2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
22 #include <linux/sched.h>
24 #include <linux/file.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
40 #define dprintk printk
42 #define dprintk(x...) do { ; } while (0)
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock
);
47 unsigned long aio_nr
; /* current system wide number of aio requests */
48 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache
*kiocb_cachep
;
52 static struct kmem_cache
*kioctx_cachep
;
54 static struct workqueue_struct
*aio_wq
;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct
*);
58 static DECLARE_WORK(fput_work
, aio_fput_routine
);
60 static DEFINE_SPINLOCK(fput_lock
);
61 static LIST_HEAD(fput_head
);
63 static void aio_kick_handler(struct work_struct
*);
64 static void aio_queue_work(struct kioctx
*);
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init
aio_setup(void)
72 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
73 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
75 aio_wq
= create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
82 static void aio_free_ring(struct kioctx
*ctx
)
84 struct aio_ring_info
*info
= &ctx
->ring_info
;
87 for (i
=0; i
<info
->nr_pages
; i
++)
88 put_page(info
->ring_pages
[i
]);
90 if (info
->mmap_size
) {
91 down_write(&ctx
->mm
->mmap_sem
);
92 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
93 up_write(&ctx
->mm
->mmap_sem
);
96 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
97 kfree(info
->ring_pages
);
98 info
->ring_pages
= NULL
;
102 static int aio_setup_ring(struct kioctx
*ctx
)
104 struct aio_ring
*ring
;
105 struct aio_ring_info
*info
= &ctx
->ring_info
;
106 unsigned nr_events
= ctx
->max_reqs
;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events
+= 2; /* 1 is required, 2 for good luck */
113 size
= sizeof(struct aio_ring
);
114 size
+= sizeof(struct io_event
) * nr_events
;
115 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
120 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
123 info
->ring_pages
= info
->internal_pages
;
124 if (nr_pages
> AIO_RING_PAGES
) {
125 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
126 if (!info
->ring_pages
)
130 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
131 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
132 down_write(&ctx
->mm
->mmap_sem
);
133 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
134 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
136 if (IS_ERR((void *)info
->mmap_base
)) {
137 up_write(&ctx
->mm
->mmap_sem
);
143 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
144 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
145 info
->mmap_base
, nr_pages
,
146 1, 0, info
->ring_pages
, NULL
);
147 up_write(&ctx
->mm
->mmap_sem
);
149 if (unlikely(info
->nr_pages
!= nr_pages
)) {
154 ctx
->user_id
= info
->mmap_base
;
156 info
->nr
= nr_events
; /* trusted copy */
158 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
159 ring
->nr
= nr_events
; /* user copy */
160 ring
->id
= ctx
->user_id
;
161 ring
->head
= ring
->tail
= 0;
162 ring
->magic
= AIO_RING_MAGIC
;
163 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
164 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
165 ring
->header_length
= sizeof(struct aio_ring
);
166 kunmap_atomic(ring
, KM_USER0
);
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
199 static void __put_ioctx(struct kioctx
*ctx
)
201 unsigned nr_events
= ctx
->max_reqs
;
203 BUG_ON(ctx
->reqs_active
);
205 cancel_delayed_work(&ctx
->wq
);
206 cancel_work_sync(&ctx
->wq
.work
);
210 pr_debug("__put_ioctx: freeing %p\n", ctx
);
211 kmem_cache_free(kioctx_cachep
, ctx
);
214 spin_lock(&aio_nr_lock
);
215 BUG_ON(aio_nr
- nr_events
> aio_nr
);
217 spin_unlock(&aio_nr_lock
);
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
236 struct mm_struct
*mm
;
239 /* Prevent overflows */
240 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
241 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL
);
246 if ((unsigned long)nr_events
> aio_max_nr
)
247 return ERR_PTR(-EAGAIN
);
249 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
251 return ERR_PTR(-ENOMEM
);
253 ctx
->max_reqs
= nr_events
;
254 mm
= ctx
->mm
= current
->mm
;
255 atomic_inc(&mm
->mm_count
);
257 atomic_set(&ctx
->users
, 1);
258 spin_lock_init(&ctx
->ctx_lock
);
259 spin_lock_init(&ctx
->ring_info
.ring_lock
);
260 init_waitqueue_head(&ctx
->wait
);
262 INIT_LIST_HEAD(&ctx
->active_reqs
);
263 INIT_LIST_HEAD(&ctx
->run_list
);
