF_SIZE -
1707 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
1708 running_total &= TRB_MAX_BUFF_SIZE - 1;
1709 if (running_total != 0)
1710 num_trbs++;
1712 /* How many more 64KB chunks to transfer, how many more TRBs? */
1713 while (running_total < sg_dma_len(sg) && running_total < temp) {
1714 num_trbs++;
1715 running_total += TRB_MAX_BUFF_SIZE;
1717 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
1718 i, (unsigned long long)sg_dma_address(sg),
1719 len, len, num_trbs - previous_total_trbs);
1721 len = min_t(int, len, temp);
1722 temp -= len;
1723 if (temp == 0)
1724 break;
1726 xhci_dbg(xhci, "\n");
1727 if (!in_interrupt())
1728 dev_dbg(&urb->dev->dev, "ep %#x - urb len = %d, sglist used, num_trbs = %d\n",
1729 urb->ep->desc.bEndpointAddress,
1730 urb->transfer_buffer_length,
1731 num_trbs);
1732 return num_trbs;
1735 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
1737 if (num_trbs != 0)
1738 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
1739 "TRBs, %d left\n", __func__,
1740 urb->ep->desc.bEndpointAddress, num_trbs);
1741 if (running_total != urb->transfer_buffer_length)
1742 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
1743 "queued %#x (%d), asked for %#x (%d)\n",
1744 __func__,
1745 urb->ep->desc.bEndpointAddress,
1746 running_total, running_total,
1747 urb->transfer_buffer_length,
1748 urb->transfer_buffer_length);
1751 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
1752 unsigned int ep_index, int start_cycle,
1753 struct xhci_generic_trb *start_trb, struct xhci_td *td)
1756 * Pass all the TRBs to the hardware at once and make sure this write
1757 * isn't reordered.
1759 wmb();
1760 start_trb->field[3] |= start_cycle;
1761 ring_ep_doorbell(xhci, slot_id, ep_index);
1765 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
1766 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
1767 * (comprised of sg list entries) can take several service intervals to
1768 * transmit.
1770 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1771 struct urb *urb, int slot_id, unsigned int ep_index)
1773 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
1774 xhci->devs[slot_id]->out_ctx, ep_index);
1775 int xhci_interval;
1776 int ep_interval;
1778 xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info);
1779 ep_interval = urb->interval;
1780 /* Convert to microframes */
1781 if (urb->dev->speed == USB_SPEED_LOW ||
1782 urb->dev->speed == USB_SPEED_FULL)
1783 ep_interval *= 8;
1784 /* FIXME change this to a warning and a suggestion to use the new API
1785 * to set the polling interval (once the API is added).
1787 if (xhci_interval != ep_interval) {
1788 if (!printk_ratelimit())
1789 dev_dbg(&urb->dev->dev, "Driver uses different interval"
1790 " (%d microframe%s) than xHCI "
1791 "(%d microframe%s)\n",
1792 ep_interval,
1793 ep_interval == 1 ? "" : "s",
1794 xhci_interval,
1795 xhci_interval == 1 ? "" : "s");
1796 urb->interval = xhci_interval;
1797 /* Convert back to frames for LS/FS devices */
1798 if (urb->dev->speed == USB_SPEED_LOW ||
1799 urb->dev->speed == USB_SPEED_FULL)
1800 urb->interval /= 8;
1802 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
1806 * The TD size is the number of bytes remaining in the TD (including this TRB),
1807 * right shifted by 10.
1808 * It must fit in bits 21:17, so it can't be bigger than 31.
1810 static u32 xhci_td_remainder(unsigned int remainder)
1812 u32 max = (1 << (21 - 17 + 1)) - 1;
1814 if ((remainder >> 10) >= max)
1815 return max << 17;
1816 else
1817 return (remainder >> 10) << 17;
1820 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1821 struct urb *urb, int slot_id, unsigned int ep_index)
1823 struct xhci_ring *ep_ring;
1824 unsigned int num_trbs;
1825 struct xhci_td *td;
1826 struct scatterlist *sg;
1827 int num_sgs;
1828 int trb_buff_len, this_sg_len, running_total;
1829 bool first_trb;
1830 u64 addr;
1832 struct xhci_generic_trb *start_trb;
1833 int start_cycle;
1835 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1836 num_trbs = count_sg_trbs_needed(xhci, urb);
1837 num_sgs = urb->num_sgs;
1839 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
1840 ep_index, num_trbs, urb, &td, mem_flags);
1841 if (trb_buff_len < 0)
1842 return trb_buff_len;
1844 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1845 * until we've finished creating all the other TRBs. The ring's cycle
1846 * state may change as we enqueue the other TRBs, so save it too.
1848 start_trb = &ep_ring->enqueue->generic;
1849 start_cycle = ep_ring->cycle_state;
1851 running_total = 0;
1853 * How much data is in the first TRB?
