2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
43 #define PRINTK(x...) printk(x)
49 * Number of guaranteed r1bios in case of extreme VM load:
51 #define NR_RAID1_BIOS 256
54 static void unplug_slaves(mddev_t
*mddev
);
56 static void allow_barrier(conf_t
*conf
);
57 static void lower_barrier(conf_t
*conf
);
59 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
61 struct pool_info
*pi
= data
;
63 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
66 r1_bio
= kzalloc(size
, gfp_flags
);
67 if (!r1_bio
&& pi
->mddev
)
68 unplug_slaves(pi
->mddev
);
73 static void r1bio_pool_free(void *r1_bio
, void *data
)
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
84 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
86 struct pool_info
*pi
= data
;
92 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
94 unplug_slaves(pi
->mddev
);
99 * Allocate bios : 1 for reading, n-1 for writing
101 for (j
= pi
->raid_disks
; j
-- ; ) {
102 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
105 r1_bio
->bios
[j
] = bio
;
108 * Allocate RESYNC_PAGES data pages and attach them to
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
113 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
118 bio
= r1_bio
->bios
[j
];
119 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
120 page
= alloc_page(gfp_flags
);
124 bio
->bi_io_vec
[i
].bv_page
= page
;
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
130 for (i
=0; i
<RESYNC_PAGES
; i
++)
131 for (j
=1; j
<pi
->raid_disks
; j
++)
132 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
133 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
136 r1_bio
->master_bio
= NULL
;
141 for (j
=0 ; j
< pi
->raid_disks
; j
++)
142 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
143 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
146 while ( ++j
< pi
->raid_disks
)
147 bio_put(r1_bio
->bios
[j
]);
148 r1bio_pool_free(r1_bio
, data
);
152 static void r1buf_pool_free(void *__r1_bio
, void *data
)
154 struct pool_info
*pi
= data
;
156 r1bio_t
*r1bio
= __r1_bio
;
158 for (i
= 0; i
< RESYNC_PAGES
; i
++)
159 for (j
= pi
->raid_disks
; j
-- ;) {
161 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
162 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
163 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
165 for (i
=0 ; i
< pi
->raid_disks
; i
++)
166 bio_put(r1bio
->bios
[i
]);
168 r1bio_pool_free(r1bio
, data
);
171 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
175 for (i
= 0; i
< conf
->raid_disks
; i
++) {
176 struct bio
**bio
= r1_bio
->bios
+ i
;
177 if (*bio
&& *bio
!= IO_BLOCKED
)
183 static void free_r1bio(r1bio_t
*r1_bio
)
185 conf_t
*conf
= r1_bio
->mddev
->private;
188 * Wake up any possible resync thread that waits for the device
193 put_all_bios(conf
, r1_bio
);
194 mempool_free(r1_bio
, conf
->r1bio_pool
);
197 static void put_buf(r1bio_t
*r1_bio
)
199 conf_t
*conf
= r1_bio
->mddev
->private;
202 for (i
=0; i
<conf
->raid_disks
; i
++) {
203 struct bio
*bio
= r1_bio
->bios
[i
];
205 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
208 mempool_free(r1_bio
, conf
->r1buf_pool
);
213 static void reschedule_retry(r1bio_t
*r1_bio
)
216 mddev_t
*mddev
= r1_bio
->mddev
;
217 conf_t
*conf
= mddev
->private;
219 spin_lock_irqsave(&conf
->device_lock
, flags
);
220 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
222 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
224 wake_up(&conf
->wait_barrier
);
225 md_wakeup_thread(mddev
->thread
);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
233 static void raid_end_bio_io(r1bio_t
*r1_bio
)
235 struct bio
*bio
= r1_bio
->master_bio
;
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
239 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
241 (unsigned long long) bio
->bi_sector
,
242 (unsigned long long) bio
->bi_sector
+
243 (bio
->bi_size
>> 9) - 1);
246 test_bit(R1BIO_Uptodate
, &r1_bio
->state
) ? 0 : -EIO
);
252 * Update disk head position estimator based on IRQ completion info.
254 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
256 conf_t
*conf
= r1_bio
->mddev
->private;
258 conf
->mirrors
[disk
].head_position
=
259 r1_bio
->sector
+ (r1_bio
->sectors
);
262 static void raid1_end_read_request(struct bio
*bio
, int error
)
264 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
265 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
267 conf_t
*conf
= r1_bio
->mddev
->private;
269 mirror
= r1_bio
->read_disk
;
271 * this branch is our 'one mirror IO has finished' event handler:
273 update_head_pos(mirror
, r1_bio
);
276 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
283 spin_lock_irqsave(&conf
->device_lock
, flags
);
284 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
285 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
286 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
288 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
292 raid_end_bio_io(r1_bio
);
297 char b
[BDEVNAME_SIZE
];
298 if (printk_ratelimit())
299 printk(KERN_ERR
"raid1: %s: rescheduling sector %llu\n",
300 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,b
), (unsigned long long)r1_bio
->sector
);
301 reschedule_retry(r1_bio
);
304 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
307 static void raid1_end_write_request(struct bio
*bio
, int error
)
309 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
310 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
311 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
312 conf_t
*conf
= r1_bio
->mddev
->private;
313 struct bio
*to_put
= NULL
;
316 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
317 if (r1_bio
->bios
[mirror
] == bio
)
320 if (error
== -EOPNOTSUPP
&& test_bit(R1BIO_Barrier
, &r1_bio
->state
)) {
321 set_bit(BarriersNotsupp
, &conf
->mirrors
[mirror
].rdev
->flags
);
322 set_bit(R1BIO_BarrierRetry
, &r1_bio
->state
);
323 r1_bio
->mddev
->barriers_work
= 0;
324 /* Don't rdev_dec_pending in this branch - keep it for the retry */
327 * this branch is our 'one mirror IO has finished' event handler:
329 r1_bio
->bios
[mirror
] = NULL
;
332 md_error(r1_bio
->mddev
, conf
->mirrors
[mirror
].rdev
);
333 /* an I/O failed, we can't clear the bitmap */
334 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
337 * Set R1BIO_Uptodate in our master bio, so that
338 * we will return a good error code for to the higher
339 * levels even if IO on some other mirrored buffer fails.
341 * The 'master' represents the composite IO operation to
342 * user-side. So if something waits for IO, then it will
343 * wait for the 'master' bio.
