sh: kprobes: Fix up race against probe point removal.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh / kernel / kprobes.c
bloba478ba78e75289651414f7f4a72d19bdb571c537
1 /*
2 * Kernel probes (kprobes) for SuperH
4 * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
5 * Copyright (C) 2006 Lineo Solutions, Inc.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
11 #include <linux/kprobes.h>
12 #include <linux/module.h>
13 #include <linux/ptrace.h>
14 #include <linux/preempt.h>
15 #include <linux/kdebug.h>
16 #include <asm/cacheflush.h>
17 #include <asm/uaccess.h>
19 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
20 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22 static struct kprobe saved_current_opcode;
23 static struct kprobe saved_next_opcode;
24 static struct kprobe saved_next_opcode2;
26 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
27 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
28 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
29 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
30 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
31 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
33 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
34 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
36 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
37 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
39 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
40 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
42 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
46 if (OPCODE_RTE(opcode))
47 return -EFAULT; /* Bad breakpoint */
49 p->opcode = opcode;
51 return 0;
54 void __kprobes arch_copy_kprobe(struct kprobe *p)
56 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
57 p->opcode = *p->addr;
60 void __kprobes arch_arm_kprobe(struct kprobe *p)
62 *p->addr = BREAKPOINT_INSTRUCTION;
63 flush_icache_range((unsigned long)p->addr,
64 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
67 void __kprobes arch_disarm_kprobe(struct kprobe *p)
69 *p->addr = p->opcode;
70 flush_icache_range((unsigned long)p->addr,
71 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
74 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
76 if (*p->addr == BREAKPOINT_INSTRUCTION)
77 return 1;
79 return 0;
82 /**
83 * If an illegal slot instruction exception occurs for an address
84 * containing a kprobe, remove the probe.
86 * Returns 0 if the exception was handled successfully, 1 otherwise.
88 int __kprobes kprobe_handle_illslot(unsigned long pc)
90 struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
92 if (p != NULL) {
93 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
94 (unsigned int)pc + 2);
95 unregister_kprobe(p);
96 return 0;
99 return 1;
102 void __kprobes arch_remove_kprobe(struct kprobe *p)
104 if (saved_next_opcode.addr != 0x0) {
105 arch_disarm_kprobe(p);
106 arch_disarm_kprobe(&saved_next_opcode);
107 saved_next_opcode.addr = 0x0;
108 saved_next_opcode.opcode = 0x0;
110 if (saved_next_opcode2.addr != 0x0) {
111 arch_disarm_kprobe(&saved_next_opcode2);
112 saved_next_opcode2.addr = 0x0;
113 saved_next_opcode2.opcode = 0x0;
118 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
120 kcb->prev_kprobe.kp = kprobe_running();
121 kcb->prev_kprobe.status = kcb->kprobe_status;
124 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
126 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
127 kcb->kprobe_status = kcb->prev_kprobe.status;
130 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
131 struct kprobe_ctlblk *kcb)
133 __get_cpu_var(current_kprobe) = p;
137 * Singlestep is implemented by disabling the current kprobe and setting one
138 * on the next instruction, following branches. Two probes are set if the
139 * branch is conditional.
141 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
143 kprobe_opcode_t *addr = NULL;
144 saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc);
145 addr = saved_current_opcode.addr;
147 if (p != NULL) {
148 arch_disarm_kprobe(p);
150 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
151 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
152 saved_next_opcode.addr =
153 (kprobe_opcode_t *) regs->regs[reg_nr];
154 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
155 unsigned long disp = (p->opcode & 0x0FFF);
156 saved_next_opcode.addr =
157 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
159 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
160 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
161 saved_next_opcode.addr =
162 (kprobe_opcode_t *) (regs->pc + 4 +
163 regs->regs[reg_nr]);
165 } else if (OPCODE_RTS(p->opcode)) {
166 saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr;
168 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
169 unsigned long disp = (p->opcode & 0x00FF);
170 /* case 1 */
171 saved_next_opcode.addr = p->addr + 1;
172 /* case 2 */
173 saved_next_opcode2.addr =
174 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
175 saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
176 arch_arm_kprobe(&saved_next_opcode2);
178 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
179 unsigned long disp = (p->opcode & 0x00FF);
180 /* case 1 */
181 saved_next_opcode.addr = p->addr + 2;
182 /* case 2 */
183 saved_next_opcode2.addr =
184 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
185 saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
186 arch_arm_kprobe(&saved_next_opcode2);
188 } else {
189 saved_next_opcode.addr = p->addr + 1;
192 saved_next_opcode.opcode = *(saved_next_opcode.addr);
193 arch_arm_kprobe(&saved_next_opcode);
197 /* Called with kretprobe_lock held */
198 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
199 struct pt_regs *regs)
201 ri->ret_addr = (kprobe_opcode_t *) regs->pr;
203 /* Replace the return addr with trampoline addr */
204 regs->pr = (unsigned long)kretprobe_trampoline;
207 static int __kprobes kprobe_handler(struct pt_regs *regs)
209 struct kprobe *p;
210 int ret = 0;
211 kprobe_opcode_t *addr = NULL;
212 struct kprobe_ctlblk *kcb;
215 * We don't want to be preempted for the entire
216 * duration of kprobe processing
218 preempt_disable();
219 kcb = get_kprobe_ctlblk();
221 addr = (kprobe_opcode_t *) (regs->pc);
223 /* Check we're not actually recursing */
224 if (kprobe_running()) {
225 p = get_kprobe(addr);
226 if (p) {
227 if (kcb->kprobe_status == KPROBE_HIT_SS &&
228 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
229 goto no_kprobe;
231 /* We have reentered the kprobe_handler(), since
232 * another probe was hit while within the handler.