1855 * There are three forces at work for TRB buffer pointers and lengths:
1856 * 1. We don't want to walk off the end of this sg-list entry buffer.
1857 * 2. The transfer length that the driver requested may be smaller than
1858 * the amount of memory allocated for this scatter-gather list.
1859 * 3. TRBs buffers can't cross 64KB boundaries.
1861 sg = urb->sg->sg;
1862 addr = (u64) sg_dma_address(sg);
1863 this_sg_len = sg_dma_len(sg);
1864 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
1865 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
1866 if (trb_buff_len > urb->transfer_buffer_length)
1867 trb_buff_len = urb->transfer_buffer_length;
1868 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
1869 trb_buff_len);
1871 first_trb = true;
1872 /* Queue the first TRB, even if it's zero-length */
1873 do {
1874 u32 field = 0;
1875 u32 length_field = 0;
1876 u32 remainder = 0;
1878 /* Don't change the cycle bit of the first TRB until later */
1879 if (first_trb)
1880 first_trb = false;
1881 else
1882 field |= ep_ring->cycle_state;
1884 /* Chain all the TRBs together; clear the chain bit in the last
1885 * TRB to indicate it's the last TRB in the chain.
1887 if (num_trbs > 1) {
1888 field |= TRB_CHAIN;
1889 } else {
1890 /* FIXME - add check for ZERO_PACKET flag before this */
1891 td->last_trb = ep_ring->enqueue;
1892 field |= TRB_IOC;
1894 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
1895 "64KB boundary at %#x, end dma = %#x\n",
1896 (unsigned int) addr, trb_buff_len, trb_buff_len,
1897 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
1898 (unsigned int) addr + trb_buff_len);
1899 if (TRB_MAX_BUFF_SIZE -
1900 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
1901 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
1902 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
1903 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
1904 (unsigned int) addr + trb_buff_len);
1906 remainder = xhci_td_remainder(urb->transfer_buffer_length -
1907 running_total) ;
1908 length_field = TRB_LEN(trb_buff_len) |
1909 remainder |
1910 TRB_INTR_TARGET(0);
1911 queue_trb(xhci, ep_ring, false,
1912 lower_32_bits(addr),
1913 upper_32_bits(addr),
1914 length_field,
1915 /* We always want to know if the TRB was short,
1916 * or we won't get an event when it completes.
1917 * (Unless we use event data TRBs, which are a
1918 * waste of space and HC resources.)
1920 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
1921 --num_trbs;
1922 running_total += trb_buff_len;
1924 /* Calculate length for next transfer --
1925 * Are we done queueing all the TRBs for this sg entry?
1927 this_sg_len -= trb_buff_len;
1928 if (this_sg_len == 0) {
1929 --num_sgs;
1930 if (num_sgs == 0)
1931 break;
1932 sg = sg_next(sg);
1933 addr = (u64) sg_dma_address(sg);
1934 this_sg_len = sg_dma_len(sg);
1935 } else {
1936 addr += trb_buff_len;
1939 trb_buff_len = TRB_MAX_BUFF_SIZE -
1940 (addr & (TRB_MAX_BUFF_SIZE - 1));
1941 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
1942 if (running_total + trb_buff_len > urb->transfer_buffer_length)
1943 trb_buff_len =
1944 urb->transfer_buffer_length - running_total;
1945 } while (running_total < urb->transfer_buffer_length);
1947 check_trb_math(urb, num_trbs, running_total);
1948 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
1949 return 0;
1952 /* This is very similar to what ehci-q.c qtd_fill() does */
1953 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
1954 struct urb *urb, int slot_id, unsigned int ep_index)
1956 struct xhci_ring *ep_ring;
1957 struct xhci_td *td;
1958 int num_trbs;
1959 struct xhci_generic_trb *start_trb;
1960 bool first_trb;
1961 int start_cycle;
1962 u32 field, length_field;
1964 int running_total, trb_buff_len, ret;
1965 u64 addr;
1967 if (urb->sg)
1968 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
1970 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1972 num_trbs = 0;
1973 /* How much data is (potentially) left before the 64KB boundary? */
1974 running_total = TRB_MAX_BUFF_SIZE -
1975 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
1976 running_total &= TRB_MAX_BUFF_SIZE - 1;
1978 /* If there's some data on this 64KB chunk, or we have to send a
1979 * zero-length transfer, we need at least one TRB
1981 if (running_total != 0 || urb->transfer_buffer_length == 0)
1982 num_trbs++;
1983 /* How many more 64KB chunks to transfer, how many more TRBs? */
1984 while (running_total < urb->transfer_buffer_length) {
1985 num_trbs++;
1986 running_total += TRB_MAX_BUFF_SIZE;
1988 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
1990 if (!in_interrupt())
1991 dev_dbg(&urb->dev->dev, "ep %#x - urb len = %#x (%d), addr = %#llx, num_trbs = %d\n",
1992 urb->ep->desc.bEndpointAddress,
1993 urb->transfer_buffer_length,
1994 urb->transfer_buffer_length,
1995 (unsigned long long)urb->transfer_dma,
1996 num_trbs);
1998 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
1999 num_trbs, urb, &td, mem_flags);
2000 if (ret < 0)
2001 return ret;
2004 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2005 * until we've finished creating all the other TRBs. The ring's cycle
2006 * state may change as we enqueue the other TRBs, so save it too.
