slub: reduce differences between SMP and NUMA
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blob064bda294af271e2480769965b114e296e1030a7
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
112 static inline int kmem_cache_debug(struct kmem_cache *s)
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
122 * Issues still to be resolved:
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 * - Variable sizing of the per node arrays
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 #define MIN_PARTIAL 5
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
143 #define MAX_PARTIAL 10
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 * Set of flags that will prevent slab merging
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
172 static int kmem_size = sizeof(struct kmem_cache);
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
178 static enum {
179 DOWN, /* No slab functionality available */
180 PARTIAL, /* Kmem_cache_node works */
181 UP, /* Everything works but does not show up in sysfs */
182 SYSFS /* Sysfs up */
183 } slab_state = DOWN;
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
190 * Tracking user of a slab.
192 struct track {
193 unsigned long addr; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 #ifdef CONFIG_SLUB_DEBUG
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 kfree(s->name);
213 kfree(s);
216 #endif
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
229 int slab_is_available(void)
231 return slab_state >= UP;
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 return s->node[node];
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
243 void *base;
245 if (!object)
246 return 1;
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
254 return 1;
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 return *(void **)(object + s->offset);
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
264 *(void **)(object + s->offset) = fp;
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270 __p += (__s)->size)
272 /* Scan freelist */
273 #define for_each_free_object(__p, __s, __free) \
274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
285 struct kmem_cache_order_objects x = {
286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
289 return x;
292 static inline int oo_order(struct kmem_cache_order_objects x)
294 return x.x >> OO_SHIFT;
297 static inline int oo_objects(struct kmem_cache_order_objects x)
299 return x.x & OO_MASK;
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debug settings:
306 #ifdef CONFIG_SLUB_DEBUG_ON
307 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 #else
309 static int slub_debug;
310 #endif
312 static char *slub_debug_slabs;
313 static int disable_higher_order_debug;
316 * Object debugging
318 static void print_section(char *text, u8 *addr, unsigned int length)
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
324 ascii[16] = 0;
326 for (i = 0; i < length; i++) {
327 if (newline) {
328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329 newline = 0;
331 printk(KERN_CONT " %02x", addr[i]);
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
335 printk(KERN_CONT " %s\n", ascii);
336 newline = 1;
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
342 printk(KERN_CONT " ");
343 ascii[i] = ' ';
344 i++;
346 printk(KERN_CONT " %s\n", ascii);
350 static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
353 struct track *p;
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
360 return p + alloc;
363 static void set_track(struct kmem_cache *s, void *object,
364 enum track_item alloc, unsigned long addr)
366 struct track *p = get_track(s, object, alloc);
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
371 p->pid = current->pid;
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
377 static void init_tracking(struct kmem_cache *s, void *object)
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
386 static void print_track(const char *s, struct track *t)
388 if (!t->addr)
389 return;
391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
395 static void print_tracking(struct kmem_cache *s, void *object)
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
404 static void print_page_info(struct page *page)
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
411 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
413 va_list args;
414 char buf[100];
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
426 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
428 va_list args;
429 char buf[100];
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
439 unsigned int off; /* Offset of last byte */
440 u8 *addr = page_address(page);
442 print_tracking(s, p);
444 print_page_info(page);
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
463 if (s->flags & SLAB_STORE_USER)
464 off += 2 * sizeof(struct track);
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
468 print_section("Padding", p + off, s->size - off);
470 dump_stack();
473 static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
476 slab_bug(s, "%s", reason);
477 print_trailer(s, page, object);
480 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
482 va_list args;
483 char buf[100];
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 slab_bug(s, "%s", buf);
489 print_page_info(page);
490 dump_stack();
493 static void init_object(struct kmem_cache *s, void *object, int active)
495 u8 *p = object;
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
499 p[s->objsize - 1] = POISON_END;
502 if (s->flags & SLAB_RED_ZONE)
503 memset(p + s->objsize,
504 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
505 s->inuse - s->objsize);
508 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
510 while (bytes) {
511 if (*start != (u8)value)
512 return start;
513 start++;
514 bytes--;
516 return NULL;
519 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
526 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
528 u8 *start, unsigned int value, unsigned int bytes)
530 u8 *fault;
531 u8 *end;
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
546 restore_bytes(s, what, value, fault, end);
547 return 0;
551 * Object layout:
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
569 * object + s->inuse
570 * Meta data starts here.
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
574 * C. Padding to reach required alignment boundary or at mininum
575 * one word if debugging is on to be able to detect writes
576 * before the word boundary.
578 * Padding is done using 0x5a (POISON_INUSE)
580 * object + s->size
581 * Nothing is used beyond s->size.
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
585 * may be used with merged slabcaches.
588 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
590 unsigned long off = s->inuse; /* The end of info */
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
600 if (s->size == off)
601 return 1;
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
607 /* Check the pad bytes at the end of a slab page */
608 static int slab_pad_check(struct kmem_cache *s, struct page *page)
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
616 if (!(s->flags & SLAB_POISON))
617 return 1;
619 start = page_address(page);
620 length = (PAGE_SIZE << compound_order(page));
621 end = start + length;
622 remainder = length % s->size;
623 if (!remainder)
624 return 1;
626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
633 print_section("Padding", end - remainder, remainder);
635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
636 return 0;
639 static int check_object(struct kmem_cache *s, struct page *page,
640 void *object, int active)
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
645 if (s->flags & SLAB_RED_ZONE) {
646 unsigned int red =
647 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
649 if (!check_bytes_and_report(s, page, object, "Redzone",
650 endobject, red, s->inuse - s->objsize))
651 return 0;
652 } else {
653 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
654 check_bytes_and_report(s, page, p, "Alignment padding",
655 endobject, POISON_INUSE, s->inuse - s->objsize);
659 if (s->flags & SLAB_POISON) {
660 if (!active && (s->flags & __OBJECT_POISON) &&
661 (!check_bytes_and_report(s, page, p, "Poison", p,
662 POISON_FREE, s->objsize - 1) ||
663 !check_bytes_and_report(s, page, p, "Poison",
664 p + s->objsize - 1, POISON_END, 1)))
665 return 0;
667 * check_pad_bytes cleans up on its own.
669 check_pad_bytes(s, page, p);
672 if (!s->offset && active)
674 * Object and freepointer overlap. Cannot check
675 * freepointer while object is allocated.
677 return 1;
679 /* Check free pointer validity */
680 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
681 object_err(s, page, p, "Freepointer corrupt");
683 * No choice but to zap it and thus lose the remainder
684 * of the free objects in this slab. May cause
685 * another error because the object count is now wrong.
687 set_freepointer(s, p, NULL);
688 return 0;
690 return 1;
693 static int check_slab(struct kmem_cache *s, struct page *page)
695 int maxobj;
697 VM_BUG_ON(!irqs_disabled());
699 if (!PageSlab(page)) {
700 slab_err(s, page, "Not a valid slab page");
701 return 0;
704 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
705 if (page->objects > maxobj) {
706 slab_err(s, page, "objects %u > max %u",
707 s->name, page->objects, maxobj);
708 return 0;
710 if (page->inuse > page->objects) {
711 slab_err(s, page, "inuse %u > max %u",
712 s->name, page->inuse, page->objects);
713 return 0;
715 /* Slab_pad_check fixes things up after itself */
716 slab_pad_check(s, page);
717 return 1;
721 * Determine if a certain object on a page is on the freelist. Must hold the
722 * slab lock to guarantee that the chains are in a consistent state.
724 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
726 int nr = 0;
727 void *fp = page->freelist;
728 void *object = NULL;
729 unsigned long max_objects;
731 while (fp && nr <= page->objects) {
732 if (fp == search)
733 return 1;
734 if (!check_valid_pointer(s, page, fp)) {
735 if (object) {
736 object_err(s, page, object,
737 "Freechain corrupt");
738 set_freepointer(s, object, NULL);
739 break;
740 } else {
741 slab_err(s, page, "Freepointer corrupt");
742 page->freelist = NULL;
743 page->inuse = page->objects;
744 slab_fix(s, "Freelist cleared");
745 return 0;
747 break;
749 object = fp;
750 fp = get_freepointer(s, object);
751 nr++;
754 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
755 if (max_objects > MAX_OBJS_PER_PAGE)
756 max_objects = MAX_OBJS_PER_PAGE;
758 if (page->objects != max_objects) {
759 slab_err(s, page, "Wrong number of objects. Found %d but "
760 "should be %d", page->objects, max_objects);
761 page->objects = max_objects;
762 slab_fix(s, "Number of objects adjusted.");
764 if (page->inuse != page->objects - nr) {
765 slab_err(s, page, "Wrong object count. Counter is %d but "
766 "counted were %d", page->inuse, page->objects - nr);
767 page->inuse = page->objects - nr;
768 slab_fix(s, "Object count adjusted.");
770 return search == NULL;
773 static void trace(struct kmem_cache *s, struct page *page, void *object,
774 int alloc)
776 if (s->flags & SLAB_TRACE) {
777 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
778 s->name,
779 alloc ? "alloc" : "free",
780 object, page->inuse,
781 page->freelist);
783 if (!alloc)
784 print_section("Object", (void *)object, s->objsize);
786 dump_stack();
791 * Hooks for other subsystems that check memory allocations. In a typical
792 * production configuration these hooks all should produce no code at all.
794 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
796 flags &= gfp_allowed_mask;
797 lockdep_trace_alloc(flags);
798 might_sleep_if(flags & __GFP_WAIT);
800 return should_failslab(s->objsize, flags, s->flags);
803 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
805 flags &= gfp_allowed_mask;
806 kmemcheck_slab_alloc(s, flags, object, s->objsize);
807 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
810 static inline void slab_free_hook(struct kmem_cache *s, void *x)
812 kmemleak_free_recursive(x, s->flags);
815 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
817 kmemcheck_slab_free(s, object, s->objsize);
818 debug_check_no_locks_freed(object, s->objsize);
819 if (!(s->flags & SLAB_DEBUG_OBJECTS))
820 debug_check_no_obj_freed(object, s->objsize);
824 * Tracking of fully allocated slabs for debugging purposes.
826 static void add_full(struct kmem_cache_node *n, struct page *page)
828 spin_lock(&n->list_lock);
829 list_add(&page->lru, &n->full);
830 spin_unlock(&n->list_lock);
833 static void remove_full(struct kmem_cache *s, struct page *page)
835 struct kmem_cache_node *n;
837 if (!(s->flags & SLAB_STORE_USER))
838 return;
840 n = get_node(s, page_to_nid(page));
842 spin_lock(&n->list_lock);
843 list_del(&page->lru);
844 spin_unlock(&n->list_lock);
847 /* Tracking of the number of slabs for debugging purposes */
848 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
850 struct kmem_cache_node *n = get_node(s, node);
852 return atomic_long_read(&n->nr_slabs);
855 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
857 return atomic_long_read(&n->nr_slabs);
860 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
862 struct kmem_cache_node *n = get_node(s, node);
865 * May be called early in order to allocate a slab for the
866 * kmem_cache_node structure. Solve the chicken-egg
867 * dilemma by deferring the increment of the count during
868 * bootstrap (see early_kmem_cache_node_alloc).
870 if (n) {
871 atomic_long_inc(&n->nr_slabs);
872 atomic_long_add(objects, &n->total_objects);
875 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
877 struct kmem_cache_node *n = get_node(s, node);
879 atomic_long_dec(&n->nr_slabs);
880 atomic_long_sub(objects, &n->total_objects);
883 /* Object debug checks for alloc/free paths */
884 static void setup_object_debug(struct kmem_cache *s, struct page *page,
885 void *object)
887 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
888 return;
890 init_object(s, object, 0);
891 init_tracking(s, object);
894 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
895 void *object, unsigned long addr)
897 if (!check_slab(s, page))
898 goto bad;
900 if (!on_freelist(s, page, object)) {
901 object_err(s, page, object, "Object already allocated");
902 goto bad;
905 if (!check_valid_pointer(s, page, object)) {
906 object_err(s, page, object, "Freelist Pointer check fails");
907 goto bad;
910 if (!check_object(s, page, object, 0))
911 goto bad;
913 /* Success perform special debug activities for allocs */
914 if (s->flags & SLAB_STORE_USER)
915 set_track(s, object, TRACK_ALLOC, addr);
916 trace(s, page, object, 1);
917 init_object(s, object, 1);
918 return 1;
920 bad:
921 if (PageSlab(page)) {
923 * If this is a slab page then lets do the best we can
924 * to avoid issues in the future. Marking all objects
925 * as used avoids touching the remaining objects.