345 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
347 update_head_pos(mirror
, r1_bio
);
350 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
351 atomic_dec(&r1_bio
->behind_remaining
);
353 /* In behind mode, we ACK the master bio once the I/O has safely
354 * reached all non-writemostly disks. Setting the Returned bit
355 * ensures that this gets done only once -- we don't ever want to
356 * return -EIO here, instead we'll wait */
358 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
359 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
360 /* Maybe we can return now */
361 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
362 struct bio
*mbio
= r1_bio
->master_bio
;
363 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
364 (unsigned long long) mbio
->bi_sector
,
365 (unsigned long long) mbio
->bi_sector
+
366 (mbio
->bi_size
>> 9) - 1);
371 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
375 * Let's see if all mirrored write operations have finished
378 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
379 if (test_bit(R1BIO_BarrierRetry
, &r1_bio
->state
))
380 reschedule_retry(r1_bio
);
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
384 /* free extra copy of the data pages */
385 int i
= bio
->bi_vcnt
;
387 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
389 /* clear the bitmap if all writes complete successfully */
390 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
392 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
394 md_write_end(r1_bio
->mddev
);
395 raid_end_bio_io(r1_bio
);
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
)
420 const sector_t this_sector
= r1_bio
->sector
;
421 int new_disk
= conf
->last_used
, disk
= new_disk
;
423 const int sectors
= r1_bio
->sectors
;
424 sector_t new_distance
, current_distance
;
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
434 if (conf
->mddev
->recovery_cp
< MaxSector
&&
435 (this_sector
+ sectors
>= conf
->next_resync
)) {
436 /* Choose the first operational device, for consistancy */
439 for (rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
440 r1_bio
->bios
[new_disk
] == IO_BLOCKED
||
441 !rdev
|| !test_bit(In_sync
, &rdev
->flags
)
442 || test_bit(WriteMostly
, &rdev
->flags
);
443 rdev
= rcu_dereference(conf
->mirrors
[++new_disk
].rdev
)) {
445 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
446 r1_bio
->bios
[new_disk
] != IO_BLOCKED
)
447 wonly_disk
= new_disk
;
449 if (new_disk
== conf
->raid_disks
- 1) {
450 new_disk
= wonly_disk
;
458 /* make sure the disk is operational */
459 for (rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
460 r1_bio
->bios
[new_disk
] == IO_BLOCKED
||
461 !rdev
|| !test_bit(In_sync
, &rdev
->flags
) ||
462 test_bit(WriteMostly
, &rdev
->flags
);
463 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
)) {
465 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
466 r1_bio
->bios
[new_disk
] != IO_BLOCKED
)
467 wonly_disk
= new_disk
;
470 new_disk
= conf
->raid_disks
;
472 if (new_disk
== disk
) {
473 new_disk
= wonly_disk
;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf
->next_seq_sect
== this_sector
)
489 if (this_sector
== conf
->mirrors
[new_disk
].head_position
)
492 current_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
494 /* Find the disk whose head is closest */
498 disk
= conf
->raid_disks
;
501 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
503 if (!rdev
|| r1_bio
->bios
[disk
] == IO_BLOCKED
||
504 !test_bit(In_sync
, &rdev
->flags
) ||
505 test_bit(WriteMostly
, &rdev
->flags
))
508 if (!atomic_read(&rdev
->nr_pending
)) {
512 new_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
513 if (new_distance
< current_distance
) {
514 current_distance
= new_distance
;
517 } while (disk
!= conf
->last_used
);
523 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
526 atomic_inc(&rdev
->nr_pending
);
527 if (!test_bit(In_sync
, &rdev
->flags
)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev
, conf
->mddev
);
534 conf
->next_seq_sect
= this_sector
+ sectors
;
535 conf
->last_used
= new_disk
;
542 static void unplug_slaves(mddev_t
*mddev
)
544 conf_t
*conf
= mddev
->private;
548 for (i
=0; i
<mddev
->raid_disks
; i
++) {
549 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
550 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
551 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
553 atomic_inc(&rdev
->nr_pending
);
558 rdev_dec_pending(rdev
, mddev
);
565 static void raid1_unplug(struct request_queue
*q
)
567 mddev_t
*mddev
= q
->queuedata
;
569 unplug_slaves(mddev
);
570 md_wakeup_thread(mddev
->thread
);
573 static int raid1_congested(void *data
, int bits
)
575 mddev_t
*mddev
= data
;
576 conf_t
*conf
= mddev
->private;
579 if (mddev_congested(mddev
, bits
))
583 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
584 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
585 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
586 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
588 /* Note the '|| 1' - when read_balance prefers
589 * non-congested targets, it can be removed
591 if ((bits
& (1<<BDI_async_congested
)) || 1)
592 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
594 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
602 static int flush_pending_writes(conf_t
*conf
)
604 /* Any writes that have been queued but are awaiting
605 * bitmap updates get flushed here.
606 * We return 1 if any requests were actually submitted.
610 spin_lock_irq(&conf
->device_lock
);
612 if (conf
->pending_bio_list
.head
) {
614 bio
= bio_list_get(&conf
->pending_bio_list
);
615 blk_remove_plug(conf
->mddev
->queue
);
616 spin_unlock_irq(&conf
->device_lock
);
617 /* flush any pending bitmap writes to
618 * disk before proceeding w/ I/O */
619 bitmap_unplug(conf
->mddev
->bitmap
);
621 while (bio
) { /* submit pending writes */
622 struct bio
*next
= bio
->bi_next
;
624 generic_make_request(bio
);
629 spin_unlock_irq(&conf
->device_lock
);
634 * Sometimes we need to suspend IO while we do something else,
635 * either some resync/recovery, or reconfigure the array.
636 * To do this we raise a 'barrier'.
637 * The 'barrier' is a counter that can be raised multiple times
638 * to count how many activities are happening which preclude
640 * We can only raise the barrier if there is no pending IO.
641 * i.e. if nr_pending == 0.
642 * We choose only to raise the barrier if no-one is waiting for the
643 * barrier to go down. This means that as soon as an IO request
644 * is ready, no other operations which require a barrier will start
645 * until the IO request has had a chance.
647 * So: regular IO calls 'wait_barrier'. When that returns there
648 * is no backgroup IO happening, It must arrange to call
649 * allow_barrier when it has finished its IO.
650 * backgroup IO calls must call raise_barrier. Once that returns
651 * there is no normal IO happeing. It must arrange to call
652 * lower_barrier when the particular background IO completes.
654 #define RESYNC_DEPTH 32
656 static void raise_barrier(conf_t
*conf
)
658 spin_lock_irq(&conf
->resync_lock
);
660 /* Wait until no block IO is waiting */
661 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
663 raid1_unplug(conf
->mddev
->queue
));
665 /* block any new IO from starting */
668 /* No wait for all pending IO to complete */
669 wait_event_lock_irq(conf
->wait_barrier
,
670 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
672 raid1_unplug(conf
->mddev
->queue
));
674 spin_unlock_irq(&conf
->resync_lock
);
677 static void lower_barrier(conf_t
*conf
)
680 BUG_ON(conf
->barrier
<= 0);
681 spin_lock_irqsave(&conf
->resync_lock
, flags
);
683 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
684 wake_up(&conf
->wait_barrier
);
687 static void wait_barrier(conf_t
*conf
)
689 spin_lock_irq(&conf
->resync_lock
);
692 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
694 raid1_unplug(conf
->mddev
->queue
));
698 spin_unlock_irq(&conf
->resync_lock
);
701 static void allow_barrier(conf_t
*conf
)
704 spin_lock_irqsave(&conf
->resync_lock
, flags
);
706 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
707 wake_up(&conf
->wait_barrier
);
710 static void freeze_array(conf_t
*conf
)
712 /* stop syncio and normal IO and wait for everything to
714 * We increment barrier and nr_waiting, and then
715 * wait until nr_pending match nr_queued+1
716 * This is called in the context of one normal IO request
717 * that has failed. Thus any sync request that might be pending
718 * will be blocked by nr_pending, and we need to wait for
719 * pending IO requests to complete or be queued for re-try.