264 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
266 if (aio_setup_ring(ctx
) < 0)
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock
);
271 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
272 aio_nr
+ ctx
->max_reqs
< aio_nr
)
275 aio_nr
+= ctx
->max_reqs
;
276 spin_unlock(&aio_nr_lock
);
277 if (ctx
->max_reqs
== 0)
280 /* now link into global list. */
281 write_lock(&mm
->ioctx_list_lock
);
282 ctx
->next
= mm
->ioctx_list
;
283 mm
->ioctx_list
= ctx
;
284 write_unlock(&mm
->ioctx_list_lock
);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
292 return ERR_PTR(-EAGAIN
);
296 kmem_cache_free(kioctx_cachep
, ctx
);
297 ctx
= ERR_PTR(-ENOMEM
);
299 dprintk("aio: error allocating ioctx %p\n", ctx
);
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
308 static void aio_cancel_all(struct kioctx
*ctx
)
310 int (*cancel
)(struct kiocb
*, struct io_event
*);
312 spin_lock_irq(&ctx
->ctx_lock
);
314 while (!list_empty(&ctx
->active_reqs
)) {
315 struct list_head
*pos
= ctx
->active_reqs
.next
;
316 struct kiocb
*iocb
= list_kiocb(pos
);
317 list_del_init(&iocb
->ki_list
);
318 cancel
= iocb
->ki_cancel
;
319 kiocbSetCancelled(iocb
);
322 spin_unlock_irq(&ctx
->ctx_lock
);
324 spin_lock_irq(&ctx
->ctx_lock
);
327 spin_unlock_irq(&ctx
->ctx_lock
);
330 static void wait_for_all_aios(struct kioctx
*ctx
)
332 struct task_struct
*tsk
= current
;
333 DECLARE_WAITQUEUE(wait
, tsk
);
335 spin_lock_irq(&ctx
->ctx_lock
);
336 if (!ctx
->reqs_active
)
339 add_wait_queue(&ctx
->wait
, &wait
);
340 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
341 while (ctx
->reqs_active
) {
342 spin_unlock_irq(&ctx
->ctx_lock
);
344 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
345 spin_lock_irq(&ctx
->ctx_lock
);
347 __set_task_state(tsk
, TASK_RUNNING
);
348 remove_wait_queue(&ctx
->wait
, &wait
);
351 spin_unlock_irq(&ctx
->ctx_lock
);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
359 while (iocb
->ki_users
) {
360 set_current_state(TASK_UNINTERRUPTIBLE
);
365 __set_current_state(TASK_RUNNING
);
366 return iocb
->ki_user_data
;
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
376 void exit_aio(struct mm_struct
*mm
)
378 struct kioctx
*ctx
= mm
->ioctx_list
;
379 mm
->ioctx_list
= NULL
;
381 struct kioctx
*next
= ctx
->next
;
385 wait_for_all_aios(ctx
);
387 * Ensure we don't leave the ctx on the aio_wq
389 cancel_work_sync(&ctx
->wq
.work
);
391 if (1 != atomic_read(&ctx
->users
))
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx
->users
), ctx
->dead
,
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
411 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
413 struct kiocb
*req
= NULL
;
414 struct aio_ring
*ring
;
417 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
425 req
->ki_cancel
= NULL
;
426 req
->ki_retry
= NULL
;
429 req
->ki_iovec
= NULL
;
430 INIT_LIST_HEAD(&req
->ki_run_list
);
431 req
->ki_eventfd
= NULL
;
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
436 spin_lock_irq(&ctx
->ctx_lock
);
437 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
438 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
439 list_add(&req
->ki_list
, &ctx
->active_reqs
);
443 kunmap_atomic(ring
, KM_USER0
);
444 spin_unlock_irq(&ctx
->ctx_lock
);
447 kmem_cache_free(kiocb_cachep
, req
);
454 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
461 req
= __aio_get_req(ctx
);
462 if (unlikely(NULL
== req
)) {
463 aio_fput_routine(NULL
);
464 req
= __aio_get_req(ctx
);
469 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
471 assert_spin_locked(&ctx
->ctx_lock
);
475 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
476 kfree(req
->ki_iovec
);
477 kmem_cache_free(kiocb_cachep
, req
);
480 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
484 static void aio_fput_routine(struct work_struct
*data
)
486 spin_lock_irq(&fput_lock
);
487 while (likely(!list_empty(&fput_head
))) {
488 struct kiocb
*req
= list_kiocb(fput_head
.next
);
489 struct kioctx
*ctx
= req
->ki_ctx
;
491 list_del(&req
->ki_list
);
492 spin_unlock_irq(&fput_lock
);
494 /* Complete the fput(s) */
495 if (req
->ki_filp
!= NULL
)
496 __fput(req
->ki_filp
);
497 if (req
->ki_eventfd
!= NULL
)
498 __fput(req
->ki_eventfd
);
500 /* Link the iocb into the context's free list */
501 spin_lock_irq(&ctx
->ctx_lock
);
502 really_put_req(ctx
, req
);
503 spin_unlock_irq(&ctx
->ctx_lock
);
506 spin_lock_irq(&fput_lock
);
508 spin_unlock_irq(&fput_lock
);
512 * Returns true if this put was the last user of the request.