927 slab_fix(s, "Marking all objects used");
928 page->inuse = page->objects;
929 page->freelist = NULL;
931 return 0;
934 static noinline int free_debug_processing(struct kmem_cache *s,
935 struct page *page, void *object, unsigned long addr)
937 if (!check_slab(s, page))
938 goto fail;
940 if (!check_valid_pointer(s, page, object)) {
941 slab_err(s, page, "Invalid object pointer 0x%p", object);
942 goto fail;
945 if (on_freelist(s, page, object)) {
946 object_err(s, page, object, "Object already free");
947 goto fail;
950 if (!check_object(s, page, object, 1))
951 return 0;
953 if (unlikely(s != page->slab)) {
954 if (!PageSlab(page)) {
955 slab_err(s, page, "Attempt to free object(0x%p) "
956 "outside of slab", object);
957 } else if (!page->slab) {
958 printk(KERN_ERR
959 "SLUB <none>: no slab for object 0x%p.\n",
960 object);
961 dump_stack();
962 } else
963 object_err(s, page, object,
964 "page slab pointer corrupt.");
965 goto fail;
968 /* Special debug activities for freeing objects */
969 if (!PageSlubFrozen(page) && !page->freelist)
970 remove_full(s, page);
971 if (s->flags & SLAB_STORE_USER)
972 set_track(s, object, TRACK_FREE, addr);
973 trace(s, page, object, 0);
974 init_object(s, object, 0);
975 return 1;
977 fail:
978 slab_fix(s, "Object at 0x%p not freed", object);
979 return 0;
982 static int __init setup_slub_debug(char *str)
984 slub_debug = DEBUG_DEFAULT_FLAGS;
985 if (*str++ != '=' || !*str)
987 * No options specified. Switch on full debugging.
989 goto out;
991 if (*str == ',')
993 * No options but restriction on slabs. This means full
994 * debugging for slabs matching a pattern.
996 goto check_slabs;
998 if (tolower(*str) == 'o') {
1000 * Avoid enabling debugging on caches if its minimum order
1001 * would increase as a result.
1003 disable_higher_order_debug = 1;
1004 goto out;
1007 slub_debug = 0;
1008 if (*str == '-')
1010 * Switch off all debugging measures.
1012 goto out;
1015 * Determine which debug features should be switched on
1017 for (; *str && *str != ','; str++) {
1018 switch (tolower(*str)) {
1019 case 'f':
1020 slub_debug |= SLAB_DEBUG_FREE;
1021 break;
1022 case 'z':
1023 slub_debug |= SLAB_RED_ZONE;
1024 break;
1025 case 'p':
1026 slub_debug |= SLAB_POISON;
1027 break;
1028 case 'u':
1029 slub_debug |= SLAB_STORE_USER;
1030 break;
1031 case 't':
1032 slub_debug |= SLAB_TRACE;
1033 break;
1034 case 'a':
1035 slub_debug |= SLAB_FAILSLAB;
1036 break;
1037 default:
1038 printk(KERN_ERR "slub_debug option '%c' "
1039 "unknown. skipped\n", *str);
1043 check_slabs:
1044 if (*str == ',')
1045 slub_debug_slabs = str + 1;
1046 out:
1047 return 1;
1050 __setup("slub_debug", setup_slub_debug);
1052 static unsigned long kmem_cache_flags(unsigned long objsize,
1053 unsigned long flags, const char *name,
1054 void (*ctor)(void *))
1057 * Enable debugging if selected on the kernel commandline.
1059 if (slub_debug && (!slub_debug_slabs ||
1060 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1061 flags |= slub_debug;
1063 return flags;
1065 #else
1066 static inline void setup_object_debug(struct kmem_cache *s,
1067 struct page *page, void *object) {}
1069 static inline int alloc_debug_processing(struct kmem_cache *s,
1070 struct page *page, void *object, unsigned long addr) { return 0; }
1072 static inline int free_debug_processing(struct kmem_cache *s,
1073 struct page *page, void *object, unsigned long addr) { return 0; }
1075 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1076 { return 1; }
1077 static inline int check_object(struct kmem_cache *s, struct page *page,
1078 void *object, int active) { return 1; }
1079 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1080 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1081 unsigned long flags, const char *name,
1082 void (*ctor)(void *))
1084 return flags;
1086 #define slub_debug 0
1088 #define disable_higher_order_debug 0
1090 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1091 { return 0; }
1092 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1093 { return 0; }
1094 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1095 int objects) {}
1096 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1097 int objects) {}
1099 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1100 { return 0; }
1102 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1103 void *object) {}
1105 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1107 static inline void slab_free_hook_irq(struct kmem_cache *s,
1108 void *object) {}
1110 #endif
1113 * Slab allocation and freeing
1115 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1116 struct kmem_cache_order_objects oo)
1118 int order = oo_order(oo);
1120 flags |= __GFP_NOTRACK;
1122 if (node == NUMA_NO_NODE)
1123 return alloc_pages(flags, order);
1124 else
1125 return alloc_pages_exact_node(node, flags, order);
1128 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1130 struct page *page;
1131 struct kmem_cache_order_objects oo = s->oo;
1132 gfp_t alloc_gfp;
1134 flags |= s->allocflags;
1137 * Let the initial higher-order allocation fail under memory pressure
1138 * so we fall-back to the minimum order allocation.
1140 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1142 page = alloc_slab_page(alloc_gfp, node, oo);
1143 if (unlikely(!page)) {
1144 oo = s->min;
1146 * Allocation may have failed due to fragmentation.
1147 * Try a lower order alloc if possible
1149 page = alloc_slab_page(flags, node, oo);
1150 if (!page)
1151 return NULL;
1153 stat(s, ORDER_FALLBACK);
1156 if (kmemcheck_enabled
1157 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1158 int pages = 1 << oo_order(oo);
1160 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1163 * Objects from caches that have a constructor don't get
1164 * cleared when they're allocated, so we need to do it here.
1166 if (s->ctor)
1167 kmemcheck_mark_uninitialized_pages(page, pages);
1168 else
1169 kmemcheck_mark_unallocated_pages(page, pages);
1172 page->objects = oo_objects(oo);
1173 mod_zone_page_state(page_zone(page),
1174 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1175 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1176 1 << oo_order(oo));
1178 return page;
1181 static void setup_object(struct kmem_cache *s, struct page *page,
1182 void *object)
1184 setup_object_debug(s, page, object);
1185 if (unlikely(s->ctor))
1186 s->ctor(object);
1189 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1191 struct page *page;
1192 void *start;
1193 void *last;
1194 void *p;
1196 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1198 page = allocate_slab(s,
1199 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1200 if (!page)
1201 goto out;
1203 inc_slabs_node(s, page_to_nid(page), page->objects);
1204 page->slab = s;
1205 page->flags |= 1 << PG_slab;
1207 start = page_address(page);
1209 if (unlikely(s->flags & SLAB_POISON))
1210 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1212 last = start;
1213 for_each_object(p, s, start, page->objects) {
1214 setup_object(s, page, last);
1215 set_freepointer(s, last, p);
1216 last = p;
1218 setup_object(s, page, last);
1219 set_freepointer(s, last, NULL);
1221 page->freelist = start;
1222 page->inuse = 0;
1223 out:
1224 return page;
1227 static void __free_slab(struct kmem_cache *s, struct page *page)
1229 int order = compound_order(page);
1230 int pages = 1 << order;
1232 if (kmem_cache_debug(s)) {
1233 void *p;
1235 slab_pad_check(s, page);
1236 for_each_object(p, s, page_address(page),
1237 page->objects)
1238 check_object(s, page, p, 0);
1241 kmemcheck_free_shadow(page, compound_order(page));
1243 mod_zone_page_state(page_zone(page),
1244 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1245 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1246 -pages);
1248 __ClearPageSlab(page);
1249 reset_page_mapcount(page);
1250 if (current->reclaim_state)
1251 current->reclaim_state->reclaimed_slab += pages;
1252 __free_pages(page, order);
1255 static void rcu_free_slab(struct rcu_head *h)
1257 struct page *page;
1259 page = container_of((struct list_head *)h, struct page, lru);
1260 __free_slab(page->slab, page);
1263 static void free_slab(struct kmem_cache *s, struct page *page)
1265 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1267 * RCU free overloads the RCU head over the LRU
1269 struct rcu_head *head = (void *)&page->lru;
1271 call_rcu(head, rcu_free_slab);
1272 } else
1273 __free_slab(s, page);
1276 static void discard_slab(struct kmem_cache *s, struct page *page)
1278 dec_slabs_node(s, page_to_nid(page), page->objects);
1279 free_slab(s, page);
1283 * Per slab locking using the pagelock
1285 static __always_inline void slab_lock(struct page *page)
1287 bit_spin_lock(PG_locked, &page->flags);
1290 static __always_inline void slab_unlock(struct page *page)
1292 __bit_spin_unlock(PG_locked, &page->flags);
1295 static __always_inline int slab_trylock(struct page *page)
1297 int rc = 1;
1299 rc = bit_spin_trylock(PG_locked, &page->flags);
1300 return rc;
1304 * Management of partially allocated slabs
1306 static void add_partial(struct kmem_cache_node *n,
1307 struct page *page, int tail)
1309 spin_lock(&n->list_lock);
1310 n->nr_partial++;
1311 if (tail)
1312 list_add_tail(&page->lru, &n->partial);
1313 else
1314 list_add(&page->lru, &n->partial);
1315 spin_unlock(&n->list_lock);
1318 static void remove_partial(struct kmem_cache *s, struct page *page)
1320 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1322 spin_lock(&n->list_lock);
1323 list_del(&page->lru);
1324 n->nr_partial--;
1325 spin_unlock(&n->list_lock);
1329 * Lock slab and remove from the partial list.
1331 * Must hold list_lock.
1333 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1334 struct page *page)
1336 if (slab_trylock(page)) {
1337 list_del(&page->lru);
1338 n->nr_partial--;
1339 __SetPageSlubFrozen(page);
1340 return 1;
1342 return 0;
1346 * Try to allocate a partial slab from a specific node.
1348 static struct page *get_partial_node(struct kmem_cache_node *n)
1350 struct page *page;
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
1358 if (!n || !n->nr_partial)
1359 return NULL;
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
1363 if (lock_and_freeze_slab(n, page))
1364 goto out;
1365 page = NULL;
1366 out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1372 * Get a page from somewhere. Search in increasing NUMA distances.
1374 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1376 #ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
1378 struct zoneref *z;
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
1381 struct page *page;
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403 return NULL;
1405 get_mems_allowed();
1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408 struct kmem_cache_node *n;
1410 n = get_node(s, zone_to_nid(zone));
1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413 n->nr_partial > s->min_partial) {
1414 page = get_partial_node(n);
1415 if (page) {
1416 put_mems_allowed();
1417 return page;
1421 put_mems_allowed();
1422 #endif
1423 return NULL;
1427 * Get a partial page, lock it and return it.
1429 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1431 struct page *page;
1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1434 page = get_partial_node(get_node(s, searchnode));
1435 if (page || node != -1)
1436 return page;
1438 return get_any_partial(s, flags);
1442 * Move a page back to the lists.
1444 * Must be called with the slab lock held.
1446 * On exit the slab lock will have been dropped.
1448 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1450 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1452 __ClearPageSlubFrozen(page);
1453 if (page->inuse) {
1455 if (page->freelist) {
1456 add_partial(n, page, tail);
1457 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1458 } else {
1459 stat(s, DEACTIVATE_FULL);
1460 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1461 add_full(n, page);
1463 slab_unlock(page);
1464 } else {
1465 stat(s, DEACTIVATE_EMPTY);
1466 if (n->nr_partial < s->min_partial) {
1468 * Adding an empty slab to the partial slabs in order
1469 * to avoid page allocator overhead. This slab needs
1470 * to come after the other slabs with objects in
1471 * so that the others get filled first. That way the
1472 * size of the partial list stays small.
1474 * kmem_cache_shrink can reclaim any empty slabs from
1475 * the partial list.
1477 add_partial(n, page, 1);
1478 slab_unlock(page);
1479 } else {
1480 slab_unlock(page);
1481 stat(s, FREE_SLAB);
1482 discard_slab(s, page);
1488 * Remove the cpu slab
1490 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1492 struct page *page = c->page;
1493 int tail = 1;
1495 if (page->freelist)
1496 stat(s, DEACTIVATE_REMOTE_FREES);
1498 * Merge cpu freelist into slab freelist. Typically we get here
1499 * because both freelists are empty. So this is unlikely
1500 * to occur.
1502 while (unlikely(c->freelist)) {
1503 void **object;
1505 tail = 0; /* Hot objects. Put the slab first */
1507 /* Retrieve object from cpu_freelist */
1508 object = c->freelist;
1509 c->freelist = get_freepointer(s, c->freelist);
1511 /* And put onto the regular freelist */
1512 set_freepointer(s, object, page->freelist);
1513 page->freelist = object;
1514 page->inuse--;
1516 c->page = NULL;
1517 unfreeze_slab(s, page, tail);
1520 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1522 stat(s, CPUSLAB_FLUSH);
1523 slab_lock(c->page);
1524 deactivate_slab(s, c);
1528 * Flush cpu slab.
1530 * Called from IPI handler with interrupts disabled.
1532 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1534 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1536 if (likely(c && c->page))
1537 flush_slab(s, c);
1540 static void flush_cpu_slab(void *d)
1542 struct kmem_cache *s = d;
1544 __flush_cpu_slab(s, smp_processor_id());
1547 static void flush_all(struct kmem_cache *s)
1549 on_each_cpu(flush_cpu_slab, s, 1);
1553 * Check if the objects in a per cpu structure fit numa
1554 * locality expectations.
