Linux 2.6.16.34
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobd1707c5f2880adc3ef1ea1c4e6f0ce3c11076d84
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <asm/tlb.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 * and back.
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
92 #define EXIT_WEIGHT 3
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
125 * too hard.
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 MAX_SLEEP_AVG)
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
134 #ifdef CONFIG_SMP
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 num_online_cpus())
138 #else
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #endif
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
146 #define DELTA(p) \
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
175 else
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t;
189 struct prio_array {
190 unsigned int nr_active;
191 unsigned long bitmap[BITMAP_SIZE];
192 struct list_head queue[MAX_PRIO];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
202 struct runqueue {
203 spinlock_t lock;
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running;
210 #ifdef CONFIG_SMP
211 unsigned long cpu_load[3];
212 #endif
213 unsigned long long nr_switches;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible;
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
225 task_t *curr, *idle;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
229 atomic_t nr_iowait;
231 #ifdef CONFIG_SMP
232 struct sched_domain *sd;
234 /* For active balancing */
235 int active_balance;
236 int push_cpu;
238 task_t *migration_thread;
239 struct list_head migration_queue;
240 int cpu;
241 #endif
243 #ifdef CONFIG_SCHEDSTATS
244 /* latency stats */
245 struct sched_info rq_sched_info;
247 /* sys_sched_yield() stats */
248 unsigned long yld_exp_empty;
249 unsigned long yld_act_empty;
250 unsigned long yld_both_empty;
251 unsigned long yld_cnt;
253 /* schedule() stats */
254 unsigned long sched_switch;
255 unsigned long sched_cnt;
256 unsigned long sched_goidle;
258 /* try_to_wake_up() stats */
259 unsigned long ttwu_cnt;
260 unsigned long ttwu_local;
261 #endif
264 static DEFINE_PER_CPU(struct runqueue, runqueues);
267 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
268 * See detach_destroy_domains: synchronize_sched for details.
270 * The domain tree of any CPU may only be accessed from within
271 * preempt-disabled sections.
273 #define for_each_domain(cpu, domain) \
274 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
276 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
277 #define this_rq() (&__get_cpu_var(runqueues))
278 #define task_rq(p) cpu_rq(task_cpu(p))
279 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
281 #ifndef prepare_arch_switch
282 # define prepare_arch_switch(next) do { } while (0)
283 #endif
284 #ifndef finish_arch_switch
285 # define finish_arch_switch(prev) do { } while (0)
286 #endif
288 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
289 static inline int task_running(runqueue_t *rq, task_t *p)
291 return rq->curr == p;
294 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
298 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
300 #ifdef CONFIG_DEBUG_SPINLOCK
301 /* this is a valid case when another task releases the spinlock */
302 rq->lock.owner = current;
303 #endif
304 spin_unlock_irq(&rq->lock);
307 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
308 static inline int task_running(runqueue_t *rq, task_t *p)
310 #ifdef CONFIG_SMP
311 return p->oncpu;
312 #else
313 return rq->curr == p;
314 #endif
317 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
319 #ifdef CONFIG_SMP
321 * We can optimise this out completely for !SMP, because the
322 * SMP rebalancing from interrupt is the only thing that cares
323 * here.
325 next->oncpu = 1;
326 #endif
327 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
328 spin_unlock_irq(&rq->lock);
329 #else
330 spin_unlock(&rq->lock);
331 #endif
334 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
336 #ifdef CONFIG_SMP
338 * After ->oncpu is cleared, the task can be moved to a different CPU.
339 * We must ensure this doesn't happen until the switch is completely
340 * finished.
342 smp_wmb();
343 prev->oncpu = 0;
344 #endif
345 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
346 local_irq_enable();
347 #endif
349 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
352 * task_rq_lock - lock the runqueue a given task resides on and disable
353 * interrupts. Note the ordering: we can safely lookup the task_rq without
354 * explicitly disabling preemption.
356 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
357 __acquires(rq->lock)
359 struct runqueue *rq;
361 repeat_lock_task:
362 local_irq_save(*flags);
363 rq = task_rq(p);
364 spin_lock(&rq->lock);
365 if (unlikely(rq != task_rq(p))) {
366 spin_unlock_irqrestore(&rq->lock, *flags);
367 goto repeat_lock_task;
369 return rq;
372 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
373 __releases(rq->lock)
375 spin_unlock_irqrestore(&rq->lock, *flags);
378 #ifdef CONFIG_SCHEDSTATS
380 * bump this up when changing the output format or the meaning of an existing
381 * format, so that tools can adapt (or abort)
383 #define SCHEDSTAT_VERSION 12
385 static int show_schedstat(struct seq_file *seq, void *v)
387 int cpu;
389 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
390 seq_printf(seq, "timestamp %lu\n", jiffies);
391 for_each_online_cpu(cpu) {
392 runqueue_t *rq = cpu_rq(cpu);
393 #ifdef CONFIG_SMP
394 struct sched_domain *sd;
395 int dcnt = 0;
396 #endif
398 /* runqueue-specific stats */
399 seq_printf(seq,
400 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
401 cpu, rq->yld_both_empty,
402 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
403 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
404 rq->ttwu_cnt, rq->ttwu_local,
405 rq->rq_sched_info.cpu_time,
406 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
408 seq_printf(seq, "\n");
410 #ifdef CONFIG_SMP
411 /* domain-specific stats */
412 preempt_disable();
413 for_each_domain(cpu, sd) {
414 enum idle_type itype;
415 char mask_str[NR_CPUS];
417 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
418 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
419 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
420 itype++) {
421 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
422 sd->lb_cnt[itype],
423 sd->lb_balanced[itype],
424 sd->lb_failed[itype],
425 sd->lb_imbalance[itype],
426 sd->lb_gained[itype],
427 sd->lb_hot_gained[itype],
428 sd->lb_nobusyq[itype],
429 sd->lb_nobusyg[itype]);
431 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
432 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
433 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
434 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
435 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
437 preempt_enable();
438 #endif
440 return 0;
443 static int schedstat_open(struct inode *inode, struct file *file)
445 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
446 char *buf = kmalloc(size, GFP_KERNEL);
447 struct seq_file *m;
448 int res;
450 if (!buf)
451 return -ENOMEM;
452 res = single_open(file, show_schedstat, NULL);
453 if (!res) {
454 m = file->private_data;
455 m->buf = buf;
456 m->size = size;
457 } else
458 kfree(buf);
459 return res;
462 struct file_operations proc_schedstat_operations = {
463 .open = schedstat_open,
464 .read = seq_read,
465 .llseek = seq_lseek,
466 .release = single_release,
469 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
470 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
471 #else /* !CONFIG_SCHEDSTATS */
472 # define schedstat_inc(rq, field) do { } while (0)
473 # define schedstat_add(rq, field, amt) do { } while (0)
474 #endif
477 * rq_lock - lock a given runqueue and disable interrupts.
479 static inline runqueue_t *this_rq_lock(void)
480 __acquires(rq->lock)
482 runqueue_t *rq;
484 local_irq_disable();
485 rq = this_rq();
486 spin_lock(&rq->lock);
488 return rq;
491 #ifdef CONFIG_SCHEDSTATS
493 * Called when a process is dequeued from the active array and given
494 * the cpu. We should note that with the exception of interactive
495 * tasks, the expired queue will become the active queue after the active
496 * queue is empty, without explicitly dequeuing and requeuing tasks in the
497 * expired queue. (Interactive tasks may be requeued directly to the
498 * active queue, thus delaying tasks in the expired queue from running;
499 * see scheduler_tick()).
501 * This function is only called from sched_info_arrive(), rather than
502 * dequeue_task(). Even though a task may be queued and dequeued multiple
503 * times as it is shuffled about, we're really interested in knowing how
504 * long it was from the *first* time it was queued to the time that it
505 * finally hit a cpu.
507 static inline void sched_info_dequeued(task_t *t)
509 t->sched_info.last_queued = 0;
513 * Called when a task finally hits the cpu. We can now calculate how
514 * long it was waiting to run. We also note when it began so that we
515 * can keep stats on how long its timeslice is.
517 static void sched_info_arrive(task_t *t)
519 unsigned long now = jiffies, diff = 0;
520 struct runqueue *rq = task_rq(t);
522 if (t->sched_info.last_queued)
523 diff = now - t->sched_info.last_queued;
524 sched_info_dequeued(t);
525 t->sched_info.run_delay += diff;
526 t->sched_info.last_arrival = now;
527 t->sched_info.pcnt++;
529 if (!rq)
530 return;
532 rq->rq_sched_info.run_delay += diff;
533 rq->rq_sched_info.pcnt++;
537 * Called when a process is queued into either the active or expired
538 * array. The time is noted and later used to determine how long we
539 * had to wait for us to reach the cpu. Since the expired queue will
540 * become the active queue after active queue is empty, without dequeuing
541 * and requeuing any tasks, we are interested in queuing to either. It
542 * is unusual but not impossible for tasks to be dequeued and immediately
543 * requeued in the same or another array: this can happen in sched_yield(),
544 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
545 * to runqueue.
547 * This function is only called from enqueue_task(), but also only updates
548 * the timestamp if it is already not set. It's assumed that
549 * sched_info_dequeued() will clear that stamp when appropriate.
551 static inline void sched_info_queued(task_t *t)
553 if (!t->sched_info.last_queued)
554 t->sched_info.last_queued = jiffies;
558 * Called when a process ceases being the active-running process, either
559 * voluntarily or involuntarily. Now we can calculate how long we ran.
561 static inline void sched_info_depart(task_t *t)
563 struct runqueue *rq = task_rq(t);
564 unsigned long diff = jiffies - t->sched_info.last_arrival;
566 t->sched_info.cpu_time += diff;
568 if (rq)
569 rq->rq_sched_info.cpu_time += diff;
573 * Called when tasks are switched involuntarily due, typically, to expiring
574 * their time slice. (This may also be called when switching to or from
575 * the idle task.) We are only called when prev != next.
577 static inline void sched_info_switch(task_t *prev, task_t *next)
579 struct runqueue *rq = task_rq(prev);
582 * prev now departs the cpu. It's not interesting to record
583 * stats about how efficient we were at scheduling the idle
584 * process, however.
586 if (prev != rq->idle)
587 sched_info_depart(prev);
589 if (next != rq->idle)
590 sched_info_arrive(next);
592 #else
593 #define sched_info_queued(t) do { } while (0)
594 #define sched_info_switch(t, next) do { } while (0)
595 #endif /* CONFIG_SCHEDSTATS */
598 * Adding/removing a task to/from a priority array:
600 static void dequeue_task(struct task_struct *p, prio_array_t *array)
602 array->nr_active--;
603 list_del(&p->run_list);
604 if (list_empty(array->queue + p->prio))
605 __clear_bit(p->prio, array->bitmap);
608 static void enqueue_task(struct task_struct *p, prio_array_t *array)
610 sched_info_queued(p);
611 list_add_tail(&p->run_list, array->queue + p->prio);
612 __set_bit(p->prio, array->bitmap);
613 array->nr_active++;
614 p->array = array;
618 * Put task to the end of the run list without the overhead of dequeue
619 * followed by enqueue.
621 static void requeue_task(struct task_struct *p, prio_array_t *array)
623 list_move_tail(&p->run_list, array->queue + p->prio);
626 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
628 list_add(&p->run_list, array->queue + p->prio);
629 __set_bit(p->prio, array->bitmap);
630 array->nr_active++;
631 p->array = array;
635 * effective_prio - return the priority that is based on the static
636 * priority but is modified by bonuses/penalties.
638 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
639 * into the -5 ... 0 ... +5 bonus/penalty range.
641 * We use 25% of the full 0...39 priority range so that:
643 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
644 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
646 * Both properties are important to certain workloads.
648 static int effective_prio(task_t *p)
650 int bonus, prio;
652 if (rt_task(p))
653 return p->prio;
655 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
657 prio = p->static_prio - bonus;
658 if (prio < MAX_RT_PRIO)
659 prio = MAX_RT_PRIO;
660 if (prio > MAX_PRIO-1)
661 prio = MAX_PRIO-1;
662 return prio;
666 * __activate_task - move a task to the runqueue.
668 static inline void __activate_task(task_t *p, runqueue_t *rq)
670 enqueue_task(p, rq->active);
671 rq->nr_running++;
675 * __activate_idle_task - move idle task to the _front_ of runqueue.
677 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
679 enqueue_task_head(p, rq->active);
680 rq->nr_running++;
683 static int recalc_task_prio(task_t *p, unsigned long long now)
685 /* Caller must always ensure 'now >= p->timestamp' */
686 unsigned long long __sleep_time = now - p->timestamp;
687 unsigned long sleep_time;
689 if (unlikely(p->policy == SCHED_BATCH))
690 sleep_time = 0;
691 else {
692 if (__sleep_time > NS_MAX_SLEEP_AVG)
693 sleep_time = NS_MAX_SLEEP_AVG;
694 else
695 sleep_time = (unsigned long)__sleep_time;
698 if (likely(sleep_time > 0)) {
700 * User tasks that sleep a long time are categorised as
701 * idle and will get just interactive status to stay active &
702 * prevent them suddenly becoming cpu hogs and starving
703 * other processes.
705 if (p->mm && p->activated != -1 &&
706 sleep_time > INTERACTIVE_SLEEP(p)) {
707 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
708 DEF_TIMESLICE);
709 } else {
711 * The lower the sleep avg a task has the more
712 * rapidly it will rise with sleep time.
714 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
717 * Tasks waking from uninterruptible sleep are
718 * limited in their sleep_avg rise as they
719 * are likely to be waiting on I/O
721 if (p->activated == -1 && p->mm) {
722 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
723 sleep_time = 0;
724 else if (p->sleep_avg + sleep_time >=
725 INTERACTIVE_SLEEP(p)) {
726 p->sleep_avg = INTERACTIVE_SLEEP(p);
727 sleep_time = 0;
732 * This code gives a bonus to interactive tasks.
734 * The boost works by updating the 'average sleep time'
735 * value here, based on ->timestamp. The more time a
736 * task spends sleeping, the higher the average gets -
737 * and the higher the priority boost gets as well.
739 p->sleep_avg += sleep_time;
741 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
742 p->sleep_avg = NS_MAX_SLEEP_AVG;
746 return effective_prio(p);
750 * activate_task - move a task to the runqueue and do priority recalculation
752 * Update all the scheduling statistics stuff. (sleep average
753 * calculation, priority modifiers, etc.)
755 static void activate_task(task_t *p, runqueue_t *rq, int local)
757 unsigned long long now;
759 now = sched_clock();
760 #ifdef CONFIG_SMP
761 if (!local) {
762 /* Compensate for drifting sched_clock */
763 runqueue_t *this_rq = this_rq();
764 now = (now - this_rq->timestamp_last_tick)
765 + rq->timestamp_last_tick;
767 #endif
769 if (!rt_task(p))
770 p->prio = recalc_task_prio(p, now);
773 * This checks to make sure it's not an uninterruptible task
774 * that is now waking up.
776 if (!p->activated) {
778 * Tasks which were woken up by interrupts (ie. hw events)
779 * are most likely of interactive nature. So we give them
780 * the credit of extending their sleep time to the period
781 * of time they spend on the runqueue, waiting for execution
782 * on a CPU, first time around:
784 if (in_interrupt())
785 p->activated = 2;
786 else {
788 * Normal first-time wakeups get a credit too for
789 * on-runqueue time, but it will be weighted down:
791 p->activated = 1;
794 p->timestamp = now;
796 __activate_task(p, rq);
800 * deactivate_task - remove a task from the runqueue.
802 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
804 rq->nr_running--;
805 dequeue_task(p, p->array);
806 p->array = NULL;
810 * resched_task - mark a task 'to be rescheduled now'.
812 * On UP this means the setting of the need_resched flag, on SMP it
813 * might also involve a cross-CPU call to trigger the scheduler on
814 * the target CPU.
816 #ifdef CONFIG_SMP
817 static void resched_task(task_t *p)
819 int cpu;
821 assert_spin_locked(&task_rq(p)->lock);
823 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
824 return;
826 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
828 cpu = task_cpu(p);
829 if (cpu == smp_processor_id())
830 return;
832 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
833 smp_mb();
834 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
835 smp_send_reschedule(cpu);
837 #else
838 static inline void resched_task(task_t *p)
840 assert_spin_locked(&task_rq(p)->lock);
841 set_tsk_need_resched(p);
843 #endif
846 * task_curr - is this task currently executing on a CPU?
847 * @p: the task in question.
849 inline int task_curr(const task_t *p)
851 return cpu_curr(task_cpu(p)) == p;
854 #ifdef CONFIG_SMP
855 typedef struct {
856 struct list_head list;
858 task_t *task;
859 int dest_cpu;
861 struct completion done;
862 } migration_req_t;
865 * The task's runqueue lock must be held.
866 * Returns true if you have to wait for migration thread.
868 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
870 runqueue_t *rq = task_rq(p);
873 * If the task is not on a runqueue (and not running), then
874 * it is sufficient to simply update the task's cpu field.
876 if (!p->array && !task_running(rq, p)) {
877 set_task_cpu(p, dest_cpu);
878 return 0;
881 init_completion(&req->done);
882 req->task = p;
883 req->dest_cpu = dest_cpu;
884 list_add(&req->list, &rq->migration_queue);
885 return 1;
889 * wait_task_inactive - wait for a thread to unschedule.
891 * The caller must ensure that the task *will* unschedule sometime soon,
892 * else this function might spin for a *long* time. This function can't
893 * be called with interrupts off, or it may introduce deadlock with
894 * smp_call_function() if an IPI is sent by the same process we are
895 * waiting to become inactive.
897 void wait_task_inactive(task_t *p)
899 unsigned long flags;
900 runqueue_t *rq;
901 int preempted;
903 repeat:
904 rq = task_rq_lock(p, &flags);
905 /* Must be off runqueue entirely, not preempted. */
906 if (unlikely(p->array || task_running(rq, p))) {
907 /* If it's preempted, we yield. It could be a while. */
908 preempted = !task_running(rq, p);
909 task_rq_unlock(rq, &flags);
910 cpu_relax();
911 if (preempted)
912 yield();
913 goto repeat;
915 task_rq_unlock(rq, &flags);
918 /***
919 * kick_process - kick a running thread to enter/exit the kernel
920 * @p: the to-be-kicked thread
922 * Cause a process which is running on another CPU to enter
923 * kernel-mode, without any delay. (to get signals handled.)
925 * NOTE: this function doesnt have to take the runqueue lock,
926 * because all it wants to ensure is that the remote task enters
927 * the kernel. If the IPI races and the task has been migrated
928 * to another CPU then no harm is done and the purpose has been
929 * achieved as well.
931 void kick_process(task_t *p)
933 int cpu;
935 preempt_disable();
936 cpu = task_cpu(p);
937 if ((cpu != smp_processor_id()) && task_curr(p))
938 smp_send_reschedule(cpu);
939 preempt_enable();
943 * Return a low guess at the load of a migration-source cpu.
945 * We want to under-estimate the load of migration sources, to
946 * balance conservatively.
948 static inline unsigned long source_load(int cpu, int type)
950 runqueue_t *rq = cpu_rq(cpu);
951 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
952 if (type == 0)
953 return load_now;
955 return min(rq->cpu_load[type-1], load_now);
959 * Return a high guess at the load of a migration-target cpu
961 static inline unsigned long target_load(int cpu, int type)
963 runqueue_t *rq = cpu_rq(cpu);
964 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
965 if (type == 0)
966 return load_now;
968 return max(rq->cpu_load[type-1], load_now);
972 * find_idlest_group finds and returns the least busy CPU group within the
973 * domain.