514 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
516 int schedule_putreq
= 0;
518 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
519 req
, atomic_long_read(&req
->ki_filp
->f_count
));
521 assert_spin_locked(&ctx
->ctx_lock
);
524 BUG_ON(req
->ki_users
< 0);
525 if (likely(req
->ki_users
))
527 list_del(&req
->ki_list
); /* remove from active_reqs */
528 req
->ki_cancel
= NULL
;
529 req
->ki_retry
= NULL
;
532 * Try to optimize the aio and eventfd file* puts, by avoiding to
533 * schedule work in case it is not __fput() time. In normal cases,
534 * we would not be holding the last reference to the file*, so
535 * this function will be executed w/out any aio kthread wakeup.
537 if (unlikely(atomic_long_dec_and_test(&req
->ki_filp
->f_count
)))
541 if (req
->ki_eventfd
!= NULL
) {
542 if (unlikely(atomic_long_dec_and_test(&req
->ki_eventfd
->f_count
)))
545 req
->ki_eventfd
= NULL
;
547 if (unlikely(schedule_putreq
)) {
549 spin_lock(&fput_lock
);
550 list_add(&req
->ki_list
, &fput_head
);
551 spin_unlock(&fput_lock
);
552 queue_work(aio_wq
, &fput_work
);
554 really_put_req(ctx
, req
);
559 * Returns true if this put was the last user of the kiocb,
560 * false if the request is still in use.
562 int aio_put_req(struct kiocb
*req
)
564 struct kioctx
*ctx
= req
->ki_ctx
;
566 spin_lock_irq(&ctx
->ctx_lock
);
567 ret
= __aio_put_req(ctx
, req
);
568 spin_unlock_irq(&ctx
->ctx_lock
);
572 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
574 struct kioctx
*ioctx
;
575 struct mm_struct
*mm
;
578 read_lock(&mm
->ioctx_list_lock
);
579 for (ioctx
= mm
->ioctx_list
; ioctx
; ioctx
= ioctx
->next
)
580 if (likely(ioctx
->user_id
== ctx_id
&& !ioctx
->dead
)) {
584 read_unlock(&mm
->ioctx_list_lock
);
591 * Makes the calling kernel thread take on the specified
593 * Called by the retry thread execute retries within the
594 * iocb issuer's mm context, so that copy_from/to_user
595 * operations work seamlessly for aio.
596 * (Note: this routine is intended to be called only
597 * from a kernel thread context)
599 static void use_mm(struct mm_struct
*mm
)
601 struct mm_struct
*active_mm
;
602 struct task_struct
*tsk
= current
;
605 active_mm
= tsk
->active_mm
;
606 atomic_inc(&mm
->mm_count
);
609 switch_mm(active_mm
, mm
, tsk
);
617 * Reverses the effect of use_mm, i.e. releases the
618 * specified mm context which was earlier taken on
619 * by the calling kernel thread
620 * (Note: this routine is intended to be called only
621 * from a kernel thread context)
623 static void unuse_mm(struct mm_struct
*mm
)
625 struct task_struct
*tsk
= current
;
629 /* active_mm is still 'mm' */
630 enter_lazy_tlb(mm
, tsk
);
635 * Queue up a kiocb to be retried. Assumes that the kiocb
636 * has already been marked as kicked, and places it on
637 * the retry run list for the corresponding ioctx, if it
638 * isn't already queued. Returns 1 if it actually queued
639 * the kiocb (to tell the caller to activate the work
640 * queue to process it), or 0, if it found that it was
643 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
645 struct kioctx
*ctx
= iocb
->ki_ctx
;
647 assert_spin_locked(&ctx
->ctx_lock
);
649 if (list_empty(&iocb
->ki_run_list
)) {
650 list_add_tail(&iocb
->ki_run_list
,
658 * This is the core aio execution routine. It is
659 * invoked both for initial i/o submission and
660 * subsequent retries via the aio_kick_handler.
661 * Expects to be invoked with iocb->ki_ctx->lock
662 * already held. The lock is released and reacquired
663 * as needed during processing.
665 * Calls the iocb retry method (already setup for the
666 * iocb on initial submission) for operation specific
667 * handling, but takes care of most of common retry
668 * execution details for a given iocb. The retry method
669 * needs to be non-blocking as far as possible, to avoid
670 * holding up other iocbs waiting to be serviced by the
671 * retry kernel thread.
673 * The trickier parts in this code have to do with
674 * ensuring that only one retry instance is in progress
675 * for a given iocb at any time. Providing that guarantee
676 * simplifies the coding of individual aio operations as
677 * it avoids various potential races.
679 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
681 struct kioctx
*ctx
= iocb
->ki_ctx
;
682 ssize_t (*retry
)(struct kiocb
*);
685 if (!(retry
= iocb
->ki_retry
)) {
686 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
691 * We don't want the next retry iteration for this
692 * operation to start until this one has returned and
693 * updated the iocb state. However, wait_queue functions
694 * can trigger a kick_iocb from interrupt context in the
695 * meantime, indicating that data is available for the next
696 * iteration. We want to remember that and enable the
697 * next retry iteration _after_ we are through with
700 * So, in order to be able to register a "kick", but
701 * prevent it from being queued now, we clear the kick
702 * flag, but make the kick code *think* that the iocb is
703 * still on the run list until we are actually done.