720 * Thus the number queued (nr_queued) plus this request (1)
721 * must match the number of pending IOs (nr_pending) before
724 spin_lock_irq(&conf
->resync_lock
);
727 wait_event_lock_irq(conf
->wait_barrier
,
728 conf
->nr_pending
== conf
->nr_queued
+1,
730 ({ flush_pending_writes(conf
);
731 raid1_unplug(conf
->mddev
->queue
); }));
732 spin_unlock_irq(&conf
->resync_lock
);
734 static void unfreeze_array(conf_t
*conf
)
736 /* reverse the effect of the freeze */
737 spin_lock_irq(&conf
->resync_lock
);
740 wake_up(&conf
->wait_barrier
);
741 spin_unlock_irq(&conf
->resync_lock
);
745 /* duplicate the data pages for behind I/O */
746 static struct page
**alloc_behind_pages(struct bio
*bio
)
749 struct bio_vec
*bvec
;
750 struct page
**pages
= kzalloc(bio
->bi_vcnt
* sizeof(struct page
*),
752 if (unlikely(!pages
))
755 bio_for_each_segment(bvec
, bio
, i
) {
756 pages
[i
] = alloc_page(GFP_NOIO
);
757 if (unlikely(!pages
[i
]))
759 memcpy(kmap(pages
[i
]) + bvec
->bv_offset
,
760 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
762 kunmap(bvec
->bv_page
);
769 for (i
= 0; i
< bio
->bi_vcnt
&& pages
[i
]; i
++)
772 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
776 static int make_request(struct request_queue
*q
, struct bio
* bio
)
778 mddev_t
*mddev
= q
->queuedata
;
779 conf_t
*conf
= mddev
->private;
780 mirror_info_t
*mirror
;
782 struct bio
*read_bio
;
783 int i
, targets
= 0, disks
;
784 struct bitmap
*bitmap
;
787 struct page
**behind_pages
= NULL
;
788 const int rw
= bio_data_dir(bio
);
789 const bool do_sync
= bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
792 mdk_rdev_t
*blocked_rdev
;
795 * Register the new request and wait if the reconstruction
796 * thread has put up a bar for new requests.
797 * Continue immediately if no resync is active currently.
798 * We test barriers_work *after* md_write_start as md_write_start
799 * may cause the first superblock write, and that will check out
803 md_write_start(mddev
, bio
); /* wait on superblock update early */
805 if (bio_data_dir(bio
) == WRITE
&&
806 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
807 bio
->bi_sector
< mddev
->suspend_hi
) {
808 /* As the suspend_* range is controlled by
809 * userspace, we want an interruptible
814 flush_signals(current
);
815 prepare_to_wait(&conf
->wait_barrier
,
816 &w
, TASK_INTERRUPTIBLE
);
817 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
818 bio
->bi_sector
>= mddev
->suspend_hi
)
822 finish_wait(&conf
->wait_barrier
, &w
);
824 if (unlikely(!mddev
->barriers_work
&&
825 bio_rw_flagged(bio
, BIO_RW_BARRIER
))) {
828 bio_endio(bio
, -EOPNOTSUPP
);
834 bitmap
= mddev
->bitmap
;
836 cpu
= part_stat_lock();
837 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
838 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
843 * make_request() can abort the operation when READA is being
844 * used and no empty request is available.
847 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
849 r1_bio
->master_bio
= bio
;
850 r1_bio
->sectors
= bio
->bi_size
>> 9;
852 r1_bio
->mddev
= mddev
;
853 r1_bio
->sector
= bio
->bi_sector
;
857 * read balancing logic:
859 int rdisk
= read_balance(conf
, r1_bio
);
862 /* couldn't find anywhere to read from */
863 raid_end_bio_io(r1_bio
);
866 mirror
= conf
->mirrors
+ rdisk
;
868 r1_bio
->read_disk
= rdisk
;
870 read_bio
= bio_clone(bio
, GFP_NOIO
);
872 r1_bio
->bios
[rdisk
] = read_bio
;
874 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
875 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
876 read_bio
->bi_end_io
= raid1_end_read_request
;
877 read_bio
->bi_rw
= READ
| (do_sync
<< BIO_RW_SYNCIO
);
878 read_bio
->bi_private
= r1_bio
;
880 generic_make_request(read_bio
);
887 /* first select target devices under spinlock and
888 * inc refcount on their rdev. Record them by setting
891 disks
= conf
->raid_disks
;
893 { static int first
=1;
894 if (first
) printk("First Write sector %llu disks %d\n",
895 (unsigned long long)r1_bio
->sector
, disks
);
902 for (i
= 0; i
< disks
; i
++) {
903 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
904 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
905 atomic_inc(&rdev
->nr_pending
);
909 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
910 atomic_inc(&rdev
->nr_pending
);
911 if (test_bit(Faulty
, &rdev
->flags
)) {
912 rdev_dec_pending(rdev
, mddev
);
913 r1_bio
->bios
[i
] = NULL
;
915 r1_bio
->bios
[i
] = bio
;
919 r1_bio
->bios
[i
] = NULL
;
923 if (unlikely(blocked_rdev
)) {
924 /* Wait for this device to become unblocked */
927 for (j
= 0; j
< i
; j
++)
929 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
932 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
937 BUG_ON(targets
== 0); /* we never fail the last device */
939 if (targets
< conf
->raid_disks
) {
940 /* array is degraded, we will not clear the bitmap
941 * on I/O completion (see raid1_end_write_request) */
942 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
945 /* do behind I/O ? */
947 (atomic_read(&bitmap
->behind_writes
)
948 < mddev
->bitmap_info
.max_write_behind
) &&
949 (behind_pages
= alloc_behind_pages(bio
)) != NULL
)
950 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
952 atomic_set(&r1_bio
->remaining
, 0);
953 atomic_set(&r1_bio
->behind_remaining
, 0);
955 do_barriers
= bio_rw_flagged(bio
, BIO_RW_BARRIER
);
957 set_bit(R1BIO_Barrier
, &r1_bio
->state
);
960 for (i
= 0; i
< disks
; i
++) {
962 if (!r1_bio
->bios
[i
])
965 mbio
= bio_clone(bio
, GFP_NOIO
);
966 r1_bio
->bios
[i
] = mbio
;
968 mbio
->bi_sector
= r1_bio
->sector
+ conf
->mirrors
[i
].rdev
->data_offset
;
969 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
970 mbio
->bi_end_io
= raid1_end_write_request
;
971 mbio
->bi_rw
= WRITE
| (do_barriers
<< BIO_RW_BARRIER
) |
972 (do_sync
<< BIO_RW_SYNCIO
);
973 mbio
->bi_private
= r1_bio
;
976 struct bio_vec
*bvec
;
979 /* Yes, I really want the '__' version so that
980 * we clear any unused pointer in the io_vec, rather
981 * than leave them unchanged. This is important
982 * because when we come to free the pages, we won't
983 * know the originial bi_idx, so we just free
986 __bio_for_each_segment(bvec
, mbio
, j
, 0)
987 bvec
->bv_page
= behind_pages
[j
];
988 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
989 atomic_inc(&r1_bio
->behind_remaining
);
992 atomic_inc(&r1_bio
->remaining
);
994 bio_list_add(&bl
, mbio
);
996 kfree(behind_pages
); /* the behind pages are attached to the bios now */
998 bitmap_startwrite(bitmap
, bio
->bi_sector
, r1_bio
->sectors
,
999 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
1000 spin_lock_irqsave(&conf
->device_lock
, flags
);
1001 bio_list_merge(&conf
->pending_bio_list
, &bl
);
1004 blk_plug_device(mddev
->queue
);
1005 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1007 /* In case raid1d snuck into freeze_array */
1008 wake_up(&conf
->wait_barrier
);
1011 md_wakeup_thread(mddev
->thread
);
1013 while ((bio
= bio_list_pop(&bl
)) != NULL
)
1014 generic_make_request(bio
);
1020 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
1022 conf_t
*conf
= mddev
->private;
1025 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1026 conf
->raid_disks
- mddev
->degraded
);
1028 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1029 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1030 seq_printf(seq
, "%s",
1031 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1034 seq_printf(seq
, "]");
1038 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1040 char b
[BDEVNAME_SIZE
];
1041 conf_t
*conf
= mddev
->private;
1044 * If it is not operational, then we have already marked it as dead
1045 * else if it is the last working disks, ignore the error, let the
1046 * next level up know.