975 static struct sched_group *
976 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
978 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
979 unsigned long min_load = ULONG_MAX, this_load = 0;
980 int load_idx = sd->forkexec_idx;
981 int imbalance = 100 + (sd->imbalance_pct-100)/2;
983 do {
984 unsigned long load, avg_load;
985 int local_group;
986 int i;
988 /* Skip over this group if it has no CPUs allowed */
989 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
990 goto nextgroup;
992 local_group = cpu_isset(this_cpu, group->cpumask);
994 /* Tally up the load of all CPUs in the group */
995 avg_load = 0;
997 for_each_cpu_mask(i, group->cpumask) {
998 /* Bias balancing toward cpus of our domain */
999 if (local_group)
1000 load = source_load(i, load_idx);
1001 else
1002 load = target_load(i, load_idx);
1004 avg_load += load;
1007 /* Adjust by relative CPU power of the group */
1008 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1010 if (local_group) {
1011 this_load = avg_load;
1012 this = group;
1013 } else if (avg_load < min_load) {
1014 min_load = avg_load;
1015 idlest = group;
1017 nextgroup:
1018 group = group->next;
1019 } while (group != sd->groups);
1021 if (!idlest || 100*this_load < imbalance*min_load)
1022 return NULL;
1023 return idlest;
1027 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1029 static int
1030 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1032 cpumask_t tmp;
1033 unsigned long load, min_load = ULONG_MAX;
1034 int idlest = -1;
1035 int i;
1037 /* Traverse only the allowed CPUs */
1038 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1040 for_each_cpu_mask(i, tmp) {
1041 load = source_load(i, 0);
1043 if (load < min_load || (load == min_load && i == this_cpu)) {
1044 min_load = load;
1045 idlest = i;
1049 return idlest;
1053 * sched_balance_self: balance the current task (running on cpu) in domains
1054 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1055 * SD_BALANCE_EXEC.
1057 * Balance, ie. select the least loaded group.
1059 * Returns the target CPU number, or the same CPU if no balancing is needed.
1061 * preempt must be disabled.
1063 static int sched_balance_self(int cpu, int flag)
1065 struct task_struct *t = current;
1066 struct sched_domain *tmp, *sd = NULL;
1068 for_each_domain(cpu, tmp)
1069 if (tmp->flags & flag)
1070 sd = tmp;
1072 while (sd) {
1073 cpumask_t span;
1074 struct sched_group *group;
1075 int new_cpu;
1076 int weight;
1078 span = sd->span;
1079 group = find_idlest_group(sd, t, cpu);
1080 if (!group)
1081 goto nextlevel;
1083 new_cpu = find_idlest_cpu(group, t, cpu);
1084 if (new_cpu == -1 || new_cpu == cpu)
1085 goto nextlevel;
1087 /* Now try balancing at a lower domain level */
1088 cpu = new_cpu;
1089 nextlevel:
1090 sd = NULL;
1091 weight = cpus_weight(span);
1092 for_each_domain(cpu, tmp) {
1093 if (weight <= cpus_weight(tmp->span))
1094 break;
1095 if (tmp->flags & flag)
1096 sd = tmp;
1098 /* while loop will break here if sd == NULL */
1101 return cpu;
1104 #endif /* CONFIG_SMP */
1107 * wake_idle() will wake a task on an idle cpu if task->cpu is
1108 * not idle and an idle cpu is available. The span of cpus to
1109 * search starts with cpus closest then further out as needed,
1110 * so we always favor a closer, idle cpu.
1112 * Returns the CPU we should wake onto.
1114 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1115 static int wake_idle(int cpu, task_t *p)
1117 cpumask_t tmp;
1118 struct sched_domain *sd;
1119 int i;
1121 if (idle_cpu(cpu))
1122 return cpu;
1124 for_each_domain(cpu, sd) {
1125 if (sd->flags & SD_WAKE_IDLE) {
1126 cpus_and(tmp, sd->span, p->cpus_allowed);
1127 for_each_cpu_mask(i, tmp) {
1128 if (idle_cpu(i))
1129 return i;
1132 else
1133 break;
1135 return cpu;
1137 #else
1138 static inline int wake_idle(int cpu, task_t *p)
1140 return cpu;
1142 #endif
1144 /***
1145 * try_to_wake_up - wake up a thread
1146 * @p: the to-be-woken-up thread
1147 * @state: the mask of task states that can be woken
1148 * @sync: do a synchronous wakeup?
1150 * Put it on the run-queue if it's not already there. The "current"
1151 * thread is always on the run-queue (except when the actual
1152 * re-schedule is in progress), and as such you're allowed to do
1153 * the simpler "current->state = TASK_RUNNING" to mark yourself
1154 * runnable without the overhead of this.
1156 * returns failure only if the task is already active.
1158 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1160 int cpu, this_cpu, success = 0;
1161 unsigned long flags;
1162 long old_state;
1163 runqueue_t *rq;
1164 #ifdef CONFIG_SMP
1165 unsigned long load, this_load;
1166 struct sched_domain *sd, *this_sd = NULL;
1167 int new_cpu;
1168 #endif
1170 rq = task_rq_lock(p, &flags);
1171 old_state = p->state;
1172 if (!(old_state & state))
1173 goto out;
1175 if (p->array)
1176 goto out_running;
1178 cpu = task_cpu(p);
1179 this_cpu = smp_processor_id();
1181 #ifdef CONFIG_SMP
1182 if (unlikely(task_running(rq, p)))
1183 goto out_activate;
1185 new_cpu = cpu;
1187 schedstat_inc(rq, ttwu_cnt);
1188 if (cpu == this_cpu) {
1189 schedstat_inc(rq, ttwu_local);
1190 goto out_set_cpu;
1193 for_each_domain(this_cpu, sd) {
1194 if (cpu_isset(cpu, sd->span)) {
1195 schedstat_inc(sd, ttwu_wake_remote);
1196 this_sd = sd;
1197 break;
1201 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1202 goto out_set_cpu;
1205 * Check for affine wakeup and passive balancing possibilities.
1207 if (this_sd) {
1208 int idx = this_sd->wake_idx;
1209 unsigned int imbalance;
1211 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1213 load = source_load(cpu, idx);
1214 this_load = target_load(this_cpu, idx);
1216 new_cpu = this_cpu; /* Wake to this CPU if we can */
1218 if (this_sd->flags & SD_WAKE_AFFINE) {
1219 unsigned long tl = this_load;
1221 * If sync wakeup then subtract the (maximum possible)
1222 * effect of the currently running task from the load
1223 * of the current CPU:
1225 if (sync)
1226 tl -= SCHED_LOAD_SCALE;
1228 if ((tl <= load &&
1229 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1230 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1232 * This domain has SD_WAKE_AFFINE and
1233 * p is cache cold in this domain, and
1234 * there is no bad imbalance.
1236 schedstat_inc(this_sd, ttwu_move_affine);
1237 goto out_set_cpu;
1242 * Start passive balancing when half the imbalance_pct
1243 * limit is reached.
1245 if (this_sd->flags & SD_WAKE_BALANCE) {
1246 if (imbalance*this_load <= 100*load) {
1247 schedstat_inc(this_sd, ttwu_move_balance);
1248 goto out_set_cpu;
1253 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1254 out_set_cpu:
1255 new_cpu = wake_idle(new_cpu, p);
1256 if (new_cpu != cpu) {
1257 set_task_cpu(p, new_cpu);
1258 task_rq_unlock(rq, &flags);
1259 /* might preempt at this point */
1260 rq = task_rq_lock(p, &flags);
1261 old_state = p->state;
1262 if (!(old_state & state))
1263 goto out;
1264 if (p->array)
1265 goto out_running;
1267 this_cpu = smp_processor_id();
1268 cpu = task_cpu(p);
1271 out_activate:
1272 #endif /* CONFIG_SMP */
1273 if (old_state == TASK_UNINTERRUPTIBLE) {
1274 rq->nr_uninterruptible--;
1276 * Tasks on involuntary sleep don't earn
1277 * sleep_avg beyond just interactive state.
1279 p->activated = -1;
1283 * Tasks that have marked their sleep as noninteractive get
1284 * woken up without updating their sleep average. (i.e. their
1285 * sleep is handled in a priority-neutral manner, no priority
1286 * boost and no penalty.)
1288 if (old_state & TASK_NONINTERACTIVE)
1289 __activate_task(p, rq);
1290 else
1291 activate_task(p, rq, cpu == this_cpu);
1293 * Sync wakeups (i.e. those types of wakeups where the waker
1294 * has indicated that it will leave the CPU in short order)
1295 * don't trigger a preemption, if the woken up task will run on
1296 * this cpu. (in this case the 'I will reschedule' promise of
1297 * the waker guarantees that the freshly woken up task is going
1298 * to be considered on this CPU.)
1300 if (!sync || cpu != this_cpu) {
1301 if (TASK_PREEMPTS_CURR(p, rq))
1302 resched_task(rq->curr);
1304 success = 1;
1306 out_running:
1307 p->state = TASK_RUNNING;
1308 out:
1309 task_rq_unlock(rq, &flags);
1311 return success;
1314 int fastcall wake_up_process(task_t *p)
1316 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1317 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1320 EXPORT_SYMBOL(wake_up_process);
1322 int fastcall wake_up_state(task_t *p, unsigned int state)
1324 return try_to_wake_up(p, state, 0);
1328 * Perform scheduler related setup for a newly forked process p.
1329 * p is forked by current.
1331 void fastcall sched_fork(task_t *p, int clone_flags)
1333 int cpu = get_cpu();
1335 #ifdef CONFIG_SMP
1336 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1337 #endif
1338 set_task_cpu(p, cpu);
1341 * We mark the process as running here, but have not actually
1342 * inserted it onto the runqueue yet. This guarantees that
1343 * nobody will actually run it, and a signal or other external
1344 * event cannot wake it up and insert it on the runqueue either.
1346 p->state = TASK_RUNNING;
1347 INIT_LIST_HEAD(&p->run_list);
1348 p->array = NULL;
1349 #ifdef CONFIG_SCHEDSTATS
1350 memset(&p->sched_info, 0, sizeof(p->sched_info));
1351 #endif
1352 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1353 p->oncpu = 0;
1354 #endif
1355 #ifdef CONFIG_PREEMPT
1356 /* Want to start with kernel preemption disabled. */
1357 task_thread_info(p)->preempt_count = 1;
1358 #endif
1360 * Share the timeslice between parent and child, thus the
1361 * total amount of pending timeslices in the system doesn't change,
1362 * resulting in more scheduling fairness.
1364 local_irq_disable();
1365 p->time_slice = (current->time_slice + 1) >> 1;
1367 * The remainder of the first timeslice might be recovered by
1368 * the parent if the child exits early enough.
1370 p->first_time_slice = 1;
1371 current->time_slice >>= 1;
1372 p->timestamp = sched_clock();
1373 if (unlikely(!current->time_slice)) {
1375 * This case is rare, it happens when the parent has only
1376 * a single jiffy left from its timeslice. Taking the
1377 * runqueue lock is not a problem.
1379 current->time_slice = 1;
1380 scheduler_tick();
1382 local_irq_enable();
1383 put_cpu();
1387 * wake_up_new_task - wake up a newly created task for the first time.
1389 * This function will do some initial scheduler statistics housekeeping
1390 * that must be done for every newly created context, then puts the task
1391 * on the runqueue and wakes it.
1393 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1395 unsigned long flags;
1396 int this_cpu, cpu;
1397 runqueue_t *rq, *this_rq;
1399 rq = task_rq_lock(p, &flags);
1400 BUG_ON(p->state != TASK_RUNNING);
1401 this_cpu = smp_processor_id();
1402 cpu = task_cpu(p);
1405 * We decrease the sleep average of forking parents
1406 * and children as well, to keep max-interactive tasks
1407 * from forking tasks that are max-interactive. The parent
1408 * (current) is done further down, under its lock.
1410 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1411 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1413 p->prio = effective_prio(p);
1415 if (likely(cpu == this_cpu)) {
1416 if (!(clone_flags & CLONE_VM)) {
1418 * The VM isn't cloned, so we're in a good position to
1419 * do child-runs-first in anticipation of an exec. This
1420 * usually avoids a lot of COW overhead.
1422 if (unlikely(!current->array))
1423 __activate_task(p, rq);
1424 else {
1425 p->prio = current->prio;
1426 list_add_tail(&p->run_list, &current->run_list);
1427 p->array = current->array;
1428 p->array->nr_active++;
1429 rq->nr_running++;
1431 set_need_resched();
1432 } else
1433 /* Run child last */
1434 __activate_task(p, rq);
1436 * We skip the following code due to cpu == this_cpu
1438 * task_rq_unlock(rq, &flags);
1439 * this_rq = task_rq_lock(current, &flags);
1441 this_rq = rq;
1442 } else {
1443 this_rq = cpu_rq(this_cpu);
1446 * Not the local CPU - must adjust timestamp. This should
1447 * get optimised away in the !CONFIG_SMP case.
1449 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1450 + rq->timestamp_last_tick;
1451 __activate_task(p, rq);
1452 if (TASK_PREEMPTS_CURR(p, rq))
1453 resched_task(rq->curr);
1456 * Parent and child are on different CPUs, now get the
1457 * parent runqueue to update the parent's ->sleep_avg:
1459 task_rq_unlock(rq, &flags);
1460 this_rq = task_rq_lock(current, &flags);
1462 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1463 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1464 task_rq_unlock(this_rq, &flags);
1468 * Potentially available exiting-child timeslices are
1469 * retrieved here - this way the parent does not get
1470 * penalized for creating too many threads.
1472 * (this cannot be used to 'generate' timeslices
1473 * artificially, because any timeslice recovered here
1474 * was given away by the parent in the first place.)
1476 void fastcall sched_exit(task_t *p)
1478 unsigned long flags;
1479 runqueue_t *rq;
1482 * If the child was a (relative-) CPU hog then decrease
1483 * the sleep_avg of the parent as well.
1485 rq = task_rq_lock(p->parent, &flags);
1486 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1487 p->parent->time_slice += p->time_slice;
1488 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1489 p->parent->time_slice = task_timeslice(p);
1491 if (p->sleep_avg < p->parent->sleep_avg)
1492 p->parent->sleep_avg = p->parent->sleep_avg /
1493 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1494 (EXIT_WEIGHT + 1);
1495 task_rq_unlock(rq, &flags);
1499 * prepare_task_switch - prepare to switch tasks
1500 * @rq: the runqueue preparing to switch
1501 * @next: the task we are going to switch to.
1503 * This is called with the rq lock held and interrupts off. It must
1504 * be paired with a subsequent finish_task_switch after the context
1505 * switch.
1507 * prepare_task_switch sets up locking and calls architecture specific
1508 * hooks.
1510 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1512 prepare_lock_switch(rq, next);
1513 prepare_arch_switch(next);
1517 * finish_task_switch - clean up after a task-switch
1518 * @rq: runqueue associated with task-switch
1519 * @prev: the thread we just switched away from.
1521 * finish_task_switch must be called after the context switch, paired
1522 * with a prepare_task_switch call before the context switch.
1523 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1524 * and do any other architecture-specific cleanup actions.
1526 * Note that we may have delayed dropping an mm in context_switch(). If
1527 * so, we finish that here outside of the runqueue lock. (Doing it
1528 * with the lock held can cause deadlocks; see schedule() for
1529 * details.)
1531 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1532 __releases(rq->lock)
1534 struct mm_struct *mm = rq->prev_mm;
1535 unsigned long prev_task_flags;
1537 rq->prev_mm = NULL;
1540 * A task struct has one reference for the use as "current".
1541 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1542 * calls schedule one last time. The schedule call will never return,
1543 * and the scheduled task must drop that reference.
1544 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1545 * still held, otherwise prev could be scheduled on another cpu, die
1546 * there before we look at prev->state, and then the reference would
1547 * be dropped twice.
1548 * Manfred Spraul <manfred@colorfullife.com>
1550 prev_task_flags = prev->flags;
1551 finish_arch_switch(prev);
1552 finish_lock_switch(rq, prev);
1553 if (mm)
1554 mmdrop(mm);
1555 if (unlikely(prev_task_flags & PF_DEAD))
1556 put_task_struct(prev);
1560 * schedule_tail - first thing a freshly forked thread must call.
1561 * @prev: the thread we just switched away from.
1563 asmlinkage void schedule_tail(task_t *prev)
1564 __releases(rq->lock)
1566 runqueue_t *rq = this_rq();
1567 finish_task_switch(rq, prev);
1568 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1569 /* In this case, finish_task_switch does not reenable preemption */
1570 preempt_enable();
1571 #endif
1572 if (current->set_child_tid)
1573 put_user(current->pid, current->set_child_tid);
1577 * context_switch - switch to the new MM and the new
1578 * thread's register state.
1580 static inline
1581 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1583 struct mm_struct *mm = next->mm;
1584 struct mm_struct *oldmm = prev->active_mm;
1586 if (unlikely(!mm)) {
1587 next->active_mm = oldmm;
1588 atomic_inc(&oldmm->mm_count);
1589 enter_lazy_tlb(oldmm, next);
1590 } else
1591 switch_mm(oldmm, mm, next);
1593 if (unlikely(!prev->mm)) {
1594 prev->active_mm = NULL;
1595 WARN_ON(rq->prev_mm);
1596 rq->prev_mm = oldmm;
1599 /* Here we just switch the register state and the stack. */
1600 switch_to(prev, next, prev);
1602 return prev;
1606 * nr_running, nr_uninterruptible and nr_context_switches:
1608 * externally visible scheduler statistics: current number of runnable
1609 * threads, current number of uninterruptible-sleeping threads, total
1610 * number of context switches performed since bootup.
1612 unsigned long nr_running(void)
1614 unsigned long i, sum = 0;
1616 for_each_online_cpu(i)
1617 sum += cpu_rq(i)->nr_running;
1619 return sum;
1622 unsigned long nr_uninterruptible(void)
1624 unsigned long i, sum = 0;
1626 for_each_cpu(i)
1627 sum += cpu_rq(i)->nr_uninterruptible;
1630 * Since we read the counters lockless, it might be slightly
1631 * inaccurate. Do not allow it to go below zero though:
1633 if (unlikely((long)sum < 0))
1634 sum = 0;
1636 return sum;
1639 unsigned long long nr_context_switches(void)
1641 unsigned long long i, sum = 0;
1643 for_each_cpu(i)
1644 sum += cpu_rq(i)->nr_switches;
1646 return sum;
1649 unsigned long nr_iowait(void)
1651 unsigned long i, sum = 0;
1653 for_each_cpu(i)
1654 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1656 return sum;
1659 #ifdef CONFIG_SMP
1662 * double_rq_lock - safely lock two runqueues
1664 * We must take them in cpu order to match code in
1665 * dependent_sleeper and wake_dependent_sleeper.
1667 * Note this does not disable interrupts like task_rq_lock,
1668 * you need to do so manually before calling.
1670 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1671 __acquires(rq1->lock)
1672 __acquires(rq2->lock)
1674 if (rq1 == rq2) {
1675 spin_lock(&rq1->lock);
1676 __acquire(rq2->lock); /* Fake it out ;) */
1677 } else {
1678 if (rq1->cpu < rq2->cpu) {
1679 spin_lock(&rq1->lock);
1680 spin_lock(&rq2->lock);
1681 } else {
1682 spin_lock(&rq2->lock);
1683 spin_lock(&rq1->lock);
1689 * double_rq_unlock - safely unlock two runqueues
1691 * Note this does not restore interrupts like task_rq_unlock,
1692 * you need to do so manually after calling.
1694 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1695 __releases(rq1->lock)
1696 __releases(rq2->lock)
1698 spin_unlock(&rq1->lock);
1699 if (rq1 != rq2)
1700 spin_unlock(&rq2->lock);
1701 else
1702 __release(rq2->lock);
1706 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1708 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1713 if (unlikely(!spin_trylock(&busiest->lock))) {
1714 if (busiest->cpu < this_rq->cpu) {
1715 spin_unlock(&this_rq->lock);
1716 spin_lock(&busiest->lock);
1717 spin_lock(&this_rq->lock);
1718 } else
1719 spin_lock(&busiest->lock);
1724 * If dest_cpu is allowed for this process, migrate the task to it.
1725 * This is accomplished by forcing the cpu_allowed mask to only
1726 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1727 * the cpu_allowed mask is restored.
1729 static void sched_migrate_task(task_t *p, int dest_cpu)
1731 migration_req_t req;
1732 runqueue_t *rq;
1733 unsigned long flags;
1735 rq = task_rq_lock(p, &flags);
1736 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1737 || unlikely(cpu_is_offline(dest_cpu)))
1738 goto out;
1740 /* force the process onto the specified CPU */
1741 if (migrate_task(p, dest_cpu, &req)) {
1742 /* Need to wait for migration thread (might exit: take ref). */
1743 struct task_struct *mt = rq->migration_thread;
1744 get_task_struct(mt);
1745 task_rq_unlock(rq, &flags);
1746 wake_up_process(mt);
1747 put_task_struct(mt);
1748 wait_for_completion(&req.done);
1749 return;
1751 out:
1752 task_rq_unlock(rq, &flags);
1756 * sched_exec - execve() is a valuable balancing opportunity, because at
1757 * this point the task has the smallest effective memory and cache footprint.