1556 static inline int node_match(struct kmem_cache_cpu *c, int node)
1558 #ifdef CONFIG_NUMA
1559 if (node != NUMA_NO_NODE && c->node != node)
1560 return 0;
1561 #endif
1562 return 1;
1565 static int count_free(struct page *page)
1567 return page->objects - page->inuse;
1570 static unsigned long count_partial(struct kmem_cache_node *n,
1571 int (*get_count)(struct page *))
1573 unsigned long flags;
1574 unsigned long x = 0;
1575 struct page *page;
1577 spin_lock_irqsave(&n->list_lock, flags);
1578 list_for_each_entry(page, &n->partial, lru)
1579 x += get_count(page);
1580 spin_unlock_irqrestore(&n->list_lock, flags);
1581 return x;
1584 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1586 #ifdef CONFIG_SLUB_DEBUG
1587 return atomic_long_read(&n->total_objects);
1588 #else
1589 return 0;
1590 #endif
1593 static noinline void
1594 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1596 int node;
1598 printk(KERN_WARNING
1599 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1600 nid, gfpflags);
1601 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1602 "default order: %d, min order: %d\n", s->name, s->objsize,
1603 s->size, oo_order(s->oo), oo_order(s->min));
1605 if (oo_order(s->min) > get_order(s->objsize))
1606 printk(KERN_WARNING " %s debugging increased min order, use "
1607 "slub_debug=O to disable.\n", s->name);
1609 for_each_online_node(node) {
1610 struct kmem_cache_node *n = get_node(s, node);
1611 unsigned long nr_slabs;
1612 unsigned long nr_objs;
1613 unsigned long nr_free;
1615 if (!n)
1616 continue;
1618 nr_free = count_partial(n, count_free);
1619 nr_slabs = node_nr_slabs(n);
1620 nr_objs = node_nr_objs(n);
1622 printk(KERN_WARNING
1623 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1624 node, nr_slabs, nr_objs, nr_free);
1629 * Slow path. The lockless freelist is empty or we need to perform
1630 * debugging duties.
1632 * Interrupts are disabled.
1634 * Processing is still very fast if new objects have been freed to the
1635 * regular freelist. In that case we simply take over the regular freelist
1636 * as the lockless freelist and zap the regular freelist.
1638 * If that is not working then we fall back to the partial lists. We take the
1639 * first element of the freelist as the object to allocate now and move the
1640 * rest of the freelist to the lockless freelist.
1642 * And if we were unable to get a new slab from the partial slab lists then
1643 * we need to allocate a new slab. This is the slowest path since it involves
1644 * a call to the page allocator and the setup of a new slab.
1646 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1647 unsigned long addr, struct kmem_cache_cpu *c)
1649 void **object;
1650 struct page *new;
1652 /* We handle __GFP_ZERO in the caller */
1653 gfpflags &= ~__GFP_ZERO;
1655 if (!c->page)
1656 goto new_slab;
1658 slab_lock(c->page);
1659 if (unlikely(!node_match(c, node)))
1660 goto another_slab;
1662 stat(s, ALLOC_REFILL);
1664 load_freelist:
1665 object = c->page->freelist;
1666 if (unlikely(!object))
1667 goto another_slab;
1668 if (kmem_cache_debug(s))
1669 goto debug;
1671 c->freelist = get_freepointer(s, object);
1672 c->page->inuse = c->page->objects;
1673 c->page->freelist = NULL;
1674 c->node = page_to_nid(c->page);
1675 unlock_out:
1676 slab_unlock(c->page);
1677 stat(s, ALLOC_SLOWPATH);
1678 return object;
1680 another_slab:
1681 deactivate_slab(s, c);
1683 new_slab:
1684 new = get_partial(s, gfpflags, node);
1685 if (new) {
1686 c->page = new;
1687 stat(s, ALLOC_FROM_PARTIAL);
1688 goto load_freelist;
1691 gfpflags &= gfp_allowed_mask;
1692 if (gfpflags & __GFP_WAIT)
1693 local_irq_enable();
1695 new = new_slab(s, gfpflags, node);
1697 if (gfpflags & __GFP_WAIT)
1698 local_irq_disable();
1700 if (new) {
1701 c = __this_cpu_ptr(s->cpu_slab);
1702 stat(s, ALLOC_SLAB);
1703 if (c->page)
1704 flush_slab(s, c);
1705 slab_lock(new);
1706 __SetPageSlubFrozen(new);
1707 c->page = new;
1708 goto load_freelist;
1710 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1711 slab_out_of_memory(s, gfpflags, node);
1712 return NULL;
1713 debug:
1714 if (!alloc_debug_processing(s, c->page, object, addr))
1715 goto another_slab;
1717 c->page->inuse++;
1718 c->page->freelist = get_freepointer(s, object);
1719 c->node = -1;
1720 goto unlock_out;
1724 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1725 * have the fastpath folded into their functions. So no function call
1726 * overhead for requests that can be satisfied on the fastpath.
1728 * The fastpath works by first checking if the lockless freelist can be used.
1729 * If not then __slab_alloc is called for slow processing.
1731 * Otherwise we can simply pick the next object from the lockless free list.
1733 static __always_inline void *slab_alloc(struct kmem_cache *s,
1734 gfp_t gfpflags, int node, unsigned long addr)
1736 void **object;
1737 struct kmem_cache_cpu *c;
1738 unsigned long flags;
1740 if (slab_pre_alloc_hook(s, gfpflags))
1741 return NULL;
1743 local_irq_save(flags);
1744 c = __this_cpu_ptr(s->cpu_slab);
1745 object = c->freelist;
1746 if (unlikely(!object || !node_match(c, node)))
1748 object = __slab_alloc(s, gfpflags, node, addr, c);
1750 else {
1751 c->freelist = get_freepointer(s, object);
1752 stat(s, ALLOC_FASTPATH);
1754 local_irq_restore(flags);
1756 if (unlikely(gfpflags & __GFP_ZERO) && object)
1757 memset(object, 0, s->objsize);
1759 slab_post_alloc_hook(s, gfpflags, object);
1761 return object;
1764 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1766 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1768 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1770 return ret;
1772 EXPORT_SYMBOL(kmem_cache_alloc);
1774 #ifdef CONFIG_TRACING
1775 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1777 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1779 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1780 #endif
1782 #ifdef CONFIG_NUMA
1783 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1785 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1787 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1788 s->objsize, s->size, gfpflags, node);
1790 return ret;
1792 EXPORT_SYMBOL(kmem_cache_alloc_node);
1793 #endif
1795 #ifdef CONFIG_TRACING
1796 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1797 gfp_t gfpflags,
1798 int node)
1800 return slab_alloc(s, gfpflags, node, _RET_IP_);
1802 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1803 #endif
1806 * Slow patch handling. This may still be called frequently since objects
1807 * have a longer lifetime than the cpu slabs in most processing loads.
1809 * So we still attempt to reduce cache line usage. Just take the slab
1810 * lock and free the item. If there is no additional partial page
1811 * handling required then we can return immediately.
1813 static void __slab_free(struct kmem_cache *s, struct page *page,
1814 void *x, unsigned long addr)
1816 void *prior;
1817 void **object = (void *)x;
1819 stat(s, FREE_SLOWPATH);
1820 slab_lock(page);
1822 if (kmem_cache_debug(s))
1823 goto debug;
1825 checks_ok:
1826 prior = page->freelist;
1827 set_freepointer(s, object, prior);
1828 page->freelist = object;
1829 page->inuse--;
1831 if (unlikely(PageSlubFrozen(page))) {
1832 stat(s, FREE_FROZEN);
1833 goto out_unlock;
1836 if (unlikely(!page->inuse))
1837 goto slab_empty;
1840 * Objects left in the slab. If it was not on the partial list before
1841 * then add it.
1843 if (unlikely(!prior)) {
1844 add_partial(get_node(s, page_to_nid(page)), page, 1);
1845 stat(s, FREE_ADD_PARTIAL);
1848 out_unlock:
1849 slab_unlock(page);
1850 return;
1852 slab_empty:
1853 if (prior) {
1855 * Slab still on the partial list.
1857 remove_partial(s, page);
1858 stat(s, FREE_REMOVE_PARTIAL);
1860 slab_unlock(page);
1861 stat(s, FREE_SLAB);
1862 discard_slab(s, page);
1863 return;
1865 debug:
1866 if (!free_debug_processing(s, page, x, addr))
1867 goto out_unlock;
1868 goto checks_ok;
1872 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1873 * can perform fastpath freeing without additional function calls.
1875 * The fastpath is only possible if we are freeing to the current cpu slab
1876 * of this processor. This typically the case if we have just allocated
1877 * the item before.
1879 * If fastpath is not possible then fall back to __slab_free where we deal
1880 * with all sorts of special processing.
1882 static __always_inline void slab_free(struct kmem_cache *s,
1883 struct page *page, void *x, unsigned long addr)
1885 void **object = (void *)x;
1886 struct kmem_cache_cpu *c;
1887 unsigned long flags;
1889 slab_free_hook(s, x);
1891 local_irq_save(flags);
1892 c = __this_cpu_ptr(s->cpu_slab);
1894 slab_free_hook_irq(s, x);
1896 if (likely(page == c->page && c->node >= 0)) {
1897 set_freepointer(s, object, c->freelist);
1898 c->freelist = object;
1899 stat(s, FREE_FASTPATH);
1900 } else
1901 __slab_free(s, page, x, addr);
1903 local_irq_restore(flags);
1906 void kmem_cache_free(struct kmem_cache *s, void *x)
1908 struct page *page;
1910 page = virt_to_head_page(x);
1912 slab_free(s, page, x, _RET_IP_);
1914 trace_kmem_cache_free(_RET_IP_, x);
1916 EXPORT_SYMBOL(kmem_cache_free);
1918 /* Figure out on which slab page the object resides */
1919 static struct page *get_object_page(const void *x)
1921 struct page *page = virt_to_head_page(x);
1923 if (!PageSlab(page))
1924 return NULL;
1926 return page;
1930 * Object placement in a slab is made very easy because we always start at
1931 * offset 0. If we tune the size of the object to the alignment then we can
1932 * get the required alignment by putting one properly sized object after
1933 * another.
1935 * Notice that the allocation order determines the sizes of the per cpu
1936 * caches. Each processor has always one slab available for allocations.
1937 * Increasing the allocation order reduces the number of times that slabs
1938 * must be moved on and off the partial lists and is therefore a factor in
1939 * locking overhead.
1943 * Mininum / Maximum order of slab pages. This influences locking overhead
1944 * and slab fragmentation. A higher order reduces the number of partial slabs
1945 * and increases the number of allocations possible without having to
1946 * take the list_lock.
1948 static int slub_min_order;
1949 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1950 static int slub_min_objects;
1953 * Merge control. If this is set then no merging of slab caches will occur.
1954 * (Could be removed. This was introduced to pacify the merge skeptics.)
1956 static int slub_nomerge;
1959 * Calculate the order of allocation given an slab object size.
1961 * The order of allocation has significant impact on performance and other
1962 * system components. Generally order 0 allocations should be preferred since
1963 * order 0 does not cause fragmentation in the page allocator. Larger objects
1964 * be problematic to put into order 0 slabs because there may be too much
1965 * unused space left. We go to a higher order if more than 1/16th of the slab
1966 * would be wasted.
1968 * In order to reach satisfactory performance we must ensure that a minimum
1969 * number of objects is in one slab. Otherwise we may generate too much
1970 * activity on the partial lists which requires taking the list_lock. This is
1971 * less a concern for large slabs though which are rarely used.
1973 * slub_max_order specifies the order where we begin to stop considering the
1974 * number of objects in a slab as critical. If we reach slub_max_order then
1975 * we try to keep the page order as low as possible. So we accept more waste
1976 * of space in favor of a small page order.
1978 * Higher order allocations also allow the placement of more objects in a
1979 * slab and thereby reduce object handling overhead. If the user has
1980 * requested a higher mininum order then we start with that one instead of
1981 * the smallest order which will fit the object.
1983 static inline int slab_order(int size, int min_objects,
1984 int max_order, int fract_leftover)
1986 int order;
1987 int rem;
1988 int min_order = slub_min_order;
1990 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1991 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1993 for (order = max(min_order,
1994 fls(min_objects * size - 1) - PAGE_SHIFT);
1995 order <= max_order; order++) {
1997 unsigned long slab_size = PAGE_SIZE << order;
1999 if (slab_size < min_objects * size)
2000 continue;
2002 rem = slab_size % size;
2004 if (rem <= slab_size / fract_leftover)
2005 break;
2009 return order;
2012 static inline int calculate_order(int size)
2014 int order;
2015 int min_objects;
2016 int fraction;
2017 int max_objects;
2020 * Attempt to find best configuration for a slab. This
2021 * works by first attempting to generate a layout with
2022 * the best configuration and backing off gradually.
2024 * First we reduce the acceptable waste in a slab. Then
2025 * we reduce the minimum objects required in a slab.
2027 min_objects = slub_min_objects;
2028 if (!min_objects)
2029 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2030 max_objects = (PAGE_SIZE << slub_max_order)/size;
2031 min_objects = min(min_objects, max_objects);
2033 while (min_objects > 1) {
2034 fraction = 16;
2035 while (fraction >= 4) {
2036 order = slab_order(size, min_objects,
2037 slub_max_order, fraction);
2038 if (order <= slub_max_order)
2039 return order;
2040 fraction /= 2;
2042 min_objects--;
2046 * We were unable to place multiple objects in a slab. Now
2047 * lets see if we can place a single object there.
