4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
27 static void sum_vm_events(unsigned long *ret
)
32 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
34 for_each_online_cpu(cpu
) {
35 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
37 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
38 ret
[i
] += this->event
[i
];
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
47 void all_vm_events(unsigned long *ret
)
53 EXPORT_SYMBOL_GPL(all_vm_events
);
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu
)
64 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
67 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
68 count_vm_events(i
, fold_state
->event
[i
]);
69 fold_state
->event
[i
] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat
[NR_VM_ZONE_STAT_ITEMS
];
82 EXPORT_SYMBOL(vm_stat
);
86 static int calculate_threshold(struct zone
*zone
)
89 int mem
; /* memory in 128 MB units */
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
97 * Some sample thresholds:
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
121 mem
= zone
->present_pages
>> (27 - PAGE_SHIFT
);
123 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
126 * Maximum threshold is 125
128 threshold
= min(125, threshold
);
134 * Refresh the thresholds for each zone.
136 static void refresh_zone_stat_thresholds(void)
142 for_each_populated_zone(zone
) {
143 unsigned long max_drift
, tolerate_drift
;
145 threshold
= calculate_threshold(zone
);
147 for_each_online_cpu(cpu
)
148 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
152 * Only set percpu_drift_mark if there is a danger that
153 * NR_FREE_PAGES reports the low watermark is ok when in fact
154 * the min watermark could be breached by an allocation
156 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
157 max_drift
= num_online_cpus() * threshold
;
158 if (max_drift
> tolerate_drift
)
159 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
165 * For use when we know that interrupts are disabled.
167 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
170 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
171 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
175 x
= delta
+ __this_cpu_read(*p
);
177 t
= __this_cpu_read(pcp
->stat_threshold
);
179 if (unlikely(x
> t
|| x
< -t
)) {
180 zone_page_state_add(x
, zone
, item
);
183 __this_cpu_write(*p
, x
);
185 EXPORT_SYMBOL(__mod_zone_page_state
);
188 * Optimized increment and decrement functions.
190 * These are only for a single page and therefore can take a struct page *
191 * argument instead of struct zone *. This allows the inclusion of the code
192 * generated for page_zone(page) into the optimized functions.
194 * No overflow check is necessary and therefore the differential can be
195 * incremented or decremented in place which may allow the compilers to
196 * generate better code.
197 * The increment or decrement is known and therefore one boundary check can
200 * NOTE: These functions are very performance sensitive. Change only
203 * Some processors have inc/dec instructions that are atomic vs an interrupt.
204 * However, the code must first determine the differential location in a zone
205 * based on the processor number and then inc/dec the counter. There is no
206 * guarantee without disabling preemption that the processor will not change
207 * in between and therefore the atomicity vs. interrupt cannot be exploited
208 * in a useful way here.
210 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
212 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
213 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
216 v
= __this_cpu_inc_return(*p
);
217 t
= __this_cpu_read(pcp
->stat_threshold
);
218 if (unlikely(v
> t
)) {
219 s8 overstep
= t
>> 1;
221 zone_page_state_add(v
+ overstep
, zone
, item
);
222 __this_cpu_write(*p
, -overstep
);
226 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
228 __inc_zone_state(page_zone(page
), item
);
230 EXPORT_SYMBOL(__inc_zone_page_state
);
232 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
234 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
235 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
238 v
= __this_cpu_dec_return(*p
);
239 t
= __this_cpu_read(pcp
->stat_threshold
);
240 if (unlikely(v
< - t
)) {
241 s8 overstep
= t
>> 1;
243 zone_page_state_add(v
- overstep
, zone
, item
);
244 __this_cpu_write(*p
, overstep
);
248 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
250 __dec_zone_state(page_zone(page
), item
);
252 EXPORT_SYMBOL(__dec_zone_page_state
);
254 #ifdef CONFIG_CMPXCHG_LOCAL
256 * If we have cmpxchg_local support then we do not need to incur the overhead
257 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
259 * mod_state() modifies the zone counter state through atomic per cpu
262 * Overstep mode specifies how overstep should handled:
264 * 1 Overstepping half of threshold
265 * -1 Overstepping minus half of threshold
267 static inline void mod_state(struct zone
*zone
,
268 enum zone_stat_item item
, int delta
, int overstep_mode
)
270 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
271 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
275 z
= 0; /* overflow to zone counters */
278 * The fetching of the stat_threshold is racy. We may apply
279 * a counter threshold to the wrong the cpu if we get
280 * rescheduled while executing here. However, the following
281 * will apply the threshold again and therefore bring the
282 * counter under the threshold.