1759 void sched_exec(void)
1761 int new_cpu, this_cpu = get_cpu();
1762 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1763 put_cpu();
1764 if (new_cpu != this_cpu)
1765 sched_migrate_task(current, new_cpu);
1769 * pull_task - move a task from a remote runqueue to the local runqueue.
1770 * Both runqueues must be locked.
1772 static
1773 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1774 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1776 dequeue_task(p, src_array);
1777 src_rq->nr_running--;
1778 set_task_cpu(p, this_cpu);
1779 this_rq->nr_running++;
1780 enqueue_task(p, this_array);
1781 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1782 + this_rq->timestamp_last_tick;
1784 * Note that idle threads have a prio of MAX_PRIO, for this test
1785 * to be always true for them.
1787 if (TASK_PREEMPTS_CURR(p, this_rq))
1788 resched_task(this_rq->curr);
1792 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1794 static
1795 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1796 struct sched_domain *sd, enum idle_type idle,
1797 int *all_pinned)
1800 * We do not migrate tasks that are:
1801 * 1) running (obviously), or
1802 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1803 * 3) are cache-hot on their current CPU.
1805 if (!cpu_isset(this_cpu, p->cpus_allowed))
1806 return 0;
1807 *all_pinned = 0;
1809 if (task_running(rq, p))
1810 return 0;
1813 * Aggressive migration if:
1814 * 1) task is cache cold, or
1815 * 2) too many balance attempts have failed.
1818 if (sd->nr_balance_failed > sd->cache_nice_tries)
1819 return 1;
1821 if (task_hot(p, rq->timestamp_last_tick, sd))
1822 return 0;
1823 return 1;
1827 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1828 * as part of a balancing operation within "domain". Returns the number of
1829 * tasks moved.
1831 * Called with both runqueues locked.
1833 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1834 unsigned long max_nr_move, struct sched_domain *sd,
1835 enum idle_type idle, int *all_pinned)
1837 prio_array_t *array, *dst_array;
1838 struct list_head *head, *curr;
1839 int idx, pulled = 0, pinned = 0;
1840 task_t *tmp;
1842 if (max_nr_move == 0)
1843 goto out;
1845 pinned = 1;
1848 * We first consider expired tasks. Those will likely not be
1849 * executed in the near future, and they are most likely to
1850 * be cache-cold, thus switching CPUs has the least effect
1851 * on them.
1853 if (busiest->expired->nr_active) {
1854 array = busiest->expired;
1855 dst_array = this_rq->expired;
1856 } else {
1857 array = busiest->active;
1858 dst_array = this_rq->active;
1861 new_array:
1862 /* Start searching at priority 0: */
1863 idx = 0;
1864 skip_bitmap:
1865 if (!idx)
1866 idx = sched_find_first_bit(array->bitmap);
1867 else
1868 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1869 if (idx >= MAX_PRIO) {
1870 if (array == busiest->expired && busiest->active->nr_active) {
1871 array = busiest->active;
1872 dst_array = this_rq->active;
1873 goto new_array;
1875 goto out;
1878 head = array->queue + idx;
1879 curr = head->prev;
1880 skip_queue:
1881 tmp = list_entry(curr, task_t, run_list);
1883 curr = curr->prev;
1885 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1886 if (curr != head)
1887 goto skip_queue;
1888 idx++;
1889 goto skip_bitmap;
1892 #ifdef CONFIG_SCHEDSTATS
1893 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1894 schedstat_inc(sd, lb_hot_gained[idle]);
1895 #endif
1897 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1898 pulled++;
1900 /* We only want to steal up to the prescribed number of tasks. */
1901 if (pulled < max_nr_move) {
1902 if (curr != head)
1903 goto skip_queue;
1904 idx++;
1905 goto skip_bitmap;
1907 out:
1909 * Right now, this is the only place pull_task() is called,
1910 * so we can safely collect pull_task() stats here rather than
1911 * inside pull_task().
1913 schedstat_add(sd, lb_gained[idle], pulled);
1915 if (all_pinned)
1916 *all_pinned = pinned;
1917 return pulled;
1921 * find_busiest_group finds and returns the busiest CPU group within the
1922 * domain. It calculates and returns the number of tasks which should be
1923 * moved to restore balance via the imbalance parameter.
1925 static struct sched_group *
1926 find_busiest_group(struct sched_domain *sd, int this_cpu,
1927 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
1928 cpumask_t *cpus)
1930 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1931 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1932 unsigned long max_pull;
1933 int load_idx;
1935 max_load = this_load = total_load = total_pwr = 0;
1936 if (idle == NOT_IDLE)
1937 load_idx = sd->busy_idx;
1938 else if (idle == NEWLY_IDLE)
1939 load_idx = sd->newidle_idx;
1940 else
1941 load_idx = sd->idle_idx;
1943 do {
1944 unsigned long load;
1945 int local_group;
1946 int i;
1948 local_group = cpu_isset(this_cpu, group->cpumask);
1950 /* Tally up the load of all CPUs in the group */
1951 avg_load = 0;
1953 for_each_cpu_mask(i, group->cpumask) {
1954 if (!cpu_isset(i, *cpus))
1955 continue;
1957 if (*sd_idle && !idle_cpu(i))
1958 *sd_idle = 0;
1960 /* Bias balancing toward cpus of our domain */
1961 if (local_group)
1962 load = target_load(i, load_idx);
1963 else
1964 load = source_load(i, load_idx);
1966 avg_load += load;
1969 total_load += avg_load;
1970 total_pwr += group->cpu_power;
1972 /* Adjust by relative CPU power of the group */
1973 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1975 if (local_group) {
1976 this_load = avg_load;
1977 this = group;
1978 } else if (avg_load > max_load) {
1979 max_load = avg_load;
1980 busiest = group;
1982 group = group->next;
1983 } while (group != sd->groups);
1985 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1986 goto out_balanced;
1988 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1990 if (this_load >= avg_load ||
1991 100*max_load <= sd->imbalance_pct*this_load)
1992 goto out_balanced;
1995 * We're trying to get all the cpus to the average_load, so we don't
1996 * want to push ourselves above the average load, nor do we wish to
1997 * reduce the max loaded cpu below the average load, as either of these
1998 * actions would just result in more rebalancing later, and ping-pong
1999 * tasks around. Thus we look for the minimum possible imbalance.
2000 * Negative imbalances (*we* are more loaded than anyone else) will
2001 * be counted as no imbalance for these purposes -- we can't fix that
2002 * by pulling tasks to us. Be careful of negative numbers as they'll
2003 * appear as very large values with unsigned longs.
2006 /* Don't want to pull so many tasks that a group would go idle */
2007 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2009 /* How much load to actually move to equalise the imbalance */
2010 *imbalance = min(max_pull * busiest->cpu_power,
2011 (avg_load - this_load) * this->cpu_power)
2012 / SCHED_LOAD_SCALE;
2014 if (*imbalance < SCHED_LOAD_SCALE) {
2015 unsigned long pwr_now = 0, pwr_move = 0;
2016 unsigned long tmp;
2018 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2019 *imbalance = 1;
2020 return busiest;
2024 * OK, we don't have enough imbalance to justify moving tasks,
2025 * however we may be able to increase total CPU power used by
2026 * moving them.
2029 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2030 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2031 pwr_now /= SCHED_LOAD_SCALE;
2033 /* Amount of load we'd subtract */
2034 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2035 if (max_load > tmp)
2036 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2037 max_load - tmp);
2039 /* Amount of load we'd add */
2040 if (max_load*busiest->cpu_power <
2041 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2042 tmp = max_load*busiest->cpu_power/this->cpu_power;
2043 else
2044 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2045 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2046 pwr_move /= SCHED_LOAD_SCALE;
2048 /* Move if we gain throughput */
2049 if (pwr_move <= pwr_now)
2050 goto out_balanced;
2052 *imbalance = 1;
2053 return busiest;
2056 /* Get rid of the scaling factor, rounding down as we divide */
2057 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2058 return busiest;
2060 out_balanced:
2062 *imbalance = 0;
2063 return NULL;
2067 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2069 static runqueue_t *find_busiest_queue(struct sched_group *group,
2070 enum idle_type idle, cpumask_t *cpus)
2072 unsigned long load, max_load = 0;
2073 runqueue_t *busiest = NULL;
2074 int i;
2076 for_each_cpu_mask(i, group->cpumask) {
2077 if (!cpu_isset(i, *cpus))
2078 continue;
2080 load = source_load(i, 0);
2082 if (load > max_load) {
2083 max_load = load;
2084 busiest = cpu_rq(i);
2088 return busiest;
2092 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2093 * so long as it is large enough.
2095 #define MAX_PINNED_INTERVAL 512
2098 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2099 * tasks if there is an imbalance.
2101 * Called with this_rq unlocked.
2103 static int load_balance(int this_cpu, runqueue_t *this_rq,
2104 struct sched_domain *sd, enum idle_type idle)
2106 struct sched_group *group;
2107 runqueue_t *busiest;
2108 unsigned long imbalance;
2109 int nr_moved, all_pinned = 0;
2110 int active_balance = 0;
2111 int sd_idle = 0;
2112 cpumask_t cpus = CPU_MASK_ALL;
2114 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2115 sd_idle = 1;
2117 schedstat_inc(sd, lb_cnt[idle]);
2119 redo:
2120 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
2121 &sd_idle, &cpus);
2122 if (!group) {
2123 schedstat_inc(sd, lb_nobusyg[idle]);
2124 goto out_balanced;
2127 busiest = find_busiest_queue(group, idle, &cpus);
2128 if (!busiest) {
2129 schedstat_inc(sd, lb_nobusyq[idle]);
2130 goto out_balanced;
2133 BUG_ON(busiest == this_rq);
2135 schedstat_add(sd, lb_imbalance[idle], imbalance);
2137 nr_moved = 0;
2138 if (busiest->nr_running > 1) {
2140 * Attempt to move tasks. If find_busiest_group has found
2141 * an imbalance but busiest->nr_running <= 1, the group is
2142 * still unbalanced. nr_moved simply stays zero, so it is
2143 * correctly treated as an imbalance.
2145 double_rq_lock(this_rq, busiest);
2146 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2147 imbalance, sd, idle, &all_pinned);
2148 double_rq_unlock(this_rq, busiest);
2150 /* All tasks on this runqueue were pinned by CPU affinity */
2151 if (unlikely(all_pinned)) {
2152 cpu_clear(busiest->cpu, cpus);
2153 if (!cpus_empty(cpus))
2154 goto redo;
2155 goto out_balanced;
2159 if (!nr_moved) {
2160 schedstat_inc(sd, lb_failed[idle]);
2161 sd->nr_balance_failed++;
2163 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2165 spin_lock(&busiest->lock);
2167 /* don't kick the migration_thread, if the curr
2168 * task on busiest cpu can't be moved to this_cpu
2170 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2171 spin_unlock(&busiest->lock);
2172 all_pinned = 1;
2173 goto out_one_pinned;
2176 if (!busiest->active_balance) {
2177 busiest->active_balance = 1;
2178 busiest->push_cpu = this_cpu;
2179 active_balance = 1;
2181 spin_unlock(&busiest->lock);
2182 if (active_balance)
2183 wake_up_process(busiest->migration_thread);
2186 * We've kicked active balancing, reset the failure
2187 * counter.
2189 sd->nr_balance_failed = sd->cache_nice_tries+1;
2191 } else
2192 sd->nr_balance_failed = 0;
2194 if (likely(!active_balance)) {
2195 /* We were unbalanced, so reset the balancing interval */
2196 sd->balance_interval = sd->min_interval;
2197 } else {
2199 * If we've begun active balancing, start to back off. This
2200 * case may not be covered by the all_pinned logic if there
2201 * is only 1 task on the busy runqueue (because we don't call
2202 * move_tasks).
2204 if (sd->balance_interval < sd->max_interval)
2205 sd->balance_interval *= 2;
2208 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2209 return -1;
2210 return nr_moved;
2212 out_balanced:
2213 schedstat_inc(sd, lb_balanced[idle]);
2215 sd->nr_balance_failed = 0;
2217 out_one_pinned:
2218 /* tune up the balancing interval */
2219 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2220 (sd->balance_interval < sd->max_interval))
2221 sd->balance_interval *= 2;
2223 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2224 return -1;
2225 return 0;
2229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2230 * tasks if there is an imbalance.
2232 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2233 * this_rq is locked.
2235 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2236 struct sched_domain *sd)
2238 struct sched_group *group;
2239 runqueue_t *busiest = NULL;
2240 unsigned long imbalance;
2241 int nr_moved = 0;
2242 int sd_idle = 0;
2243 cpumask_t cpus = CPU_MASK_ALL;
2245 if (sd->flags & SD_SHARE_CPUPOWER)
2246 sd_idle = 1;
2248 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2249 redo:
2250 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2251 &sd_idle, &cpus);
2252 if (!group) {
2253 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2254 goto out_balanced;
2257 busiest = find_busiest_queue(group, NEWLY_IDLE, &cpus);
2258 if (!busiest) {
2259 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2260 goto out_balanced;
2263 BUG_ON(busiest == this_rq);
2265 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2267 nr_moved = 0;
2268 if (busiest->nr_running > 1) {
2269 /* Attempt to move tasks */
2270 double_lock_balance(this_rq, busiest);
2271 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2272 imbalance, sd, NEWLY_IDLE, NULL);
2273 spin_unlock(&busiest->lock);
2275 if (!nr_moved) {
2276 cpu_clear(busiest->cpu, cpus);
2277 if (!cpus_empty(cpus))
2278 goto redo;
2282 if (!nr_moved) {
2283 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2284 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2285 return -1;
2286 } else
2287 sd->nr_balance_failed = 0;
2289 return nr_moved;
2291 out_balanced:
2292 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2293 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2294 return -1;
2295 sd->nr_balance_failed = 0;
2296 return 0;
2300 * idle_balance is called by schedule() if this_cpu is about to become
2301 * idle. Attempts to pull tasks from other CPUs.
2303 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2305 struct sched_domain *sd;
2307 for_each_domain(this_cpu, sd) {
2308 if (sd->flags & SD_BALANCE_NEWIDLE) {
2309 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2310 /* We've pulled tasks over so stop searching */
2311 break;
2318 * active_load_balance is run by migration threads. It pushes running tasks
2319 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2320 * running on each physical CPU where possible, and avoids physical /
2321 * logical imbalances.
2323 * Called with busiest_rq locked.
2325 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2327 struct sched_domain *sd;
2328 runqueue_t *target_rq;
2329 int target_cpu = busiest_rq->push_cpu;
2331 if (busiest_rq->nr_running <= 1)
2332 /* no task to move */
2333 return;
2335 target_rq = cpu_rq(target_cpu);
2338 * This condition is "impossible", if it occurs
2339 * we need to fix it. Originally reported by
2340 * Bjorn Helgaas on a 128-cpu setup.
2342 BUG_ON(busiest_rq == target_rq);
2344 /* move a task from busiest_rq to target_rq */
2345 double_lock_balance(busiest_rq, target_rq);
2347 /* Search for an sd spanning us and the target CPU. */
2348 for_each_domain(target_cpu, sd)
2349 if ((sd->flags & SD_LOAD_BALANCE) &&
2350 cpu_isset(busiest_cpu, sd->span))
2351 break;
2353 if (unlikely(sd == NULL))
2354 goto out;
2356 schedstat_inc(sd, alb_cnt);
2358 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2359 schedstat_inc(sd, alb_pushed);
2360 else
2361 schedstat_inc(sd, alb_failed);
2362 out:
2363 spin_unlock(&target_rq->lock);
2367 * rebalance_tick will get called every timer tick, on every CPU.
2369 * It checks each scheduling domain to see if it is due to be balanced,
2370 * and initiates a balancing operation if so.
2372 * Balancing parameters are set up in arch_init_sched_domains.
2375 /* Don't have all balancing operations going off at once */
2376 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2378 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2379 enum idle_type idle)
2381 unsigned long old_load, this_load;
2382 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2383 struct sched_domain *sd;
2384 int i;
2386 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2387 /* Update our load */
2388 for (i = 0; i < 3; i++) {
2389 unsigned long new_load = this_load;
2390 int scale = 1 << i;
2391 old_load = this_rq->cpu_load[i];
2393 * Round up the averaging division if load is increasing. This
2394 * prevents us from getting stuck on 9 if the load is 10, for
2395 * example.
2397 if (new_load > old_load)
2398 new_load += scale-1;
2399 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2402 for_each_domain(this_cpu, sd) {
2403 unsigned long interval;
2405 if (!(sd->flags & SD_LOAD_BALANCE))
2406 continue;
2408 interval = sd->balance_interval;
2409 if (idle != SCHED_IDLE)
2410 interval *= sd->busy_factor;
2412 /* scale ms to jiffies */
2413 interval = msecs_to_jiffies(interval);
2414 if (unlikely(!interval))
2415 interval = 1;
2417 if (j - sd->last_balance >= interval) {
2418 if (load_balance(this_cpu, this_rq, sd, idle)) {
2420 * We've pulled tasks over so either we're no
2421 * longer idle, or one of our SMT siblings is
2422 * not idle.
2424 idle = NOT_IDLE;
2426 sd->last_balance += interval;
2430 #else
2432 * on UP we do not need to balance between CPUs:
2434 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2437 static inline void idle_balance(int cpu, runqueue_t *rq)
2440 #endif
2442 static inline int wake_priority_sleeper(runqueue_t *rq)
2444 int ret = 0;
2445 #ifdef CONFIG_SCHED_SMT
2446 spin_lock(&rq->lock);
2448 * If an SMT sibling task has been put to sleep for priority
2449 * reasons reschedule the idle task to see if it can now run.
2451 if (rq->nr_running) {
2452 resched_task(rq->idle);
2453 ret = 1;
2455 spin_unlock(&rq->lock);
2456 #endif
2457 return ret;
2460 DEFINE_PER_CPU(struct kernel_stat, kstat);
2462 EXPORT_PER_CPU_SYMBOL(kstat);
2465 * This is called on clock ticks and on context switches.
2466 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2468 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2469 unsigned long long now)
2471 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2472 p->sched_time += now - last;
2476 * Return current->sched_time plus any more ns on the sched_clock
2477 * that have not yet been banked.
2479 unsigned long long current_sched_time(const task_t *tsk)
2481 unsigned long long ns;
2482 unsigned long flags;
2483 local_irq_save(flags);
2484 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2485 ns = tsk->sched_time + (sched_clock() - ns);
2486 local_irq_restore(flags);
2487 return ns;
2491 * We place interactive tasks back into the active array, if possible.
2493 * To guarantee that this does not starve expired tasks we ignore the
2494 * interactivity of a task if the first expired task had to wait more
2495 * than a 'reasonable' amount of time. This deadline timeout is
2496 * load-dependent, as the frequency of array switched decreases with
2497 * increasing number of running tasks. We also ignore the interactivity
2498 * if a better static_prio task has expired:
2500 #define EXPIRED_STARVING(rq) \
2501 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2502 (jiffies - (rq)->expired_timestamp >= \
2503 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2504 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2507 * Account user cpu time to a process.
2508 * @p: the process that the cpu time gets accounted to
2509 * @hardirq_offset: the offset to subtract from hardirq_count()
2510 * @cputime: the cpu time spent in user space since the last update
2512 void account_user_time(struct task_struct *p, cputime_t cputime)
2514 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2515 cputime64_t tmp;
2517 p->utime = cputime_add(p->utime, cputime);
2519 /* Add user time to cpustat. */
2520 tmp = cputime_to_cputime64(cputime);
2521 if (TASK_NICE(p) > 0)
2522 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2523 else
2524 cpustat->user = cputime64_add(cpustat->user, tmp);
2528 * Account system cpu time to a process.