2049 order = slab_order(size, 1, slub_max_order, 1);
2050 if (order <= slub_max_order)
2051 return order;
2054 * Doh this slab cannot be placed using slub_max_order.
2056 order = slab_order(size, 1, MAX_ORDER, 1);
2057 if (order < MAX_ORDER)
2058 return order;
2059 return -ENOSYS;
2063 * Figure out what the alignment of the objects will be.
2065 static unsigned long calculate_alignment(unsigned long flags,
2066 unsigned long align, unsigned long size)
2069 * If the user wants hardware cache aligned objects then follow that
2070 * suggestion if the object is sufficiently large.
2072 * The hardware cache alignment cannot override the specified
2073 * alignment though. If that is greater then use it.
2075 if (flags & SLAB_HWCACHE_ALIGN) {
2076 unsigned long ralign = cache_line_size();
2077 while (size <= ralign / 2)
2078 ralign /= 2;
2079 align = max(align, ralign);
2082 if (align < ARCH_SLAB_MINALIGN)
2083 align = ARCH_SLAB_MINALIGN;
2085 return ALIGN(align, sizeof(void *));
2088 static void
2089 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2091 n->nr_partial = 0;
2092 spin_lock_init(&n->list_lock);
2093 INIT_LIST_HEAD(&n->partial);
2094 #ifdef CONFIG_SLUB_DEBUG
2095 atomic_long_set(&n->nr_slabs, 0);
2096 atomic_long_set(&n->total_objects, 0);
2097 INIT_LIST_HEAD(&n->full);
2098 #endif
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2103 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2104 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2106 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2108 return s->cpu_slab != NULL;
2111 static struct kmem_cache *kmem_cache_node;
2114 * No kmalloc_node yet so do it by hand. We know that this is the first
2115 * slab on the node for this slabcache. There are no concurrent accesses
2116 * possible.
2118 * Note that this function only works on the kmalloc_node_cache
2119 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2120 * memory on a fresh node that has no slab structures yet.
2122 static void early_kmem_cache_node_alloc(int node)
2124 struct page *page;
2125 struct kmem_cache_node *n;
2126 unsigned long flags;
2128 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2130 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2132 BUG_ON(!page);
2133 if (page_to_nid(page) != node) {
2134 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2135 "node %d\n", node);
2136 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2137 "in order to be able to continue\n");
2140 n = page->freelist;
2141 BUG_ON(!n);
2142 page->freelist = get_freepointer(kmem_cache_node, n);
2143 page->inuse++;
2144 kmem_cache_node->node[node] = n;
2145 #ifdef CONFIG_SLUB_DEBUG
2146 init_object(kmem_cache_node, n, 1);
2147 init_tracking(kmem_cache_node, n);
2148 #endif
2149 init_kmem_cache_node(n, kmem_cache_node);
2150 inc_slabs_node(kmem_cache_node, node, page->objects);
2153 * lockdep requires consistent irq usage for each lock
2154 * so even though there cannot be a race this early in
2155 * the boot sequence, we still disable irqs.
2157 local_irq_save(flags);
2158 add_partial(n, page, 0);
2159 local_irq_restore(flags);
2162 static void free_kmem_cache_nodes(struct kmem_cache *s)
2164 int node;
2166 for_each_node_state(node, N_NORMAL_MEMORY) {
2167 struct kmem_cache_node *n = s->node[node];
2169 if (n)
2170 kmem_cache_free(kmem_cache_node, n);
2172 s->node[node] = NULL;
2176 static int init_kmem_cache_nodes(struct kmem_cache *s)
2178 int node;
2180 for_each_node_state(node, N_NORMAL_MEMORY) {
2181 struct kmem_cache_node *n;
2183 if (slab_state == DOWN) {
2184 early_kmem_cache_node_alloc(node);
2185 continue;
2187 n = kmem_cache_alloc_node(kmem_cache_node,
2188 GFP_KERNEL, node);
2190 if (!n) {
2191 free_kmem_cache_nodes(s);
2192 return 0;
2195 s->node[node] = n;
2196 init_kmem_cache_node(n, s);
2198 return 1;
2201 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2203 if (min < MIN_PARTIAL)
2204 min = MIN_PARTIAL;
2205 else if (min > MAX_PARTIAL)
2206 min = MAX_PARTIAL;
2207 s->min_partial = min;
2211 * calculate_sizes() determines the order and the distribution of data within
2212 * a slab object.
2214 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2216 unsigned long flags = s->flags;
2217 unsigned long size = s->objsize;
2218 unsigned long align = s->align;
2219 int order;
2222 * Round up object size to the next word boundary. We can only
2223 * place the free pointer at word boundaries and this determines
2224 * the possible location of the free pointer.
2226 size = ALIGN(size, sizeof(void *));
2228 #ifdef CONFIG_SLUB_DEBUG
2230 * Determine if we can poison the object itself. If the user of
2231 * the slab may touch the object after free or before allocation
2232 * then we should never poison the object itself.
2234 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2235 !s->ctor)
2236 s->flags |= __OBJECT_POISON;
2237 else
2238 s->flags &= ~__OBJECT_POISON;
2242 * If we are Redzoning then check if there is some space between the
2243 * end of the object and the free pointer. If not then add an
2244 * additional word to have some bytes to store Redzone information.
2246 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2247 size += sizeof(void *);
2248 #endif
2251 * With that we have determined the number of bytes in actual use
2252 * by the object. This is the potential offset to the free pointer.
2254 s->inuse = size;
2256 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2257 s->ctor)) {
2259 * Relocate free pointer after the object if it is not
2260 * permitted to overwrite the first word of the object on
2261 * kmem_cache_free.
2263 * This is the case if we do RCU, have a constructor or
2264 * destructor or are poisoning the objects.
2266 s->offset = size;
2267 size += sizeof(void *);
2270 #ifdef CONFIG_SLUB_DEBUG
2271 if (flags & SLAB_STORE_USER)
2273 * Need to store information about allocs and frees after
2274 * the object.
2276 size += 2 * sizeof(struct track);
2278 if (flags & SLAB_RED_ZONE)
2280 * Add some empty padding so that we can catch
2281 * overwrites from earlier objects rather than let
2282 * tracking information or the free pointer be
2283 * corrupted if a user writes before the start
2284 * of the object.
2286 size += sizeof(void *);
2287 #endif
2290 * Determine the alignment based on various parameters that the
2291 * user specified and the dynamic determination of cache line size
2292 * on bootup.
2294 align = calculate_alignment(flags, align, s->objsize);
2295 s->align = align;
2298 * SLUB stores one object immediately after another beginning from
2299 * offset 0. In order to align the objects we have to simply size
2300 * each object to conform to the alignment.
2302 size = ALIGN(size, align);
2303 s->size = size;
2304 if (forced_order >= 0)
2305 order = forced_order;
2306 else
2307 order = calculate_order(size);
2309 if (order < 0)
2310 return 0;
2312 s->allocflags = 0;
2313 if (order)
2314 s->allocflags |= __GFP_COMP;
2316 if (s->flags & SLAB_CACHE_DMA)
2317 s->allocflags |= SLUB_DMA;
2319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320 s->allocflags |= __GFP_RECLAIMABLE;
2323 * Determine the number of objects per slab
2325 s->oo = oo_make(order, size);
2326 s->min = oo_make(get_order(size), size);
2327 if (oo_objects(s->oo) > oo_objects(s->max))
2328 s->max = s->oo;
2330 return !!oo_objects(s->oo);
2334 static int kmem_cache_open(struct kmem_cache *s,
2335 const char *name, size_t size,
2336 size_t align, unsigned long flags,
2337 void (*ctor)(void *))
2339 memset(s, 0, kmem_size);
2340 s->name = name;
2341 s->ctor = ctor;
2342 s->objsize = size;
2343 s->align = align;
2344 s->flags = kmem_cache_flags(size, flags, name, ctor);
2346 if (!calculate_sizes(s, -1))
2347 goto error;
2348 if (disable_higher_order_debug) {
2350 * Disable debugging flags that store metadata if the min slab
2351 * order increased.
2353 if (get_order(s->size) > get_order(s->objsize)) {
2354 s->flags &= ~DEBUG_METADATA_FLAGS;
2355 s->offset = 0;
2356 if (!calculate_sizes(s, -1))
2357 goto error;
2362 * The larger the object size is, the more pages we want on the partial
2363 * list to avoid pounding the page allocator excessively.
2365 set_min_partial(s, ilog2(s->size));
2366 s->refcount = 1;
2367 #ifdef CONFIG_NUMA
2368 s->remote_node_defrag_ratio = 1000;
2369 #endif
2370 if (!init_kmem_cache_nodes(s))
2371 goto error;
2373 if (alloc_kmem_cache_cpus(s))
2374 return 1;
2376 free_kmem_cache_nodes(s);
2377 error:
2378 if (flags & SLAB_PANIC)
2379 panic("Cannot create slab %s size=%lu realsize=%u "
2380 "order=%u offset=%u flags=%lx\n",
2381 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2382 s->offset, flags);
2383 return 0;
2387 * Check if a given pointer is valid
2389 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2391 struct page *page;
2393 if (!kern_ptr_validate(object, s->size))
2394 return 0;
2396 page = get_object_page(object);
2398 if (!page || s != page->slab)
2399 /* No slab or wrong slab */
2400 return 0;
2402 if (!check_valid_pointer(s, page, object))
2403 return 0;
2406 * We could also check if the object is on the slabs freelist.
2407 * But this would be too expensive and it seems that the main
2408 * purpose of kmem_ptr_valid() is to check if the object belongs
2409 * to a certain slab.
2411 return 1;
2413 EXPORT_SYMBOL(kmem_ptr_validate);
2416 * Determine the size of a slab object
2418 unsigned int kmem_cache_size(struct kmem_cache *s)
2420 return s->objsize;
2422 EXPORT_SYMBOL(kmem_cache_size);
2424 const char *kmem_cache_name(struct kmem_cache *s)
2426 return s->name;
2428 EXPORT_SYMBOL(kmem_cache_name);
2430 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2431 const char *text)
2433 #ifdef CONFIG_SLUB_DEBUG
2434 void *addr = page_address(page);
2435 void *p;
2436 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2437 GFP_ATOMIC);
2439 if (!map)
2440 return;
2441 slab_err(s, page, "%s", text);
2442 slab_lock(page);
2443 for_each_free_object(p, s, page->freelist)
2444 set_bit(slab_index(p, s, addr), map);
2446 for_each_object(p, s, addr, page->objects) {
2448 if (!test_bit(slab_index(p, s, addr), map)) {
2449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2450 p, p - addr);
2451 print_tracking(s, p);
2454 slab_unlock(page);
2455 kfree(map);
2456 #endif
2460 * Attempt to free all partial slabs on a node.
2462 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2464 unsigned long flags;
2465 struct page *page, *h;
2467 spin_lock_irqsave(&n->list_lock, flags);
2468 list_for_each_entry_safe(page, h, &n->partial, lru) {
2469 if (!page->inuse) {
2470 list_del(&page->lru);
2471 discard_slab(s, page);
2472 n->nr_partial--;
2473 } else {
2474 list_slab_objects(s, page,
2475 "Objects remaining on kmem_cache_close()");
2478 spin_unlock_irqrestore(&n->list_lock, flags);
2482 * Release all resources used by a slab cache.
2484 static inline int kmem_cache_close(struct kmem_cache *s)
2486 int node;
2488 flush_all(s);
2489 free_percpu(s->cpu_slab);
2490 /* Attempt to free all objects */
2491 for_each_node_state(node, N_NORMAL_MEMORY) {
2492 struct kmem_cache_node *n = get_node(s, node);
2494 free_partial(s, n);
2495 if (n->nr_partial || slabs_node(s, node))
2496 return 1;
2498 free_kmem_cache_nodes(s);
2499 return 0;
2503 * Close a cache and release the kmem_cache structure
2504 * (must be used for caches created using kmem_cache_create)
2506 void kmem_cache_destroy(struct kmem_cache *s)
2508 down_write(&slub_lock);
2509 s->refcount--;
2510 if (!s->refcount) {
2511 list_del(&s->list);
2512 if (kmem_cache_close(s)) {
2513 printk(KERN_ERR "SLUB %s: %s called for cache that "
2514 "still has objects.\n", s->name, __func__);
2515 dump_stack();
2517 if (s->flags & SLAB_DESTROY_BY_RCU)
2518 rcu_barrier();
2519 sysfs_slab_remove(s);
2521 up_write(&slub_lock);
2523 EXPORT_SYMBOL(kmem_cache_destroy);
2525 /********************************************************************
2526 * Kmalloc subsystem
2527 *******************************************************************/
2529 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2530 EXPORT_SYMBOL(kmalloc_caches);
2532 static struct kmem_cache *kmem_cache;
2534 #ifdef CONFIG_ZONE_DMA
2535 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2536 #endif
2538 static int __init setup_slub_min_order(char *str)
2540 get_option(&str, &slub_min_order);
2542 return 1;
2545 __setup("slub_min_order=", setup_slub_min_order);
2547 static int __init setup_slub_max_order(char *str)
2549 get_option(&str, &slub_max_order);
2550 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2552 return 1;
2555 __setup("slub_max_order=", setup_slub_max_order);
2557 static int __init setup_slub_min_objects(char *str)
2559 get_option(&str, &slub_min_objects);
2561 return 1;
2564 __setup("slub_min_objects=", setup_slub_min_objects);
2566 static int __init setup_slub_nomerge(char *str)
2568 slub_nomerge = 1;
2569 return 1;
2572 __setup("slub_nomerge", setup_slub_nomerge);
2574 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2575 int size, unsigned int flags)
2577 struct kmem_cache *s;
2579 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2582 * This function is called with IRQs disabled during early-boot on
2583 * single CPU so there's no need to take slub_lock here.