1047 * else mark the drive as failed
1049 if (test_bit(In_sync
, &rdev
->flags
)
1050 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1052 * Don't fail the drive, act as though we were just a
1053 * normal single drive.
1054 * However don't try a recovery from this drive as
1055 * it is very likely to fail.
1057 mddev
->recovery_disabled
= 1;
1060 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1061 unsigned long flags
;
1062 spin_lock_irqsave(&conf
->device_lock
, flags
);
1064 set_bit(Faulty
, &rdev
->flags
);
1065 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1067 * if recovery is running, make sure it aborts.
1069 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1071 set_bit(Faulty
, &rdev
->flags
);
1072 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1073 printk(KERN_ALERT
"raid1: Disk failure on %s, disabling device.\n"
1074 "raid1: Operation continuing on %d devices.\n",
1075 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1078 static void print_conf(conf_t
*conf
)
1082 printk("RAID1 conf printout:\n");
1084 printk("(!conf)\n");
1087 printk(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1091 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1092 char b
[BDEVNAME_SIZE
];
1093 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1095 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1096 i
, !test_bit(In_sync
, &rdev
->flags
),
1097 !test_bit(Faulty
, &rdev
->flags
),
1098 bdevname(rdev
->bdev
,b
));
1103 static void close_sync(conf_t
*conf
)
1106 allow_barrier(conf
);
1108 mempool_destroy(conf
->r1buf_pool
);
1109 conf
->r1buf_pool
= NULL
;
1112 static int raid1_spare_active(mddev_t
*mddev
)
1115 conf_t
*conf
= mddev
->private;
1118 * Find all failed disks within the RAID1 configuration
1119 * and mark them readable.
1120 * Called under mddev lock, so rcu protection not needed.
1122 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1123 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1125 && !test_bit(Faulty
, &rdev
->flags
)
1126 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1127 unsigned long flags
;
1128 spin_lock_irqsave(&conf
->device_lock
, flags
);
1130 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1139 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1141 conf_t
*conf
= mddev
->private;
1146 int last
= mddev
->raid_disks
- 1;
1148 if (rdev
->raid_disk
>= 0)
1149 first
= last
= rdev
->raid_disk
;
1151 for (mirror
= first
; mirror
<= last
; mirror
++)
1152 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1154 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1155 rdev
->data_offset
<< 9);
1156 /* as we don't honour merge_bvec_fn, we must never risk
1157 * violating it, so limit ->max_sector to one PAGE, as
1158 * a one page request is never in violation.
1160 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1161 queue_max_sectors(mddev
->queue
) > (PAGE_SIZE
>>9))
1162 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
1164 p
->head_position
= 0;
1165 rdev
->raid_disk
= mirror
;
1167 /* As all devices are equivalent, we don't need a full recovery
1168 * if this was recently any drive of the array
1170 if (rdev
->saved_raid_disk
< 0)
1172 rcu_assign_pointer(p
->rdev
, rdev
);
1175 md_integrity_add_rdev(rdev
, mddev
);
1180 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1182 conf_t
*conf
= mddev
->private;
1185 mirror_info_t
*p
= conf
->mirrors
+ number
;
1190 if (test_bit(In_sync
, &rdev
->flags
) ||
1191 atomic_read(&rdev
->nr_pending
)) {
1195 /* Only remove non-faulty devices is recovery
1198 if (!test_bit(Faulty
, &rdev
->flags
) &&
1199 !mddev
->recovery_disabled
&&
1200 mddev
->degraded
< conf
->raid_disks
) {
1206 if (atomic_read(&rdev
->nr_pending
)) {
1207 /* lost the race, try later */
1212 md_integrity_register(mddev
);
1221 static void end_sync_read(struct bio
*bio
, int error
)
1223 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
1226 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1227 if (r1_bio
->bios
[i
] == bio
)
1230 update_head_pos(i
, r1_bio
);
1232 * we have read a block, now it needs to be re-written,
1233 * or re-read if the read failed.
1234 * We don't do much here, just schedule handling by raid1d
1236 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1237 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1239 if (atomic_dec_and_test(&r1_bio
->remaining
))
1240 reschedule_retry(r1_bio
);
1243 static void end_sync_write(struct bio
*bio
, int error
)
1245 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1246 r1bio_t
* r1_bio
= (r1bio_t
*)(bio
->bi_private
);
1247 mddev_t
*mddev
= r1_bio
->mddev
;
1248 conf_t
*conf
= mddev
->private;
1252 for (i
= 0; i
< conf
->raid_disks
; i
++)
1253 if (r1_bio
->bios
[i
] == bio
) {
1258 int sync_blocks
= 0;
1259 sector_t s
= r1_bio
->sector
;
1260 long sectors_to_go
= r1_bio
->sectors
;
1261 /* make sure these bits doesn't get cleared. */
1263 bitmap_end_sync(mddev
->bitmap
, s
,
1266 sectors_to_go
-= sync_blocks
;
1267 } while (sectors_to_go
> 0);
1268 md_error(mddev
, conf
->mirrors
[mirror
].rdev
);
1271 update_head_pos(mirror
, r1_bio
);
1273 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1274 sector_t s
= r1_bio
->sectors
;
1276 md_done_sync(mddev
, s
, uptodate
);
1280 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1282 conf_t
*conf
= mddev
->private;
1284 int disks
= conf
->raid_disks
;
1285 struct bio
*bio
, *wbio
;
1287 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1290 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1291 /* We have read all readable devices. If we haven't
1292 * got the block, then there is no hope left.