704 * When we are done with this iteration, we check if
705 * the iocb was kicked in the meantime and if so, queue
709 kiocbClearKicked(iocb
);
712 * This is so that aio_complete knows it doesn't need to
713 * pull the iocb off the run list (We can't just call
714 * INIT_LIST_HEAD because we don't want a kick_iocb to
715 * queue this on the run list yet)
717 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
718 spin_unlock_irq(&ctx
->ctx_lock
);
720 /* Quit retrying if the i/o has been cancelled */
721 if (kiocbIsCancelled(iocb
)) {
723 aio_complete(iocb
, ret
, 0);
724 /* must not access the iocb after this */
729 * Now we are all set to call the retry method in async
734 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
735 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
736 aio_complete(iocb
, ret
, 0);
739 spin_lock_irq(&ctx
->ctx_lock
);
741 if (-EIOCBRETRY
== ret
) {
743 * OK, now that we are done with this iteration
744 * and know that there is more left to go,
745 * this is where we let go so that a subsequent
746 * "kick" can start the next iteration
749 /* will make __queue_kicked_iocb succeed from here on */
750 INIT_LIST_HEAD(&iocb
->ki_run_list
);
751 /* we must queue the next iteration ourselves, if it
752 * has already been kicked */
753 if (kiocbIsKicked(iocb
)) {
754 __queue_kicked_iocb(iocb
);
757 * __queue_kicked_iocb will always return 1 here, because
758 * iocb->ki_run_list is empty at this point so it should
759 * be safe to unconditionally queue the context into the
770 * Process all pending retries queued on the ioctx
772 * Assumes it is operating within the aio issuer's mm
775 static int __aio_run_iocbs(struct kioctx
*ctx
)
778 struct list_head run_list
;
780 assert_spin_locked(&ctx
->ctx_lock
);
782 list_replace_init(&ctx
->run_list
, &run_list
);
783 while (!list_empty(&run_list
)) {
784 iocb
= list_entry(run_list
.next
, struct kiocb
,
786 list_del(&iocb
->ki_run_list
);
788 * Hold an extra reference while retrying i/o.
790 iocb
->ki_users
++; /* grab extra reference */
792 __aio_put_req(ctx
, iocb
);
794 if (!list_empty(&ctx
->run_list
))
799 static void aio_queue_work(struct kioctx
* ctx
)
801 unsigned long timeout
;
803 * if someone is waiting, get the work started right
804 * away, otherwise, use a longer delay
807 if (waitqueue_active(&ctx
->wait
))
811 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
817 * Process all pending retries queued on the ioctx
819 * Assumes it is operating within the aio issuer's mm
822 static inline void aio_run_iocbs(struct kioctx
*ctx
)
826 spin_lock_irq(&ctx
->ctx_lock
);
828 requeue
= __aio_run_iocbs(ctx
);
829 spin_unlock_irq(&ctx
->ctx_lock
);
835 * just like aio_run_iocbs, but keeps running them until
836 * the list stays empty
838 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
840 spin_lock_irq(&ctx
->ctx_lock
);
841 while (__aio_run_iocbs(ctx
))
843 spin_unlock_irq(&ctx
->ctx_lock
);
848 * Work queue handler triggered to process pending
849 * retries on an ioctx. Takes on the aio issuer's
850 * mm context before running the iocbs, so that
851 * copy_xxx_user operates on the issuer's address
853 * Run on aiod's context.
855 static void aio_kick_handler(struct work_struct
*work
)
857 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
858 mm_segment_t oldfs
= get_fs();
859 struct mm_struct
*mm
;
864 spin_lock_irq(&ctx
->ctx_lock
);
865 requeue
=__aio_run_iocbs(ctx
);
867 spin_unlock_irq(&ctx
->ctx_lock
);
871 * we're in a worker thread already, don't use queue_delayed_work,
874 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
879 * Called by kick_iocb to queue the kiocb for retry
880 * and if required activate the aio work queue to process
883 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
885 struct kioctx
*ctx
= iocb
->ki_ctx
;
889 /* We're supposed to be the only path putting the iocb back on the run
890 * list. If we find that the iocb is *back* on a wait queue already
891 * than retry has happened before we could queue the iocb. This also
892 * means that the retry could have completed and freed our iocb, no
894 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
896 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
897 /* set this inside the lock so that we can't race with aio_run_iocb()
898 * testing it and putting the iocb on the run list under the lock */
899 if (!kiocbTryKick(iocb
))
900 run
= __queue_kicked_iocb(iocb
);
901 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
908 * Called typically from a wait queue callback context
909 * (aio_wake_function) to trigger a retry of the iocb.