2529 * @p: the process that the cpu time gets accounted to
2530 * @hardirq_offset: the offset to subtract from hardirq_count()
2531 * @cputime: the cpu time spent in kernel space since the last update
2533 void account_system_time(struct task_struct *p, int hardirq_offset,
2534 cputime_t cputime)
2536 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2537 runqueue_t *rq = this_rq();
2538 cputime64_t tmp;
2540 p->stime = cputime_add(p->stime, cputime);
2542 /* Add system time to cpustat. */
2543 tmp = cputime_to_cputime64(cputime);
2544 if (hardirq_count() - hardirq_offset)
2545 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2546 else if (softirq_count())
2547 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2548 else if (p != rq->idle)
2549 cpustat->system = cputime64_add(cpustat->system, tmp);
2550 else if (atomic_read(&rq->nr_iowait) > 0)
2551 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2552 else
2553 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2554 /* Account for system time used */
2555 acct_update_integrals(p);
2559 * Account for involuntary wait time.
2560 * @p: the process from which the cpu time has been stolen
2561 * @steal: the cpu time spent in involuntary wait
2563 void account_steal_time(struct task_struct *p, cputime_t steal)
2565 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2566 cputime64_t tmp = cputime_to_cputime64(steal);
2567 runqueue_t *rq = this_rq();
2569 if (p == rq->idle) {
2570 p->stime = cputime_add(p->stime, steal);
2571 if (atomic_read(&rq->nr_iowait) > 0)
2572 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2573 else
2574 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2575 } else
2576 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2580 * This function gets called by the timer code, with HZ frequency.
2581 * We call it with interrupts disabled.
2583 * It also gets called by the fork code, when changing the parent's
2584 * timeslices.
2586 void scheduler_tick(void)
2588 int cpu = smp_processor_id();
2589 runqueue_t *rq = this_rq();
2590 task_t *p = current;
2591 unsigned long long now = sched_clock();
2593 update_cpu_clock(p, rq, now);
2595 rq->timestamp_last_tick = now;
2597 if (p == rq->idle) {
2598 if (wake_priority_sleeper(rq))
2599 goto out;
2600 rebalance_tick(cpu, rq, SCHED_IDLE);
2601 return;
2604 /* Task might have expired already, but not scheduled off yet */
2605 if (p->array != rq->active) {
2606 set_tsk_need_resched(p);
2607 goto out;
2609 spin_lock(&rq->lock);
2611 * The task was running during this tick - update the
2612 * time slice counter. Note: we do not update a thread's
2613 * priority until it either goes to sleep or uses up its
2614 * timeslice. This makes it possible for interactive tasks
2615 * to use up their timeslices at their highest priority levels.
2617 if (rt_task(p)) {
2619 * RR tasks need a special form of timeslice management.
2620 * FIFO tasks have no timeslices.
2622 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2623 p->time_slice = task_timeslice(p);
2624 p->first_time_slice = 0;
2625 set_tsk_need_resched(p);
2627 /* put it at the end of the queue: */
2628 requeue_task(p, rq->active);
2630 goto out_unlock;
2632 if (!--p->time_slice) {
2633 dequeue_task(p, rq->active);
2634 set_tsk_need_resched(p);
2635 p->prio = effective_prio(p);
2636 p->time_slice = task_timeslice(p);
2637 p->first_time_slice = 0;
2639 if (!rq->expired_timestamp)
2640 rq->expired_timestamp = jiffies;
2641 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2642 enqueue_task(p, rq->expired);
2643 if (p->static_prio < rq->best_expired_prio)
2644 rq->best_expired_prio = p->static_prio;
2645 } else
2646 enqueue_task(p, rq->active);
2647 } else {
2649 * Prevent a too long timeslice allowing a task to monopolize
2650 * the CPU. We do this by splitting up the timeslice into
2651 * smaller pieces.
2653 * Note: this does not mean the task's timeslices expire or
2654 * get lost in any way, they just might be preempted by
2655 * another task of equal priority. (one with higher
2656 * priority would have preempted this task already.) We
2657 * requeue this task to the end of the list on this priority
2658 * level, which is in essence a round-robin of tasks with
2659 * equal priority.
2661 * This only applies to tasks in the interactive
2662 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2664 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2665 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2666 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2667 (p->array == rq->active)) {
2669 requeue_task(p, rq->active);
2670 set_tsk_need_resched(p);
2673 out_unlock:
2674 spin_unlock(&rq->lock);
2675 out:
2676 rebalance_tick(cpu, rq, NOT_IDLE);
2679 #ifdef CONFIG_SCHED_SMT
2680 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2682 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2683 if (rq->curr == rq->idle && rq->nr_running)
2684 resched_task(rq->idle);
2687 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2689 struct sched_domain *tmp, *sd = NULL;
2690 cpumask_t sibling_map;
2691 int i;
2693 for_each_domain(this_cpu, tmp)
2694 if (tmp->flags & SD_SHARE_CPUPOWER)
2695 sd = tmp;
2697 if (!sd)
2698 return;
2701 * Unlock the current runqueue because we have to lock in
2702 * CPU order to avoid deadlocks. Caller knows that we might
2703 * unlock. We keep IRQs disabled.
2705 spin_unlock(&this_rq->lock);
2707 sibling_map = sd->span;
2709 for_each_cpu_mask(i, sibling_map)
2710 spin_lock(&cpu_rq(i)->lock);
2712 * We clear this CPU from the mask. This both simplifies the
2713 * inner loop and keps this_rq locked when we exit:
2715 cpu_clear(this_cpu, sibling_map);
2717 for_each_cpu_mask(i, sibling_map) {
2718 runqueue_t *smt_rq = cpu_rq(i);
2720 wakeup_busy_runqueue(smt_rq);
2723 for_each_cpu_mask(i, sibling_map)
2724 spin_unlock(&cpu_rq(i)->lock);
2726 * We exit with this_cpu's rq still held and IRQs
2727 * still disabled:
2732 * number of 'lost' timeslices this task wont be able to fully
2733 * utilize, if another task runs on a sibling. This models the
2734 * slowdown effect of other tasks running on siblings:
2736 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2738 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2741 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2743 struct sched_domain *tmp, *sd = NULL;
2744 cpumask_t sibling_map;
2745 prio_array_t *array;
2746 int ret = 0, i;
2747 task_t *p;
2749 for_each_domain(this_cpu, tmp)
2750 if (tmp->flags & SD_SHARE_CPUPOWER)
2751 sd = tmp;
2753 if (!sd)
2754 return 0;
2757 * The same locking rules and details apply as for
2758 * wake_sleeping_dependent():
2760 spin_unlock(&this_rq->lock);
2761 sibling_map = sd->span;
2762 for_each_cpu_mask(i, sibling_map)
2763 spin_lock(&cpu_rq(i)->lock);
2764 cpu_clear(this_cpu, sibling_map);
2767 * Establish next task to be run - it might have gone away because
2768 * we released the runqueue lock above:
2770 if (!this_rq->nr_running)
2771 goto out_unlock;
2772 array = this_rq->active;
2773 if (!array->nr_active)
2774 array = this_rq->expired;
2775 BUG_ON(!array->nr_active);
2777 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2778 task_t, run_list);
2780 for_each_cpu_mask(i, sibling_map) {
2781 runqueue_t *smt_rq = cpu_rq(i);
2782 task_t *smt_curr = smt_rq->curr;
2784 /* Kernel threads do not participate in dependent sleeping */
2785 if (!p->mm || !smt_curr->mm || rt_task(p))
2786 goto check_smt_task;
2789 * If a user task with lower static priority than the
2790 * running task on the SMT sibling is trying to schedule,
2791 * delay it till there is proportionately less timeslice
2792 * left of the sibling task to prevent a lower priority
2793 * task from using an unfair proportion of the
2794 * physical cpu's resources. -ck
2796 if (rt_task(smt_curr)) {
2798 * With real time tasks we run non-rt tasks only
2799 * per_cpu_gain% of the time.
2801 if ((jiffies % DEF_TIMESLICE) >
2802 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2803 ret = 1;
2804 } else
2805 if (smt_curr->static_prio < p->static_prio &&
2806 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2807 smt_slice(smt_curr, sd) > task_timeslice(p))
2808 ret = 1;
2810 check_smt_task:
2811 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2812 rt_task(smt_curr))
2813 continue;
2814 if (!p->mm) {
2815 wakeup_busy_runqueue(smt_rq);
2816 continue;
2820 * Reschedule a lower priority task on the SMT sibling for
2821 * it to be put to sleep, or wake it up if it has been put to
2822 * sleep for priority reasons to see if it should run now.
2824 if (rt_task(p)) {
2825 if ((jiffies % DEF_TIMESLICE) >
2826 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2827 resched_task(smt_curr);
2828 } else {
2829 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2830 smt_slice(p, sd) > task_timeslice(smt_curr))
2831 resched_task(smt_curr);
2832 else
2833 wakeup_busy_runqueue(smt_rq);
2836 out_unlock:
2837 for_each_cpu_mask(i, sibling_map)
2838 spin_unlock(&cpu_rq(i)->lock);
2839 return ret;
2841 #else
2842 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2846 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2848 return 0;
2850 #endif
2852 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2854 void fastcall add_preempt_count(int val)
2857 * Underflow?
2859 BUG_ON((preempt_count() < 0));
2860 preempt_count() += val;
2862 * Spinlock count overflowing soon?
2864 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2866 EXPORT_SYMBOL(add_preempt_count);
2868 void fastcall sub_preempt_count(int val)
2871 * Underflow?
2873 BUG_ON(val > preempt_count());
2875 * Is the spinlock portion underflowing?
2877 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2878 preempt_count() -= val;
2880 EXPORT_SYMBOL(sub_preempt_count);
2882 #endif
2885 * schedule() is the main scheduler function.
2887 asmlinkage void __sched schedule(void)
2889 long *switch_count;
2890 task_t *prev, *next;
2891 runqueue_t *rq;
2892 prio_array_t *array;
2893 struct list_head *queue;
2894 unsigned long long now;
2895 unsigned long run_time;
2896 int cpu, idx, new_prio;
2899 * Test if we are atomic. Since do_exit() needs to call into
2900 * schedule() atomically, we ignore that path for now.
2901 * Otherwise, whine if we are scheduling when we should not be.
2903 if (likely(!current->exit_state)) {
2904 if (unlikely(in_atomic())) {
2905 printk(KERN_ERR "scheduling while atomic: "
2906 "%s/0x%08x/%d\n",
2907 current->comm, preempt_count(), current->pid);
2908 dump_stack();
2911 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2913 need_resched:
2914 preempt_disable();
2915 prev = current;
2916 release_kernel_lock(prev);
2917 need_resched_nonpreemptible:
2918 rq = this_rq();
2921 * The idle thread is not allowed to schedule!
2922 * Remove this check after it has been exercised a bit.
2924 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2925 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2926 dump_stack();
2929 schedstat_inc(rq, sched_cnt);
2930 now = sched_clock();
2931 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2932 run_time = now - prev->timestamp;
2933 if (unlikely((long long)(now - prev->timestamp) < 0))
2934 run_time = 0;
2935 } else
2936 run_time = NS_MAX_SLEEP_AVG;
2939 * Tasks charged proportionately less run_time at high sleep_avg to
2940 * delay them losing their interactive status
2942 run_time /= (CURRENT_BONUS(prev) ? : 1);
2944 spin_lock_irq(&rq->lock);
2946 if (unlikely(prev->flags & PF_DEAD))
2947 prev->state = EXIT_DEAD;
2949 switch_count = &prev->nivcsw;
2950 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2951 switch_count = &prev->nvcsw;
2952 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2953 unlikely(signal_pending(prev))))
2954 prev->state = TASK_RUNNING;
2955 else {
2956 if (prev->state == TASK_UNINTERRUPTIBLE)
2957 rq->nr_uninterruptible++;
2958 deactivate_task(prev, rq);
2962 cpu = smp_processor_id();
2963 if (unlikely(!rq->nr_running)) {
2964 go_idle:
2965 idle_balance(cpu, rq);
2966 if (!rq->nr_running) {
2967 next = rq->idle;
2968 rq->expired_timestamp = 0;
2969 wake_sleeping_dependent(cpu, rq);
2971 * wake_sleeping_dependent() might have released
2972 * the runqueue, so break out if we got new
2973 * tasks meanwhile:
2975 if (!rq->nr_running)
2976 goto switch_tasks;
2978 } else {
2979 if (dependent_sleeper(cpu, rq)) {
2980 next = rq->idle;
2981 goto switch_tasks;
2984 * dependent_sleeper() releases and reacquires the runqueue
2985 * lock, hence go into the idle loop if the rq went
2986 * empty meanwhile:
2988 if (unlikely(!rq->nr_running))
2989 goto go_idle;
2992 array = rq->active;
2993 if (unlikely(!array->nr_active)) {
2995 * Switch the active and expired arrays.
2997 schedstat_inc(rq, sched_switch);
2998 rq->active = rq->expired;
2999 rq->expired = array;
3000 array = rq->active;
3001 rq->expired_timestamp = 0;
3002 rq->best_expired_prio = MAX_PRIO;
3005 idx = sched_find_first_bit(array->bitmap);
3006 queue = array->queue + idx;
3007 next = list_entry(queue->next, task_t, run_list);
3009 if (!rt_task(next) && next->activated > 0) {
3010 unsigned long long delta = now - next->timestamp;
3011 if (unlikely((long long)(now - next->timestamp) < 0))
3012 delta = 0;
3014 if (next->activated == 1)
3015 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3017 array = next->array;
3018 new_prio = recalc_task_prio(next, next->timestamp + delta);
3020 if (unlikely(next->prio != new_prio)) {
3021 dequeue_task(next, array);
3022 next->prio = new_prio;
3023 enqueue_task(next, array);
3024 } else
3025 requeue_task(next, array);
3027 next->activated = 0;
3028 switch_tasks:
3029 if (next == rq->idle)
3030 schedstat_inc(rq, sched_goidle);
3031 prefetch(next);
3032 prefetch_stack(next);
3033 clear_tsk_need_resched(prev);
3034 rcu_qsctr_inc(task_cpu(prev));
3036 update_cpu_clock(prev, rq, now);
3038 prev->sleep_avg -= run_time;
3039 if ((long)prev->sleep_avg <= 0)
3040 prev->sleep_avg = 0;
3041 prev->timestamp = prev->last_ran = now;
3043 sched_info_switch(prev, next);
3044 if (likely(prev != next)) {
3045 next->timestamp = now;
3046 rq->nr_switches++;
3047 rq->curr = next;
3048 ++*switch_count;
3050 prepare_task_switch(rq, next);
3051 prev = context_switch(rq, prev, next);
3052 barrier();
3054 * this_rq must be evaluated again because prev may have moved
3055 * CPUs since it called schedule(), thus the 'rq' on its stack
3056 * frame will be invalid.
3058 finish_task_switch(this_rq(), prev);
3059 } else
3060 spin_unlock_irq(&rq->lock);
3062 prev = current;
3063 if (unlikely(reacquire_kernel_lock(prev) < 0))
3064 goto need_resched_nonpreemptible;
3065 preempt_enable_no_resched();
3066 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3067 goto need_resched;
3070 EXPORT_SYMBOL(schedule);
3072 #ifdef CONFIG_PREEMPT
3074 * this is is the entry point to schedule() from in-kernel preemption
3075 * off of preempt_enable. Kernel preemptions off return from interrupt
3076 * occur there and call schedule directly.
3078 asmlinkage void __sched preempt_schedule(void)
3080 struct thread_info *ti = current_thread_info();
3081 #ifdef CONFIG_PREEMPT_BKL
3082 struct task_struct *task = current;
3083 int saved_lock_depth;
3084 #endif
3086 * If there is a non-zero preempt_count or interrupts are disabled,
3087 * we do not want to preempt the current task. Just return..
3089 if (unlikely(ti->preempt_count || irqs_disabled()))
3090 return;
3092 need_resched:
3093 add_preempt_count(PREEMPT_ACTIVE);
3095 * We keep the big kernel semaphore locked, but we
3096 * clear ->lock_depth so that schedule() doesnt
3097 * auto-release the semaphore:
3099 #ifdef CONFIG_PREEMPT_BKL
3100 saved_lock_depth = task->lock_depth;
3101 task->lock_depth = -1;
3102 #endif
3103 schedule();
3104 #ifdef CONFIG_PREEMPT_BKL
3105 task->lock_depth = saved_lock_depth;
3106 #endif
3107 sub_preempt_count(PREEMPT_ACTIVE);
3109 /* we could miss a preemption opportunity between schedule and now */
3110 barrier();
3111 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3112 goto need_resched;
3115 EXPORT_SYMBOL(preempt_schedule);
3118 * this is is the entry point to schedule() from kernel preemption
3119 * off of irq context.
3120 * Note, that this is called and return with irqs disabled. This will
3121 * protect us against recursive calling from irq.
3123 asmlinkage void __sched preempt_schedule_irq(void)
3125 struct thread_info *ti = current_thread_info();
3126 #ifdef CONFIG_PREEMPT_BKL
3127 struct task_struct *task = current;
3128 int saved_lock_depth;
3129 #endif
3130 /* Catch callers which need to be fixed*/
3131 BUG_ON(ti->preempt_count || !irqs_disabled());
3133 need_resched:
3134 add_preempt_count(PREEMPT_ACTIVE);
3136 * We keep the big kernel semaphore locked, but we
3137 * clear ->lock_depth so that schedule() doesnt
3138 * auto-release the semaphore:
3140 #ifdef CONFIG_PREEMPT_BKL
3141 saved_lock_depth = task->lock_depth;
3142 task->lock_depth = -1;
3143 #endif
3144 local_irq_enable();
3145 schedule();
3146 local_irq_disable();
3147 #ifdef CONFIG_PREEMPT_BKL
3148 task->lock_depth = saved_lock_depth;
3149 #endif
3150 sub_preempt_count(PREEMPT_ACTIVE);
3152 /* we could miss a preemption opportunity between schedule and now */
3153 barrier();
3154 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3155 goto need_resched;
3158 #endif /* CONFIG_PREEMPT */
3160 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3161 void *key)
3163 task_t *p = curr->private;
3164 return try_to_wake_up(p, mode, sync);
3167 EXPORT_SYMBOL(default_wake_function);
3170 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3171 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3172 * number) then we wake all the non-exclusive tasks and one exclusive task.
3174 * There are circumstances in which we can try to wake a task which has already
3175 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3176 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3178 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3179 int nr_exclusive, int sync, void *key)
3181 struct list_head *tmp, *next;
3183 list_for_each_safe(tmp, next, &q->task_list) {
3184 wait_queue_t *curr;
3185 unsigned flags;
3186 curr = list_entry(tmp, wait_queue_t, task_list);
3187 flags = curr->flags;
3188 if (curr->func(curr, mode, sync, key) &&
3189 (flags & WQ_FLAG_EXCLUSIVE) &&
3190 !--nr_exclusive)
3191 break;
3196 * __wake_up - wake up threads blocked on a waitqueue.
3197 * @q: the waitqueue
3198 * @mode: which threads
3199 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3200 * @key: is directly passed to the wakeup function
3202 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3203 int nr_exclusive, void *key)
3205 unsigned long flags;
3207 spin_lock_irqsave(&q->lock, flags);
3208 __wake_up_common(q, mode, nr_exclusive, 0, key);
3209 spin_unlock_irqrestore(&q->lock, flags);
3212 EXPORT_SYMBOL(__wake_up);
3215 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3217 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3219 __wake_up_common(q, mode, 1, 0, NULL);
3223 * __wake_up_sync - wake up threads blocked on a waitqueue.
3224 * @q: the waitqueue
3225 * @mode: which threads
3226 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3228 * The sync wakeup differs that the waker knows that it will schedule
3229 * away soon, so while the target thread will be woken up, it will not
3230 * be migrated to another CPU - ie. the two threads are 'synchronized'
3231 * with each other. This can prevent needless bouncing between CPUs.
3233 * On UP it can prevent extra preemption.