1293 * If we have, then we want to do a comparison
1294 * and skip the write if everything is the same.
1295 * If any blocks failed to read, then we need to
1296 * attempt an over-write
1299 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1300 for (i
=0; i
<mddev
->raid_disks
; i
++)
1301 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
)
1302 md_error(mddev
, conf
->mirrors
[i
].rdev
);
1304 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1308 for (primary
=0; primary
<mddev
->raid_disks
; primary
++)
1309 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1310 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1311 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1312 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1315 r1_bio
->read_disk
= primary
;
1316 for (i
=0; i
<mddev
->raid_disks
; i
++)
1317 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
) {
1319 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1320 struct bio
*pbio
= r1_bio
->bios
[primary
];
1321 struct bio
*sbio
= r1_bio
->bios
[i
];
1323 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1324 for (j
= vcnt
; j
-- ; ) {
1326 p
= pbio
->bi_io_vec
[j
].bv_page
;
1327 s
= sbio
->bi_io_vec
[j
].bv_page
;
1328 if (memcmp(page_address(p
),
1336 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1337 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1338 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1339 sbio
->bi_end_io
= NULL
;
1340 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1342 /* fixup the bio for reuse */
1344 sbio
->bi_vcnt
= vcnt
;
1345 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1347 sbio
->bi_phys_segments
= 0;
1348 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1349 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1350 sbio
->bi_next
= NULL
;
1351 sbio
->bi_sector
= r1_bio
->sector
+
1352 conf
->mirrors
[i
].rdev
->data_offset
;
1353 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1354 size
= sbio
->bi_size
;
1355 for (j
= 0; j
< vcnt
; j
++) {
1357 bi
= &sbio
->bi_io_vec
[j
];
1359 if (size
> PAGE_SIZE
)
1360 bi
->bv_len
= PAGE_SIZE
;
1364 memcpy(page_address(bi
->bv_page
),
1365 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1372 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1373 /* ouch - failed to read all of that.
1374 * Try some synchronous reads of other devices to get
1375 * good data, much like with normal read errors. Only
1376 * read into the pages we already have so we don't
1377 * need to re-issue the read request.
1378 * We don't need to freeze the array, because being in an
1379 * active sync request, there is no normal IO, and
1380 * no overlapping syncs.
1382 sector_t sect
= r1_bio
->sector
;
1383 int sectors
= r1_bio
->sectors
;
1388 int d
= r1_bio
->read_disk
;
1392 if (s
> (PAGE_SIZE
>>9))
1395 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1396 /* No rcu protection needed here devices
1397 * can only be removed when no resync is
1398 * active, and resync is currently active
1400 rdev
= conf
->mirrors
[d
].rdev
;
1401 if (sync_page_io(rdev
->bdev
,
1402 sect
+ rdev
->data_offset
,
1404 bio
->bi_io_vec
[idx
].bv_page
,
1411 if (d
== conf
->raid_disks
)
1413 } while (!success
&& d
!= r1_bio
->read_disk
);
1417 /* write it back and re-read */
1418 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1419 while (d
!= r1_bio
->read_disk
) {
1421 d
= conf
->raid_disks
;
1423 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1425 rdev
= conf
->mirrors
[d
].rdev
;
1426 atomic_add(s
, &rdev
->corrected_errors
);
1427 if (sync_page_io(rdev
->bdev
,
1428 sect
+ rdev
->data_offset
,
1430 bio
->bi_io_vec
[idx
].bv_page
,
1432 md_error(mddev
, rdev
);
1435 while (d
!= r1_bio
->read_disk
) {
1437 d
= conf
->raid_disks
;
1439 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1441 rdev
= conf
->mirrors
[d
].rdev
;
1442 if (sync_page_io(rdev
->bdev
,
1443 sect
+ rdev
->data_offset
,
1445 bio
->bi_io_vec
[idx
].bv_page
,
1447 md_error(mddev
, rdev
);
1450 char b
[BDEVNAME_SIZE
];
1451 /* Cannot read from anywhere, array is toast */
1452 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1453 printk(KERN_ALERT
"raid1: %s: unrecoverable I/O read error"
1454 " for block %llu\n",
1455 bdevname(bio
->bi_bdev
,b
),
1456 (unsigned long long)r1_bio
->sector
);
1457 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1470 atomic_set(&r1_bio
->remaining
, 1);
1471 for (i
= 0; i
< disks
; i
++) {
1472 wbio
= r1_bio
->bios
[i
];
1473 if (wbio
->bi_end_io
== NULL
||
1474 (wbio
->bi_end_io
== end_sync_read
&&
1475 (i
== r1_bio
->read_disk
||
1476 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1479 wbio
->bi_rw
= WRITE
;
1480 wbio
->bi_end_io
= end_sync_write
;
1481 atomic_inc(&r1_bio
->remaining
);
1482 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1484 generic_make_request(wbio
);
1487 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1488 /* if we're here, all write(s) have completed, so clean up */
1489 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1495 * This is a kernel thread which:
1497 * 1. Retries failed read operations on working mirrors.
1498 * 2. Updates the raid superblock when problems encounter.
1499 * 3. Performs writes following reads for array syncronising.
1502 static void fix_read_error(conf_t
*conf
, int read_disk
,
1503 sector_t sect
, int sectors
)
1505 mddev_t
*mddev
= conf
->mddev
;
1513 if (s
> (PAGE_SIZE
>>9))
1517 /* Note: no rcu protection needed here
1518 * as this is synchronous in the raid1d thread
1519 * which is the thread that might remove
1520 * a device. If raid1d ever becomes multi-threaded....
