2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
21 #include <linux/slab.h>
23 #include <asm/uaccess.h>
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
30 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31 * the pages containing the block device's contents. A brd page's ->index is
32 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33 * with, the kernel's pagecache or buffer cache (which sit above our block
41 unsigned brd_blocksize
;
43 struct request_queue
*brd_queue
;
44 struct gendisk
*brd_disk
;
45 struct list_head brd_list
;
48 * Backing store of pages and lock to protect it. This is the contents
49 * of the block device.
52 struct radix_tree_root brd_pages
;
56 * Look up and return a brd's page for a given sector.
58 static DEFINE_MUTEX(brd_mutex
);
59 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
65 * The page lifetime is protected by the fact that we have opened the
66 * device node -- brd pages will never be deleted under us, so we
67 * don't need any further locking or refcounting.
69 * This is strictly true for the radix-tree nodes as well (ie. we
70 * don't actually need the rcu_read_lock()), however that is not a
71 * documented feature of the radix-tree API so it is better to be
72 * safe here (we don't have total exclusion from radix tree updates
73 * here, only deletes).
76 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
77 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
80 BUG_ON(page
&& page
->index
!= idx
);
86 * Look up and return a brd's page for a given sector.
87 * If one does not exist, allocate an empty page, and insert that. Then
90 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
96 page
= brd_lookup_page(brd
, sector
);
101 * Must use NOIO because we don't want to recurse back into the
102 * block or filesystem layers from page reclaim.
104 * Cannot support XIP and highmem, because our ->direct_access
105 * routine for XIP must return memory that is always addressable.
106 * If XIP was reworked to use pfns and kmap throughout, this
107 * restriction might be able to be lifted.
109 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
110 #ifndef CONFIG_BLK_DEV_XIP
111 gfp_flags
|= __GFP_HIGHMEM
;
113 page
= alloc_page(gfp_flags
);
117 if (radix_tree_preload(GFP_NOIO
)) {
122 spin_lock(&brd
->brd_lock
);
123 idx
= sector
>> PAGE_SECTORS_SHIFT
;
124 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
126 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
128 BUG_ON(page
->index
!= idx
);
131 spin_unlock(&brd
->brd_lock
);
133 radix_tree_preload_end();
138 static void brd_free_page(struct brd_device
*brd
, sector_t sector
)
143 spin_lock(&brd
->brd_lock
);
144 idx
= sector
>> PAGE_SECTORS_SHIFT
;
145 page
= radix_tree_delete(&brd
->brd_pages
, idx
);
146 spin_unlock(&brd
->brd_lock
);
151 static void brd_zero_page(struct brd_device
*brd
, sector_t sector
)
155 page
= brd_lookup_page(brd
, sector
);
157 clear_highpage(page
);
161 * Free all backing store pages and radix tree. This must only be called when
162 * there are no other users of the device.
164 #define FREE_BATCH 16
165 static void brd_free_pages(struct brd_device
*brd
)
167 unsigned long pos
= 0;
168 struct page
*pages
[FREE_BATCH
];
174 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
175 (void **)pages
, pos
, FREE_BATCH
);
177 for (i
= 0; i
< nr_pages
; i
++) {
180 BUG_ON(pages
[i
]->index
< pos
);
181 pos
= pages
[i
]->index
;
182 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
183 BUG_ON(!ret
|| ret
!= pages
[i
]);
184 __free_page(pages
[i
]);
190 * This assumes radix_tree_gang_lookup always returns as
191 * many pages as possible. If the radix-tree code changes,
192 * so will this have to.
194 } while (nr_pages
== FREE_BATCH
);
198 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
200 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
202 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
205 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
206 if (!brd_insert_page(brd
, sector
))
209 sector
+= copy
>> SECTOR_SHIFT
;
210 if (!brd_insert_page(brd
, sector
))
216 static void discard_from_brd(struct brd_device
*brd
,
217 sector_t sector
, size_t n
)
219 while (n
>= PAGE_SIZE
) {
221 * Don't want to actually discard pages here because
222 * re-allocating the pages can result in writeback
223 * deadlocks under heavy load.
226 brd_free_page(brd
, sector
);
228 brd_zero_page(brd
, sector
);
229 sector
+= PAGE_SIZE
>> SECTOR_SHIFT
;
235 * Copy n bytes from src to the brd starting at sector. Does not sleep.