3235 void fastcall
3236 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3238 unsigned long flags;
3239 int sync = 1;
3241 if (unlikely(!q))
3242 return;
3244 if (unlikely(!nr_exclusive))
3245 sync = 0;
3247 spin_lock_irqsave(&q->lock, flags);
3248 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3249 spin_unlock_irqrestore(&q->lock, flags);
3251 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3253 void fastcall complete(struct completion *x)
3255 unsigned long flags;
3257 spin_lock_irqsave(&x->wait.lock, flags);
3258 x->done++;
3259 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3260 1, 0, NULL);
3261 spin_unlock_irqrestore(&x->wait.lock, flags);
3263 EXPORT_SYMBOL(complete);
3265 void fastcall complete_all(struct completion *x)
3267 unsigned long flags;
3269 spin_lock_irqsave(&x->wait.lock, flags);
3270 x->done += UINT_MAX/2;
3271 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3272 0, 0, NULL);
3273 spin_unlock_irqrestore(&x->wait.lock, flags);
3275 EXPORT_SYMBOL(complete_all);
3277 void fastcall __sched wait_for_completion(struct completion *x)
3279 might_sleep();
3280 spin_lock_irq(&x->wait.lock);
3281 if (!x->done) {
3282 DECLARE_WAITQUEUE(wait, current);
3284 wait.flags |= WQ_FLAG_EXCLUSIVE;
3285 __add_wait_queue_tail(&x->wait, &wait);
3286 do {
3287 __set_current_state(TASK_UNINTERRUPTIBLE);
3288 spin_unlock_irq(&x->wait.lock);
3289 schedule();
3290 spin_lock_irq(&x->wait.lock);
3291 } while (!x->done);
3292 __remove_wait_queue(&x->wait, &wait);
3294 x->done--;
3295 spin_unlock_irq(&x->wait.lock);
3297 EXPORT_SYMBOL(wait_for_completion);
3299 unsigned long fastcall __sched
3300 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3302 might_sleep();
3304 spin_lock_irq(&x->wait.lock);
3305 if (!x->done) {
3306 DECLARE_WAITQUEUE(wait, current);
3308 wait.flags |= WQ_FLAG_EXCLUSIVE;
3309 __add_wait_queue_tail(&x->wait, &wait);
3310 do {
3311 __set_current_state(TASK_UNINTERRUPTIBLE);
3312 spin_unlock_irq(&x->wait.lock);
3313 timeout = schedule_timeout(timeout);
3314 spin_lock_irq(&x->wait.lock);
3315 if (!timeout) {
3316 __remove_wait_queue(&x->wait, &wait);
3317 goto out;
3319 } while (!x->done);
3320 __remove_wait_queue(&x->wait, &wait);
3322 x->done--;
3323 out:
3324 spin_unlock_irq(&x->wait.lock);
3325 return timeout;
3327 EXPORT_SYMBOL(wait_for_completion_timeout);
3329 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3331 int ret = 0;
3333 might_sleep();
3335 spin_lock_irq(&x->wait.lock);
3336 if (!x->done) {
3337 DECLARE_WAITQUEUE(wait, current);
3339 wait.flags |= WQ_FLAG_EXCLUSIVE;
3340 __add_wait_queue_tail(&x->wait, &wait);
3341 do {
3342 if (signal_pending(current)) {
3343 ret = -ERESTARTSYS;
3344 __remove_wait_queue(&x->wait, &wait);
3345 goto out;
3347 __set_current_state(TASK_INTERRUPTIBLE);
3348 spin_unlock_irq(&x->wait.lock);
3349 schedule();
3350 spin_lock_irq(&x->wait.lock);
3351 } while (!x->done);
3352 __remove_wait_queue(&x->wait, &wait);
3354 x->done--;
3355 out:
3356 spin_unlock_irq(&x->wait.lock);
3358 return ret;
3360 EXPORT_SYMBOL(wait_for_completion_interruptible);
3362 unsigned long fastcall __sched
3363 wait_for_completion_interruptible_timeout(struct completion *x,
3364 unsigned long timeout)
3366 might_sleep();
3368 spin_lock_irq(&x->wait.lock);
3369 if (!x->done) {
3370 DECLARE_WAITQUEUE(wait, current);
3372 wait.flags |= WQ_FLAG_EXCLUSIVE;
3373 __add_wait_queue_tail(&x->wait, &wait);
3374 do {
3375 if (signal_pending(current)) {
3376 timeout = -ERESTARTSYS;
3377 __remove_wait_queue(&x->wait, &wait);
3378 goto out;
3380 __set_current_state(TASK_INTERRUPTIBLE);
3381 spin_unlock_irq(&x->wait.lock);
3382 timeout = schedule_timeout(timeout);
3383 spin_lock_irq(&x->wait.lock);
3384 if (!timeout) {
3385 __remove_wait_queue(&x->wait, &wait);
3386 goto out;
3388 } while (!x->done);
3389 __remove_wait_queue(&x->wait, &wait);
3391 x->done--;
3392 out:
3393 spin_unlock_irq(&x->wait.lock);
3394 return timeout;
3396 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3399 #define SLEEP_ON_VAR \
3400 unsigned long flags; \
3401 wait_queue_t wait; \
3402 init_waitqueue_entry(&wait, current);
3404 #define SLEEP_ON_HEAD \
3405 spin_lock_irqsave(&q->lock,flags); \
3406 __add_wait_queue(q, &wait); \
3407 spin_unlock(&q->lock);
3409 #define SLEEP_ON_TAIL \
3410 spin_lock_irq(&q->lock); \
3411 __remove_wait_queue(q, &wait); \
3412 spin_unlock_irqrestore(&q->lock, flags);
3414 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3416 SLEEP_ON_VAR
3418 current->state = TASK_INTERRUPTIBLE;
3420 SLEEP_ON_HEAD
3421 schedule();
3422 SLEEP_ON_TAIL
3425 EXPORT_SYMBOL(interruptible_sleep_on);
3427 long fastcall __sched
3428 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3430 SLEEP_ON_VAR
3432 current->state = TASK_INTERRUPTIBLE;
3434 SLEEP_ON_HEAD
3435 timeout = schedule_timeout(timeout);
3436 SLEEP_ON_TAIL
3438 return timeout;
3441 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3443 void fastcall __sched sleep_on(wait_queue_head_t *q)
3445 SLEEP_ON_VAR
3447 current->state = TASK_UNINTERRUPTIBLE;
3449 SLEEP_ON_HEAD
3450 schedule();
3451 SLEEP_ON_TAIL
3454 EXPORT_SYMBOL(sleep_on);
3456 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3458 SLEEP_ON_VAR
3460 current->state = TASK_UNINTERRUPTIBLE;
3462 SLEEP_ON_HEAD
3463 timeout = schedule_timeout(timeout);
3464 SLEEP_ON_TAIL
3466 return timeout;
3469 EXPORT_SYMBOL(sleep_on_timeout);
3471 void set_user_nice(task_t *p, long nice)
3473 unsigned long flags;
3474 prio_array_t *array;
3475 runqueue_t *rq;
3476 int old_prio, new_prio, delta;
3478 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3479 return;
3481 * We have to be careful, if called from sys_setpriority(),
3482 * the task might be in the middle of scheduling on another CPU.
3484 rq = task_rq_lock(p, &flags);
3486 * The RT priorities are set via sched_setscheduler(), but we still
3487 * allow the 'normal' nice value to be set - but as expected
3488 * it wont have any effect on scheduling until the task is
3489 * not SCHED_NORMAL/SCHED_BATCH:
3491 if (rt_task(p)) {
3492 p->static_prio = NICE_TO_PRIO(nice);
3493 goto out_unlock;
3495 array = p->array;
3496 if (array)
3497 dequeue_task(p, array);
3499 old_prio = p->prio;
3500 new_prio = NICE_TO_PRIO(nice);
3501 delta = new_prio - old_prio;
3502 p->static_prio = NICE_TO_PRIO(nice);
3503 p->prio += delta;
3505 if (array) {
3506 enqueue_task(p, array);
3508 * If the task increased its priority or is running and
3509 * lowered its priority, then reschedule its CPU:
3511 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3512 resched_task(rq->curr);
3514 out_unlock:
3515 task_rq_unlock(rq, &flags);
3518 EXPORT_SYMBOL(set_user_nice);
3521 * can_nice - check if a task can reduce its nice value
3522 * @p: task
3523 * @nice: nice value
3525 int can_nice(const task_t *p, const int nice)
3527 /* convert nice value [19,-20] to rlimit style value [1,40] */
3528 int nice_rlim = 20 - nice;
3529 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3530 capable(CAP_SYS_NICE));
3533 #ifdef __ARCH_WANT_SYS_NICE
3536 * sys_nice - change the priority of the current process.
3537 * @increment: priority increment
3539 * sys_setpriority is a more generic, but much slower function that
3540 * does similar things.
3542 asmlinkage long sys_nice(int increment)
3544 int retval;
3545 long nice;
3548 * Setpriority might change our priority at the same moment.
3549 * We don't have to worry. Conceptually one call occurs first
3550 * and we have a single winner.
3552 if (increment < -40)
3553 increment = -40;
3554 if (increment > 40)
3555 increment = 40;
3557 nice = PRIO_TO_NICE(current->static_prio) + increment;
3558 if (nice < -20)
3559 nice = -20;
3560 if (nice > 19)
3561 nice = 19;
3563 if (increment < 0 && !can_nice(current, nice))
3564 return -EPERM;
3566 retval = security_task_setnice(current, nice);
3567 if (retval)
3568 return retval;
3570 set_user_nice(current, nice);
3571 return 0;
3574 #endif
3577 * task_prio - return the priority value of a given task.
3578 * @p: the task in question.
3580 * This is the priority value as seen by users in /proc.
3581 * RT tasks are offset by -200. Normal tasks are centered
3582 * around 0, value goes from -16 to +15.
3584 int task_prio(const task_t *p)
3586 return p->prio - MAX_RT_PRIO;
3590 * task_nice - return the nice value of a given task.
3591 * @p: the task in question.
3593 int task_nice(const task_t *p)
3595 return TASK_NICE(p);
3597 EXPORT_SYMBOL_GPL(task_nice);
3600 * idle_cpu - is a given cpu idle currently?
3601 * @cpu: the processor in question.
3603 int idle_cpu(int cpu)
3605 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3609 * idle_task - return the idle task for a given cpu.
3610 * @cpu: the processor in question.
3612 task_t *idle_task(int cpu)
3614 return cpu_rq(cpu)->idle;
3618 * find_process_by_pid - find a process with a matching PID value.
3619 * @pid: the pid in question.
3621 static inline task_t *find_process_by_pid(pid_t pid)
3623 return pid ? find_task_by_pid(pid) : current;
3626 /* Actually do priority change: must hold rq lock. */
3627 static void __setscheduler(struct task_struct *p, int policy, int prio)
3629 BUG_ON(p->array);
3630 p->policy = policy;
3631 p->rt_priority = prio;
3632 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3633 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3634 } else {
3635 p->prio = p->static_prio;
3637 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3639 if (policy == SCHED_BATCH)
3640 p->sleep_avg = 0;
3645 * sched_setscheduler - change the scheduling policy and/or RT priority of
3646 * a thread.
3647 * @p: the task in question.
3648 * @policy: new policy.
3649 * @param: structure containing the new RT priority.
3651 int sched_setscheduler(struct task_struct *p, int policy,
3652 struct sched_param *param)
3654 int retval;
3655 int oldprio, oldpolicy = -1;
3656 prio_array_t *array;
3657 unsigned long flags;
3658 runqueue_t *rq;
3660 recheck:
3661 /* double check policy once rq lock held */
3662 if (policy < 0)
3663 policy = oldpolicy = p->policy;
3664 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3665 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3666 return -EINVAL;
3668 * Valid priorities for SCHED_FIFO and SCHED_RR are
3669 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3670 * SCHED_BATCH is 0.
3672 if (param->sched_priority < 0 ||
3673 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3674 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3675 return -EINVAL;
3676 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3677 != (param->sched_priority == 0))
3678 return -EINVAL;
3681 * Allow unprivileged RT tasks to decrease priority:
3683 if (!capable(CAP_SYS_NICE)) {
3685 * can't change policy, except between SCHED_NORMAL
3686 * and SCHED_BATCH:
3688 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3689 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3690 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3691 return -EPERM;
3692 /* can't increase priority */
3693 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3694 param->sched_priority > p->rt_priority &&
3695 param->sched_priority >
3696 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3697 return -EPERM;
3698 /* can't change other user's priorities */
3699 if ((current->euid != p->euid) &&
3700 (current->euid != p->uid))
3701 return -EPERM;
3704 retval = security_task_setscheduler(p, policy, param);
3705 if (retval)
3706 return retval;
3708 * To be able to change p->policy safely, the apropriate
3709 * runqueue lock must be held.
3711 rq = task_rq_lock(p, &flags);
3712 /* recheck policy now with rq lock held */
3713 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3714 policy = oldpolicy = -1;
3715 task_rq_unlock(rq, &flags);
3716 goto recheck;
3718 array = p->array;
3719 if (array)
3720 deactivate_task(p, rq);
3721 oldprio = p->prio;
3722 __setscheduler(p, policy, param->sched_priority);
3723 if (array) {
3724 __activate_task(p, rq);
3726 * Reschedule if we are currently running on this runqueue and
3727 * our priority decreased, or if we are not currently running on
3728 * this runqueue and our priority is higher than the current's
3730 if (task_running(rq, p)) {
3731 if (p->prio > oldprio)
3732 resched_task(rq->curr);
3733 } else if (TASK_PREEMPTS_CURR(p, rq))
3734 resched_task(rq->curr);
3736 task_rq_unlock(rq, &flags);
3737 return 0;
3739 EXPORT_SYMBOL_GPL(sched_setscheduler);
3741 static int
3742 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3744 int retval;
3745 struct sched_param lparam;
3746 struct task_struct *p;
3748 if (!param || pid < 0)
3749 return -EINVAL;
3750 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3751 return -EFAULT;
3752 read_lock_irq(&tasklist_lock);
3753 p = find_process_by_pid(pid);
3754 if (!p) {
3755 read_unlock_irq(&tasklist_lock);
3756 return -ESRCH;
3758 retval = sched_setscheduler(p, policy, &lparam);
3759 read_unlock_irq(&tasklist_lock);
3760 return retval;
3764 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3765 * @pid: the pid in question.
3766 * @policy: new policy.
3767 * @param: structure containing the new RT priority.
3769 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3770 struct sched_param __user *param)
3772 /* negative values for policy are not valid */
3773 if (policy < 0)
3774 return -EINVAL;
3776 return do_sched_setscheduler(pid, policy, param);
3780 * sys_sched_setparam - set/change the RT priority of a thread
3781 * @pid: the pid in question.
3782 * @param: structure containing the new RT priority.
3784 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3786 return do_sched_setscheduler(pid, -1, param);
3790 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3791 * @pid: the pid in question.
3793 asmlinkage long sys_sched_getscheduler(pid_t pid)
3795 int retval = -EINVAL;
3796 task_t *p;
3798 if (pid < 0)
3799 goto out_nounlock;
3801 retval = -ESRCH;
3802 read_lock(&tasklist_lock);
3803 p = find_process_by_pid(pid);
3804 if (p) {
3805 retval = security_task_getscheduler(p);
3806 if (!retval)
3807 retval = p->policy;
3809 read_unlock(&tasklist_lock);
3811 out_nounlock:
3812 return retval;
3816 * sys_sched_getscheduler - get the RT priority of a thread
3817 * @pid: the pid in question.
3818 * @param: structure containing the RT priority.
3820 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3822 struct sched_param lp;
3823 int retval = -EINVAL;
3824 task_t *p;
3826 if (!param || pid < 0)
3827 goto out_nounlock;
3829 read_lock(&tasklist_lock);
3830 p = find_process_by_pid(pid);
3831 retval = -ESRCH;
3832 if (!p)
3833 goto out_unlock;
3835 retval = security_task_getscheduler(p);
3836 if (retval)
3837 goto out_unlock;
3839 lp.sched_priority = p->rt_priority;
3840 read_unlock(&tasklist_lock);
3843 * This one might sleep, we cannot do it with a spinlock held ...
3845 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3847 out_nounlock:
3848 return retval;
3850 out_unlock:
3851 read_unlock(&tasklist_lock);
3852 return retval;
3855 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3857 task_t *p;
3858 int retval;
3859 cpumask_t cpus_allowed;
3861 lock_cpu_hotplug();
3862 read_lock(&tasklist_lock);
3864 p = find_process_by_pid(pid);
3865 if (!p) {
3866 read_unlock(&tasklist_lock);
3867 unlock_cpu_hotplug();
3868 return -ESRCH;
3872 * It is not safe to call set_cpus_allowed with the
3873 * tasklist_lock held. We will bump the task_struct's
3874 * usage count and then drop tasklist_lock.
3876 get_task_struct(p);
3877 read_unlock(&tasklist_lock);
3879 retval = -EPERM;
3880 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3881 !capable(CAP_SYS_NICE))
3882 goto out_unlock;
3884 cpus_allowed = cpuset_cpus_allowed(p);
3885 cpus_and(new_mask, new_mask, cpus_allowed);
3886 retval = set_cpus_allowed(p, new_mask);
3888 out_unlock:
3889 put_task_struct(p);
3890 unlock_cpu_hotplug();
3891 return retval;
3894 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3895 cpumask_t *new_mask)
3897 if (len < sizeof(cpumask_t)) {
3898 memset(new_mask, 0, sizeof(cpumask_t));
3899 } else if (len > sizeof(cpumask_t)) {
3900 len = sizeof(cpumask_t);
3902 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3906 * sys_sched_setaffinity - set the cpu affinity of a process
3907 * @pid: pid of the process
3908 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3909 * @user_mask_ptr: user-space pointer to the new cpu mask
3911 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3912 unsigned long __user *user_mask_ptr)
3914 cpumask_t new_mask;
3915 int retval;
3917 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3918 if (retval)
3919 return retval;
3921 return sched_setaffinity(pid, new_mask);
3925 * Represents all cpu's present in the system
3926 * In systems capable of hotplug, this map could dynamically grow
3927 * as new cpu's are detected in the system via any platform specific
3928 * method, such as ACPI for e.g.
3931 cpumask_t cpu_present_map __read_mostly;
3932 EXPORT_SYMBOL(cpu_present_map);
3934 #ifndef CONFIG_SMP
3935 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3936 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3937 #endif
3939 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3941 int retval;
3942 task_t *p;
3944 lock_cpu_hotplug();
3945 read_lock(&tasklist_lock);
3947 retval = -ESRCH;
3948 p = find_process_by_pid(pid);
3949 if (!p)
3950 goto out_unlock;
3952 retval = 0;
3953 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3955 out_unlock:
3956 read_unlock(&tasklist_lock);
3957 unlock_cpu_hotplug();
3958 if (retval)
3959 return retval;
3961 return 0;
3965 * sys_sched_getaffinity - get the cpu affinity of a process
3966 * @pid: pid of the process
3967 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3968 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3970 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3971 unsigned long __user *user_mask_ptr)
3973 int ret;
3974 cpumask_t mask;
3976 if (len < sizeof(cpumask_t))
3977 return -EINVAL;
3979 ret = sched_getaffinity(pid, &mask);
3980 if (ret < 0)
3981 return ret;
3983 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3984 return -EFAULT;
3986 return sizeof(cpumask_t);
3990 * sys_sched_yield - yield the current processor to other threads.
3992 * this function yields the current CPU by moving the calling thread
3993 * to the expired array. If there are no other threads running on this
3994 * CPU then this function will return.
3996 asmlinkage long sys_sched_yield(void)
3998 runqueue_t *rq = this_rq_lock();
3999 prio_array_t *array = current->array;
4000 prio_array_t *target = rq->expired;
4002 schedstat_inc(rq, yld_cnt);
4004 * We implement yielding by moving the task into the expired
4005 * queue.
4007 * (special rule: RT tasks will just roundrobin in the active
4008 * array.)
4010 if (rt_task(current))
4011 target = rq->active;
4013 if (array->nr_active == 1) {
4014 schedstat_inc(rq, yld_act_empty);
4015 if (!rq->expired->nr_active)
4016 schedstat_inc(rq, yld_both_empty);
4017 } else if (!rq->expired->nr_active)
4018 schedstat_inc(rq, yld_exp_empty);
4020 if (array != target) {
4021 dequeue_task(current, array);
4022 enqueue_task(current, target);
4023 } else
4025 * requeue_task is cheaper so perform that if possible.