1522 rdev
= conf
->mirrors
[d
].rdev
;
1524 test_bit(In_sync
, &rdev
->flags
) &&
1525 sync_page_io(rdev
->bdev
,
1526 sect
+ rdev
->data_offset
,
1528 conf
->tmppage
, READ
))
1532 if (d
== conf
->raid_disks
)
1535 } while (!success
&& d
!= read_disk
);
1538 /* Cannot read from anywhere -- bye bye array */
1539 md_error(mddev
, conf
->mirrors
[read_disk
].rdev
);
1542 /* write it back and re-read */
1544 while (d
!= read_disk
) {
1546 d
= conf
->raid_disks
;
1548 rdev
= conf
->mirrors
[d
].rdev
;
1550 test_bit(In_sync
, &rdev
->flags
)) {
1551 if (sync_page_io(rdev
->bdev
,
1552 sect
+ rdev
->data_offset
,
1553 s
<<9, conf
->tmppage
, WRITE
)
1555 /* Well, this device is dead */
1556 md_error(mddev
, rdev
);
1560 while (d
!= read_disk
) {
1561 char b
[BDEVNAME_SIZE
];
1563 d
= conf
->raid_disks
;
1565 rdev
= conf
->mirrors
[d
].rdev
;
1567 test_bit(In_sync
, &rdev
->flags
)) {
1568 if (sync_page_io(rdev
->bdev
,
1569 sect
+ rdev
->data_offset
,
1570 s
<<9, conf
->tmppage
, READ
)
1572 /* Well, this device is dead */
1573 md_error(mddev
, rdev
);
1575 atomic_add(s
, &rdev
->corrected_errors
);
1577 "raid1:%s: read error corrected "
1578 "(%d sectors at %llu on %s)\n",
1580 (unsigned long long)(sect
+
1582 bdevname(rdev
->bdev
, b
));
1591 static void raid1d(mddev_t
*mddev
)
1595 unsigned long flags
;
1596 conf_t
*conf
= mddev
->private;
1597 struct list_head
*head
= &conf
->retry_list
;
1601 md_check_recovery(mddev
);
1604 char b
[BDEVNAME_SIZE
];
1606 unplug
+= flush_pending_writes(conf
);
1608 spin_lock_irqsave(&conf
->device_lock
, flags
);
1609 if (list_empty(head
)) {
1610 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1613 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
1614 list_del(head
->prev
);
1616 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1618 mddev
= r1_bio
->mddev
;
1619 conf
= mddev
->private;
1620 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
1621 sync_request_write(mddev
, r1_bio
);
1623 } else if (test_bit(R1BIO_BarrierRetry
, &r1_bio
->state
)) {
1624 /* some requests in the r1bio were BIO_RW_BARRIER
1625 * requests which failed with -EOPNOTSUPP. Hohumm..
1626 * Better resubmit without the barrier.
1627 * We know which devices to resubmit for, because
1628 * all others have had their bios[] entry cleared.
1629 * We already have a nr_pending reference on these rdevs.
1632 const bool do_sync
= bio_rw_flagged(r1_bio
->master_bio
, BIO_RW_SYNCIO
);
1633 clear_bit(R1BIO_BarrierRetry
, &r1_bio
->state
);
1634 clear_bit(R1BIO_Barrier
, &r1_bio
->state
);
1635 for (i
=0; i
< conf
->raid_disks
; i
++)
1636 if (r1_bio
->bios
[i
])
1637 atomic_inc(&r1_bio
->remaining
);
1638 for (i
=0; i
< conf
->raid_disks
; i
++)
1639 if (r1_bio
->bios
[i
]) {
1640 struct bio_vec
*bvec
;
1643 bio
= bio_clone(r1_bio
->master_bio
, GFP_NOIO
);
1644 /* copy pages from the failed bio, as
1645 * this might be a write-behind device */
1646 __bio_for_each_segment(bvec
, bio
, j
, 0)
1647 bvec
->bv_page
= bio_iovec_idx(r1_bio
->bios
[i
], j
)->bv_page
;
1648 bio_put(r1_bio
->bios
[i
]);
1649 bio
->bi_sector
= r1_bio
->sector
+
1650 conf
->mirrors
[i
].rdev
->data_offset
;
1651 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1652 bio
->bi_end_io
= raid1_end_write_request
;
1653 bio
->bi_rw
= WRITE
|
1654 (do_sync
<< BIO_RW_SYNCIO
);
1655 bio
->bi_private
= r1_bio
;
1656 r1_bio
->bios
[i
] = bio
;
1657 generic_make_request(bio
);
1662 /* we got a read error. Maybe the drive is bad. Maybe just
1663 * the block and we can fix it.
1664 * We freeze all other IO, and try reading the block from
1665 * other devices. When we find one, we re-write
1666 * and check it that fixes the read error.
1667 * This is all done synchronously while the array is
1670 if (mddev
->ro
== 0) {
1672 fix_read_error(conf
, r1_bio
->read_disk
,
1675 unfreeze_array(conf
);
1678 conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1680 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1681 if ((disk
=read_balance(conf
, r1_bio
)) == -1) {
1682 printk(KERN_ALERT
"raid1: %s: unrecoverable I/O"
1683 " read error for block %llu\n",
1684 bdevname(bio
->bi_bdev
,b
),
1685 (unsigned long long)r1_bio
->sector
);
1686 raid_end_bio_io(r1_bio
);
1688 const bool do_sync
= bio_rw_flagged(r1_bio
->master_bio
, BIO_RW_SYNCIO
);
1689 r1_bio
->bios
[r1_bio
->read_disk
] =
1690 mddev
->ro
? IO_BLOCKED
: NULL
;
1691 r1_bio
->read_disk
= disk
;
1693 bio
= bio_clone(r1_bio
->master_bio
, GFP_NOIO
);
1694 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1695 rdev
= conf
->mirrors
[disk
].rdev
;
1696 if (printk_ratelimit())
1697 printk(KERN_ERR
"raid1: %s: redirecting sector %llu to"
1698 " another mirror\n",
1699 bdevname(rdev
->bdev
,b
),
1700 (unsigned long long)r1_bio
->sector
);
1701 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1702 bio
->bi_bdev
= rdev
->bdev
;
1703 bio
->bi_end_io
= raid1_end_read_request
;
1704 bio
->bi_rw
= READ
| (do_sync
<< BIO_RW_SYNCIO
);
1705 bio
->bi_private
= r1_bio
;
1707 generic_make_request(bio
);
1713 unplug_slaves(mddev
);
1717 static int init_resync(conf_t
*conf
)
1721 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1722 BUG_ON(conf
->r1buf_pool
);
1723 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
1725 if (!conf
->r1buf_pool
)
1727 conf
->next_resync
= 0;
1732 * perform a "sync" on one "block"
1734 * We need to make sure that no normal I/O request - particularly write
1735 * requests - conflict with active sync requests.
1737 * This is achieved by tracking pending requests and a 'barrier' concept
1738 * that can be installed to exclude normal IO requests.
1741 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1743 conf_t
*conf
= mddev
->private;
1746 sector_t max_sector
, nr_sectors
;
1750 int write_targets
= 0, read_targets
= 0;
1752 int still_degraded
= 0;
1754 if (!conf
->r1buf_pool
)
1757 printk("sync start - bitmap %p\n", mddev->bitmap);
1759 if (init_resync(conf
))
1763 max_sector
= mddev
->dev_sectors
;
1764 if (sector_nr
>= max_sector
) {
1765 /* If we aborted, we need to abort the
1766 * sync on the 'current' bitmap chunk (there will
1767 * only be one in raid1 resync.
1768 * We can find the current addess in mddev->curr_resync
1770 if (mddev
->curr_resync
< max_sector
) /* aborted */
1771 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1773 else /* completed sync */
1776 bitmap_close_sync(mddev
->bitmap
);
1781 if (mddev
->bitmap
== NULL
&&
1782 mddev
->recovery_cp
== MaxSector
&&
1783 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
1784 conf
->fullsync
== 0) {
1786 return max_sector
- sector_nr
;
1788 /* before building a request, check if we can skip these blocks..