284 t
= this_cpu_read(pcp
->stat_threshold
);
286 o
= this_cpu_read(*p
);
289 if (n
> t
|| n
< -t
) {
290 int os
= overstep_mode
* (t
>> 1) ;
292 /* Overflow must be added to zone counters */
296 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
299 zone_page_state_add(z
, zone
, item
);
302 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
305 mod_state(zone
, item
, delta
, 0);
307 EXPORT_SYMBOL(mod_zone_page_state
);
309 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
311 mod_state(zone
, item
, 1, 1);
314 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
316 mod_state(page_zone(page
), item
, 1, 1);
318 EXPORT_SYMBOL(inc_zone_page_state
);
320 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
322 mod_state(page_zone(page
), item
, -1, -1);
324 EXPORT_SYMBOL(dec_zone_page_state
);
327 * Use interrupt disable to serialize counter updates
329 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
334 local_irq_save(flags
);
335 __mod_zone_page_state(zone
, item
, delta
);
336 local_irq_restore(flags
);
338 EXPORT_SYMBOL(mod_zone_page_state
);
340 void inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
344 local_irq_save(flags
);
345 __inc_zone_state(zone
, item
);
346 local_irq_restore(flags
);
349 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
354 zone
= page_zone(page
);
355 local_irq_save(flags
);
356 __inc_zone_state(zone
, item
);
357 local_irq_restore(flags
);
359 EXPORT_SYMBOL(inc_zone_page_state
);
361 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
365 local_irq_save(flags
);
366 __dec_zone_page_state(page
, item
);
367 local_irq_restore(flags
);
369 EXPORT_SYMBOL(dec_zone_page_state
);
373 * Update the zone counters for one cpu.
375 * The cpu specified must be either the current cpu or a processor that
376 * is not online. If it is the current cpu then the execution thread must
377 * be pinned to the current cpu.
379 * Note that refresh_cpu_vm_stats strives to only access
380 * node local memory. The per cpu pagesets on remote zones are placed
381 * in the memory local to the processor using that pageset. So the
382 * loop over all zones will access a series of cachelines local to
385 * The call to zone_page_state_add updates the cachelines with the
386 * statistics in the remote zone struct as well as the global cachelines
387 * with the global counters. These could cause remote node cache line
388 * bouncing and will have to be only done when necessary.
390 void refresh_cpu_vm_stats(int cpu
)
394 int global_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
396 for_each_populated_zone(zone
) {
397 struct per_cpu_pageset
*p
;
399 p
= per_cpu_ptr(zone
->pageset
, cpu
);
401 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
402 if (p
->vm_stat_diff
[i
]) {
406 local_irq_save(flags
);
407 v
= p
->vm_stat_diff
[i
];
408 p
->vm_stat_diff
[i
] = 0;
409 local_irq_restore(flags
);
410 atomic_long_add(v
, &zone
->vm_stat
[i
]);
413 /* 3 seconds idle till flush */
420 * Deal with draining the remote pageset of this
423 * Check if there are pages remaining in this pageset
424 * if not then there is nothing to expire.
426 if (!p
->expire
|| !p
->pcp
.count
)
430 * We never drain zones local to this processor.
432 if (zone_to_nid(zone
) == numa_node_id()) {
442 drain_zone_pages(zone
, &p
->pcp
);
446 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
448 atomic_long_add(global_diff
[i
], &vm_stat
[i
]);
455 * zonelist = the list of zones passed to the allocator
456 * z = the zone from which the allocation occurred.
458 * Must be called with interrupts disabled.