4027 requeue_task(current, array);
4030 * Since we are going to call schedule() anyway, there's
4031 * no need to preempt or enable interrupts:
4033 __release(rq->lock);
4034 _raw_spin_unlock(&rq->lock);
4035 preempt_enable_no_resched();
4037 schedule();
4039 return 0;
4042 static inline void __cond_resched(void)
4045 * The BKS might be reacquired before we have dropped
4046 * PREEMPT_ACTIVE, which could trigger a second
4047 * cond_resched() call.
4049 if (unlikely(preempt_count()))
4050 return;
4051 if (unlikely(system_state != SYSTEM_RUNNING))
4052 return;
4053 do {
4054 add_preempt_count(PREEMPT_ACTIVE);
4055 schedule();
4056 sub_preempt_count(PREEMPT_ACTIVE);
4057 } while (need_resched());
4060 int __sched cond_resched(void)
4062 if (need_resched()) {
4063 __cond_resched();
4064 return 1;
4066 return 0;
4069 EXPORT_SYMBOL(cond_resched);
4072 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4073 * call schedule, and on return reacquire the lock.
4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4079 int cond_resched_lock(spinlock_t *lock)
4081 int ret = 0;
4083 if (need_lockbreak(lock)) {
4084 spin_unlock(lock);
4085 cpu_relax();
4086 ret = 1;
4087 spin_lock(lock);
4089 if (need_resched()) {
4090 _raw_spin_unlock(lock);
4091 preempt_enable_no_resched();
4092 __cond_resched();
4093 ret = 1;
4094 spin_lock(lock);
4096 return ret;
4099 EXPORT_SYMBOL(cond_resched_lock);
4101 int __sched cond_resched_softirq(void)
4103 BUG_ON(!in_softirq());
4105 if (need_resched()) {
4106 __local_bh_enable();
4107 __cond_resched();
4108 local_bh_disable();
4109 return 1;
4111 return 0;
4114 EXPORT_SYMBOL(cond_resched_softirq);
4118 * yield - yield the current processor to other threads.
4120 * this is a shortcut for kernel-space yielding - it marks the
4121 * thread runnable and calls sys_sched_yield().
4123 void __sched yield(void)
4125 set_current_state(TASK_RUNNING);
4126 sys_sched_yield();
4129 EXPORT_SYMBOL(yield);
4132 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4133 * that process accounting knows that this is a task in IO wait state.
4135 * But don't do that if it is a deliberate, throttling IO wait (this task
4136 * has set its backing_dev_info: the queue against which it should throttle)
4138 void __sched io_schedule(void)
4140 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4142 atomic_inc(&rq->nr_iowait);
4143 schedule();
4144 atomic_dec(&rq->nr_iowait);
4147 EXPORT_SYMBOL(io_schedule);
4149 long __sched io_schedule_timeout(long timeout)
4151 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4152 long ret;
4154 atomic_inc(&rq->nr_iowait);
4155 ret = schedule_timeout(timeout);
4156 atomic_dec(&rq->nr_iowait);
4157 return ret;
4161 * sys_sched_get_priority_max - return maximum RT priority.
4162 * @policy: scheduling class.
4164 * this syscall returns the maximum rt_priority that can be used
4165 * by a given scheduling class.
4167 asmlinkage long sys_sched_get_priority_max(int policy)
4169 int ret = -EINVAL;
4171 switch (policy) {
4172 case SCHED_FIFO:
4173 case SCHED_RR:
4174 ret = MAX_USER_RT_PRIO-1;
4175 break;
4176 case SCHED_NORMAL:
4177 case SCHED_BATCH:
4178 ret = 0;
4179 break;
4181 return ret;
4185 * sys_sched_get_priority_min - return minimum RT priority.
4186 * @policy: scheduling class.
4188 * this syscall returns the minimum rt_priority that can be used
4189 * by a given scheduling class.
4191 asmlinkage long sys_sched_get_priority_min(int policy)
4193 int ret = -EINVAL;
4195 switch (policy) {
4196 case SCHED_FIFO:
4197 case SCHED_RR:
4198 ret = 1;
4199 break;
4200 case SCHED_NORMAL:
4201 case SCHED_BATCH:
4202 ret = 0;
4204 return ret;
4208 * sys_sched_rr_get_interval - return the default timeslice of a process.
4209 * @pid: pid of the process.
4210 * @interval: userspace pointer to the timeslice value.
4212 * this syscall writes the default timeslice value of a given process
4213 * into the user-space timespec buffer. A value of '0' means infinity.
4215 asmlinkage
4216 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4218 int retval = -EINVAL;
4219 struct timespec t;
4220 task_t *p;
4222 if (pid < 0)
4223 goto out_nounlock;
4225 retval = -ESRCH;
4226 read_lock(&tasklist_lock);
4227 p = find_process_by_pid(pid);
4228 if (!p)
4229 goto out_unlock;
4231 retval = security_task_getscheduler(p);
4232 if (retval)
4233 goto out_unlock;
4235 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4236 0 : task_timeslice(p), &t);
4237 read_unlock(&tasklist_lock);
4238 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4239 out_nounlock:
4240 return retval;
4241 out_unlock:
4242 read_unlock(&tasklist_lock);
4243 return retval;
4246 static inline struct task_struct *eldest_child(struct task_struct *p)
4248 if (list_empty(&p->children)) return NULL;
4249 return list_entry(p->children.next,struct task_struct,sibling);
4252 static inline struct task_struct *older_sibling(struct task_struct *p)
4254 if (p->sibling.prev==&p->parent->children) return NULL;
4255 return list_entry(p->sibling.prev,struct task_struct,sibling);
4258 static inline struct task_struct *younger_sibling(struct task_struct *p)
4260 if (p->sibling.next==&p->parent->children) return NULL;
4261 return list_entry(p->sibling.next,struct task_struct,sibling);
4264 static void show_task(task_t *p)
4266 task_t *relative;
4267 unsigned state;
4268 unsigned long free = 0;
4269 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4271 printk("%-13.13s ", p->comm);
4272 state = p->state ? __ffs(p->state) + 1 : 0;
4273 if (state < ARRAY_SIZE(stat_nam))
4274 printk(stat_nam[state]);
4275 else
4276 printk("?");
4277 #if (BITS_PER_LONG == 32)
4278 if (state == TASK_RUNNING)
4279 printk(" running ");
4280 else
4281 printk(" %08lX ", thread_saved_pc(p));
4282 #else
4283 if (state == TASK_RUNNING)
4284 printk(" running task ");
4285 else
4286 printk(" %016lx ", thread_saved_pc(p));
4287 #endif
4288 #ifdef CONFIG_DEBUG_STACK_USAGE
4290 unsigned long *n = end_of_stack(p);
4291 while (!*n)
4292 n++;
4293 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4295 #endif
4296 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4297 if ((relative = eldest_child(p)))
4298 printk("%5d ", relative->pid);
4299 else
4300 printk(" ");
4301 if ((relative = younger_sibling(p)))
4302 printk("%7d", relative->pid);
4303 else
4304 printk(" ");
4305 if ((relative = older_sibling(p)))
4306 printk(" %5d", relative->pid);
4307 else
4308 printk(" ");
4309 if (!p->mm)
4310 printk(" (L-TLB)\n");
4311 else
4312 printk(" (NOTLB)\n");
4314 if (state != TASK_RUNNING)
4315 show_stack(p, NULL);
4318 void show_state(void)
4320 task_t *g, *p;
4322 #if (BITS_PER_LONG == 32)
4323 printk("\n"
4324 " sibling\n");
4325 printk(" task PC pid father child younger older\n");
4326 #else
4327 printk("\n"
4328 " sibling\n");
4329 printk(" task PC pid father child younger older\n");
4330 #endif
4331 read_lock(&tasklist_lock);
4332 do_each_thread(g, p) {
4334 * reset the NMI-timeout, listing all files on a slow
4335 * console might take alot of time:
4337 touch_nmi_watchdog();
4338 show_task(p);
4339 } while_each_thread(g, p);
4341 read_unlock(&tasklist_lock);
4342 mutex_debug_show_all_locks();
4346 * init_idle - set up an idle thread for a given CPU
4347 * @idle: task in question
4348 * @cpu: cpu the idle task belongs to
4350 * NOTE: this function does not set the idle thread's NEED_RESCHED
4351 * flag, to make booting more robust.
4353 void __devinit init_idle(task_t *idle, int cpu)
4355 runqueue_t *rq = cpu_rq(cpu);
4356 unsigned long flags;
4358 idle->timestamp = sched_clock();
4359 idle->sleep_avg = 0;
4360 idle->array = NULL;
4361 idle->prio = MAX_PRIO;
4362 idle->state = TASK_RUNNING;
4363 idle->cpus_allowed = cpumask_of_cpu(cpu);
4364 set_task_cpu(idle, cpu);
4366 spin_lock_irqsave(&rq->lock, flags);
4367 rq->curr = rq->idle = idle;
4368 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4369 idle->oncpu = 1;
4370 #endif
4371 spin_unlock_irqrestore(&rq->lock, flags);
4373 /* Set the preempt count _outside_ the spinlocks! */
4374 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4375 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4376 #else
4377 task_thread_info(idle)->preempt_count = 0;
4378 #endif
4382 * In a system that switches off the HZ timer nohz_cpu_mask
4383 * indicates which cpus entered this state. This is used
4384 * in the rcu update to wait only for active cpus. For system
4385 * which do not switch off the HZ timer nohz_cpu_mask should
4386 * always be CPU_MASK_NONE.
4388 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4390 #ifdef CONFIG_SMP
4392 * This is how migration works:
4394 * 1) we queue a migration_req_t structure in the source CPU's
4395 * runqueue and wake up that CPU's migration thread.
4396 * 2) we down() the locked semaphore => thread blocks.
4397 * 3) migration thread wakes up (implicitly it forces the migrated
4398 * thread off the CPU)
4399 * 4) it gets the migration request and checks whether the migrated
4400 * task is still in the wrong runqueue.
4401 * 5) if it's in the wrong runqueue then the migration thread removes
4402 * it and puts it into the right queue.
4403 * 6) migration thread up()s the semaphore.
4404 * 7) we wake up and the migration is done.
4408 * Change a given task's CPU affinity. Migrate the thread to a
4409 * proper CPU and schedule it away if the CPU it's executing on
4410 * is removed from the allowed bitmask.
4412 * NOTE: the caller must have a valid reference to the task, the
4413 * task must not exit() & deallocate itself prematurely. The
4414 * call is not atomic; no spinlocks may be held.
4416 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4418 unsigned long flags;
4419 int ret = 0;
4420 migration_req_t req;
4421 runqueue_t *rq;
4423 rq = task_rq_lock(p, &flags);
4424 if (!cpus_intersects(new_mask, cpu_online_map)) {
4425 ret = -EINVAL;
4426 goto out;
4429 p->cpus_allowed = new_mask;
4430 /* Can the task run on the task's current CPU? If so, we're done */
4431 if (cpu_isset(task_cpu(p), new_mask))
4432 goto out;
4434 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4435 /* Need help from migration thread: drop lock and wait. */
4436 task_rq_unlock(rq, &flags);
4437 wake_up_process(rq->migration_thread);
4438 wait_for_completion(&req.done);
4439 tlb_migrate_finish(p->mm);
4440 return 0;
4442 out:
4443 task_rq_unlock(rq, &flags);
4444 return ret;
4447 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4450 * Move (not current) task off this cpu, onto dest cpu. We're doing
4451 * this because either it can't run here any more (set_cpus_allowed()
4452 * away from this CPU, or CPU going down), or because we're
4453 * attempting to rebalance this task on exec (sched_exec).
4455 * So we race with normal scheduler movements, but that's OK, as long
4456 * as the task is no longer on this CPU.
4458 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4460 runqueue_t *rq_dest, *rq_src;
4462 if (unlikely(cpu_is_offline(dest_cpu)))
4463 return;
4465 rq_src = cpu_rq(src_cpu);
4466 rq_dest = cpu_rq(dest_cpu);
4468 double_rq_lock(rq_src, rq_dest);
4469 /* Already moved. */
4470 if (task_cpu(p) != src_cpu)
4471 goto out;
4472 /* Affinity changed (again). */
4473 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4474 goto out;
4476 set_task_cpu(p, dest_cpu);
4477 if (p->array) {
4479 * Sync timestamp with rq_dest's before activating.
4480 * The same thing could be achieved by doing this step
4481 * afterwards, and pretending it was a local activate.
4482 * This way is cleaner and logically correct.
4484 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4485 + rq_dest->timestamp_last_tick;
4486 deactivate_task(p, rq_src);
4487 activate_task(p, rq_dest, 0);
4488 if (TASK_PREEMPTS_CURR(p, rq_dest))
4489 resched_task(rq_dest->curr);
4492 out:
4493 double_rq_unlock(rq_src, rq_dest);
4497 * migration_thread - this is a highprio system thread that performs
4498 * thread migration by bumping thread off CPU then 'pushing' onto
4499 * another runqueue.
4501 static int migration_thread(void *data)
4503 runqueue_t *rq;
4504 int cpu = (long)data;
4506 rq = cpu_rq(cpu);
4507 BUG_ON(rq->migration_thread != current);
4509 set_current_state(TASK_INTERRUPTIBLE);
4510 while (!kthread_should_stop()) {
4511 struct list_head *head;
4512 migration_req_t *req;
4514 try_to_freeze();
4516 spin_lock_irq(&rq->lock);
4518 if (cpu_is_offline(cpu)) {
4519 spin_unlock_irq(&rq->lock);
4520 goto wait_to_die;
4523 if (rq->active_balance) {
4524 active_load_balance(rq, cpu);
4525 rq->active_balance = 0;
4528 head = &rq->migration_queue;
4530 if (list_empty(head)) {
4531 spin_unlock_irq(&rq->lock);
4532 schedule();
4533 set_current_state(TASK_INTERRUPTIBLE);
4534 continue;
4536 req = list_entry(head->next, migration_req_t, list);
4537 list_del_init(head->next);
4539 spin_unlock(&rq->lock);
4540 __migrate_task(req->task, cpu, req->dest_cpu);
4541 local_irq_enable();
4543 complete(&req->done);
4545 __set_current_state(TASK_RUNNING);
4546 return 0;
4548 wait_to_die:
4549 /* Wait for kthread_stop */
4550 set_current_state(TASK_INTERRUPTIBLE);
4551 while (!kthread_should_stop()) {
4552 schedule();
4553 set_current_state(TASK_INTERRUPTIBLE);
4555 __set_current_state(TASK_RUNNING);
4556 return 0;
4559 #ifdef CONFIG_HOTPLUG_CPU
4560 /* Figure out where task on dead CPU should go, use force if neccessary. */
4561 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4563 int dest_cpu;
4564 cpumask_t mask;
4566 /* On same node? */
4567 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4568 cpus_and(mask, mask, tsk->cpus_allowed);
4569 dest_cpu = any_online_cpu(mask);
4571 /* On any allowed CPU? */
4572 if (dest_cpu == NR_CPUS)
4573 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4575 /* No more Mr. Nice Guy. */
4576 if (dest_cpu == NR_CPUS) {
4577 cpus_setall(tsk->cpus_allowed);
4578 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4581 * Don't tell them about moving exiting tasks or
4582 * kernel threads (both mm NULL), since they never
4583 * leave kernel.
4585 if (tsk->mm && printk_ratelimit())
4586 printk(KERN_INFO "process %d (%s) no "
4587 "longer affine to cpu%d\n",
4588 tsk->pid, tsk->comm, dead_cpu);
4590 __migrate_task(tsk, dead_cpu, dest_cpu);
4594 * While a dead CPU has no uninterruptible tasks queued at this point,
4595 * it might still have a nonzero ->nr_uninterruptible counter, because
4596 * for performance reasons the counter is not stricly tracking tasks to
4597 * their home CPUs. So we just add the counter to another CPU's counter,
4598 * to keep the global sum constant after CPU-down:
4600 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4602 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4603 unsigned long flags;
4605 local_irq_save(flags);
4606 double_rq_lock(rq_src, rq_dest);
4607 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4608 rq_src->nr_uninterruptible = 0;
4609 double_rq_unlock(rq_src, rq_dest);
4610 local_irq_restore(flags);
4613 /* Run through task list and migrate tasks from the dead cpu. */
4614 static void migrate_live_tasks(int src_cpu)
4616 struct task_struct *tsk, *t;
4618 write_lock_irq(&tasklist_lock);
4620 do_each_thread(t, tsk) {
4621 if (tsk == current)
4622 continue;
4624 if (task_cpu(tsk) == src_cpu)
4625 move_task_off_dead_cpu(src_cpu, tsk);
4626 } while_each_thread(t, tsk);
4628 write_unlock_irq(&tasklist_lock);
4631 /* Schedules idle task to be the next runnable task on current CPU.
4632 * It does so by boosting its priority to highest possible and adding it to
4633 * the _front_ of runqueue. Used by CPU offline code.
4635 void sched_idle_next(void)
4637 int cpu = smp_processor_id();
4638 runqueue_t *rq = this_rq();
4639 struct task_struct *p = rq->idle;
4640 unsigned long flags;
4642 /* cpu has to be offline */
4643 BUG_ON(cpu_online(cpu));
4645 /* Strictly not necessary since rest of the CPUs are stopped by now
4646 * and interrupts disabled on current cpu.
4648 spin_lock_irqsave(&rq->lock, flags);
4650 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4651 /* Add idle task to _front_ of it's priority queue */
4652 __activate_idle_task(p, rq);
4654 spin_unlock_irqrestore(&rq->lock, flags);
4657 /* Ensures that the idle task is using init_mm right before its cpu goes
4658 * offline.
4660 void idle_task_exit(void)
4662 struct mm_struct *mm = current->active_mm;
4664 BUG_ON(cpu_online(smp_processor_id()));
4666 if (mm != &init_mm)
4667 switch_mm(mm, &init_mm, current);
4668 mmdrop(mm);
4671 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4673 struct runqueue *rq = cpu_rq(dead_cpu);
4675 /* Must be exiting, otherwise would be on tasklist. */
4676 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4678 /* Cannot have done final schedule yet: would have vanished. */
4679 BUG_ON(tsk->flags & PF_DEAD);
4681 get_task_struct(tsk);
4684 * Drop lock around migration; if someone else moves it,
4685 * that's OK. No task can be added to this CPU, so iteration is
4686 * fine.
4688 spin_unlock_irq(&rq->lock);
4689 move_task_off_dead_cpu(dead_cpu, tsk);
4690 spin_lock_irq(&rq->lock);
4692 put_task_struct(tsk);
4695 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4696 static void migrate_dead_tasks(unsigned int dead_cpu)
4698 unsigned arr, i;
4699 struct runqueue *rq = cpu_rq(dead_cpu);
4701 for (arr = 0; arr < 2; arr++) {
4702 for (i = 0; i < MAX_PRIO; i++) {
4703 struct list_head *list = &rq->arrays[arr].queue[i];
4704 while (!list_empty(list))
4705 migrate_dead(dead_cpu,
4706 list_entry(list->next, task_t,
4707 run_list));
4711 #endif /* CONFIG_HOTPLUG_CPU */
4714 * migration_call - callback that gets triggered when a CPU is added.
4715 * Here we can start up the necessary migration thread for the new CPU.