233 * We here save the original kprobes variables and
234 * just single step on the instruction of the new probe
235 * without calling any user handlers.
237 save_previous_kprobe(kcb);
238 set_current_kprobe(p, regs, kcb);
239 kprobes_inc_nmissed_count(p);
240 prepare_singlestep(p, regs);
241 kcb->kprobe_status = KPROBE_REENTER;
242 return 1;
243 } else {
244 p = __get_cpu_var(current_kprobe);
245 if (p->break_handler && p->break_handler(p, regs)) {
246 goto ss_probe;
249 goto no_kprobe;
252 p = get_kprobe(addr);
253 if (!p) {
254 /* Not one of ours: let kernel handle it */
255 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
257 * The breakpoint instruction was removed right
258 * after we hit it. Another cpu has removed
259 * either a probepoint or a debugger breakpoint
260 * at this address. In either case, no further
261 * handling of this interrupt is appropriate.
263 ret = 1;
266 goto no_kprobe;
269 set_current_kprobe(p, regs, kcb);
270 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
272 if (p->pre_handler && p->pre_handler(p, regs))
273 /* handler has already set things up, so skip ss setup */
274 return 1;
276 ss_probe:
277 prepare_singlestep(p, regs);
278 kcb->kprobe_status = KPROBE_HIT_SS;
279 return 1;
281 no_kprobe:
282 preempt_enable_no_resched();
283 return ret;
287 * For function-return probes, init_kprobes() establishes a probepoint
288 * here. When a retprobed function returns, this probe is hit and
289 * trampoline_probe_handler() runs, calling the kretprobe's handler.
291 static void __used kretprobe_trampoline_holder(void)
293 asm volatile ("kretprobe_trampoline: \n" "nop\n");
297 * Called when we hit the probe point at kretprobe_trampoline
299 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
301 struct kretprobe_instance *ri = NULL;
302 struct hlist_head *head, empty_rp;
303 struct hlist_node *node, *tmp;
304 unsigned long flags, orig_ret_address = 0;
305 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
307 INIT_HLIST_HEAD(&empty_rp);
308 kretprobe_hash_lock(current, &head, &flags);
311 * It is possible to have multiple instances associated with a given
312 * task either because an multiple functions in the call path
313 * have a return probe installed on them, and/or more then one return
314 * return probe was registered for a target function.
316 * We can handle this because:
317 * - instances are always inserted at the head of the list
318 * - when multiple return probes are registered for the same
319 * function, the first instance's ret_addr will point to the
320 * real return address, and all the rest will point to
321 * kretprobe_trampoline
323 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
324 if (ri->task != current)
325 /* another task is sharing our hash bucket */
326 continue;
328 if (ri->rp && ri->rp->handler) {
329 __get_cpu_var(current_kprobe) = &ri->rp->kp;
330 ri->rp->handler(ri, regs);
331 __get_cpu_var(current_kprobe) = NULL;
334 orig_ret_address = (unsigned long)ri->ret_addr;
335 recycle_rp_inst(ri, &empty_rp);
337 if (orig_ret_address != trampoline_address)
339 * This is the real return address. Any other
340 * instances associated with this task are for
341 * other calls deeper on the call stack
343 break;
346 kretprobe_assert(ri, orig_ret_address, trampoline_address);
348 regs->pc = orig_ret_address;
349 kretprobe_hash_unlock(current, &flags);
351 preempt_enable_no_resched();
353 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
354 hlist_del(&ri->hlist);
355 kfree(ri);
358 return orig_ret_address;
361 static inline int post_kprobe_handler(struct pt_regs *regs)
363 struct kprobe *cur = kprobe_running();
364 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
365 kprobe_opcode_t *addr = NULL;
366 struct kprobe *p = NULL;
368 if (!cur)
369 return 0;
371 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
372 kcb->kprobe_status = KPROBE_HIT_SSDONE;
373 cur->post_handler(cur, regs, 0);
376 if (saved_next_opcode.addr != 0x0) {
377 arch_disarm_kprobe(&saved_next_opcode);
378 saved_next_opcode.addr = 0x0;
379 saved_next_opcode.opcode = 0x0;
381 addr = saved_current_opcode.addr;
382 saved_current_opcode.addr = 0x0;
384 p = get_kprobe(addr);
385 arch_arm_kprobe(p);
387 if (saved_next_opcode2.addr != 0x0) {
388 arch_disarm_kprobe(&saved_next_opcode2);
389 saved_next_opcode2.addr = 0x0;
390 saved_next_opcode2.opcode = 0x0;
394 /*Restore back the original saved kprobes variables and continue. */
395 if (kcb->kprobe_status == KPROBE_REENTER) {
396 restore_previous_kprobe(kcb);
397 goto out;
399 reset_current_kprobe();
401 out:
402 preempt_enable_no_resched();
404 return 1;
407 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
409 struct kprobe *cur = kprobe_running();
410 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 const struct exception_table_entry *entry;
413 switch (kcb->kprobe_status) {
414 case KPROBE_HIT_SS:
415 case KPROBE_REENTER:
417 * We are here because the instruction being single
418 * stepped caused a page fault. We reset the current
419 * kprobe, point the pc back to the probe address
420 * and allow the page fault handler to continue as a
421 * normal page fault.