910 * The retry is usually executed by aio workqueue
911 * threads (See aio_kick_handler).
913 void kick_iocb(struct kiocb
*iocb
)
915 /* sync iocbs are easy: they can only ever be executing from a
917 if (is_sync_kiocb(iocb
)) {
918 kiocbSetKicked(iocb
);
919 wake_up_process(iocb
->ki_obj
.tsk
);
923 try_queue_kicked_iocb(iocb
);
925 EXPORT_SYMBOL(kick_iocb
);
928 * Called when the io request on the given iocb is complete.
929 * Returns true if this is the last user of the request. The
930 * only other user of the request can be the cancellation code.
932 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
934 struct kioctx
*ctx
= iocb
->ki_ctx
;
935 struct aio_ring_info
*info
;
936 struct aio_ring
*ring
;
937 struct io_event
*event
;
943 * Special case handling for sync iocbs:
944 * - events go directly into the iocb for fast handling
945 * - the sync task with the iocb in its stack holds the single iocb
946 * ref, no other paths have a way to get another ref
947 * - the sync task helpfully left a reference to itself in the iocb
949 if (is_sync_kiocb(iocb
)) {
950 BUG_ON(iocb
->ki_users
!= 1);
951 iocb
->ki_user_data
= res
;
953 wake_up_process(iocb
->ki_obj
.tsk
);
957 info
= &ctx
->ring_info
;
959 /* add a completion event to the ring buffer.
960 * must be done holding ctx->ctx_lock to prevent
961 * other code from messing with the tail
962 * pointer since we might be called from irq
965 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
967 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
968 list_del_init(&iocb
->ki_run_list
);
971 * cancelled requests don't get events, userland was given one
972 * when the event got cancelled.
974 if (kiocbIsCancelled(iocb
))
977 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
980 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
981 if (++tail
>= info
->nr
)
984 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
985 event
->data
= iocb
->ki_user_data
;
989 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
990 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
993 /* after flagging the request as done, we
994 * must never even look at it again
996 smp_wmb(); /* make event visible before updating tail */
1001 put_aio_ring_event(event
, KM_IRQ0
);
1002 kunmap_atomic(ring
, KM_IRQ1
);
1004 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
1007 * Check if the user asked us to deliver the result through an
1008 * eventfd. The eventfd_signal() function is safe to be called
1011 if (iocb
->ki_eventfd
!= NULL
)
1012 eventfd_signal(iocb
->ki_eventfd
, 1);
1015 /* everything turned out well, dispose of the aiocb. */
1016 ret
= __aio_put_req(ctx
, iocb
);
1019 * We have to order our ring_info tail store above and test
1020 * of the wait list below outside the wait lock. This is
1021 * like in wake_up_bit() where clearing a bit has to be
1022 * ordered with the unlocked test.
1026 if (waitqueue_active(&ctx
->wait
))
1027 wake_up(&ctx
->wait
);
1029 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1034 * Pull an event off of the ioctx's event ring. Returns the number of
1035 * events fetched (0 or 1 ;-)
1036 * FIXME: make this use cmpxchg.
1037 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1039 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1041 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1042 struct aio_ring
*ring
;
1046 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1047 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1048 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1049 (unsigned long)ring
->nr
);
1051 if (ring
->head
== ring
->tail
)
1054 spin_lock(&info
->ring_lock
);
1056 head
= ring
->head
% info
->nr
;
1057 if (head
!= ring
->tail
) {
1058 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1060 head
= (head
+ 1) % info
->nr
;
1061 smp_mb(); /* finish reading the event before updatng the head */
1064 put_aio_ring_event(evp
, KM_USER1
);
1066 spin_unlock(&info
->ring_lock
);
1069 kunmap_atomic(ring
, KM_USER0
);
1070 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1071 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1075 struct aio_timeout
{
1076 struct timer_list timer
;
1078 struct task_struct
*p
;
1081 static void timeout_func(unsigned long data
)
1083 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1086 wake_up_process(to
->p
);
1089 static inline void init_timeout(struct aio_timeout
*to
)
1091 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1096 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1097 const struct timespec
*ts
)
1099 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1100 if (time_after(to
->timer
.expires
, jiffies
))
1101 add_timer(&to
->timer
);
1106 static inline void clear_timeout(struct aio_timeout
*to
)
1108 del_singleshot_timer_sync(&to
->timer
);
1111 static int read_events(struct kioctx
*ctx
,
1112 long min_nr
, long nr
,
1113 struct io_event __user
*event
,
1114 struct timespec __user
*timeout
)
1116 long start_jiffies
= jiffies
;
1117 struct task_struct
*tsk
= current
;
1118 DECLARE_WAITQUEUE(wait
, tsk
);
1121 struct io_event ent
;
1122 struct aio_timeout to
;
1125 /* needed to zero any padding within an entry (there shouldn't be
1126 * any, but C is fun!