4717 static int migration_call(struct notifier_block *nfb, unsigned long action,
4718 void *hcpu)
4720 int cpu = (long)hcpu;
4721 struct task_struct *p;
4722 struct runqueue *rq;
4723 unsigned long flags;
4725 switch (action) {
4726 case CPU_UP_PREPARE:
4727 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4728 if (IS_ERR(p))
4729 return NOTIFY_BAD;
4730 p->flags |= PF_NOFREEZE;
4731 kthread_bind(p, cpu);
4732 /* Must be high prio: stop_machine expects to yield to it. */
4733 rq = task_rq_lock(p, &flags);
4734 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4735 task_rq_unlock(rq, &flags);
4736 cpu_rq(cpu)->migration_thread = p;
4737 break;
4738 case CPU_ONLINE:
4739 /* Strictly unneccessary, as first user will wake it. */
4740 wake_up_process(cpu_rq(cpu)->migration_thread);
4741 break;
4742 #ifdef CONFIG_HOTPLUG_CPU
4743 case CPU_UP_CANCELED:
4744 /* Unbind it from offline cpu so it can run. Fall thru. */
4745 kthread_bind(cpu_rq(cpu)->migration_thread,
4746 any_online_cpu(cpu_online_map));
4747 kthread_stop(cpu_rq(cpu)->migration_thread);
4748 cpu_rq(cpu)->migration_thread = NULL;
4749 break;
4750 case CPU_DEAD:
4751 migrate_live_tasks(cpu);
4752 rq = cpu_rq(cpu);
4753 kthread_stop(rq->migration_thread);
4754 rq->migration_thread = NULL;
4755 /* Idle task back to normal (off runqueue, low prio) */
4756 rq = task_rq_lock(rq->idle, &flags);
4757 deactivate_task(rq->idle, rq);
4758 rq->idle->static_prio = MAX_PRIO;
4759 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4760 migrate_dead_tasks(cpu);
4761 task_rq_unlock(rq, &flags);
4762 migrate_nr_uninterruptible(rq);
4763 BUG_ON(rq->nr_running != 0);
4765 /* No need to migrate the tasks: it was best-effort if
4766 * they didn't do lock_cpu_hotplug(). Just wake up
4767 * the requestors. */
4768 spin_lock_irq(&rq->lock);
4769 while (!list_empty(&rq->migration_queue)) {
4770 migration_req_t *req;
4771 req = list_entry(rq->migration_queue.next,
4772 migration_req_t, list);
4773 list_del_init(&req->list);
4774 complete(&req->done);
4776 spin_unlock_irq(&rq->lock);
4777 break;
4778 #endif
4780 return NOTIFY_OK;
4783 /* Register at highest priority so that task migration (migrate_all_tasks)
4784 * happens before everything else.
4786 static struct notifier_block __devinitdata migration_notifier = {
4787 .notifier_call = migration_call,
4788 .priority = 10
4791 int __init migration_init(void)
4793 void *cpu = (void *)(long)smp_processor_id();
4794 /* Start one for boot CPU. */
4795 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4796 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4797 register_cpu_notifier(&migration_notifier);
4798 return 0;
4800 #endif
4802 #ifdef CONFIG_SMP
4803 #undef SCHED_DOMAIN_DEBUG
4804 #ifdef SCHED_DOMAIN_DEBUG
4805 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4807 int level = 0;
4809 if (!sd) {
4810 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4811 return;
4814 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4816 do {
4817 int i;
4818 char str[NR_CPUS];
4819 struct sched_group *group = sd->groups;
4820 cpumask_t groupmask;
4822 cpumask_scnprintf(str, NR_CPUS, sd->span);
4823 cpus_clear(groupmask);
4825 printk(KERN_DEBUG);
4826 for (i = 0; i < level + 1; i++)
4827 printk(" ");
4828 printk("domain %d: ", level);
4830 if (!(sd->flags & SD_LOAD_BALANCE)) {
4831 printk("does not load-balance\n");
4832 if (sd->parent)
4833 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4834 break;
4837 printk("span %s\n", str);
4839 if (!cpu_isset(cpu, sd->span))
4840 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4841 if (!cpu_isset(cpu, group->cpumask))
4842 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4844 printk(KERN_DEBUG);
4845 for (i = 0; i < level + 2; i++)
4846 printk(" ");
4847 printk("groups:");
4848 do {
4849 if (!group) {
4850 printk("\n");
4851 printk(KERN_ERR "ERROR: group is NULL\n");
4852 break;
4855 if (!group->cpu_power) {
4856 printk("\n");
4857 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4860 if (!cpus_weight(group->cpumask)) {
4861 printk("\n");
4862 printk(KERN_ERR "ERROR: empty group\n");
4865 if (cpus_intersects(groupmask, group->cpumask)) {
4866 printk("\n");
4867 printk(KERN_ERR "ERROR: repeated CPUs\n");
4870 cpus_or(groupmask, groupmask, group->cpumask);
4872 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4873 printk(" %s", str);
4875 group = group->next;
4876 } while (group != sd->groups);
4877 printk("\n");
4879 if (!cpus_equal(sd->span, groupmask))
4880 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4882 level++;
4883 sd = sd->parent;
4885 if (sd) {
4886 if (!cpus_subset(groupmask, sd->span))
4887 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4890 } while (sd);
4892 #else
4893 #define sched_domain_debug(sd, cpu) {}
4894 #endif
4896 static int sd_degenerate(struct sched_domain *sd)
4898 if (cpus_weight(sd->span) == 1)
4899 return 1;
4901 /* Following flags need at least 2 groups */
4902 if (sd->flags & (SD_LOAD_BALANCE |
4903 SD_BALANCE_NEWIDLE |
4904 SD_BALANCE_FORK |
4905 SD_BALANCE_EXEC)) {
4906 if (sd->groups != sd->groups->next)
4907 return 0;
4910 /* Following flags don't use groups */
4911 if (sd->flags & (SD_WAKE_IDLE |
4912 SD_WAKE_AFFINE |
4913 SD_WAKE_BALANCE))
4914 return 0;
4916 return 1;
4919 static int sd_parent_degenerate(struct sched_domain *sd,
4920 struct sched_domain *parent)
4922 unsigned long cflags = sd->flags, pflags = parent->flags;
4924 if (sd_degenerate(parent))
4925 return 1;
4927 if (!cpus_equal(sd->span, parent->span))
4928 return 0;
4930 /* Does parent contain flags not in child? */
4931 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4932 if (cflags & SD_WAKE_AFFINE)
4933 pflags &= ~SD_WAKE_BALANCE;
4934 /* Flags needing groups don't count if only 1 group in parent */
4935 if (parent->groups == parent->groups->next) {
4936 pflags &= ~(SD_LOAD_BALANCE |
4937 SD_BALANCE_NEWIDLE |
4938 SD_BALANCE_FORK |
4939 SD_BALANCE_EXEC);
4941 if (~cflags & pflags)
4942 return 0;
4944 return 1;
4948 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4949 * hold the hotplug lock.
4951 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4953 runqueue_t *rq = cpu_rq(cpu);
4954 struct sched_domain *tmp;
4956 /* Remove the sched domains which do not contribute to scheduling. */
4957 for (tmp = sd; tmp; tmp = tmp->parent) {
4958 struct sched_domain *parent = tmp->parent;
4959 if (!parent)
4960 break;
4961 if (sd_parent_degenerate(tmp, parent))
4962 tmp->parent = parent->parent;
4965 if (sd && sd_degenerate(sd))
4966 sd = sd->parent;
4968 sched_domain_debug(sd, cpu);
4970 rcu_assign_pointer(rq->sd, sd);
4973 /* cpus with isolated domains */
4974 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4976 /* Setup the mask of cpus configured for isolated domains */
4977 static int __init isolated_cpu_setup(char *str)
4979 int ints[NR_CPUS], i;
4981 str = get_options(str, ARRAY_SIZE(ints), ints);
4982 cpus_clear(cpu_isolated_map);
4983 for (i = 1; i <= ints[0]; i++)
4984 if (ints[i] < NR_CPUS)
4985 cpu_set(ints[i], cpu_isolated_map);
4986 return 1;
4989 __setup ("isolcpus=", isolated_cpu_setup);
4992 * init_sched_build_groups takes an array of groups, the cpumask we wish
4993 * to span, and a pointer to a function which identifies what group a CPU
4994 * belongs to. The return value of group_fn must be a valid index into the
4995 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4996 * keep track of groups covered with a cpumask_t).
4998 * init_sched_build_groups will build a circular linked list of the groups
4999 * covered by the given span, and will set each group's ->cpumask correctly,
5000 * and ->cpu_power to 0.
5002 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5003 int (*group_fn)(int cpu))
5005 struct sched_group *first = NULL, *last = NULL;
5006 cpumask_t covered = CPU_MASK_NONE;
5007 int i;
5009 for_each_cpu_mask(i, span) {
5010 int group = group_fn(i);
5011 struct sched_group *sg = &groups[group];
5012 int j;
5014 if (cpu_isset(i, covered))
5015 continue;
5017 sg->cpumask = CPU_MASK_NONE;
5018 sg->cpu_power = 0;
5020 for_each_cpu_mask(j, span) {
5021 if (group_fn(j) != group)
5022 continue;
5024 cpu_set(j, covered);
5025 cpu_set(j, sg->cpumask);
5027 if (!first)
5028 first = sg;
5029 if (last)
5030 last->next = sg;
5031 last = sg;
5033 last->next = first;
5036 #define SD_NODES_PER_DOMAIN 16
5039 * Self-tuning task migration cost measurement between source and target CPUs.
5041 * This is done by measuring the cost of manipulating buffers of varying
5042 * sizes. For a given buffer-size here are the steps that are taken:
5044 * 1) the source CPU reads+dirties a shared buffer
5045 * 2) the target CPU reads+dirties the same shared buffer
5047 * We measure how long they take, in the following 4 scenarios:
5049 * - source: CPU1, target: CPU2 | cost1
5050 * - source: CPU2, target: CPU1 | cost2
5051 * - source: CPU1, target: CPU1 | cost3
5052 * - source: CPU2, target: CPU2 | cost4
5054 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5055 * the cost of migration.
5057 * We then start off from a small buffer-size and iterate up to larger
5058 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5059 * doing a maximum search for the cost. (The maximum cost for a migration
5060 * normally occurs when the working set size is around the effective cache
5061 * size.)
5063 #define SEARCH_SCOPE 2
5064 #define MIN_CACHE_SIZE (64*1024U)
5065 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5066 #define ITERATIONS 1
5067 #define SIZE_THRESH 130
5068 #define COST_THRESH 130
5071 * The migration cost is a function of 'domain distance'. Domain
5072 * distance is the number of steps a CPU has to iterate down its
5073 * domain tree to share a domain with the other CPU. The farther
5074 * two CPUs are from each other, the larger the distance gets.
5076 * Note that we use the distance only to cache measurement results,
5077 * the distance value is not used numerically otherwise. When two
5078 * CPUs have the same distance it is assumed that the migration
5079 * cost is the same. (this is a simplification but quite practical)
5081 #define MAX_DOMAIN_DISTANCE 32
5083 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5084 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5086 * Architectures may override the migration cost and thus avoid
5087 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5088 * virtualized hardware:
5090 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5091 CONFIG_DEFAULT_MIGRATION_COST
5092 #else
5093 -1LL
5094 #endif
5098 * Allow override of migration cost - in units of microseconds.
5099 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5100 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5102 static int __init migration_cost_setup(char *str)
5104 int ints[MAX_DOMAIN_DISTANCE+1], i;
5106 str = get_options(str, ARRAY_SIZE(ints), ints);
5108 printk("#ints: %d\n", ints[0]);
5109 for (i = 1; i <= ints[0]; i++) {
5110 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5111 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5113 return 1;
5116 __setup ("migration_cost=", migration_cost_setup);
5119 * Global multiplier (divisor) for migration-cutoff values,
5120 * in percentiles. E.g. use a value of 150 to get 1.5 times
5121 * longer cache-hot cutoff times.
5123 * (We scale it from 100 to 128 to long long handling easier.)
5126 #define MIGRATION_FACTOR_SCALE 128
5128 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5130 static int __init setup_migration_factor(char *str)
5132 get_option(&str, &migration_factor);
5133 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5134 return 1;
5137 __setup("migration_factor=", setup_migration_factor);
5140 * Estimated distance of two CPUs, measured via the number of domains
5141 * we have to pass for the two CPUs to be in the same span:
5143 static unsigned long domain_distance(int cpu1, int cpu2)
5145 unsigned long distance = 0;
5146 struct sched_domain *sd;
5148 for_each_domain(cpu1, sd) {
5149 WARN_ON(!cpu_isset(cpu1, sd->span));
5150 if (cpu_isset(cpu2, sd->span))
5151 return distance;
5152 distance++;
5154 if (distance >= MAX_DOMAIN_DISTANCE) {
5155 WARN_ON(1);
5156 distance = MAX_DOMAIN_DISTANCE-1;
5159 return distance;
5162 static unsigned int migration_debug;
5164 static int __init setup_migration_debug(char *str)
5166 get_option(&str, &migration_debug);
5167 return 1;
5170 __setup("migration_debug=", setup_migration_debug);
5173 * Maximum cache-size that the scheduler should try to measure.
5174 * Architectures with larger caches should tune this up during
5175 * bootup. Gets used in the domain-setup code (i.e. during SMP
5176 * bootup).
5178 unsigned int max_cache_size;
5180 static int __init setup_max_cache_size(char *str)
5182 get_option(&str, &max_cache_size);
5183 return 1;
5186 __setup("max_cache_size=", setup_max_cache_size);
5189 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5190 * is the operation that is timed, so we try to generate unpredictable
5191 * cachemisses that still end up filling the L2 cache:
5193 static void touch_cache(void *__cache, unsigned long __size)
5195 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5196 chunk2 = 2*size/3;
5197 unsigned long *cache = __cache;
5198 int i;
5200 for (i = 0; i < size/6; i += 8) {
5201 switch (i % 6) {
5202 case 0: cache[i]++;
5203 case 1: cache[size-1-i]++;
5204 case 2: cache[chunk1-i]++;
5205 case 3: cache[chunk1+i]++;
5206 case 4: cache[chunk2-i]++;
5207 case 5: cache[chunk2+i]++;
5213 * Measure the cache-cost of one task migration. Returns in units of nsec.
5215 static unsigned long long measure_one(void *cache, unsigned long size,
5216 int source, int target)
5218 cpumask_t mask, saved_mask;
5219 unsigned long long t0, t1, t2, t3, cost;
5221 saved_mask = current->cpus_allowed;
5224 * Flush source caches to RAM and invalidate them:
5226 sched_cacheflush();
5229 * Migrate to the source CPU:
5231 mask = cpumask_of_cpu(source);
5232 set_cpus_allowed(current, mask);
5233 WARN_ON(smp_processor_id() != source);
5236 * Dirty the working set:
5238 t0 = sched_clock();
5239 touch_cache(cache, size);
5240 t1 = sched_clock();
5243 * Migrate to the target CPU, dirty the L2 cache and access
5244 * the shared buffer. (which represents the working set
5245 * of a migrated task.)
5247 mask = cpumask_of_cpu(target);
5248 set_cpus_allowed(current, mask);
5249 WARN_ON(smp_processor_id() != target);
5251 t2 = sched_clock();
5252 touch_cache(cache, size);
5253 t3 = sched_clock();
5255 cost = t1-t0 + t3-t2;
5257 if (migration_debug >= 2)
5258 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5259 source, target, t1-t0, t1-t0, t3-t2, cost);
5261 * Flush target caches to RAM and invalidate them:
5263 sched_cacheflush();
5265 set_cpus_allowed(current, saved_mask);
5267 return cost;
5271 * Measure a series of task migrations and return the average
5272 * result. Since this code runs early during bootup the system
5273 * is 'undisturbed' and the average latency makes sense.
5275 * The algorithm in essence auto-detects the relevant cache-size,
5276 * so it will properly detect different cachesizes for different
5277 * cache-hierarchies, depending on how the CPUs are connected.
5279 * Architectures can prime the upper limit of the search range via
5280 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5282 static unsigned long long
5283 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5285 unsigned long long cost1, cost2;
5286 int i;
5289 * Measure the migration cost of 'size' bytes, over an
5290 * average of 10 runs:
5292 * (We perturb the cache size by a small (0..4k)
5293 * value to compensate size/alignment related artifacts.
5294 * We also subtract the cost of the operation done on
5295 * the same CPU.)
5297 cost1 = 0;
5300 * dry run, to make sure we start off cache-cold on cpu1,
5301 * and to get any vmalloc pagefaults in advance:
5303 measure_one(cache, size, cpu1, cpu2);
5304 for (i = 0; i < ITERATIONS; i++)
5305 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5307 measure_one(cache, size, cpu2, cpu1);
5308 for (i = 0; i < ITERATIONS; i++)
5309 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5312 * (We measure the non-migrating [cached] cost on both
5313 * cpu1 and cpu2, to handle CPUs with different speeds)
5315 cost2 = 0;
5317 measure_one(cache, size, cpu1, cpu1);
5318 for (i = 0; i < ITERATIONS; i++)
5319 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5321 measure_one(cache, size, cpu2, cpu2);
5322 for (i = 0; i < ITERATIONS; i++)
5323 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5326 * Get the per-iteration migration cost:
5328 do_div(cost1, 2*ITERATIONS);
5329 do_div(cost2, 2*ITERATIONS);
5331 return cost1 - cost2;
5334 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5336 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5337 unsigned int max_size, size, size_found = 0;
5338 long long cost = 0, prev_cost;
5339 void *cache;
5342 * Search from max_cache_size*5 down to 64K - the real relevant
5343 * cachesize has to lie somewhere inbetween.
5345 if (max_cache_size) {
5346 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5347 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5348 } else {
5350 * Since we have no estimation about the relevant
5351 * search range
5353 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5354 size = MIN_CACHE_SIZE;
5357 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5358 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5359 return 0;
5363 * Allocate the working set:
5365 cache = vmalloc(max_size);
5366 if (!cache) {
5367 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5368 return 1000000; // return 1 msec on very small boxen
5371 while (size <= max_size) {
5372 prev_cost = cost;
5373 cost = measure_cost(cpu1, cpu2, cache, size);
5376 * Update the max:
5378 if (cost > 0) {
5379 if (max_cost < cost) {
5380 max_cost = cost;
5381 size_found = size;
5385 * Calculate average fluctuation, we use this to prevent
5386 * noise from triggering an early break out of the loop:
5388 fluct = abs(cost - prev_cost);
5389 avg_fluct = (avg_fluct + fluct)/2;
5391 if (migration_debug)
5392 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5393 cpu1, cpu2, size,
5394 (long)cost / 1000000,
5395 ((long)cost / 100000) % 10,
5396 (long)max_cost / 1000000,
5397 ((long)max_cost / 100000) % 10,
5398 domain_distance(cpu1, cpu2),
5399 cost, avg_fluct);
5402 * If we iterated at least 20% past the previous maximum,
5403 * and the cost has dropped by more than 20% already,
5404 * (taking fluctuations into account) then we assume to
5405 * have found the maximum and break out of the loop early:
5407 if (size_found && (size*100 > size_found*SIZE_THRESH))
5408 if (cost+avg_fluct <= 0 ||
5409 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5411 if (migration_debug)
5412 printk("-> found max.\n");
5413 break;
5416 * Increase the cachesize in 10% steps:
5418 size = size * 10 / 9;
5421 if (migration_debug)
5422 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5423 cpu1, cpu2, size_found, max_cost);
5425 vfree(cache);
5428 * A task is considered 'cache cold' if at least 2 times
5429 * the worst-case cost of migration has passed.
5431 * (this limit is only listened to if the load-balancing
5432 * situation is 'nice' - if there is a large imbalance we
5433 * ignore it for the sake of CPU utilization and
5434 * processing fairness.)
5436 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5439 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5441 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5442 unsigned long j0, j1, distance, max_distance = 0;
5443 struct sched_domain *sd;
5445 j0 = jiffies;
5448 * First pass - calculate the cacheflush times:
5450 for_each_cpu_mask(cpu1, *cpu_map) {
5451 for_each_cpu_mask(cpu2, *cpu_map) {
5452 if (cpu1 == cpu2)
5453 continue;
5454 distance = domain_distance(cpu1, cpu2);
5455 max_distance = max(max_distance, distance);
5457 * No result cached yet?
5459 if (migration_cost[distance] == -1LL)
5460 migration_cost[distance] =
5461 measure_migration_cost(cpu1, cpu2);
5465 * Second pass - update the sched domain hierarchy with
5466 * the new cache-hot-time estimations:
5468 for_each_cpu_mask(cpu, *cpu_map) {
5469 distance = 0;
5470 for_each_domain(cpu, sd) {
5471 sd->cache_hot_time = migration_cost[distance];
5472 distance++;
5476 * Print the matrix:
5478 if (migration_debug)
5479 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5480 max_cache_size,
5481 #ifdef CONFIG_X86
5482 cpu_khz/1000
5483 #else
5485 #endif
5487 if (system_state == SYSTEM_BOOTING) {
5488 printk("migration_cost=");
5489 for (distance = 0; distance <= max_distance; distance++) {
5490 if (distance)
5491 printk(",");
5492 printk("%ld", (long)migration_cost[distance] / 1000);
5494 printk("\n");
5496 j1 = jiffies;
5497 if (migration_debug)
5498 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5501 * Move back to the original CPU. NUMA-Q gets confused
5502 * if we migrate to another quad during bootup.