423 regs->pc = (unsigned long)cur->addr;
424 if (kcb->kprobe_status == KPROBE_REENTER)
425 restore_previous_kprobe(kcb);
426 else
427 reset_current_kprobe();
428 preempt_enable_no_resched();
429 break;
430 case KPROBE_HIT_ACTIVE:
431 case KPROBE_HIT_SSDONE:
433 * We increment the nmissed count for accounting,
434 * we can also use npre/npostfault count for accounting
435 * these specific fault cases.
437 kprobes_inc_nmissed_count(cur);
440 * We come here because instructions in the pre/post
441 * handler caused the page_fault, this could happen
442 * if handler tries to access user space by
443 * copy_from_user(), get_user() etc. Let the
444 * user-specified handler try to fix it first.
446 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
447 return 1;
450 * In case the user-specified fault handler returned
451 * zero, try to fix up.
453 if ((entry = search_exception_tables(regs->pc)) != NULL) {
454 regs->pc = entry->fixup;
455 return 1;
459 * fixup_exception() could not handle it,
460 * Let do_page_fault() fix it.
462 break;
463 default:
464 break;
466 return 0;
470 * Wrapper routine to for handling exceptions.
472 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
473 unsigned long val, void *data)
475 struct kprobe *p = NULL;
476 struct die_args *args = (struct die_args *)data;
477 int ret = NOTIFY_DONE;
478 kprobe_opcode_t *addr = NULL;
479 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481 addr = (kprobe_opcode_t *) (args->regs->pc);
482 if (val == DIE_TRAP) {
483 if (!kprobe_running()) {
484 if (kprobe_handler(args->regs)) {
485 ret = NOTIFY_STOP;
486 } else {
487 /* Not a kprobe trap */
488 ret = NOTIFY_DONE;
490 } else {
491 p = get_kprobe(addr);
492 if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
493 (kcb->kprobe_status == KPROBE_REENTER)) {
494 if (post_kprobe_handler(args->regs))
495 ret = NOTIFY_STOP;
496 } else {
497 if (kprobe_handler(args->regs)) {
498 ret = NOTIFY_STOP;
499 } else {
500 p = __get_cpu_var(current_kprobe);
501 if (p->break_handler
502 && p->break_handler(p, args->regs))
503 ret = NOTIFY_STOP;
509 return ret;
512 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
514 struct jprobe *jp = container_of(p, struct jprobe, kp);
515 unsigned long addr;
516 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
518 kcb->jprobe_saved_regs = *regs;
519 kcb->jprobe_saved_r15 = regs->regs[15];
520 addr = kcb->jprobe_saved_r15;
523 * TBD: As Linus pointed out, gcc assumes that the callee
524 * owns the argument space and could overwrite it, e.g.
525 * tailcall optimization. So, to be absolutely safe
526 * we also save and restore enough stack bytes to cover
527 * the argument area.
529 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
530 MIN_STACK_SIZE(addr));
532 regs->pc = (unsigned long)(jp->entry);
534 return 1;
537 void __kprobes jprobe_return(void)
539 asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
542 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
544 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
545 u8 *addr = (u8 *) regs->pc;
546 unsigned long stack_addr = kcb->jprobe_saved_r15;
548 if ((addr >= (u8 *) jprobe_return)
549 && (addr <= (u8 *) jprobe_return_end)) {
550 *regs = kcb->jprobe_saved_regs;
552 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
553 MIN_STACK_SIZE(stack_addr));
555 kcb->kprobe_status = KPROBE_HIT_SS;
556 preempt_enable_no_resched();
557 return 1;
559 return 0;
562 static struct kprobe trampoline_p = {
563 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
564 .pre_handler = trampoline_probe_handler
567 int __init arch_init_kprobes(void)
569 saved_next_opcode.addr = 0x0;
570 saved_next_opcode.opcode = 0x0;
572 saved_current_opcode.addr = 0x0;
573 saved_current_opcode.opcode = 0x0;
575 saved_next_opcode2.addr = 0x0;
576 saved_next_opcode2.opcode = 0x0;
578 return register_kprobe(&trampoline_p);