2008 start_trb = &ep_ring->enqueue->generic;
2009 start_cycle = ep_ring->cycle_state;
2011 running_total = 0;
2012 /* How much data is in the first TRB? */
2013 addr = (u64) urb->transfer_dma;
2014 trb_buff_len = TRB_MAX_BUFF_SIZE -
2015 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2016 if (trb_buff_len > urb->transfer_buffer_length)
2017 trb_buff_len = urb->transfer_buffer_length;
2019 first_trb = true;
2021 /* Queue the first TRB, even if it's zero-length */
2022 do {
2023 u32 remainder = 0;
2024 field = 0;
2026 /* Don't change the cycle bit of the first TRB until later */
2027 if (first_trb)
2028 first_trb = false;
2029 else
2030 field |= ep_ring->cycle_state;
2032 /* Chain all the TRBs together; clear the chain bit in the last
2033 * TRB to indicate it's the last TRB in the chain.
2035 if (num_trbs > 1) {
2036 field |= TRB_CHAIN;
2037 } else {
2038 /* FIXME - add check for ZERO_PACKET flag before this */
2039 td->last_trb = ep_ring->enqueue;
2040 field |= TRB_IOC;
2042 remainder = xhci_td_remainder(urb->transfer_buffer_length -
2043 running_total);
2044 length_field = TRB_LEN(trb_buff_len) |
2045 remainder |
2046 TRB_INTR_TARGET(0);
2047 queue_trb(xhci, ep_ring, false,
2048 lower_32_bits(addr),
2049 upper_32_bits(addr),
2050 length_field,
2051 /* We always want to know if the TRB was short,
2052 * or we won't get an event when it completes.
2053 * (Unless we use event data TRBs, which are a
2054 * waste of space and HC resources.)
2056 field | TRB_ISP | TRB_TYPE(TRB_NORMAL));
2057 --num_trbs;
2058 running_total += trb_buff_len;
2060 /* Calculate length for next transfer */
2061 addr += trb_buff_len;
2062 trb_buff_len = urb->transfer_buffer_length - running_total;
2063 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2064 trb_buff_len = TRB_MAX_BUFF_SIZE;
2065 } while (running_total < urb->transfer_buffer_length);
2067 check_trb_math(urb, num_trbs, running_total);
2068 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
2069 return 0;
2072 /* Caller must have locked xhci->lock */
2073 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2074 struct urb *urb, int slot_id, unsigned int ep_index)
2076 struct xhci_ring *ep_ring;
2077 int num_trbs;
2078 int ret;
2079 struct usb_ctrlrequest *setup;
2080 struct xhci_generic_trb *start_trb;
2081 int start_cycle;
2082 u32 field, length_field;
2083 struct xhci_td *td;
2085 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
2088 * Need to copy setup packet into setup TRB, so we can't use the setup
2089 * DMA address.
2091 if (!urb->setup_packet)
2092 return -EINVAL;
2094 if (!in_interrupt())
2095 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
2096 slot_id, ep_index);
2097 /* 1 TRB for setup, 1 for status */
2098 num_trbs = 2;
2100 * Don't need to check if we need additional event data and normal TRBs,
2101 * since data in control transfers will never get bigger than 16MB
2102 * XXX: can we get a buffer that crosses 64KB boundaries?
2104 if (urb->transfer_buffer_length > 0)
2105 num_trbs++;
2106 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, num_trbs,
2107 urb, &td, mem_flags);
2108 if (ret < 0)
2109 return ret;
2112 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2113 * until we've finished creating all the other TRBs. The ring's cycle
2114 * state may change as we enqueue the other TRBs, so save it too.