2585 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2586 flags, NULL))
2587 goto panic;
2589 list_add(&s->list, &slab_caches);
2590 return s;
2592 panic:
2593 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2594 return NULL;
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2601 * fls.
2603 static s8 size_index[24] = {
2604 3, /* 8 */
2605 4, /* 16 */
2606 5, /* 24 */
2607 5, /* 32 */
2608 6, /* 40 */
2609 6, /* 48 */
2610 6, /* 56 */
2611 6, /* 64 */
2612 1, /* 72 */
2613 1, /* 80 */
2614 1, /* 88 */
2615 1, /* 96 */
2616 7, /* 104 */
2617 7, /* 112 */
2618 7, /* 120 */
2619 7, /* 128 */
2620 2, /* 136 */
2621 2, /* 144 */
2622 2, /* 152 */
2623 2, /* 160 */
2624 2, /* 168 */
2625 2, /* 176 */
2626 2, /* 184 */
2627 2 /* 192 */
2630 static inline int size_index_elem(size_t bytes)
2632 return (bytes - 1) / 8;
2635 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2637 int index;
2639 if (size <= 192) {
2640 if (!size)
2641 return ZERO_SIZE_PTR;
2643 index = size_index[size_index_elem(size)];
2644 } else
2645 index = fls(size - 1);
2647 #ifdef CONFIG_ZONE_DMA
2648 if (unlikely((flags & SLUB_DMA)))
2649 return kmalloc_dma_caches[index];
2651 #endif
2652 return kmalloc_caches[index];
2655 void *__kmalloc(size_t size, gfp_t flags)
2657 struct kmem_cache *s;
2658 void *ret;
2660 if (unlikely(size > SLUB_MAX_SIZE))
2661 return kmalloc_large(size, flags);
2663 s = get_slab(size, flags);
2665 if (unlikely(ZERO_OR_NULL_PTR(s)))
2666 return s;
2668 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2670 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2672 return ret;
2674 EXPORT_SYMBOL(__kmalloc);
2676 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2678 struct page *page;
2679 void *ptr = NULL;
2681 flags |= __GFP_COMP | __GFP_NOTRACK;
2682 page = alloc_pages_node(node, flags, get_order(size));
2683 if (page)
2684 ptr = page_address(page);
2686 kmemleak_alloc(ptr, size, 1, flags);
2687 return ptr;
2690 #ifdef CONFIG_NUMA
2691 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2693 struct kmem_cache *s;
2694 void *ret;
2696 if (unlikely(size > SLUB_MAX_SIZE)) {
2697 ret = kmalloc_large_node(size, flags, node);
2699 trace_kmalloc_node(_RET_IP_, ret,
2700 size, PAGE_SIZE << get_order(size),
2701 flags, node);
2703 return ret;
2706 s = get_slab(size, flags);
2708 if (unlikely(ZERO_OR_NULL_PTR(s)))
2709 return s;
2711 ret = slab_alloc(s, flags, node, _RET_IP_);
2713 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2715 return ret;
2717 EXPORT_SYMBOL(__kmalloc_node);
2718 #endif
2720 size_t ksize(const void *object)
2722 struct page *page;
2723 struct kmem_cache *s;
2725 if (unlikely(object == ZERO_SIZE_PTR))
2726 return 0;
2728 page = virt_to_head_page(object);
2730 if (unlikely(!PageSlab(page))) {
2731 WARN_ON(!PageCompound(page));
2732 return PAGE_SIZE << compound_order(page);
2734 s = page->slab;
2736 #ifdef CONFIG_SLUB_DEBUG
2738 * Debugging requires use of the padding between object
2739 * and whatever may come after it.
2741 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 return s->objsize;
2744 #endif
2746 * If we have the need to store the freelist pointer
2747 * back there or track user information then we can
2748 * only use the space before that information.
2750 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 return s->inuse;
2753 * Else we can use all the padding etc for the allocation
2755 return s->size;
2757 EXPORT_SYMBOL(ksize);
2759 void kfree(const void *x)
2761 struct page *page;
2762 void *object = (void *)x;
2764 trace_kfree(_RET_IP_, x);
2766 if (unlikely(ZERO_OR_NULL_PTR(x)))
2767 return;
2769 page = virt_to_head_page(x);
2770 if (unlikely(!PageSlab(page))) {
2771 BUG_ON(!PageCompound(page));
2772 kmemleak_free(x);
2773 put_page(page);
2774 return;
2776 slab_free(page->slab, page, object, _RET_IP_);
2778 EXPORT_SYMBOL(kfree);
2781 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2782 * the remaining slabs by the number of items in use. The slabs with the
2783 * most items in use come first. New allocations will then fill those up
2784 * and thus they can be removed from the partial lists.
2786 * The slabs with the least items are placed last. This results in them
2787 * being allocated from last increasing the chance that the last objects
2788 * are freed in them.
2790 int kmem_cache_shrink(struct kmem_cache *s)
2792 int node;
2793 int i;
2794 struct kmem_cache_node *n;
2795 struct page *page;
2796 struct page *t;
2797 int objects = oo_objects(s->max);
2798 struct list_head *slabs_by_inuse =
2799 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2800 unsigned long flags;
2802 if (!slabs_by_inuse)
2803 return -ENOMEM;
2805 flush_all(s);
2806 for_each_node_state(node, N_NORMAL_MEMORY) {
2807 n = get_node(s, node);
2809 if (!n->nr_partial)
2810 continue;
2812 for (i = 0; i < objects; i++)
2813 INIT_LIST_HEAD(slabs_by_inuse + i);
2815 spin_lock_irqsave(&n->list_lock, flags);
2818 * Build lists indexed by the items in use in each slab.
2820 * Note that concurrent frees may occur while we hold the
2821 * list_lock. page->inuse here is the upper limit.
2823 list_for_each_entry_safe(page, t, &n->partial, lru) {
2824 if (!page->inuse && slab_trylock(page)) {
2826 * Must hold slab lock here because slab_free
2827 * may have freed the last object and be
2828 * waiting to release the slab.
2830 list_del(&page->lru);
2831 n->nr_partial--;
2832 slab_unlock(page);
2833 discard_slab(s, page);
2834 } else {
2835 list_move(&page->lru,
2836 slabs_by_inuse + page->inuse);
2841 * Rebuild the partial list with the slabs filled up most
2842 * first and the least used slabs at the end.
2844 for (i = objects - 1; i >= 0; i--)
2845 list_splice(slabs_by_inuse + i, n->partial.prev);
2847 spin_unlock_irqrestore(&n->list_lock, flags);
2850 kfree(slabs_by_inuse);
2851 return 0;
2853 EXPORT_SYMBOL(kmem_cache_shrink);
2855 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2856 static int slab_mem_going_offline_callback(void *arg)
2858 struct kmem_cache *s;
2860 down_read(&slub_lock);
2861 list_for_each_entry(s, &slab_caches, list)
2862 kmem_cache_shrink(s);
2863 up_read(&slub_lock);
2865 return 0;
2868 static void slab_mem_offline_callback(void *arg)
2870 struct kmem_cache_node *n;
2871 struct kmem_cache *s;
2872 struct memory_notify *marg = arg;
2873 int offline_node;
2875 offline_node = marg->status_change_nid;
2878 * If the node still has available memory. we need kmem_cache_node
2879 * for it yet.
2881 if (offline_node < 0)
2882 return;
2884 down_read(&slub_lock);
2885 list_for_each_entry(s, &slab_caches, list) {
2886 n = get_node(s, offline_node);
2887 if (n) {
2889 * if n->nr_slabs > 0, slabs still exist on the node
2890 * that is going down. We were unable to free them,
2891 * and offline_pages() function shouldn't call this
2892 * callback. So, we must fail.
2894 BUG_ON(slabs_node(s, offline_node));
2896 s->node[offline_node] = NULL;
2897 kmem_cache_free(kmem_cache_node, n);
2900 up_read(&slub_lock);
2903 static int slab_mem_going_online_callback(void *arg)
2905 struct kmem_cache_node *n;
2906 struct kmem_cache *s;
2907 struct memory_notify *marg = arg;
2908 int nid = marg->status_change_nid;
2909 int ret = 0;
2912 * If the node's memory is already available, then kmem_cache_node is
2913 * already created. Nothing to do.
2915 if (nid < 0)
2916 return 0;
2919 * We are bringing a node online. No memory is available yet. We must
2920 * allocate a kmem_cache_node structure in order to bring the node
2921 * online.
2923 down_read(&slub_lock);
2924 list_for_each_entry(s, &slab_caches, list) {
2926 * XXX: kmem_cache_alloc_node will fallback to other nodes
2927 * since memory is not yet available from the node that
2928 * is brought up.
2930 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2931 if (!n) {
2932 ret = -ENOMEM;
2933 goto out;
2935 init_kmem_cache_node(n, s);
2936 s->node[nid] = n;
2938 out:
2939 up_read(&slub_lock);
2940 return ret;
2943 static int slab_memory_callback(struct notifier_block *self,
2944 unsigned long action, void *arg)
2946 int ret = 0;
2948 switch (action) {
2949 case MEM_GOING_ONLINE:
2950 ret = slab_mem_going_online_callback(arg);
2951 break;
2952 case MEM_GOING_OFFLINE:
2953 ret = slab_mem_going_offline_callback(arg);
2954 break;
2955 case MEM_OFFLINE:
2956 case MEM_CANCEL_ONLINE:
2957 slab_mem_offline_callback(arg);
2958 break;
2959 case MEM_ONLINE:
2960 case MEM_CANCEL_OFFLINE:
2961 break;
2963 if (ret)
2964 ret = notifier_from_errno(ret);
2965 else
2966 ret = NOTIFY_OK;
2967 return ret;
2970 #endif /* CONFIG_MEMORY_HOTPLUG */
2972 /********************************************************************
2973 * Basic setup of slabs
2974 *******************************************************************/
2977 * Used for early kmem_cache structures that were allocated using
2978 * the page allocator
2981 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2983 int node;
2985 list_add(&s->list, &slab_caches);
2986 s->refcount = -1;
2988 for_each_node_state(node, N_NORMAL_MEMORY) {
2989 struct kmem_cache_node *n = get_node(s, node);
2990 struct page *p;
2992 if (n) {
2993 list_for_each_entry(p, &n->partial, lru)
2994 p->slab = s;
2996 #ifdef CONFIG_SLAB_DEBUG
2997 list_for_each_entry(p, &n->full, lru)
2998 p->slab = s;
2999 #endif
3004 void __init kmem_cache_init(void)
3006 int i;
3007 int caches = 0;
3008 struct kmem_cache *temp_kmem_cache;
3009 int order;
3010 struct kmem_cache *temp_kmem_cache_node;
3011 unsigned long kmalloc_size;
3013 kmem_size = offsetof(struct kmem_cache, node) +
3014 nr_node_ids * sizeof(struct kmem_cache_node *);
3016 /* Allocate two kmem_caches from the page allocator */
3017 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3018 order = get_order(2 * kmalloc_size);
3019 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3022 * Must first have the slab cache available for the allocations of the
3023 * struct kmem_cache_node's. There is special bootstrap code in
3024 * kmem_cache_open for slab_state == DOWN.
3026 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3028 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3029 sizeof(struct kmem_cache_node),
3030 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3032 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3034 /* Able to allocate the per node structures */
3035 slab_state = PARTIAL;
3037 temp_kmem_cache = kmem_cache;
3038 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3039 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3040 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3041 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3044 * Allocate kmem_cache_node properly from the kmem_cache slab.
3045 * kmem_cache_node is separately allocated so no need to
3046 * update any list pointers.
3048 temp_kmem_cache_node = kmem_cache_node;
3050 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3051 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3053 kmem_cache_bootstrap_fixup(kmem_cache_node);
3055 caches++;
3056 kmem_cache_bootstrap_fixup(kmem_cache);
3057 caches++;
3058 /* Free temporary boot structure */
3059 free_pages((unsigned long)temp_kmem_cache, order);
3061 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3064 * Patch up the size_index table if we have strange large alignment
3065 * requirements for the kmalloc array. This is only the case for
3066 * MIPS it seems. The standard arches will not generate any code here.
3068 * Largest permitted alignment is 256 bytes due to the way we
3069 * handle the index determination for the smaller caches.
3071 * Make sure that nothing crazy happens if someone starts tinkering
3072 * around with ARCH_KMALLOC_MINALIGN
3074 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3075 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3077 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3078 int elem = size_index_elem(i);
3079 if (elem >= ARRAY_SIZE(size_index))
3080 break;
3081 size_index[elem] = KMALLOC_SHIFT_LOW;
3084 if (KMALLOC_MIN_SIZE == 64) {
3086 * The 96 byte size cache is not used if the alignment
3087 * is 64 byte.