1789 * This call the bitmap_start_sync doesn't actually record anything
1791 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
1792 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1793 /* We can skip this block, and probably several more */
1798 * If there is non-resync activity waiting for a turn,
1799 * and resync is going fast enough,
1800 * then let it though before starting on this new sync request.
1802 if (!go_faster
&& conf
->nr_waiting
)
1803 msleep_interruptible(1000);
1805 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1806 raise_barrier(conf
);
1808 conf
->next_resync
= sector_nr
;
1810 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
1813 * If we get a correctably read error during resync or recovery,
1814 * we might want to read from a different device. So we
1815 * flag all drives that could conceivably be read from for READ,
1816 * and any others (which will be non-In_sync devices) for WRITE.
1817 * If a read fails, we try reading from something else for which READ
1821 r1_bio
->mddev
= mddev
;
1822 r1_bio
->sector
= sector_nr
;
1824 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
1826 for (i
=0; i
< conf
->raid_disks
; i
++) {
1828 bio
= r1_bio
->bios
[i
];
1830 /* take from bio_init */
1831 bio
->bi_next
= NULL
;
1832 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1836 bio
->bi_phys_segments
= 0;
1838 bio
->bi_end_io
= NULL
;
1839 bio
->bi_private
= NULL
;
1841 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1843 test_bit(Faulty
, &rdev
->flags
)) {
1846 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
1848 bio
->bi_end_io
= end_sync_write
;
1851 /* may need to read from here */
1853 bio
->bi_end_io
= end_sync_read
;
1854 if (test_bit(WriteMostly
, &rdev
->flags
)) {
1863 atomic_inc(&rdev
->nr_pending
);
1864 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
1865 bio
->bi_bdev
= rdev
->bdev
;
1866 bio
->bi_private
= r1_bio
;
1871 r1_bio
->read_disk
= disk
;
1873 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
1874 /* extra read targets are also write targets */
1875 write_targets
+= read_targets
-1;
1877 if (write_targets
== 0 || read_targets
== 0) {
1878 /* There is nowhere to write, so all non-sync
1879 * drives must be failed - so we are finished
1881 sector_t rv
= max_sector
- sector_nr
;
1887 if (max_sector
> mddev
->resync_max
)
1888 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1893 int len
= PAGE_SIZE
;
1894 if (sector_nr
+ (len
>>9) > max_sector
)
1895 len
= (max_sector
- sector_nr
) << 9;
1898 if (sync_blocks
== 0) {
1899 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1900 &sync_blocks
, still_degraded
) &&
1902 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1904 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
1905 if (len
> (sync_blocks
<<9))
1906 len
= sync_blocks
<<9;
1909 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
1910 bio
= r1_bio
->bios
[i
];
1911 if (bio
->bi_end_io
) {
1912 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1913 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1915 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1918 bio
= r1_bio
->bios
[i
];
1919 if (bio
->bi_end_io
==NULL
)
1921 /* remove last page from this bio */
1923 bio
->bi_size
-= len
;
1924 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1930 nr_sectors
+= len
>>9;
1931 sector_nr
+= len
>>9;
1932 sync_blocks
-= (len
>>9);
1933 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
1935 r1_bio
->sectors
= nr_sectors
;
1937 /* For a user-requested sync, we read all readable devices and do a
1940 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1941 atomic_set(&r1_bio
->remaining
, read_targets
);
1942 for (i
=0; i
<conf
->raid_disks
; i
++) {
1943 bio
= r1_bio
->bios
[i
];
1944 if (bio
->bi_end_io
== end_sync_read
) {
1945 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1946 generic_make_request(bio
);
1950 atomic_set(&r1_bio
->remaining
, 1);
1951 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1952 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1953 generic_make_request(bio
);
1959 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
1964 return mddev
->dev_sectors
;
1967 static conf_t
*setup_conf(mddev_t
*mddev
)
1971 mirror_info_t
*disk
;
1975 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1979 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1984 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1988 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
1989 if (!conf
->poolinfo
)
1991 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
1992 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
1995 if (!conf
->r1bio_pool
)
1998 conf
->poolinfo
->mddev
= mddev
;
2000 spin_lock_init(&conf
->device_lock
);
2001 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2002 int disk_idx
= rdev
->raid_disk
;
2003 if (disk_idx
>= mddev
->raid_disks
2006 disk
= conf
->mirrors
+ disk_idx
;
2010 disk
->head_position
= 0;
2012 conf
->raid_disks
= mddev
->raid_disks
;
2013 conf
->mddev
= mddev
;
2014 INIT_LIST_HEAD(&conf
->retry_list
);
2016 spin_lock_init(&conf
->resync_lock
);
2017 init_waitqueue_head(&conf
->wait_barrier
);
2019 bio_list_init(&conf
->pending_bio_list
);
2020 bio_list_init(&conf
->flushing_bio_list
);
2022 conf
->last_used
= -1;
2023 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2025 disk
= conf
->mirrors
+ i
;
2028 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2029 disk
->head_position
= 0;
2032 } else if (conf
->last_used
< 0)
2034 * The first working device is used as a
2035 * starting point to read balancing.
2037 conf
->last_used
= i
;
2041 if (conf
->last_used
< 0) {
2042 printk(KERN_ERR
"raid1: no operational mirrors for %s\n",
2047 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
2048 if (!conf
->thread
) {
2050 "raid1: couldn't allocate thread for %s\n",
2059 if (conf
->r1bio_pool
)
2060 mempool_destroy(conf
->r1bio_pool
);
2061 kfree(conf
->mirrors
);
2062 safe_put_page(conf
->tmppage
);
2063 kfree(conf
->poolinfo
);
2066 return ERR_PTR(err
);
2069 static int run(mddev_t
*mddev
)
2075 if (mddev
->level
!= 1) {
2076 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2077 mdname(mddev
), mddev
->level
);
2080 if (mddev
->reshape_position
!= MaxSector
) {
2081 printk("raid1: %s: reshape_position set but not supported\n",
2086 * copy the already verified devices into our private RAID1
2087 * bookkeeping area. [whatever we allocate in run(),
2088 * should be freed in stop()]
2090 if (mddev
->private == NULL
)
2091 conf
= setup_conf(mddev
);
2093 conf
= mddev
->private;
2096 return PTR_ERR(conf
);
2098 mddev
->queue
->queue_lock
= &conf
->device_lock
;
2099 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2100 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2101 rdev
->data_offset
<< 9);
2102 /* as we don't honour merge_bvec_fn, we must never risk
2103 * violating it, so limit ->max_sector to one PAGE, as
2104 * a one page request is never in violation.