1128 memset(&ent
, 0, sizeof(ent
));
1131 while (likely(i
< nr
)) {
1132 ret
= aio_read_evt(ctx
, &ent
);
1133 if (unlikely(ret
<= 0))
1136 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1137 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1139 /* Could we split the check in two? */
1141 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1142 dprintk("aio: lost an event due to EFAULT.\n");
1147 /* Good, event copied to userland, update counts. */
1159 /* racey check, but it gets redone */
1160 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1162 aio_run_all_iocbs(ctx
);
1170 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1173 set_timeout(start_jiffies
, &to
, &ts
);
1176 while (likely(i
< nr
)) {
1177 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1179 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1180 ret
= aio_read_evt(ctx
, &ent
);
1185 if (unlikely(ctx
->dead
)) {
1189 if (to
.timed_out
) /* Only check after read evt */
1191 /* Try to only show up in io wait if there are ops
1193 if (ctx
->reqs_active
)
1197 if (signal_pending(tsk
)) {
1201 /*ret = aio_read_evt(ctx, &ent);*/
1204 set_task_state(tsk
, TASK_RUNNING
);
1205 remove_wait_queue(&ctx
->wait
, &wait
);
1207 if (unlikely(ret
<= 0))
1211 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1212 dprintk("aio: lost an event due to EFAULT.\n");
1216 /* Good, event copied to userland, update counts. */
1224 destroy_timer_on_stack(&to
.timer
);
1228 /* Take an ioctx and remove it from the list of ioctx's. Protects
1229 * against races with itself via ->dead.
1231 static void io_destroy(struct kioctx
*ioctx
)
1233 struct mm_struct
*mm
= current
->mm
;
1234 struct kioctx
**tmp
;
1237 /* delete the entry from the list is someone else hasn't already */
1238 write_lock(&mm
->ioctx_list_lock
);
1239 was_dead
= ioctx
->dead
;
1241 for (tmp
= &mm
->ioctx_list
; *tmp
&& *tmp
!= ioctx
;
1242 tmp
= &(*tmp
)->next
)
1246 write_unlock(&mm
->ioctx_list_lock
);
1248 dprintk("aio_release(%p)\n", ioctx
);
1249 if (likely(!was_dead
))
1250 put_ioctx(ioctx
); /* twice for the list */
1252 aio_cancel_all(ioctx
);
1253 wait_for_all_aios(ioctx
);
1256 * Wake up any waiters. The setting of ctx->dead must be seen
1257 * by other CPUs at this point. Right now, we rely on the
1258 * locking done by the above calls to ensure this consistency.
1260 wake_up(&ioctx
->wait
);
1261 put_ioctx(ioctx
); /* once for the lookup */
1265 * Create an aio_context capable of receiving at least nr_events.
1266 * ctxp must not point to an aio_context that already exists, and
1267 * must be initialized to 0 prior to the call. On successful
1268 * creation of the aio_context, *ctxp is filled in with the resulting
1269 * handle. May fail with -EINVAL if *ctxp is not initialized,
1270 * if the specified nr_events exceeds internal limits. May fail
1271 * with -EAGAIN if the specified nr_events exceeds the user's limit
1272 * of available events. May fail with -ENOMEM if insufficient kernel
1273 * resources are available. May fail with -EFAULT if an invalid
1274 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1277 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1279 struct kioctx
*ioctx
= NULL
;
1283 ret
= get_user(ctx
, ctxp
);
1288 if (unlikely(ctx
|| nr_events
== 0)) {
1289 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1294 ioctx
= ioctx_alloc(nr_events
);
1295 ret
= PTR_ERR(ioctx
);
1296 if (!IS_ERR(ioctx
)) {
1297 ret
= put_user(ioctx
->user_id
, ctxp
);
1301 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1310 * Destroy the aio_context specified. May cancel any outstanding
1311 * AIOs and block on completion. Will fail with -ENOSYS if not
1312 * implemented. May fail with -EFAULT if the context pointed to
1315 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1317 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1318 if (likely(NULL
!= ioctx
)) {
1322 pr_debug("EINVAL: io_destroy: invalid context id\n");
1326 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1328 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1332 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1333 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1334 iov
->iov_base
+= this;
1335 iov
->iov_len
-= this;
1336 iocb
->ki_left
-= this;
1338 if (iov
->iov_len
== 0) {
1344 /* the caller should not have done more io than what fit in
1345 * the remaining iovecs */
1346 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1349 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1351 struct file
*file
= iocb
->ki_filp
;
1352 struct address_space
*mapping
= file
->f_mapping
;
1353 struct inode
*inode
= mapping
->host
;
1354 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1355 unsigned long, loff_t
);
1357 unsigned short opcode
;
1359 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1360 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1361 rw_op
= file
->f_op
->aio_read
;
1362 opcode
= IOCB_CMD_PREADV
;
1364 rw_op
= file
->f_op
->aio_write
;
1365 opcode
= IOCB_CMD_PWRITEV
;
1368 /* This matches the pread()/pwrite() logic */
1369 if (iocb
->ki_pos
< 0)
1373 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1374 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1377 aio_advance_iovec(iocb