3089 for (i = 64 + 8; i <= 96; i += 8)
3090 size_index[size_index_elem(i)] = 7;
3091 } else if (KMALLOC_MIN_SIZE == 128) {
3093 * The 192 byte sized cache is not used if the alignment
3094 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3095 * instead.
3097 for (i = 128 + 8; i <= 192; i += 8)
3098 size_index[size_index_elem(i)] = 8;
3101 /* Caches that are not of the two-to-the-power-of size */
3102 if (KMALLOC_MIN_SIZE <= 32) {
3103 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3104 caches++;
3107 if (KMALLOC_MIN_SIZE <= 64) {
3108 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3109 caches++;
3112 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3113 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3114 caches++;
3117 slab_state = UP;
3119 /* Provide the correct kmalloc names now that the caches are up */
3120 if (KMALLOC_MIN_SIZE <= 32) {
3121 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3122 BUG_ON(!kmalloc_caches[1]->name);
3125 if (KMALLOC_MIN_SIZE <= 64) {
3126 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3127 BUG_ON(!kmalloc_caches[2]->name);
3130 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3131 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3133 BUG_ON(!s);
3134 kmalloc_caches[i]->name = s;
3137 #ifdef CONFIG_SMP
3138 register_cpu_notifier(&slab_notifier);
3139 #endif
3141 #ifdef CONFIG_ZONE_DMA
3142 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3143 struct kmem_cache *s = kmalloc_caches[i];
3145 if (s && s->size) {
3146 char *name = kasprintf(GFP_NOWAIT,
3147 "dma-kmalloc-%d", s->objsize);
3149 BUG_ON(!name);
3150 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3151 s->objsize, SLAB_CACHE_DMA);
3154 #endif
3155 printk(KERN_INFO
3156 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3157 " CPUs=%d, Nodes=%d\n",
3158 caches, cache_line_size(),
3159 slub_min_order, slub_max_order, slub_min_objects,
3160 nr_cpu_ids, nr_node_ids);
3163 void __init kmem_cache_init_late(void)
3168 * Find a mergeable slab cache
3170 static int slab_unmergeable(struct kmem_cache *s)
3172 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3173 return 1;
3175 if (s->ctor)
3176 return 1;
3179 * We may have set a slab to be unmergeable during bootstrap.
3181 if (s->refcount < 0)
3182 return 1;
3184 return 0;
3187 static struct kmem_cache *find_mergeable(size_t size,
3188 size_t align, unsigned long flags, const char *name,
3189 void (*ctor)(void *))
3191 struct kmem_cache *s;
3193 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3194 return NULL;
3196 if (ctor)
3197 return NULL;
3199 size = ALIGN(size, sizeof(void *));
3200 align = calculate_alignment(flags, align, size);
3201 size = ALIGN(size, align);
3202 flags = kmem_cache_flags(size, flags, name, NULL);
3204 list_for_each_entry(s, &slab_caches, list) {
3205 if (slab_unmergeable(s))
3206 continue;
3208 if (size > s->size)
3209 continue;
3211 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3212 continue;
3214 * Check if alignment is compatible.
3215 * Courtesy of Adrian Drzewiecki
3217 if ((s->size & ~(align - 1)) != s->size)
3218 continue;
3220 if (s->size - size >= sizeof(void *))
3221 continue;
3223 return s;
3225 return NULL;
3228 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3229 size_t align, unsigned long flags, void (*ctor)(void *))
3231 struct kmem_cache *s;
3232 char *n;
3234 if (WARN_ON(!name))
3235 return NULL;
3237 down_write(&slub_lock);
3238 s = find_mergeable(size, align, flags, name, ctor);
3239 if (s) {
3240 s->refcount++;
3242 * Adjust the object sizes so that we clear
3243 * the complete object on kzalloc.
3245 s->objsize = max(s->objsize, (int)size);
3246 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3248 if (sysfs_slab_alias(s, name)) {
3249 s->refcount--;
3250 goto err;
3252 up_write(&slub_lock);
3253 return s;
3256 n = kstrdup(name, GFP_KERNEL);
3257 if (!n)
3258 goto err;
3260 s = kmalloc(kmem_size, GFP_KERNEL);
3261 if (s) {
3262 if (kmem_cache_open(s, n,
3263 size, align, flags, ctor)) {
3264 list_add(&s->list, &slab_caches);
3265 if (sysfs_slab_add(s)) {
3266 list_del(&s->list);
3267 kfree(n);
3268 kfree(s);
3269 goto err;
3271 up_write(&slub_lock);
3272 return s;
3274 kfree(n);
3275 kfree(s);
3277 up_write(&slub_lock);
3279 err:
3280 if (flags & SLAB_PANIC)
3281 panic("Cannot create slabcache %s\n", name);
3282 else
3283 s = NULL;
3284 return s;
3286 EXPORT_SYMBOL(kmem_cache_create);
3288 #ifdef CONFIG_SMP
3290 * Use the cpu notifier to insure that the cpu slabs are flushed when
3291 * necessary.
3293 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3294 unsigned long action, void *hcpu)
3296 long cpu = (long)hcpu;
3297 struct kmem_cache *s;
3298 unsigned long flags;
3300 switch (action) {
3301 case CPU_UP_CANCELED:
3302 case CPU_UP_CANCELED_FROZEN:
3303 case CPU_DEAD:
3304 case CPU_DEAD_FROZEN:
3305 down_read(&slub_lock);
3306 list_for_each_entry(s, &slab_caches, list) {
3307 local_irq_save(flags);
3308 __flush_cpu_slab(s, cpu);
3309 local_irq_restore(flags);
3311 up_read(&slub_lock);
3312 break;
3313 default:
3314 break;
3316 return NOTIFY_OK;
3319 static struct notifier_block __cpuinitdata slab_notifier = {
3320 .notifier_call = slab_cpuup_callback
3323 #endif
3325 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3327 struct kmem_cache *s;
3328 void *ret;
3330 if (unlikely(size > SLUB_MAX_SIZE))
3331 return kmalloc_large(size, gfpflags);
3333 s = get_slab(size, gfpflags);
3335 if (unlikely(ZERO_OR_NULL_PTR(s)))
3336 return s;
3338 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3340 /* Honor the call site pointer we recieved. */
3341 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3343 return ret;
3346 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3347 int node, unsigned long caller)
3349 struct kmem_cache *s;
3350 void *ret;
3352 if (unlikely(size > SLUB_MAX_SIZE)) {
3353 ret = kmalloc_large_node(size, gfpflags, node);
3355 trace_kmalloc_node(caller, ret,
3356 size, PAGE_SIZE << get_order(size),
3357 gfpflags, node);
3359 return ret;
3362 s = get_slab(size, gfpflags);
3364 if (unlikely(ZERO_OR_NULL_PTR(s)))
3365 return s;
3367 ret = slab_alloc(s, gfpflags, node, caller);
3369 /* Honor the call site pointer we recieved. */
3370 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3372 return ret;
3375 #ifdef CONFIG_SLUB_DEBUG
3376 static int count_inuse(struct page *page)
3378 return page->inuse;
3381 static int count_total(struct page *page)
3383 return page->objects;
3386 static int validate_slab(struct kmem_cache *s, struct page *page,
3387 unsigned long *map)
3389 void *p;
3390 void *addr = page_address(page);
3392 if (!check_slab(s, page) ||
3393 !on_freelist(s, page, NULL))
3394 return 0;
3396 /* Now we know that a valid freelist exists */
3397 bitmap_zero(map, page->objects);
3399 for_each_free_object(p, s, page->freelist) {
3400 set_bit(slab_index(p, s, addr), map);
3401 if (!check_object(s, page, p, 0))
3402 return 0;
3405 for_each_object(p, s, addr, page->objects)
3406 if (!test_bit(slab_index(p, s, addr), map))
3407 if (!check_object(s, page, p, 1))
3408 return 0;
3409 return 1;
3412 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3413 unsigned long *map)
3415 if (slab_trylock(page)) {
3416 validate_slab(s, page, map);
3417 slab_unlock(page);
3418 } else
3419 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3420 s->name, page);
3423 static int validate_slab_node(struct kmem_cache *s,
3424 struct kmem_cache_node *n, unsigned long *map)
3426 unsigned long count = 0;
3427 struct page *page;
3428 unsigned long flags;
3430 spin_lock_irqsave(&n->list_lock, flags);
3432 list_for_each_entry(page, &n->partial, lru) {
3433 validate_slab_slab(s, page, map);
3434 count++;
3436 if (count != n->nr_partial)
3437 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3438 "counter=%ld\n", s->name, count, n->nr_partial);
3440 if (!(s->flags & SLAB_STORE_USER))
3441 goto out;
3443 list_for_each_entry(page, &n->full, lru) {
3444 validate_slab_slab(s, page, map);
3445 count++;
3447 if (count != atomic_long_read(&n->nr_slabs))
3448 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3449 "counter=%ld\n", s->name, count,
3450 atomic_long_read(&n->nr_slabs));
3452 out:
3453 spin_unlock_irqrestore(&n->list_lock, flags);
3454 return count;
3457 static long validate_slab_cache(struct kmem_cache *s)
3459 int node;
3460 unsigned long count = 0;
3461 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3462 sizeof(unsigned long), GFP_KERNEL);
3464 if (!map)
3465 return -ENOMEM;
3467 flush_all(s);
3468 for_each_node_state(node, N_NORMAL_MEMORY) {
3469 struct kmem_cache_node *n = get_node(s, node);
3471 count += validate_slab_node(s, n, map);
3473 kfree(map);
3474 return count;
3477 #ifdef SLUB_RESILIENCY_TEST
3478 static void resiliency_test(void)
3480 u8 *p;
3482 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3484 printk(KERN_ERR "SLUB resiliency testing\n");
3485 printk(KERN_ERR "-----------------------\n");
3486 printk(KERN_ERR "A. Corruption after allocation\n");
3488 p = kzalloc(16, GFP_KERNEL);
3489 p[16] = 0x12;
3490 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3491 " 0x12->0x%p\n\n", p + 16);
3493 validate_slab_cache(kmalloc_caches[4]);
3495 /* Hmmm... The next two are dangerous */
3496 p = kzalloc(32, GFP_KERNEL);
3497 p[32 + sizeof(void *)] = 0x34;
3498 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3499 " 0x34 -> -0x%p\n", p);
3500 printk(KERN_ERR
3501 "If allocated object is overwritten then not detectable\n\n");
3503 validate_slab_cache(kmalloc_caches[5]);
3504 p = kzalloc(64, GFP_KERNEL);
3505 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3506 *p = 0x56;
3507 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3509 printk(KERN_ERR
3510 "If allocated object is overwritten then not detectable\n\n");
3511 validate_slab_cache(kmalloc_caches[6]);
3513 printk(KERN_ERR "\nB. Corruption after free\n");
3514 p = kzalloc(128, GFP_KERNEL);
3515 kfree(p);
3516 *p = 0x78;
3517 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3518 validate_slab_cache(kmalloc_caches[7]);
3520 p = kzalloc(256, GFP_KERNEL);
3521 kfree(p);
3522 p[50] = 0x9a;
3523 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3525 validate_slab_cache(kmalloc_caches[8]);
3527 p = kzalloc(512, GFP_KERNEL);
3528 kfree(p);
3529 p[512] = 0xab;
3530 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3531 validate_slab_cache(kmalloc_caches[9]);
3533 #else
3534 static void resiliency_test(void) {};
3535 #endif
3538 * Generate lists of code addresses where slabcache objects are allocated
3539 * and freed.
3542 struct location {
3543 unsigned long count;
3544 unsigned long addr;
3545 long long sum_time;
3546 long min_time;
3547 long max_time;
3548 long min_pid;
3549 long max_pid;
3550 DECLARE_BITMAP(cpus, NR_CPUS);
3551 nodemask_t nodes;
3554 struct loc_track {
3555 unsigned long max;
3556 unsigned long count;
3557 struct location *loc;
3560 static void free_loc_track(struct loc_track *t)
3562 if (t->max)
3563 free_pages((unsigned long)t->loc,
3564 get_order(sizeof(struct location) * t->max));
3567 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3569 struct location *l;
3570 int order;
3572 order = get_order(sizeof(struct location) * max);
3574 l = (void *)__get_free_pages(flags, order);
3575 if (!l)
3576 return 0;
3578 if (t->count) {
3579 memcpy(l, t->loc, sizeof(struct location) * t->count);
3580 free_loc_track(t);
3582 t->max = max;
3583 t->loc = l;
3584 return 1;
3587 static int add_location(struct loc_track *t, struct kmem_cache *s,
3588 const struct track *track)
3590 long start, end, pos;
3591 struct location *l;
3592 unsigned long caddr;
3593 unsigned long age = jiffies - track->when;
3595 start = -1;
3596 end = t->count;
3598 for ( ; ; ) {
3599 pos = start + (end - start + 1) / 2;
3602 * There is nothing at "end". If we end up there
3603 * we need to add something to before end.