2116 start_trb = &ep_ring->enqueue->generic;
2117 start_cycle = ep_ring->cycle_state;
2119 /* Queue setup TRB - see section 6.4.1.2.1 */
2120 /* FIXME better way to translate setup_packet into two u32 fields? */
2121 setup = (struct usb_ctrlrequest *) urb->setup_packet;
2122 queue_trb(xhci, ep_ring, false,
2123 /* FIXME endianness is probably going to bite my ass here. */
2124 setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16,
2125 setup->wIndex | setup->wLength << 16,
2126 TRB_LEN(8) | TRB_INTR_TARGET(0),
2127 /* Immediate data in pointer */
2128 TRB_IDT | TRB_TYPE(TRB_SETUP));
2130 /* If there's data, queue data TRBs */
2131 field = 0;
2132 length_field = TRB_LEN(urb->transfer_buffer_length) |
2133 xhci_td_remainder(urb->transfer_buffer_length) |
2134 TRB_INTR_TARGET(0);
2135 if (urb->transfer_buffer_length > 0) {
2136 if (setup->bRequestType & USB_DIR_IN)
2137 field |= TRB_DIR_IN;
2138 queue_trb(xhci, ep_ring, false,
2139 lower_32_bits(urb->transfer_dma),
2140 upper_32_bits(urb->transfer_dma),
2141 length_field,
2142 /* Event on short tx */
2143 field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state);
2146 /* Save the DMA address of the last TRB in the TD */
2147 td->last_trb = ep_ring->enqueue;
2149 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
2150 /* If the device sent data, the status stage is an OUT transfer */
2151 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
2152 field = 0;
2153 else
2154 field = TRB_DIR_IN;
2155 queue_trb(xhci, ep_ring, false,
2158 TRB_INTR_TARGET(0),
2159 /* Event on completion */
2160 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
2162 giveback_first_trb(xhci, slot_id, ep_index, start_cycle, start_trb, td);
2163 return 0;
2166 /**** Command Ring Operations ****/
2168 /* Generic function for queueing a command TRB on the command ring.
2169 * Check to make sure there's room on the command ring for one command TRB.
2170 * Also check that there's room reserved for commands that must not fail.
2171 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
2172 * then only check for the number of reserved spots.
2173 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
2174 * because the command event handler may want to resubmit a failed command.
2176 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
2177 u32 field3, u32 field4, bool command_must_succeed)
2179 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
2180 if (!command_must_succeed)
2181 reserved_trbs++;
2183 if (!room_on_ring(xhci, xhci->cmd_ring, reserved_trbs)) {
2184 if (!in_interrupt())
2185 xhci_err(xhci, "ERR: No room for command on command ring\n");
2186 if (command_must_succeed)
2187 xhci_err(xhci, "ERR: Reserved TRB counting for "
2188 "unfailable commands failed.\n");
2189 return -ENOMEM;
2191 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
2192 field4 | xhci->cmd_ring->cycle_state);
2193 return 0;
2196 /* Queue a no-op command on the command ring */
2197 static int queue_cmd_noop(struct xhci_hcd *xhci)
2199 return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP), false);
2203 * Place a no-op command on the command ring to test the command and
2204 * event ring.
2206 void *xhci_setup_one_noop(struct xhci_hcd *xhci)
2208 if (queue_cmd_noop(xhci) < 0)
2209 return NULL;
2210 xhci->noops_submitted++;
2211 return xhci_ring_cmd_db;
2214 /* Queue a slot enable or disable request on the command ring */
2215 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
2217 return queue_command(xhci, 0, 0, 0,
2218 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
2221 /* Queue an address device command TRB */
2222 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2223 u32 slot_id)
2225 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2226 upper_32_bits(in_ctx_ptr), 0,
2227 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
2228 false);
2231 /* Queue a configure endpoint command TRB */
2232 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2233 u32 slot_id, bool command_must_succeed)
2235 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2236 upper_32_bits(in_ctx_ptr), 0,
2237 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
2238 command_must_succeed);
2241 /* Queue an evaluate context command TRB */
2242 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
2243 u32 slot_id)
2245 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
2246 upper_32_bits(in_ctx_ptr), 0,
2247 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
2248 false);
2251 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
2252 unsigned int ep_index)
2254 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2255 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2256 u32 type = TRB_TYPE(TRB_STOP_RING);
2258 return queue_command(xhci, 0, 0, 0,
2259 trb_slot_id | trb_ep_index | type, false);
2262 /* Set Transfer Ring Dequeue Pointer command.
2263 * This should not be used for endpoints that have streams enabled.
2265 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
2266 unsigned int ep_index, struct xhci_segment *deq_seg,
2267 union xhci_trb *deq_ptr, u32 cycle_state)
2269 dma_addr_t addr;
2270 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2271 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2272 u32 type = TRB_TYPE(TRB_SET_DEQ);
2274 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
2275 if (addr == 0) {
2276 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
2277 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
2278 deq_seg, deq_ptr);
2279 return 0;
2281 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
2282 upper_32_bits(addr), 0,
2283 trb_slot_id | trb_ep_index | type, false);
2286 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
2287 unsigned int ep_index)
2289 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
2290 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
2291 u32 type = TRB_TYPE(TRB_RESET_EP);
2293 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
2294 false);