237 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
238 sector_t sector
, size_t n
)
242 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
245 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
246 page
= brd_lookup_page(brd
, sector
);
249 dst
= kmap_atomic(page
, KM_USER1
);
250 memcpy(dst
+ offset
, src
, copy
);
251 kunmap_atomic(dst
, KM_USER1
);
255 sector
+= copy
>> SECTOR_SHIFT
;
257 page
= brd_lookup_page(brd
, sector
);
260 dst
= kmap_atomic(page
, KM_USER1
);
261 memcpy(dst
, src
, copy
);
262 kunmap_atomic(dst
, KM_USER1
);
267 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
269 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
270 sector_t sector
, size_t n
)
274 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
277 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
278 page
= brd_lookup_page(brd
, sector
);
280 src
= kmap_atomic(page
, KM_USER1
);
281 memcpy(dst
, src
+ offset
, copy
);
282 kunmap_atomic(src
, KM_USER1
);
284 memset(dst
, 0, copy
);
288 sector
+= copy
>> SECTOR_SHIFT
;
290 page
= brd_lookup_page(brd
, sector
);
292 src
= kmap_atomic(page
, KM_USER1
);
293 memcpy(dst
, src
, copy
);
294 kunmap_atomic(src
, KM_USER1
);
296 memset(dst
, 0, copy
);
301 * Process a single bvec of a bio.
303 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
304 unsigned int len
, unsigned int off
, int rw
,
311 err
= copy_to_brd_setup(brd
, sector
, len
);
316 mem
= kmap_atomic(page
, KM_USER0
);
318 copy_from_brd(mem
+ off
, brd
, sector
, len
);
319 flush_dcache_page(page
);
321 flush_dcache_page(page
);
322 copy_to_brd(brd
, mem
+ off
, sector
, len
);
324 kunmap_atomic(mem
, KM_USER0
);
330 static int brd_make_request(struct request_queue
*q
, struct bio
*bio
)
332 struct block_device
*bdev
= bio
->bi_bdev
;
333 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
335 struct bio_vec
*bvec
;
340 sector
= bio
->bi_sector
;
341 if (sector
+ (bio
->bi_size
>> SECTOR_SHIFT
) >
342 get_capacity(bdev
->bd_disk
))
345 if (unlikely(bio
->bi_rw
& REQ_DISCARD
)) {
347 discard_from_brd(brd
, sector
, bio
->bi_size
);
355 bio_for_each_segment(bvec
, bio
, i
) {
356 unsigned int len
= bvec
->bv_len
;
357 err
= brd_do_bvec(brd
, bvec
->bv_page
, len
,
358 bvec
->bv_offset
, rw
, sector
);
361 sector
+= len
>> SECTOR_SHIFT
;
370 #ifdef CONFIG_BLK_DEV_XIP
371 static int brd_direct_access(struct block_device
*bdev
, sector_t sector
,
372 void **kaddr
, unsigned long *pfn
)
374 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
379 if (sector
& (PAGE_SECTORS
-1))
381 if (sector
+ PAGE_SECTORS
> get_capacity(bdev
->bd_disk
))
383 page
= brd_insert_page(brd
, sector
);
386 *kaddr
= page_address(page
);
387 *pfn
= page_to_pfn(page
);
393 static int brd_ioctl(struct block_device
*bdev
, fmode_t mode
,
394 unsigned int cmd
, unsigned long arg
)
397 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
399 if (cmd
!= BLKFLSBUF
)
403 * ram device BLKFLSBUF has special semantics, we want to actually
404 * release and destroy the ramdisk data.
406 mutex_lock(&brd_mutex
);
407 mutex_lock(&bdev
->bd_mutex
);
409 if (bdev
->bd_openers
<= 1) {
411 * Invalidate the cache first, so it isn't written
412 * back to the device.
414 * Another thread might instantiate more buffercache here,
415 * but there is not much we can do to close that race.
417 invalidate_bh_lrus();
418 truncate_inode_pages(bdev
->bd_inode
->i_mapping
, 0);
422 mutex_unlock(&bdev
->bd_mutex
);
423 mutex_unlock(&brd_mutex
);
428 static const struct block_device_operations brd_fops
= {
429 .owner
= THIS_MODULE
,
431 #ifdef CONFIG_BLK_DEV_XIP
432 .direct_access
= brd_direct_access
,
437 * And now the modules code and kernel interface.