460 void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
462 if (z
->zone_pgdat
== preferred_zone
->zone_pgdat
) {
463 __inc_zone_state(z
, NUMA_HIT
);
465 __inc_zone_state(z
, NUMA_MISS
);
466 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
468 if (z
->node
== numa_node_id())
469 __inc_zone_state(z
, NUMA_LOCAL
);
471 __inc_zone_state(z
, NUMA_OTHER
);
475 #ifdef CONFIG_COMPACTION
477 struct contig_page_info
{
478 unsigned long free_pages
;
479 unsigned long free_blocks_total
;
480 unsigned long free_blocks_suitable
;
484 * Calculate the number of free pages in a zone, how many contiguous
485 * pages are free and how many are large enough to satisfy an allocation of
486 * the target size. Note that this function makes no attempt to estimate
487 * how many suitable free blocks there *might* be if MOVABLE pages were
488 * migrated. Calculating that is possible, but expensive and can be
489 * figured out from userspace
491 static void fill_contig_page_info(struct zone
*zone
,
492 unsigned int suitable_order
,
493 struct contig_page_info
*info
)
497 info
->free_pages
= 0;
498 info
->free_blocks_total
= 0;
499 info
->free_blocks_suitable
= 0;
501 for (order
= 0; order
< MAX_ORDER
; order
++) {
502 unsigned long blocks
;
504 /* Count number of free blocks */
505 blocks
= zone
->free_area
[order
].nr_free
;
506 info
->free_blocks_total
+= blocks
;
508 /* Count free base pages */
509 info
->free_pages
+= blocks
<< order
;
511 /* Count the suitable free blocks */
512 if (order
>= suitable_order
)
513 info
->free_blocks_suitable
+= blocks
<<
514 (order
- suitable_order
);
519 * A fragmentation index only makes sense if an allocation of a requested
520 * size would fail. If that is true, the fragmentation index indicates
521 * whether external fragmentation or a lack of memory was the problem.
522 * The value can be used to determine if page reclaim or compaction
525 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
527 unsigned long requested
= 1UL << order
;
529 if (!info
->free_blocks_total
)
532 /* Fragmentation index only makes sense when a request would fail */
533 if (info
->free_blocks_suitable
)
537 * Index is between 0 and 1 so return within 3 decimal places
539 * 0 => allocation would fail due to lack of memory
540 * 1 => allocation would fail due to fragmentation
542 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
545 /* Same as __fragmentation index but allocs contig_page_info on stack */
546 int fragmentation_index(struct zone
*zone
, unsigned int order
)
548 struct contig_page_info info
;
550 fill_contig_page_info(zone
, order
, &info
);
551 return __fragmentation_index(order
, &info
);
555 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
556 #include <linux/proc_fs.h>
557 #include <linux/seq_file.h>
559 static char * const migratetype_names
[MIGRATE_TYPES
] = {
567 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
571 for (pgdat
= first_online_pgdat();
573 pgdat
= next_online_pgdat(pgdat
))
579 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
581 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
584 return next_online_pgdat(pgdat
);
587 static void frag_stop(struct seq_file
*m
, void *arg
)
591 /* Walk all the zones in a node and print using a callback */
592 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
593 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
596 struct zone
*node_zones
= pgdat
->node_zones
;
599 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
600 if (!populated_zone(zone
))
603 spin_lock_irqsave(&zone
->lock
, flags
);
604 print(m
, pgdat
, zone
);
605 spin_unlock_irqrestore(&zone
->lock
, flags
);
610 #ifdef CONFIG_PROC_FS
611 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
616 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
617 for (order
= 0; order
< MAX_ORDER
; ++order
)
618 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
623 * This walks the free areas for each zone.
625 static int frag_show(struct seq_file
*m
, void *arg
)
627 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
628 walk_zones_in_node(m
, pgdat
, frag_show_print
);
632 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
633 pg_data_t
*pgdat
, struct zone
*zone
)
637 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
638 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
641 migratetype_names
[mtype
]);
642 for (order
= 0; order
< MAX_ORDER
; ++order
) {
643 unsigned long freecount
= 0;
644 struct free_area
*area
;
645 struct list_head
*curr
;
647 area
= &(zone
->free_area
[order
]);
649 list_for_each(curr
, &area
->free_list
[mtype
])
651 seq_printf(m
, "%6lu ", freecount
);
657 /* Print out the free pages at each order for each migatetype */
658 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
661 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
664 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
665 for (order
= 0; order
< MAX_ORDER
; ++order
)
666 seq_printf(m
, "%6d ", order
);
669 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showfree_print
);
674 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
675 pg_data_t
*pgdat
, struct zone
*zone
)
679 unsigned long start_pfn
= zone
->zone_start_pfn
;
680 unsigned long end_pfn
= start_pfn
+ zone
->spanned_pages
;
681 unsigned long count
[MIGRATE_TYPES
] = { 0, };
683 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
689 page
= pfn_to_page(pfn
);
691 /* Watch for unexpected holes punched in the memmap */
692 if (!memmap_valid_within(pfn
, page
, zone
))
695 mtype
= get_pageblock_migratetype(page
);
697 if (mtype
< MIGRATE_TYPES
)
702 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
703 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
704 seq_printf(m
, "%12lu ", count
[mtype
]);
708 /* Print out the free pages at each order for each migratetype */
709 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
712 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
714 seq_printf(m
, "\n%-23s", "Number of blocks type ");
715 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
716 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
718 walk_zones_in_node(m
, pgdat
, pagetypeinfo_showblockcount_print
);
724 * This prints out statistics in relation to grouping pages by mobility.