2106 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
2107 queue_max_sectors(mddev
->queue
) > (PAGE_SIZE
>>9))
2108 blk_queue_max_sectors(mddev
->queue
, PAGE_SIZE
>>9);
2111 mddev
->degraded
= 0;
2112 for (i
=0; i
< conf
->raid_disks
; i
++)
2113 if (conf
->mirrors
[i
].rdev
== NULL
||
2114 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2115 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2118 if (conf
->raid_disks
- mddev
->degraded
== 1)
2119 mddev
->recovery_cp
= MaxSector
;
2121 if (mddev
->recovery_cp
!= MaxSector
)
2122 printk(KERN_NOTICE
"raid1: %s is not clean"
2123 " -- starting background reconstruction\n",
2126 "raid1: raid set %s active with %d out of %d mirrors\n",
2127 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2131 * Ok, everything is just fine now
2133 mddev
->thread
= conf
->thread
;
2134 conf
->thread
= NULL
;
2135 mddev
->private = conf
;
2137 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2139 mddev
->queue
->unplug_fn
= raid1_unplug
;
2140 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2141 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2142 md_integrity_register(mddev
);
2146 static int stop(mddev_t
*mddev
)
2148 conf_t
*conf
= mddev
->private;
2149 struct bitmap
*bitmap
= mddev
->bitmap
;
2150 int behind_wait
= 0;
2152 /* wait for behind writes to complete */
2153 while (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2155 printk(KERN_INFO
"raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev
), behind_wait
);
2156 set_current_state(TASK_UNINTERRUPTIBLE
);
2157 schedule_timeout(HZ
); /* wait a second */
2158 /* need to kick something here to make sure I/O goes? */
2161 raise_barrier(conf
);
2162 lower_barrier(conf
);
2164 md_unregister_thread(mddev
->thread
);
2165 mddev
->thread
= NULL
;
2166 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2167 if (conf
->r1bio_pool
)
2168 mempool_destroy(conf
->r1bio_pool
);
2169 kfree(conf
->mirrors
);
2170 kfree(conf
->poolinfo
);
2172 mddev
->private = NULL
;
2176 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2178 /* no resync is happening, and there is enough space
2179 * on all devices, so we can resize.
2180 * We need to make sure resync covers any new space.
2181 * If the array is shrinking we should possibly wait until
2182 * any io in the removed space completes, but it hardly seems
2185 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2186 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2188 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2190 revalidate_disk(mddev
->gendisk
);
2191 if (sectors
> mddev
->dev_sectors
&&
2192 mddev
->recovery_cp
== MaxSector
) {
2193 mddev
->recovery_cp
= mddev
->dev_sectors
;
2194 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2196 mddev
->dev_sectors
= sectors
;
2197 mddev
->resync_max_sectors
= sectors
;
2201 static int raid1_reshape(mddev_t
*mddev
)
2204 * 1/ resize the r1bio_pool
2205 * 2/ resize conf->mirrors
2207 * We allocate a new r1bio_pool if we can.
2208 * Then raise a device barrier and wait until all IO stops.
2209 * Then resize conf->mirrors and swap in the new r1bio pool.
2211 * At the same time, we "pack" the devices so that all the missing
2212 * devices have the higher raid_disk numbers.
2214 mempool_t
*newpool
, *oldpool
;
2215 struct pool_info
*newpoolinfo
;
2216 mirror_info_t
*newmirrors
;
2217 conf_t
*conf
= mddev
->private;
2218 int cnt
, raid_disks
;
2219 unsigned long flags
;
2222 /* Cannot change chunk_size, layout, or level */
2223 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2224 mddev
->layout
!= mddev
->new_layout
||
2225 mddev
->level
!= mddev
->new_level
) {
2226 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2227 mddev
->new_layout
= mddev
->layout
;
2228 mddev
->new_level
= mddev
->level
;
2232 err
= md_allow_write(mddev
);
2236 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2238 if (raid_disks
< conf
->raid_disks
) {
2240 for (d
= 0; d
< conf
->raid_disks
; d
++)
2241 if (conf
->mirrors
[d
].rdev
)
2243 if (cnt
> raid_disks
)
2247 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2250 newpoolinfo
->mddev
= mddev
;
2251 newpoolinfo
->raid_disks
= raid_disks
;
2253 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2254 r1bio_pool_free
, newpoolinfo
);
2259 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2262 mempool_destroy(newpool
);
2266 raise_barrier(conf
);
2268 /* ok, everything is stopped */
2269 oldpool
= conf
->r1bio_pool
;
2270 conf
->r1bio_pool
= newpool
;
2272 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2273 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2274 if (rdev
&& rdev
->raid_disk
!= d2
) {
2276 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2277 sysfs_remove_link(&mddev
->kobj
, nm
);
2278 rdev
->raid_disk
= d2
;
2279 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2280 sysfs_remove_link(&mddev
->kobj
, nm
);
2281 if (sysfs_create_link(&mddev
->kobj
,
2284 "md/raid1: cannot register "
2289 newmirrors
[d2
++].rdev
= rdev
;
2291 kfree(conf
->mirrors
);
2292 conf
->mirrors
= newmirrors
;
2293 kfree(conf
->poolinfo
);
2294 conf
->poolinfo
= newpoolinfo
;
2296 spin_lock_irqsave(&conf
->device_lock
, flags
);
2297 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2298 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2299 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2300 mddev
->delta_disks
= 0;
2302 conf
->last_used
= 0; /* just make sure it is in-range */
2303 lower_barrier(conf
);
2305 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2306 md_wakeup_thread(mddev
->thread
);
2308 mempool_destroy(oldpool
);
2312 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2314 conf_t
*conf
= mddev
->private;
2317 case 2: /* wake for suspend */
2318 wake_up(&conf
->wait_barrier
);
2321 raise_barrier(conf
);
2324 lower_barrier(conf
);
2329 static void *raid1_takeover(mddev_t
*mddev
)
2331 /* raid1 can take over:
2332 * raid5 with 2 devices, any layout or chunk size
2334 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2336 mddev
->new_level
= 1;
2337 mddev
->new_layout
= 0;
2338 mddev
->new_chunk_sectors
= 0;
2339 conf
= setup_conf(mddev
);
2344 return ERR_PTR(-EINVAL
);
2347 static struct mdk_personality raid1_personality
=
2351 .owner
= THIS_MODULE
,
2352 .make_request
= make_request
,
2356 .error_handler
= error
,
2357 .hot_add_disk
= raid1_add_disk
,
2358 .hot_remove_disk
= raid1_remove_disk
,
2359 .spare_active
= raid1_spare_active
,
2360 .sync_request
= sync_request
,
2361 .resize
= raid1_resize
,
2363 .check_reshape
= raid1_reshape
,
2364 .quiesce
= raid1_quiesce
,
2365 .takeover
= raid1_takeover
,
2368 static int __init
raid_init(void)
2370 return register_md_personality(&raid1_personality
);
2373 static void raid_exit(void)
2375 unregister_md_personality(&raid1_personality
);
2378 module_init(raid_init
);
2379 module_exit(raid_exit
);
2380 MODULE_LICENSE("GPL");
2381 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2382 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2383 MODULE_ALIAS("md-raid1");
2384 MODULE_ALIAS("md-level-1");