440 int rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
442 static int part_shift
;
443 module_param(rd_nr
, int, 0);
444 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
445 module_param(rd_size
, int, 0);
446 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
447 module_param(max_part
, int, 0);
448 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per RAM disk");
449 MODULE_LICENSE("GPL");
450 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
454 /* Legacy boot options - nonmodular */
455 static int __init
ramdisk_size(char *str
)
457 rd_size
= simple_strtol(str
, NULL
, 0);
460 __setup("ramdisk_size=", ramdisk_size
);
464 * The device scheme is derived from loop.c. Keep them in synch where possible
465 * (should share code eventually).
467 static LIST_HEAD(brd_devices
);
468 static DEFINE_MUTEX(brd_devices_mutex
);
470 static struct brd_device
*brd_alloc(int i
)
472 struct brd_device
*brd
;
473 struct gendisk
*disk
;
475 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
479 spin_lock_init(&brd
->brd_lock
);
480 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
482 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
485 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
486 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
487 blk_queue_bounce_limit(brd
->brd_queue
, BLK_BOUNCE_ANY
);
489 brd
->brd_queue
->limits
.discard_granularity
= PAGE_SIZE
;
490 brd
->brd_queue
->limits
.max_discard_sectors
= UINT_MAX
;
491 brd
->brd_queue
->limits
.discard_zeroes_data
= 1;
492 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, brd
->brd_queue
);
494 disk
= brd
->brd_disk
= alloc_disk(1 << part_shift
);
497 disk
->major
= RAMDISK_MAJOR
;
498 disk
->first_minor
= i
<< part_shift
;
499 disk
->fops
= &brd_fops
;
500 disk
->private_data
= brd
;
501 disk
->queue
= brd
->brd_queue
;
502 disk
->flags
|= GENHD_FL_SUPPRESS_PARTITION_INFO
;
503 sprintf(disk
->disk_name
, "ram%d", i
);
504 set_capacity(disk
, rd_size
* 2);
509 blk_cleanup_queue(brd
->brd_queue
);
516 static void brd_free(struct brd_device
*brd
)
518 put_disk(brd
->brd_disk
);
519 blk_cleanup_queue(brd
->brd_queue
);
524 static struct brd_device
*brd_init_one(int i
)
526 struct brd_device
*brd
;
528 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
529 if (brd
->brd_number
== i
)
535 add_disk(brd
->brd_disk
);
536 list_add_tail(&brd
->brd_list
, &brd_devices
);
542 static void brd_del_one(struct brd_device
*brd
)
544 list_del(&brd
->brd_list
);
545 del_gendisk(brd
->brd_disk
);
549 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
551 struct brd_device
*brd
;
552 struct kobject
*kobj
;
554 mutex_lock(&brd_devices_mutex
);
555 brd
= brd_init_one(dev
& MINORMASK
);
556 kobj
= brd
? get_disk(brd
->brd_disk
) : ERR_PTR(-ENOMEM
);
557 mutex_unlock(&brd_devices_mutex
);
563 static int __init
brd_init(void)
567 struct brd_device
*brd
, *next
;
570 * brd module now has a feature to instantiate underlying device
571 * structure on-demand, provided that there is an access dev node.
572 * However, this will not work well with user space tool that doesn't
573 * know about such "feature". In order to not break any existing
574 * tool, we do the following:
576 * (1) if rd_nr is specified, create that many upfront, and this
577 * also becomes a hard limit.
578 * (2) if rd_nr is not specified, create 1 rd device on module
579 * load, user can further extend brd device by create dev node
580 * themselves and have kernel automatically instantiate actual
586 part_shift
= fls(max_part
);
588 if (rd_nr
> 1UL << (MINORBITS
- part_shift
))
595 nr
= CONFIG_BLK_DEV_RAM_COUNT
;
596 range
= 1UL << (MINORBITS
- part_shift
);
599 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
602 for (i
= 0; i
< nr
; i
++) {
606 list_add_tail(&brd
->brd_list
, &brd_devices
);
609 /* point of no return */
611 list_for_each_entry(brd
, &brd_devices
, brd_list
)
612 add_disk(brd
->brd_disk
);
614 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), range
,
615 THIS_MODULE
, brd_probe
, NULL
, NULL
);
617 printk(KERN_INFO
"brd: module loaded\n");
621 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
622 list_del(&brd
->brd_list
);
625 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
630 static void __exit
brd_exit(void)
633 struct brd_device
*brd
, *next
;
635 range
= rd_nr
? rd_nr
: 1UL << (MINORBITS
- part_shift
);
637 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
640 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), range
);
641 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
644 module_init(brd_init
);
645 module_exit(brd_exit
);