725 * It is expensive to collect so do not constantly read the file.
727 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
729 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
731 /* check memoryless node */
732 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
735 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
736 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
738 pagetypeinfo_showfree(m
, pgdat
);
739 pagetypeinfo_showblockcount(m
, pgdat
);
744 static const struct seq_operations fragmentation_op
= {
751 static int fragmentation_open(struct inode
*inode
, struct file
*file
)
753 return seq_open(file
, &fragmentation_op
);
756 static const struct file_operations fragmentation_file_operations
= {
757 .open
= fragmentation_open
,
760 .release
= seq_release
,
763 static const struct seq_operations pagetypeinfo_op
= {
767 .show
= pagetypeinfo_show
,
770 static int pagetypeinfo_open(struct inode
*inode
, struct file
*file
)
772 return seq_open(file
, &pagetypeinfo_op
);
775 static const struct file_operations pagetypeinfo_file_ops
= {
776 .open
= pagetypeinfo_open
,
779 .release
= seq_release
,
782 #ifdef CONFIG_ZONE_DMA
783 #define TEXT_FOR_DMA(xx) xx "_dma",
785 #define TEXT_FOR_DMA(xx)
788 #ifdef CONFIG_ZONE_DMA32
789 #define TEXT_FOR_DMA32(xx) xx "_dma32",
791 #define TEXT_FOR_DMA32(xx)
794 #ifdef CONFIG_HIGHMEM
795 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
797 #define TEXT_FOR_HIGHMEM(xx)
800 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
801 TEXT_FOR_HIGHMEM(xx) xx "_movable",
803 static const char * const vmstat_text
[] = {
804 /* Zoned VM counters */
817 "nr_slab_reclaimable",
818 "nr_slab_unreclaimable",
819 "nr_page_table_pages",
839 "nr_dirty_threshold",
840 "nr_dirty_background_threshold",
842 #ifdef CONFIG_VM_EVENT_COUNTERS
848 TEXTS_FOR_ZONES("pgalloc")
857 TEXTS_FOR_ZONES("pgrefill")
858 TEXTS_FOR_ZONES("pgsteal")
859 TEXTS_FOR_ZONES("pgscan_kswapd")
860 TEXTS_FOR_ZONES("pgscan_direct")
863 "zone_reclaim_failed",
869 "kswapd_low_wmark_hit_quickly",
870 "kswapd_high_wmark_hit_quickly",
871 "kswapd_skip_congestion_wait",
877 #ifdef CONFIG_COMPACTION
878 "compact_blocks_moved",
879 "compact_pages_moved",
880 "compact_pagemigrate_failed",
886 #ifdef CONFIG_HUGETLB_PAGE
887 "htlb_buddy_alloc_success",
888 "htlb_buddy_alloc_fail",
890 "unevictable_pgs_culled",
891 "unevictable_pgs_scanned",
892 "unevictable_pgs_rescued",
893 "unevictable_pgs_mlocked",
894 "unevictable_pgs_munlocked",
895 "unevictable_pgs_cleared",
896 "unevictable_pgs_stranded",
897 "unevictable_pgs_mlockfreed",
901 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
905 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
914 zone_nr_free_pages(zone
),
915 min_wmark_pages(zone
),
916 low_wmark_pages(zone
),
917 high_wmark_pages(zone
),
920 zone
->present_pages
);
922 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
923 seq_printf(m
, "\n %-12s %lu", vmstat_text
[i
],
924 zone_page_state(zone
, i
));
927 "\n protection: (%lu",
928 zone
->lowmem_reserve
[0]);
929 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
930 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
934 for_each_online_cpu(i
) {
935 struct per_cpu_pageset
*pageset
;
937 pageset
= per_cpu_ptr(zone
->pageset
, i
);
948 seq_printf(m
, "\n vm stats threshold: %d",
949 pageset
->stat_threshold
);
953 "\n all_unreclaimable: %u"
955 "\n inactive_ratio: %u",
956 zone
->all_unreclaimable
,
957 zone
->zone_start_pfn
,
958 zone
->inactive_ratio
);
963 * Output information about zones in @pgdat.