3605 if (pos == end)
3606 break;
3608 caddr = t->loc[pos].addr;
3609 if (track->addr == caddr) {
3611 l = &t->loc[pos];
3612 l->count++;
3613 if (track->when) {
3614 l->sum_time += age;
3615 if (age < l->min_time)
3616 l->min_time = age;
3617 if (age > l->max_time)
3618 l->max_time = age;
3620 if (track->pid < l->min_pid)
3621 l->min_pid = track->pid;
3622 if (track->pid > l->max_pid)
3623 l->max_pid = track->pid;
3625 cpumask_set_cpu(track->cpu,
3626 to_cpumask(l->cpus));
3628 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3629 return 1;
3632 if (track->addr < caddr)
3633 end = pos;
3634 else
3635 start = pos;
3639 * Not found. Insert new tracking element.
3641 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3642 return 0;
3644 l = t->loc + pos;
3645 if (pos < t->count)
3646 memmove(l + 1, l,
3647 (t->count - pos) * sizeof(struct location));
3648 t->count++;
3649 l->count = 1;
3650 l->addr = track->addr;
3651 l->sum_time = age;
3652 l->min_time = age;
3653 l->max_time = age;
3654 l->min_pid = track->pid;
3655 l->max_pid = track->pid;
3656 cpumask_clear(to_cpumask(l->cpus));
3657 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3658 nodes_clear(l->nodes);
3659 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3660 return 1;
3663 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3664 struct page *page, enum track_item alloc,
3665 long *map)
3667 void *addr = page_address(page);
3668 void *p;
3670 bitmap_zero(map, page->objects);
3671 for_each_free_object(p, s, page->freelist)
3672 set_bit(slab_index(p, s, addr), map);
3674 for_each_object(p, s, addr, page->objects)
3675 if (!test_bit(slab_index(p, s, addr), map))
3676 add_location(t, s, get_track(s, p, alloc));
3679 static int list_locations(struct kmem_cache *s, char *buf,
3680 enum track_item alloc)
3682 int len = 0;
3683 unsigned long i;
3684 struct loc_track t = { 0, 0, NULL };
3685 int node;
3686 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3687 sizeof(unsigned long), GFP_KERNEL);
3689 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3690 GFP_TEMPORARY)) {
3691 kfree(map);
3692 return sprintf(buf, "Out of memory\n");
3694 /* Push back cpu slabs */
3695 flush_all(s);
3697 for_each_node_state(node, N_NORMAL_MEMORY) {
3698 struct kmem_cache_node *n = get_node(s, node);
3699 unsigned long flags;
3700 struct page *page;
3702 if (!atomic_long_read(&n->nr_slabs))
3703 continue;
3705 spin_lock_irqsave(&n->list_lock, flags);
3706 list_for_each_entry(page, &n->partial, lru)
3707 process_slab(&t, s, page, alloc, map);
3708 list_for_each_entry(page, &n->full, lru)
3709 process_slab(&t, s, page, alloc, map);
3710 spin_unlock_irqrestore(&n->list_lock, flags);
3713 for (i = 0; i < t.count; i++) {
3714 struct location *l = &t.loc[i];
3716 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3717 break;
3718 len += sprintf(buf + len, "%7ld ", l->count);
3720 if (l->addr)
3721 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3722 else
3723 len += sprintf(buf + len, "<not-available>");
3725 if (l->sum_time != l->min_time) {
3726 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3727 l->min_time,
3728 (long)div_u64(l->sum_time, l->count),
3729 l->max_time);
3730 } else
3731 len += sprintf(buf + len, " age=%ld",
3732 l->min_time);
3734 if (l->min_pid != l->max_pid)
3735 len += sprintf(buf + len, " pid=%ld-%ld",
3736 l->min_pid, l->max_pid);
3737 else
3738 len += sprintf(buf + len, " pid=%ld",
3739 l->min_pid);
3741 if (num_online_cpus() > 1 &&
3742 !cpumask_empty(to_cpumask(l->cpus)) &&
3743 len < PAGE_SIZE - 60) {
3744 len += sprintf(buf + len, " cpus=");
3745 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3746 to_cpumask(l->cpus));
3749 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3750 len < PAGE_SIZE - 60) {
3751 len += sprintf(buf + len, " nodes=");
3752 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3753 l->nodes);
3756 len += sprintf(buf + len, "\n");
3759 free_loc_track(&t);
3760 kfree(map);
3761 if (!t.count)
3762 len += sprintf(buf, "No data\n");
3763 return len;
3766 enum slab_stat_type {
3767 SL_ALL, /* All slabs */
3768 SL_PARTIAL, /* Only partially allocated slabs */
3769 SL_CPU, /* Only slabs used for cpu caches */
3770 SL_OBJECTS, /* Determine allocated objects not slabs */
3771 SL_TOTAL /* Determine object capacity not slabs */
3774 #define SO_ALL (1 << SL_ALL)
3775 #define SO_PARTIAL (1 << SL_PARTIAL)
3776 #define SO_CPU (1 << SL_CPU)
3777 #define SO_OBJECTS (1 << SL_OBJECTS)
3778 #define SO_TOTAL (1 << SL_TOTAL)
3780 static ssize_t show_slab_objects(struct kmem_cache *s,
3781 char *buf, unsigned long flags)
3783 unsigned long total = 0;
3784 int node;
3785 int x;
3786 unsigned long *nodes;
3787 unsigned long *per_cpu;
3789 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3790 if (!nodes)
3791 return -ENOMEM;
3792 per_cpu = nodes + nr_node_ids;
3794 if (flags & SO_CPU) {
3795 int cpu;
3797 for_each_possible_cpu(cpu) {
3798 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3800 if (!c || c->node < 0)
3801 continue;
3803 if (c->page) {
3804 if (flags & SO_TOTAL)
3805 x = c->page->objects;
3806 else if (flags & SO_OBJECTS)
3807 x = c->page->inuse;
3808 else
3809 x = 1;
3811 total += x;
3812 nodes[c->node] += x;
3814 per_cpu[c->node]++;
3818 if (flags & SO_ALL) {
3819 for_each_node_state(node, N_NORMAL_MEMORY) {
3820 struct kmem_cache_node *n = get_node(s, node);
3822 if (flags & SO_TOTAL)
3823 x = atomic_long_read(&n->total_objects);
3824 else if (flags & SO_OBJECTS)
3825 x = atomic_long_read(&n->total_objects) -
3826 count_partial(n, count_free);
3828 else
3829 x = atomic_long_read(&n->nr_slabs);
3830 total += x;
3831 nodes[node] += x;
3834 } else if (flags & SO_PARTIAL) {
3835 for_each_node_state(node, N_NORMAL_MEMORY) {
3836 struct kmem_cache_node *n = get_node(s, node);
3838 if (flags & SO_TOTAL)
3839 x = count_partial(n, count_total);
3840 else if (flags & SO_OBJECTS)
3841 x = count_partial(n, count_inuse);
3842 else
3843 x = n->nr_partial;
3844 total += x;
3845 nodes[node] += x;
3848 x = sprintf(buf, "%lu", total);
3849 #ifdef CONFIG_NUMA
3850 for_each_node_state(node, N_NORMAL_MEMORY)
3851 if (nodes[node])
3852 x += sprintf(buf + x, " N%d=%lu",
3853 node, nodes[node]);
3854 #endif
3855 kfree(nodes);
3856 return x + sprintf(buf + x, "\n");
3859 static int any_slab_objects(struct kmem_cache *s)
3861 int node;
3863 for_each_online_node(node) {
3864 struct kmem_cache_node *n = get_node(s, node);
3866 if (!n)
3867 continue;
3869 if (atomic_long_read(&n->total_objects))
3870 return 1;
3872 return 0;
3875 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3876 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3878 struct slab_attribute {
3879 struct attribute attr;
3880 ssize_t (*show)(struct kmem_cache *s, char *buf);
3881 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3884 #define SLAB_ATTR_RO(_name) \
3885 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3887 #define SLAB_ATTR(_name) \
3888 static struct slab_attribute _name##_attr = \
3889 __ATTR(_name, 0644, _name##_show, _name##_store)
3891 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3893 return sprintf(buf, "%d\n", s->size);
3895 SLAB_ATTR_RO(slab_size);
3897 static ssize_t align_show(struct kmem_cache *s, char *buf)
3899 return sprintf(buf, "%d\n", s->align);
3901 SLAB_ATTR_RO(align);
3903 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3905 return sprintf(buf, "%d\n", s->objsize);
3907 SLAB_ATTR_RO(object_size);
3909 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3911 return sprintf(buf, "%d\n", oo_objects(s->oo));
3913 SLAB_ATTR_RO(objs_per_slab);
3915 static ssize_t order_store(struct kmem_cache *s,
3916 const char *buf, size_t length)
3918 unsigned long order;
3919 int err;
3921 err = strict_strtoul(buf, 10, &order);
3922 if (err)
3923 return err;
3925 if (order > slub_max_order || order < slub_min_order)
3926 return -EINVAL;
3928 calculate_sizes(s, order);
3929 return length;
3932 static ssize_t order_show(struct kmem_cache *s, char *buf)
3934 return sprintf(buf, "%d\n", oo_order(s->oo));
3936 SLAB_ATTR(order);
3938 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3940 return sprintf(buf, "%lu\n", s->min_partial);
3943 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3944 size_t length)
3946 unsigned long min;
3947 int err;
3949 err = strict_strtoul(buf, 10, &min);
3950 if (err)
3951 return err;
3953 set_min_partial(s, min);
3954 return length;
3956 SLAB_ATTR(min_partial);
3958 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3960 if (s->ctor) {
3961 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3963 return n + sprintf(buf + n, "\n");
3965 return 0;
3967 SLAB_ATTR_RO(ctor);
3969 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3971 return sprintf(buf, "%d\n", s->refcount - 1);
3973 SLAB_ATTR_RO(aliases);
3975 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3977 return show_slab_objects(s, buf, SO_ALL);
3979 SLAB_ATTR_RO(slabs);
3981 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3983 return show_slab_objects(s, buf, SO_PARTIAL);
3985 SLAB_ATTR_RO(partial);
3987 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3989 return show_slab_objects(s, buf, SO_CPU);
3991 SLAB_ATTR_RO(cpu_slabs);
3993 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3995 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3997 SLAB_ATTR_RO(objects);
3999 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4001 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4003 SLAB_ATTR_RO(objects_partial);
4005 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4009 SLAB_ATTR_RO(total_objects);
4011 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4016 static ssize_t sanity_checks_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4019 s->flags &= ~SLAB_DEBUG_FREE;
4020 if (buf[0] == '1')
4021 s->flags |= SLAB_DEBUG_FREE;
4022 return length;
4024 SLAB_ATTR(sanity_checks);
4026 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4031 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4032 size_t length)
4034 s->flags &= ~SLAB_TRACE;
4035 if (buf[0] == '1')
4036 s->flags |= SLAB_TRACE;
4037 return length;
4039 SLAB_ATTR(trace);
4041 #ifdef CONFIG_FAILSLAB
4042 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4047 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4048 size_t length)
4050 s->flags &= ~SLAB_FAILSLAB;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_FAILSLAB;
4053 return length;
4055 SLAB_ATTR(failslab);
4056 #endif
4058 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4060 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4063 static ssize_t reclaim_account_store(struct kmem_cache *s,
4064 const char *buf, size_t length)
4066 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4067 if (buf[0] == '1')
4068 s->flags |= SLAB_RECLAIM_ACCOUNT;
4069 return length;
4071 SLAB_ATTR(reclaim_account);
4073 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4077 SLAB_ATTR_RO(hwcache_align);
4079 #ifdef CONFIG_ZONE_DMA
4080 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4084 SLAB_ATTR_RO(cache_dma);
4085 #endif
4087 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4091 SLAB_ATTR_RO(destroy_by_rcu);
4093 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4098 static ssize_t red_zone_store(struct kmem_cache *s,
4099 const char *buf, size_t length)
4101 if (any_slab_objects(s))
4102 return -EBUSY;
4104 s->flags &= ~SLAB_RED_ZONE;
4105 if (buf[0] == '1')
4106 s->flags |= SLAB_RED_ZONE;
4107 calculate_sizes(s, -1);
4108 return length;
4110 SLAB_ATTR(red_zone);
4112 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4117 static ssize_t poison_store(struct kmem_cache *s,
4118 const char *buf, size_t length)
4120 if (any_slab_objects(s))
4121 return -EBUSY;
4123 s->flags &= ~SLAB_POISON;
4124 if (buf[0] == '1')
4125 s->flags |= SLAB_POISON;
4126 calculate_sizes(s, -1);
4127 return length;
4129 SLAB_ATTR(poison);
4131 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4136 static ssize_t store_user_store(struct kmem_cache *s,
4137 const char *buf, size_t length)
4139 if (any_slab_objects(s))
4140 return -EBUSY;
4142 s->flags &= ~SLAB_STORE_USER;
4143 if (buf[0] == '1')
4144 s->flags |= SLAB_STORE_USER;
4145 calculate_sizes(s, -1);
4146 return length;
4148 SLAB_ATTR(store_user);
4150 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4152 return 0;
4155 static ssize_t validate_store(struct kmem_cache *s,
4156 const char *buf, size_t length)
4158 int ret = -EINVAL;
4160 if (buf[0] == '1') {
4161 ret = validate_slab_cache(s);
4162 if (ret >= 0)
4163 ret = length;
4165 return ret;
4167 SLAB_ATTR(validate);
4169 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4171 return 0;