, ret
);
1379 /* retry all partial writes. retry partial reads as long as its a
1381 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1382 (opcode
== IOCB_CMD_PWRITEV
||
1383 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1385 /* This means we must have transferred all that we could */
1386 /* No need to retry anymore */
1387 if ((ret
== 0) || (iocb
->ki_left
== 0))
1388 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1390 /* If we managed to write some out we return that, rather than
1391 * the eventual error. */
1392 if (opcode
== IOCB_CMD_PWRITEV
1393 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1394 && iocb
->ki_nbytes
- iocb
->ki_left
)
1395 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1400 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1402 struct file
*file
= iocb
->ki_filp
;
1403 ssize_t ret
= -EINVAL
;
1405 if (file
->f_op
->aio_fsync
)
1406 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1410 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1412 struct file
*file
= iocb
->ki_filp
;
1413 ssize_t ret
= -EINVAL
;
1415 if (file
->f_op
->aio_fsync
)
1416 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1420 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1424 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1425 kiocb
->ki_nbytes
, 1,
1426 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1430 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1431 kiocb
->ki_cur_seg
= 0;
1432 /* ki_nbytes/left now reflect bytes instead of segs */
1433 kiocb
->ki_nbytes
= ret
;
1434 kiocb
->ki_left
= ret
;
1441 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1443 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1444 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1445 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1446 kiocb
->ki_nr_segs
= 1;
1447 kiocb
->ki_cur_seg
= 0;
1453 * Performs the initial checks and aio retry method
1454 * setup for the kiocb at the time of io submission.
1456 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1458 struct file
*file
= kiocb
->ki_filp
;
1461 switch (kiocb
->ki_opcode
) {
1462 case IOCB_CMD_PREAD
:
1464 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1467 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1470 ret
= security_file_permission(file
, MAY_READ
);
1473 ret
= aio_setup_single_vector(kiocb
);
1477 if (file
->f_op
->aio_read
)
1478 kiocb
->ki_retry
= aio_rw_vect_retry
;
1480 case IOCB_CMD_PWRITE
:
1482 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1485 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1488 ret
= security_file_permission(file
, MAY_WRITE
);
1491 ret
= aio_setup_single_vector(kiocb
);
1495 if (file
->f_op
->aio_write
)
1496 kiocb
->ki_retry
= aio_rw_vect_retry
;
1498 case IOCB_CMD_PREADV
:
1500 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1502 ret
= security_file_permission(file
, MAY_READ
);
1505 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1509 if (file
->f_op
->aio_read
)
1510 kiocb
->ki_retry
= aio_rw_vect_retry
;
1512 case IOCB_CMD_PWRITEV
:
1514 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1516 ret
= security_file_permission(file
, MAY_WRITE
);
1519 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1523 if (file
->f_op
->aio_write
)
1524 kiocb
->ki_retry
= aio_rw_vect_retry
;
1526 case IOCB_CMD_FDSYNC
:
1528 if (file
->f_op
->aio_fsync
)
1529 kiocb
->ki_retry
= aio_fdsync
;
1531 case IOCB_CMD_FSYNC
:
1533 if (file
->f_op
->aio_fsync
)
1534 kiocb
->ki_retry
= aio_fsync
;
1537 dprintk("EINVAL: io_submit: no operation provided\n");
1541 if (!kiocb
->ki_retry
)
1548 * aio_wake_function:
1549 * wait queue callback function for aio notification,
1550 * Simply triggers a retry of the operation via kick_iocb.
1552 * This callback is specified in the wait queue entry in
1556 * This routine is executed with the wait queue lock held.
1557 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1558 * the ioctx lock inside the wait queue lock. This is safe
1559 * because this callback isn't used for wait queues which
1560 * are nested inside ioctx lock (i.e. ctx->wait)
1562 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1563 int sync
, void *key
)
1565 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1567 list_del_init(&wait
->task_list
);
1572 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1579 /* enforce forwards compatibility on users */
1580 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1581 pr_debug("EINVAL: io_submit: reserve field set\n");
1585 /* prevent overflows */
1587 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1588 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1589 ((ssize_t
)iocb
->aio_nbytes
< 0)
1591 pr_debug("EINVAL: io_submit: overflow check\n");
1595 file
= fget(iocb
->aio_fildes
);
1596 if (unlikely(!file
))
1599 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1600 if (unlikely(!req
)) {
1604 req
->ki_filp
= file
;
1605 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1607 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1608 * instance of the file* now. The file descriptor must be
1609 * an eventfd() fd, and will be signaled for each completed
1610 * event using the eventfd_signal() function.