965 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
967 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
968 walk_zones_in_node(m
, pgdat
, zoneinfo_show_print
);
972 static const struct seq_operations zoneinfo_op
= {
973 .start
= frag_start
, /* iterate over all zones. The same as in
977 .show
= zoneinfo_show
,
980 static int zoneinfo_open(struct inode
*inode
, struct file
*file
)
982 return seq_open(file
, &zoneinfo_op
);
985 static const struct file_operations proc_zoneinfo_file_operations
= {
986 .open
= zoneinfo_open
,
989 .release
= seq_release
,
992 enum writeback_stat_item
{
994 NR_DIRTY_BG_THRESHOLD
,
995 NR_VM_WRITEBACK_STAT_ITEMS
,
998 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1001 int i
, stat_items_size
;
1003 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1005 stat_items_size
= NR_VM_ZONE_STAT_ITEMS
* sizeof(unsigned long) +
1006 NR_VM_WRITEBACK_STAT_ITEMS
* sizeof(unsigned long);
1008 #ifdef CONFIG_VM_EVENT_COUNTERS
1009 stat_items_size
+= sizeof(struct vm_event_state
);
1012 v
= kmalloc(stat_items_size
, GFP_KERNEL
);
1015 return ERR_PTR(-ENOMEM
);
1016 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1017 v
[i
] = global_page_state(i
);
1018 v
+= NR_VM_ZONE_STAT_ITEMS
;
1020 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1021 v
+ NR_DIRTY_THRESHOLD
);
1022 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1024 #ifdef CONFIG_VM_EVENT_COUNTERS
1026 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1029 return (unsigned long *)m
->private + *pos
;
1032 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1035 if (*pos
>= ARRAY_SIZE(vmstat_text
))
1037 return (unsigned long *)m
->private + *pos
;
1040 static int vmstat_show(struct seq_file
*m
, void *arg
)
1042 unsigned long *l
= arg
;
1043 unsigned long off
= l
- (unsigned long *)m
->private;
1045 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
1049 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1055 static const struct seq_operations vmstat_op
= {
1056 .start
= vmstat_start
,
1057 .next
= vmstat_next
,
1058 .stop
= vmstat_stop
,
1059 .show
= vmstat_show
,
1062 static int vmstat_open(struct inode
*inode
, struct file
*file
)
1064 return seq_open(file
, &vmstat_op
);
1067 static const struct file_operations proc_vmstat_file_operations
= {
1068 .open
= vmstat_open
,
1070 .llseek
= seq_lseek
,
1071 .release
= seq_release
,
1073 #endif /* CONFIG_PROC_FS */
1076 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1077 int sysctl_stat_interval __read_mostly
= HZ
;
1079 static void vmstat_update(struct work_struct
*w
)
1081 refresh_cpu_vm_stats(smp_processor_id());
1082 schedule_delayed_work(&__get_cpu_var(vmstat_work
),
1083 round_jiffies_relative(sysctl_stat_interval
));
1086 static void __cpuinit
start_cpu_timer(int cpu
)
1088 struct delayed_work
*work
= &per_cpu(vmstat_work
, cpu
);
1090 INIT_DELAYED_WORK_DEFERRABLE(work
, vmstat_update
);
1091 schedule_delayed_work_on(cpu
, work
, __round_jiffies_relative(HZ
, cpu
));
1095 * Use the cpu notifier to insure that the thresholds are recalculated
1098 static int __cpuinit
vmstat_cpuup_callback(struct notifier_block
*nfb
,
1099 unsigned long action
,
1102 long cpu
= (long)hcpu
;
1106 case CPU_ONLINE_FROZEN
:
1107 refresh_zone_stat_thresholds();
1108 start_cpu_timer(cpu
);
1109 node_set_state(cpu_to_node(cpu
), N_CPU
);
1111 case CPU_DOWN_PREPARE
:
1112 case CPU_DOWN_PREPARE_FROZEN
:
1113 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1114 per_cpu(vmstat_work
, cpu
).work
.func
= NULL
;
1116 case CPU_DOWN_FAILED
:
1117 case CPU_DOWN_FAILED_FROZEN
:
1118 start_cpu_timer(cpu
);
1121 case CPU_DEAD_FROZEN
:
1122 refresh_zone_stat_thresholds();
1130 static struct notifier_block __cpuinitdata vmstat_notifier
=
1131 { &vmstat_cpuup_callback
, NULL
, 0 };
1134 static int __init
setup_vmstat(void)
1139 refresh_zone_stat_thresholds();
1140 register_cpu_notifier(&vmstat_notifier
);
1142 for_each_online_cpu(cpu
)
1143 start_cpu_timer(cpu
);
1145 #ifdef CONFIG_PROC_FS
1146 proc_create("buddyinfo", S_IRUGO
, NULL
, &fragmentation_file_operations
);
1147 proc_create("pagetypeinfo", S_IRUGO
, NULL
, &pagetypeinfo_file_ops
);
1148 proc_create("vmstat", S_IRUGO
, NULL
, &proc_vmstat_file_operations
);
1149 proc_create("zoneinfo", S_IRUGO
, NULL
, &proc_zoneinfo_file_operations
);
1153 module_init(setup_vmstat
)
1155 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1156 #include <linux/debugfs.h>
1158 static struct dentry
*extfrag_debug_root
;
1161 * Return an index indicating how much of the available free memory is
1162 * unusable for an allocation of the requested size.