4174 static ssize_t shrink_store(struct kmem_cache *s,
4175 const char *buf, size_t length)
4177 if (buf[0] == '1') {
4178 int rc = kmem_cache_shrink(s);
4180 if (rc)
4181 return rc;
4182 } else
4183 return -EINVAL;
4184 return length;
4186 SLAB_ATTR(shrink);
4188 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4190 if (!(s->flags & SLAB_STORE_USER))
4191 return -ENOSYS;
4192 return list_locations(s, buf, TRACK_ALLOC);
4194 SLAB_ATTR_RO(alloc_calls);
4196 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4198 if (!(s->flags & SLAB_STORE_USER))
4199 return -ENOSYS;
4200 return list_locations(s, buf, TRACK_FREE);
4202 SLAB_ATTR_RO(free_calls);
4204 #ifdef CONFIG_NUMA
4205 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4207 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4210 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4211 const char *buf, size_t length)
4213 unsigned long ratio;
4214 int err;
4216 err = strict_strtoul(buf, 10, &ratio);
4217 if (err)
4218 return err;
4220 if (ratio <= 100)
4221 s->remote_node_defrag_ratio = ratio * 10;
4223 return length;
4225 SLAB_ATTR(remote_node_defrag_ratio);
4226 #endif
4228 #ifdef CONFIG_SLUB_STATS
4229 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4231 unsigned long sum = 0;
4232 int cpu;
4233 int len;
4234 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4236 if (!data)
4237 return -ENOMEM;
4239 for_each_online_cpu(cpu) {
4240 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4242 data[cpu] = x;
4243 sum += x;
4246 len = sprintf(buf, "%lu", sum);
4248 #ifdef CONFIG_SMP
4249 for_each_online_cpu(cpu) {
4250 if (data[cpu] && len < PAGE_SIZE - 20)
4251 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4253 #endif
4254 kfree(data);
4255 return len + sprintf(buf + len, "\n");
4258 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4260 int cpu;
4262 for_each_online_cpu(cpu)
4263 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4266 #define STAT_ATTR(si, text) \
4267 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4269 return show_stat(s, buf, si); \
4271 static ssize_t text##_store(struct kmem_cache *s, \
4272 const char *buf, size_t length) \
4274 if (buf[0] != '0') \
4275 return -EINVAL; \
4276 clear_stat(s, si); \
4277 return length; \
4279 SLAB_ATTR(text); \
4281 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4282 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4283 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4284 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4285 STAT_ATTR(FREE_FROZEN, free_frozen);
4286 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4287 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4288 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4289 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4290 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4291 STAT_ATTR(FREE_SLAB, free_slab);
4292 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4293 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4294 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4295 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4296 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4297 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4298 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4299 #endif
4301 static struct attribute *slab_attrs[] = {
4302 &slab_size_attr.attr,
4303 &object_size_attr.attr,
4304 &objs_per_slab_attr.attr,
4305 &order_attr.attr,
4306 &min_partial_attr.attr,
4307 &objects_attr.attr,
4308 &objects_partial_attr.attr,
4309 &total_objects_attr.attr,
4310 &slabs_attr.attr,
4311 &partial_attr.attr,
4312 &cpu_slabs_attr.attr,
4313 &ctor_attr.attr,
4314 &aliases_attr.attr,
4315 &align_attr.attr,
4316 &sanity_checks_attr.attr,
4317 &trace_attr.attr,
4318 &hwcache_align_attr.attr,
4319 &reclaim_account_attr.attr,
4320 &destroy_by_rcu_attr.attr,
4321 &red_zone_attr.attr,
4322 &poison_attr.attr,
4323 &store_user_attr.attr,
4324 &validate_attr.attr,
4325 &shrink_attr.attr,
4326 &alloc_calls_attr.attr,
4327 &free_calls_attr.attr,
4328 #ifdef CONFIG_ZONE_DMA
4329 &cache_dma_attr.attr,
4330 #endif
4331 #ifdef CONFIG_NUMA
4332 &remote_node_defrag_ratio_attr.attr,
4333 #endif
4334 #ifdef CONFIG_SLUB_STATS
4335 &alloc_fastpath_attr.attr,
4336 &alloc_slowpath_attr.attr,
4337 &free_fastpath_attr.attr,
4338 &free_slowpath_attr.attr,
4339 &free_frozen_attr.attr,
4340 &free_add_partial_attr.attr,
4341 &free_remove_partial_attr.attr,
4342 &alloc_from_partial_attr.attr,
4343 &alloc_slab_attr.attr,
4344 &alloc_refill_attr.attr,
4345 &free_slab_attr.attr,
4346 &cpuslab_flush_attr.attr,
4347 &deactivate_full_attr.attr,
4348 &deactivate_empty_attr.attr,
4349 &deactivate_to_head_attr.attr,
4350 &deactivate_to_tail_attr.attr,
4351 &deactivate_remote_frees_attr.attr,
4352 &order_fallback_attr.attr,
4353 #endif
4354 #ifdef CONFIG_FAILSLAB
4355 &failslab_attr.attr,
4356 #endif
4358 NULL
4361 static struct attribute_group slab_attr_group = {
4362 .attrs = slab_attrs,
4365 static ssize_t slab_attr_show(struct kobject *kobj,
4366 struct attribute *attr,
4367 char *buf)
4369 struct slab_attribute *attribute;
4370 struct kmem_cache *s;
4371 int err;
4373 attribute = to_slab_attr(attr);
4374 s = to_slab(kobj);
4376 if (!attribute->show)
4377 return -EIO;
4379 err = attribute->show(s, buf);
4381 return err;
4384 static ssize_t slab_attr_store(struct kobject *kobj,
4385 struct attribute *attr,
4386 const char *buf, size_t len)
4388 struct slab_attribute *attribute;
4389 struct kmem_cache *s;
4390 int err;
4392 attribute = to_slab_attr(attr);
4393 s = to_slab(kobj);
4395 if (!attribute->store)
4396 return -EIO;
4398 err = attribute->store(s, buf, len);
4400 return err;
4403 static void kmem_cache_release(struct kobject *kobj)
4405 struct kmem_cache *s = to_slab(kobj);
4407 kfree(s->name);
4408 kfree(s);
4411 static const struct sysfs_ops slab_sysfs_ops = {
4412 .show = slab_attr_show,
4413 .store = slab_attr_store,
4416 static struct kobj_type slab_ktype = {
4417 .sysfs_ops = &slab_sysfs_ops,
4418 .release = kmem_cache_release
4421 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4423 struct kobj_type *ktype = get_ktype(kobj);
4425 if (ktype == &slab_ktype)
4426 return 1;
4427 return 0;
4430 static const struct kset_uevent_ops slab_uevent_ops = {
4431 .filter = uevent_filter,
4434 static struct kset *slab_kset;
4436 #define ID_STR_LENGTH 64
4438 /* Create a unique string id for a slab cache:
4440 * Format :[flags-]size
4442 static char *create_unique_id(struct kmem_cache *s)
4444 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4445 char *p = name;
4447 BUG_ON(!name);
4449 *p++ = ':';
4451 * First flags affecting slabcache operations. We will only
4452 * get here for aliasable slabs so we do not need to support
4453 * too many flags. The flags here must cover all flags that
4454 * are matched during merging to guarantee that the id is
4455 * unique.
4457 if (s->flags & SLAB_CACHE_DMA)
4458 *p++ = 'd';
4459 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4460 *p++ = 'a';
4461 if (s->flags & SLAB_DEBUG_FREE)
4462 *p++ = 'F';
4463 if (!(s->flags & SLAB_NOTRACK))
4464 *p++ = 't';
4465 if (p != name + 1)
4466 *p++ = '-';
4467 p += sprintf(p, "%07d", s->size);
4468 BUG_ON(p > name + ID_STR_LENGTH - 1);
4469 return name;
4472 static int sysfs_slab_add(struct kmem_cache *s)
4474 int err;
4475 const char *name;
4476 int unmergeable;
4478 if (slab_state < SYSFS)
4479 /* Defer until later */
4480 return 0;
4482 unmergeable = slab_unmergeable(s);
4483 if (unmergeable) {
4485 * Slabcache can never be merged so we can use the name proper.
4486 * This is typically the case for debug situations. In that
4487 * case we can catch duplicate names easily.
4489 sysfs_remove_link(&slab_kset->kobj, s->name);
4490 name = s->name;
4491 } else {
4493 * Create a unique name for the slab as a target
4494 * for the symlinks.
4496 name = create_unique_id(s);
4499 s->kobj.kset = slab_kset;
4500 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4501 if (err) {
4502 kobject_put(&s->kobj);
4503 return err;
4506 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4507 if (err) {
4508 kobject_del(&s->kobj);
4509 kobject_put(&s->kobj);
4510 return err;
4512 kobject_uevent(&s->kobj, KOBJ_ADD);
4513 if (!unmergeable) {
4514 /* Setup first alias */
4515 sysfs_slab_alias(s, s->name);
4516 kfree(name);
4518 return 0;
4521 static void sysfs_slab_remove(struct kmem_cache *s)
4523 if (slab_state < SYSFS)
4525 * Sysfs has not been setup yet so no need to remove the
4526 * cache from sysfs.
4528 return;
4530 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4531 kobject_del(&s->kobj);
4532 kobject_put(&s->kobj);
4536 * Need to buffer aliases during bootup until sysfs becomes
4537 * available lest we lose that information.
4539 struct saved_alias {
4540 struct kmem_cache *s;
4541 const char *name;
4542 struct saved_alias *next;
4545 static struct saved_alias *alias_list;
4547 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4549 struct saved_alias *al;
4551 if (slab_state == SYSFS) {
4553 * If we have a leftover link then remove it.
4555 sysfs_remove_link(&slab_kset->kobj, name);
4556 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4559 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4560 if (!al)
4561 return -ENOMEM;
4563 al->s = s;
4564 al->name = name;
4565 al->next = alias_list;
4566 alias_list = al;
4567 return 0;
4570 static int __init slab_sysfs_init(void)
4572 struct kmem_cache *s;
4573 int err;
4575 down_write(&slub_lock);
4577 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4578 if (!slab_kset) {
4579 up_write(&slub_lock);
4580 printk(KERN_ERR "Cannot register slab subsystem.\n");
4581 return -ENOSYS;
4584 slab_state = SYSFS;
4586 list_for_each_entry(s, &slab_caches, list) {
4587 err = sysfs_slab_add(s);
4588 if (err)
4589 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4590 " to sysfs\n", s->name);
4593 while (alias_list) {
4594 struct saved_alias *al = alias_list;
4596 alias_list = alias_list->next;
4597 err = sysfs_slab_alias(al->s, al->name);
4598 if (err)
4599 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4600 " %s to sysfs\n", s->name);
4601 kfree(al);
4604 up_write(&slub_lock);
4605 resiliency_test();
4606 return 0;
4609 __initcall(slab_sysfs_init);
4610 #endif
4613 * The /proc/slabinfo ABI
4615 #ifdef CONFIG_SLABINFO
4616 static void print_slabinfo_header(struct seq_file *m)
4618 seq_puts(m, "slabinfo - version: 2.1\n");
4619 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4620 "<objperslab> <pagesperslab>");
4621 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4622 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4623 seq_putc(m, '\n');
4626 static void *s_start(struct seq_file *m, loff_t *pos)
4628 loff_t n = *pos;
4630 down_read(&slub_lock);
4631 if (!n)
4632 print_slabinfo_header(m);
4634 return seq_list_start(&slab_caches, *pos);
4637 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4639 return seq_list_next(p, &slab_caches, pos);
4642 static void s_stop(struct seq_file *m, void *p)
4644 up_read(&slub_lock);
4647 static int s_show(struct seq_file *m, void *p)
4649 unsigned long nr_partials = 0;
4650 unsigned long nr_slabs = 0;
4651 unsigned long nr_inuse = 0;
4652 unsigned long nr_objs = 0;
4653 unsigned long nr_free = 0;
4654 struct kmem_cache *s;
4655 int node;
4657 s = list_entry(p, struct kmem_cache, list);
4659 for_each_online_node(node) {
4660 struct kmem_cache_node *n = get_node(s, node);
4662 if (!n)
4663 continue;
4665 nr_partials += n->nr_partial;
4666 nr_slabs += atomic_long_read(&n->nr_slabs);
4667 nr_objs += atomic_long_read(&n->total_objects);
4668 nr_free += count_partial(n, count_free);
4671 nr_inuse = nr_objs - nr_free;
4673 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4674 nr_objs, s->size, oo_objects(s->oo),
4675 (1 << oo_order(s->oo)));
4676 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4677 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4678 0UL);
4679 seq_putc(m, '\n');
4680 return 0;
4683 static const struct seq_operations slabinfo_op = {
4684 .start = s_start,
4685 .next = s_next,
4686 .stop = s_stop,
4687 .show = s_show,
4690 static int slabinfo_open(struct inode *inode, struct file *file)
4692 return seq_open(file, &slabinfo_op);
4695 static const struct file_operations proc_slabinfo_operations = {
4696 .open = slabinfo_open,
4697 .read = seq_read,
4698 .llseek = seq_lseek,
4699 .release = seq_release,
4702 static int __init slab_proc_init(void)
4704 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4705 return 0;
4707 module_init(slab_proc_init);
4708 #endif /* CONFIG_SLABINFO */