1612 req
->ki_eventfd
= eventfd_fget((int) iocb
->aio_resfd
);
1613 if (IS_ERR(req
->ki_eventfd
)) {
1614 ret
= PTR_ERR(req
->ki_eventfd
);
1615 req
->ki_eventfd
= NULL
;
1620 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1621 if (unlikely(ret
)) {
1622 dprintk("EFAULT: aio_key\n");
1626 req
->ki_obj
.user
= user_iocb
;
1627 req
->ki_user_data
= iocb
->aio_data
;
1628 req
->ki_pos
= iocb
->aio_offset
;
1630 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1631 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1632 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1633 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1634 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1636 ret
= aio_setup_iocb(req
);
1641 spin_lock_irq(&ctx
->ctx_lock
);
1643 if (!list_empty(&ctx
->run_list
)) {
1644 /* drain the run list */
1645 while (__aio_run_iocbs(ctx
))
1648 spin_unlock_irq(&ctx
->ctx_lock
);
1649 aio_put_req(req
); /* drop extra ref to req */
1653 aio_put_req(req
); /* drop extra ref to req */
1654 aio_put_req(req
); /* drop i/o ref to req */
1659 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1660 * the number of iocbs queued. May return -EINVAL if the aio_context
1661 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1662 * *iocbpp[0] is not properly initialized, if the operation specified
1663 * is invalid for the file descriptor in the iocb. May fail with
1664 * -EFAULT if any of the data structures point to invalid data. May
1665 * fail with -EBADF if the file descriptor specified in the first
1666 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1667 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1668 * fail with -ENOSYS if not implemented.
1670 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1671 struct iocb __user
* __user
*, iocbpp
)
1677 if (unlikely(nr
< 0))
1680 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1683 ctx
= lookup_ioctx(ctx_id
);
1684 if (unlikely(!ctx
)) {
1685 pr_debug("EINVAL: io_submit: invalid context id\n");
1690 * AKPM: should this return a partial result if some of the IOs were
1691 * successfully submitted?
1693 for (i
=0; i
<nr
; i
++) {
1694 struct iocb __user
*user_iocb
;
1697 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1702 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1707 ret
= io_submit_one(ctx
, user_iocb
, &tmp
);
1717 * Finds a given iocb for cancellation.
1719 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1722 struct list_head
*pos
;
1724 assert_spin_locked(&ctx
->ctx_lock
);
1726 /* TODO: use a hash or array, this sucks. */
1727 list_for_each(pos
, &ctx
->active_reqs
) {
1728 struct kiocb
*kiocb
= list_kiocb(pos
);
1729 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1736 * Attempts to cancel an iocb previously passed to io_submit. If
1737 * the operation is successfully cancelled, the resulting event is
1738 * copied into the memory pointed to by result without being placed
1739 * into the completion queue and 0 is returned. May fail with
1740 * -EFAULT if any of the data structures pointed to are invalid.
1741 * May fail with -EINVAL if aio_context specified by ctx_id is
1742 * invalid. May fail with -EAGAIN if the iocb specified was not
1743 * cancelled. Will fail with -ENOSYS if not implemented.
1745 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1746 struct io_event __user
*, result
)
1748 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1750 struct kiocb
*kiocb
;
1754 ret
= get_user(key
, &iocb
->aio_key
);
1758 ctx
= lookup_ioctx(ctx_id
);
1762 spin_lock_irq(&ctx
->ctx_lock
);
1764 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1765 if (kiocb
&& kiocb
->ki_cancel
) {
1766 cancel
= kiocb
->ki_cancel
;
1768 kiocbSetCancelled(kiocb
);
1771 spin_unlock_irq(&ctx
->ctx_lock
);
1773 if (NULL
!= cancel
) {
1774 struct io_event tmp
;
1775 pr_debug("calling cancel\n");
1776 memset(&tmp
, 0, sizeof(tmp
));
1777 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1778 tmp
.data
= kiocb
->ki_user_data
;
1779 ret
= cancel(kiocb
, &tmp
);
1781 /* Cancellation succeeded -- copy the result
1782 * into the user's buffer.
1784 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1796 * Attempts to read at least min_nr events and up to nr events from
1797 * the completion queue for the aio_context specified by ctx_id. May
1798 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1799 * if nr is out of range, if when is out of range. May fail with
1800 * -EFAULT if any of the memory specified to is invalid. May return
1801 * 0 or < min_nr if no events are available and the timeout specified
1802 * by when has elapsed, where when == NULL specifies an infinite
1803 * timeout. Note that the timeout pointed to by when is relative and
1804 * will be updated if not NULL and the operation blocks. Will fail
1805 * with -ENOSYS if not implemented.
1807 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1810 struct io_event __user
*, events
,
1811 struct timespec __user
*, timeout
)
1813 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1816 if (likely(ioctx
)) {
1817 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1818 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1822 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);
1826 __initcall(aio_setup
);
1828 EXPORT_SYMBOL(aio_complete
);
1829 EXPORT_SYMBOL(aio_put_req
);
1830 EXPORT_SYMBOL(wait_on_sync_kiocb
);