1164 static int unusable_free_index(unsigned int order
,
1165 struct contig_page_info
*info
)
1167 /* No free memory is interpreted as all free memory is unusable */
1168 if (info
->free_pages
== 0)
1172 * Index should be a value between 0 and 1. Return a value to 3
1175 * 0 => no fragmentation
1176 * 1 => high fragmentation
1178 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
1182 static void unusable_show_print(struct seq_file
*m
,
1183 pg_data_t
*pgdat
, struct zone
*zone
)
1187 struct contig_page_info info
;
1189 seq_printf(m
, "Node %d, zone %8s ",
1192 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1193 fill_contig_page_info(zone
, order
, &info
);
1194 index
= unusable_free_index(order
, &info
);
1195 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1202 * Display unusable free space index
1204 * The unusable free space index measures how much of the available free
1205 * memory cannot be used to satisfy an allocation of a given size and is a
1206 * value between 0 and 1. The higher the value, the more of free memory is
1207 * unusable and by implication, the worse the external fragmentation is. This
1208 * can be expressed as a percentage by multiplying by 100.
1210 static int unusable_show(struct seq_file
*m
, void *arg
)
1212 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1214 /* check memoryless node */
1215 if (!node_state(pgdat
->node_id
, N_HIGH_MEMORY
))
1218 walk_zones_in_node(m
, pgdat
, unusable_show_print
);
1223 static const struct seq_operations unusable_op
= {
1224 .start
= frag_start
,
1227 .show
= unusable_show
,
1230 static int unusable_open(struct inode
*inode
, struct file
*file
)
1232 return seq_open(file
, &unusable_op
);
1235 static const struct file_operations unusable_file_ops
= {
1236 .open
= unusable_open
,
1238 .llseek
= seq_lseek
,
1239 .release
= seq_release
,
1242 static void extfrag_show_print(struct seq_file
*m
,
1243 pg_data_t
*pgdat
, struct zone
*zone
)
1248 /* Alloc on stack as interrupts are disabled for zone walk */
1249 struct contig_page_info info
;
1251 seq_printf(m
, "Node %d, zone %8s ",
1254 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1255 fill_contig_page_info(zone
, order
, &info
);
1256 index
= __fragmentation_index(order
, &info
);
1257 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
1264 * Display fragmentation index for orders that allocations would fail for
1266 static int extfrag_show(struct seq_file
*m
, void *arg
)
1268 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1270 walk_zones_in_node(m
, pgdat
, extfrag_show_print
);
1275 static const struct seq_operations extfrag_op
= {
1276 .start
= frag_start
,
1279 .show
= extfrag_show
,
1282 static int extfrag_open(struct inode
*inode
, struct file
*file
)
1284 return seq_open(file
, &extfrag_op
);
1287 static const struct file_operations extfrag_file_ops
= {
1288 .open
= extfrag_open
,
1290 .llseek
= seq_lseek
,
1291 .release
= seq_release
,
1294 static int __init
extfrag_debug_init(void)
1296 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
1297 if (!extfrag_debug_root
)
1300 if (!debugfs_create_file("unusable_index", 0444,
1301 extfrag_debug_root
, NULL
, &unusable_file_ops
))
1304 if (!debugfs_create_file("extfrag_index", 0444,
1305 extfrag_debug_root
, NULL
, &extfrag_file_ops
))
1311 module_init(extfrag_debug_init
);