5504 if (raw_smp_processor_id() != orig_cpu) {
5505 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5506 saved_mask = current->cpus_allowed;
5508 set_cpus_allowed(current, mask);
5509 set_cpus_allowed(current, saved_mask);
5513 #ifdef CONFIG_NUMA
5516 * find_next_best_node - find the next node to include in a sched_domain
5517 * @node: node whose sched_domain we're building
5518 * @used_nodes: nodes already in the sched_domain
5520 * Find the next node to include in a given scheduling domain. Simply
5521 * finds the closest node not already in the @used_nodes map.
5523 * Should use nodemask_t.
5525 static int find_next_best_node(int node, unsigned long *used_nodes)
5527 int i, n, val, min_val, best_node = 0;
5529 min_val = INT_MAX;
5531 for (i = 0; i < MAX_NUMNODES; i++) {
5532 /* Start at @node */
5533 n = (node + i) % MAX_NUMNODES;
5535 if (!nr_cpus_node(n))
5536 continue;
5538 /* Skip already used nodes */
5539 if (test_bit(n, used_nodes))
5540 continue;
5542 /* Simple min distance search */
5543 val = node_distance(node, n);
5545 if (val < min_val) {
5546 min_val = val;
5547 best_node = n;
5551 set_bit(best_node, used_nodes);
5552 return best_node;
5556 * sched_domain_node_span - get a cpumask for a node's sched_domain
5557 * @node: node whose cpumask we're constructing
5558 * @size: number of nodes to include in this span
5560 * Given a node, construct a good cpumask for its sched_domain to span. It
5561 * should be one that prevents unnecessary balancing, but also spreads tasks
5562 * out optimally.
5564 static cpumask_t sched_domain_node_span(int node)
5566 int i;
5567 cpumask_t span, nodemask;
5568 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5570 cpus_clear(span);
5571 bitmap_zero(used_nodes, MAX_NUMNODES);
5573 nodemask = node_to_cpumask(node);
5574 cpus_or(span, span, nodemask);
5575 set_bit(node, used_nodes);
5577 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5578 int next_node = find_next_best_node(node, used_nodes);
5579 nodemask = node_to_cpumask(next_node);
5580 cpus_or(span, span, nodemask);
5583 return span;
5585 #endif
5588 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5589 * can switch it on easily if needed.
5591 #ifdef CONFIG_SCHED_SMT
5592 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5593 static struct sched_group sched_group_cpus[NR_CPUS];
5594 static int cpu_to_cpu_group(int cpu)
5596 return cpu;
5598 #endif
5600 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5601 static struct sched_group sched_group_phys[NR_CPUS];
5602 static int cpu_to_phys_group(int cpu)
5604 #ifdef CONFIG_SCHED_SMT
5605 return first_cpu(cpu_sibling_map[cpu]);
5606 #else
5607 return cpu;
5608 #endif
5611 #ifdef CONFIG_NUMA
5613 * The init_sched_build_groups can't handle what we want to do with node
5614 * groups, so roll our own. Now each node has its own list of groups which
5615 * gets dynamically allocated.
5617 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5618 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5620 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5621 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5623 static int cpu_to_allnodes_group(int cpu)
5625 return cpu_to_node(cpu);
5627 #endif
5630 * Build sched domains for a given set of cpus and attach the sched domains
5631 * to the individual cpus
5633 void build_sched_domains(const cpumask_t *cpu_map)
5635 int i;
5636 #ifdef CONFIG_NUMA
5637 struct sched_group **sched_group_nodes = NULL;
5638 struct sched_group *sched_group_allnodes = NULL;
5641 * Allocate the per-node list of sched groups
5643 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5644 GFP_ATOMIC);
5645 if (!sched_group_nodes) {
5646 printk(KERN_WARNING "Can not alloc sched group node list\n");
5647 return;
5649 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5650 #endif
5653 * Set up domains for cpus specified by the cpu_map.
5655 for_each_cpu_mask(i, *cpu_map) {
5656 int group;
5657 struct sched_domain *sd = NULL, *p;
5658 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5660 cpus_and(nodemask, nodemask, *cpu_map);
5662 #ifdef CONFIG_NUMA
5663 if (cpus_weight(*cpu_map)
5664 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5665 if (!sched_group_allnodes) {
5666 sched_group_allnodes
5667 = kmalloc(sizeof(struct sched_group)
5668 * MAX_NUMNODES,
5669 GFP_KERNEL);
5670 if (!sched_group_allnodes) {
5671 printk(KERN_WARNING
5672 "Can not alloc allnodes sched group\n");
5673 break;
5675 sched_group_allnodes_bycpu[i]
5676 = sched_group_allnodes;
5678 sd = &per_cpu(allnodes_domains, i);
5679 *sd = SD_ALLNODES_INIT;
5680 sd->span = *cpu_map;
5681 group = cpu_to_allnodes_group(i);
5682 sd->groups = &sched_group_allnodes[group];
5683 p = sd;
5684 } else
5685 p = NULL;
5687 sd = &per_cpu(node_domains, i);
5688 *sd = SD_NODE_INIT;
5689 sd->span = sched_domain_node_span(cpu_to_node(i));
5690 sd->parent = p;
5691 cpus_and(sd->span, sd->span, *cpu_map);
5692 #endif
5694 p = sd;
5695 sd = &per_cpu(phys_domains, i);
5696 group = cpu_to_phys_group(i);
5697 *sd = SD_CPU_INIT;
5698 sd->span = nodemask;
5699 sd->parent = p;
5700 sd->groups = &sched_group_phys[group];
5702 #ifdef CONFIG_SCHED_SMT
5703 p = sd;
5704 sd = &per_cpu(cpu_domains, i);
5705 group = cpu_to_cpu_group(i);
5706 *sd = SD_SIBLING_INIT;
5707 sd->span = cpu_sibling_map[i];
5708 cpus_and(sd->span, sd->span, *cpu_map);
5709 sd->parent = p;
5710 sd->groups = &sched_group_cpus[group];
5711 #endif
5714 #ifdef CONFIG_SCHED_SMT
5715 /* Set up CPU (sibling) groups */
5716 for_each_cpu_mask(i, *cpu_map) {
5717 cpumask_t this_sibling_map = cpu_sibling_map[i];
5718 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5719 if (i != first_cpu(this_sibling_map))
5720 continue;
5722 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5723 &cpu_to_cpu_group);
5725 #endif
5727 /* Set up physical groups */
5728 for (i = 0; i < MAX_NUMNODES; i++) {
5729 cpumask_t nodemask = node_to_cpumask(i);
5731 cpus_and(nodemask, nodemask, *cpu_map);
5732 if (cpus_empty(nodemask))
5733 continue;
5735 init_sched_build_groups(sched_group_phys, nodemask,
5736 &cpu_to_phys_group);
5739 #ifdef CONFIG_NUMA
5740 /* Set up node groups */
5741 if (sched_group_allnodes)
5742 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5743 &cpu_to_allnodes_group);
5745 for (i = 0; i < MAX_NUMNODES; i++) {
5746 /* Set up node groups */
5747 struct sched_group *sg, *prev;
5748 cpumask_t nodemask = node_to_cpumask(i);
5749 cpumask_t domainspan;
5750 cpumask_t covered = CPU_MASK_NONE;
5751 int j;
5753 cpus_and(nodemask, nodemask, *cpu_map);
5754 if (cpus_empty(nodemask)) {
5755 sched_group_nodes[i] = NULL;
5756 continue;
5759 domainspan = sched_domain_node_span(i);
5760 cpus_and(domainspan, domainspan, *cpu_map);
5762 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5763 sched_group_nodes[i] = sg;
5764 for_each_cpu_mask(j, nodemask) {
5765 struct sched_domain *sd;
5766 sd = &per_cpu(node_domains, j);
5767 sd->groups = sg;
5768 if (sd->groups == NULL) {
5769 /* Turn off balancing if we have no groups */
5770 sd->flags = 0;
5773 if (!sg) {
5774 printk(KERN_WARNING
5775 "Can not alloc domain group for node %d\n", i);
5776 continue;
5778 sg->cpu_power = 0;
5779 sg->cpumask = nodemask;
5780 cpus_or(covered, covered, nodemask);
5781 prev = sg;
5783 for (j = 0; j < MAX_NUMNODES; j++) {
5784 cpumask_t tmp, notcovered;
5785 int n = (i + j) % MAX_NUMNODES;
5787 cpus_complement(notcovered, covered);
5788 cpus_and(tmp, notcovered, *cpu_map);
5789 cpus_and(tmp, tmp, domainspan);
5790 if (cpus_empty(tmp))
5791 break;
5793 nodemask = node_to_cpumask(n);
5794 cpus_and(tmp, tmp, nodemask);
5795 if (cpus_empty(tmp))
5796 continue;
5798 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5799 if (!sg) {
5800 printk(KERN_WARNING
5801 "Can not alloc domain group for node %d\n", j);
5802 break;
5804 sg->cpu_power = 0;
5805 sg->cpumask = tmp;
5806 cpus_or(covered, covered, tmp);
5807 prev->next = sg;
5808 prev = sg;
5810 prev->next = sched_group_nodes[i];
5812 #endif
5814 /* Calculate CPU power for physical packages and nodes */
5815 for_each_cpu_mask(i, *cpu_map) {
5816 int power;
5817 struct sched_domain *sd;
5818 #ifdef CONFIG_SCHED_SMT
5819 sd = &per_cpu(cpu_domains, i);
5820 power = SCHED_LOAD_SCALE;
5821 sd->groups->cpu_power = power;
5822 #endif
5824 sd = &per_cpu(phys_domains, i);
5825 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5826 (cpus_weight(sd->groups->cpumask)-1) / 10;
5827 sd->groups->cpu_power = power;
5829 #ifdef CONFIG_NUMA
5830 sd = &per_cpu(allnodes_domains, i);
5831 if (sd->groups) {
5832 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5833 (cpus_weight(sd->groups->cpumask)-1) / 10;
5834 sd->groups->cpu_power = power;
5836 #endif
5839 #ifdef CONFIG_NUMA
5840 for (i = 0; i < MAX_NUMNODES; i++) {
5841 struct sched_group *sg = sched_group_nodes[i];
5842 int j;
5844 if (sg == NULL)
5845 continue;
5846 next_sg:
5847 for_each_cpu_mask(j, sg->cpumask) {
5848 struct sched_domain *sd;
5849 int power;
5851 sd = &per_cpu(phys_domains, j);
5852 if (j != first_cpu(sd->groups->cpumask)) {
5854 * Only add "power" once for each
5855 * physical package.
5857 continue;
5859 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5860 (cpus_weight(sd->groups->cpumask)-1) / 10;
5862 sg->cpu_power += power;
5864 sg = sg->next;
5865 if (sg != sched_group_nodes[i])
5866 goto next_sg;
5868 #endif
5870 /* Attach the domains */
5871 for_each_cpu_mask(i, *cpu_map) {
5872 struct sched_domain *sd;
5873 #ifdef CONFIG_SCHED_SMT
5874 sd = &per_cpu(cpu_domains, i);
5875 #else
5876 sd = &per_cpu(phys_domains, i);
5877 #endif
5878 cpu_attach_domain(sd, i);
5881 * Tune cache-hot values:
5883 calibrate_migration_costs(cpu_map);
5886 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5888 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5890 cpumask_t cpu_default_map;
5893 * Setup mask for cpus without special case scheduling requirements.
5894 * For now this just excludes isolated cpus, but could be used to
5895 * exclude other special cases in the future.
5897 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5899 build_sched_domains(&cpu_default_map);
5902 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5904 #ifdef CONFIG_NUMA
5905 int i;
5906 int cpu;
5908 for_each_cpu_mask(cpu, *cpu_map) {
5909 struct sched_group *sched_group_allnodes
5910 = sched_group_allnodes_bycpu[cpu];
5911 struct sched_group **sched_group_nodes
5912 = sched_group_nodes_bycpu[cpu];
5914 if (sched_group_allnodes) {
5915 kfree(sched_group_allnodes);
5916 sched_group_allnodes_bycpu[cpu] = NULL;
5919 if (!sched_group_nodes)
5920 continue;
5922 for (i = 0; i < MAX_NUMNODES; i++) {
5923 cpumask_t nodemask = node_to_cpumask(i);
5924 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5926 cpus_and(nodemask, nodemask, *cpu_map);
5927 if (cpus_empty(nodemask))
5928 continue;
5930 if (sg == NULL)
5931 continue;
5932 sg = sg->next;
5933 next_sg:
5934 oldsg = sg;
5935 sg = sg->next;
5936 kfree(oldsg);
5937 if (oldsg != sched_group_nodes[i])
5938 goto next_sg;
5940 kfree(sched_group_nodes);
5941 sched_group_nodes_bycpu[cpu] = NULL;
5943 #endif
5947 * Detach sched domains from a group of cpus specified in cpu_map
5948 * These cpus will now be attached to the NULL domain
5950 static void detach_destroy_domains(const cpumask_t *cpu_map)
5952 int i;
5954 for_each_cpu_mask(i, *cpu_map)
5955 cpu_attach_domain(NULL, i);
5956 synchronize_sched();
5957 arch_destroy_sched_domains(cpu_map);
5961 * Partition sched domains as specified by the cpumasks below.
5962 * This attaches all cpus from the cpumasks to the NULL domain,
5963 * waits for a RCU quiescent period, recalculates sched
5964 * domain information and then attaches them back to the
5965 * correct sched domains
5966 * Call with hotplug lock held
5968 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5970 cpumask_t change_map;
5972 cpus_and(*partition1, *partition1, cpu_online_map);
5973 cpus_and(*partition2, *partition2, cpu_online_map);
5974 cpus_or(change_map, *partition1, *partition2);
5976 /* Detach sched domains from all of the affected cpus */
5977 detach_destroy_domains(&change_map);
5978 if (!cpus_empty(*partition1))
5979 build_sched_domains(partition1);
5980 if (!cpus_empty(*partition2))
5981 build_sched_domains(partition2);
5984 #ifdef CONFIG_HOTPLUG_CPU
5986 * Force a reinitialization of the sched domains hierarchy. The domains
5987 * and groups cannot be updated in place without racing with the balancing
5988 * code, so we temporarily attach all running cpus to the NULL domain
5989 * which will prevent rebalancing while the sched domains are recalculated.
5991 static int update_sched_domains(struct notifier_block *nfb,
5992 unsigned long action, void *hcpu)
5994 switch (action) {
5995 case CPU_UP_PREPARE:
5996 case CPU_DOWN_PREPARE:
5997 detach_destroy_domains(&cpu_online_map);
5998 return NOTIFY_OK;
6000 case CPU_UP_CANCELED:
6001 case CPU_DOWN_FAILED:
6002 case CPU_ONLINE:
6003 case CPU_DEAD:
6005 * Fall through and re-initialise the domains.
6007 break;
6008 default:
6009 return NOTIFY_DONE;
6012 /* The hotplug lock is already held by cpu_up/cpu_down */
6013 arch_init_sched_domains(&cpu_online_map);
6015 return NOTIFY_OK;
6017 #endif
6019 void __init sched_init_smp(void)
6021 lock_cpu_hotplug();
6022 arch_init_sched_domains(&cpu_online_map);
6023 unlock_cpu_hotplug();
6024 /* XXX: Theoretical race here - CPU may be hotplugged now */
6025 hotcpu_notifier(update_sched_domains, 0);
6027 #else
6028 void __init sched_init_smp(void)
6031 #endif /* CONFIG_SMP */
6033 int in_sched_functions(unsigned long addr)
6035 /* Linker adds these: start and end of __sched functions */
6036 extern char __sched_text_start[], __sched_text_end[];
6037 return in_lock_functions(addr) ||
6038 (addr >= (unsigned long)__sched_text_start
6039 && addr < (unsigned long)__sched_text_end);
6042 void __init sched_init(void)
6044 runqueue_t *rq;
6045 int i, j, k;
6047 for_each_cpu(i) {
6048 prio_array_t *array;
6050 rq = cpu_rq(i);
6051 spin_lock_init(&rq->lock);
6052 rq->nr_running = 0;
6053 rq->active = rq->arrays;
6054 rq->expired = rq->arrays + 1;
6055 rq->best_expired_prio = MAX_PRIO;
6057 #ifdef CONFIG_SMP
6058 rq->sd = NULL;
6059 for (j = 1; j < 3; j++)
6060 rq->cpu_load[j] = 0;
6061 rq->active_balance = 0;
6062 rq->push_cpu = 0;
6063 rq->cpu = i;
6064 rq->migration_thread = NULL;
6065 INIT_LIST_HEAD(&rq->migration_queue);
6066 rq->cpu = i;
6067 #endif
6068 atomic_set(&rq->nr_iowait, 0);
6070 for (j = 0; j < 2; j++) {
6071 array = rq->arrays + j;
6072 for (k = 0; k < MAX_PRIO; k++) {
6073 INIT_LIST_HEAD(array->queue + k);
6074 __clear_bit(k, array->bitmap);
6076 // delimiter for bitsearch
6077 __set_bit(MAX_PRIO, array->bitmap);
6082 * The boot idle thread does lazy MMU switching as well:
6084 atomic_inc(&init_mm.mm_count);
6085 enter_lazy_tlb(&init_mm, current);
6088 * Make us the idle thread. Technically, schedule() should not be
6089 * called from this thread, however somewhere below it might be,
6090 * but because we are the idle thread, we just pick up running again
6091 * when this runqueue becomes "idle".
6093 init_idle(current, smp_processor_id());
6096 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6097 void __might_sleep(char *file, int line)
6099 #if defined(in_atomic)
6100 static unsigned long prev_jiffy; /* ratelimiting */
6102 if ((in_atomic() || irqs_disabled()) &&
6103 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6104 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6105 return;
6106 prev_jiffy = jiffies;
6107 printk(KERN_ERR "Debug: sleeping function called from invalid"
6108 " context at %s:%d\n", file, line);
6109 printk("in_atomic():%d, irqs_disabled():%d\n",
6110 in_atomic(), irqs_disabled());
6111 dump_stack();
6113 #endif
6115 EXPORT_SYMBOL(__might_sleep);
6116 #endif
6118 #ifdef CONFIG_MAGIC_SYSRQ
6119 void normalize_rt_tasks(void)
6121 struct task_struct *p;
6122 prio_array_t *array;
6123 unsigned long flags;
6124 runqueue_t *rq;
6126 read_lock_irq(&tasklist_lock);
6127 for_each_process (p) {
6128 if (!rt_task(p))
6129 continue;
6131 rq = task_rq_lock(p, &flags);
6133 array = p->array;
6134 if (array)
6135 deactivate_task(p, task_rq(p));
6136 __setscheduler(p, SCHED_NORMAL, 0);
6137 if (array) {
6138 __activate_task(p, task_rq(p));
6139 resched_task(rq->curr);
6142 task_rq_unlock(rq, &flags);
6144 read_unlock_irq(&tasklist_lock);
6147 #endif /* CONFIG_MAGIC_SYSRQ */
6149 #ifdef CONFIG_IA64
6151 * These functions are only useful for the IA64 MCA handling.
6153 * They can only be called when the whole system has been
6154 * stopped - every CPU needs to be quiescent, and no scheduling
6155 * activity can take place. Using them for anything else would
6156 * be a serious bug, and as a result, they aren't even visible
6157 * under any other configuration.
6161 * curr_task - return the current task for a given cpu.
6162 * @cpu: the processor in question.
6164 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6166 task_t *curr_task(int cpu)
6168 return cpu_curr(cpu);
6172 * set_curr_task - set the current task for a given cpu.
6173 * @cpu: the processor in question.
6174 * @p: the task pointer to set.
6176 * Description: This function must only be used when non-maskable interrupts
6177 * are serviced on a separate stack. It allows the architecture to switch the
6178 * notion of the current task on a cpu in a non-blocking manner. This function
6179 * must be called with all CPU's synchronized, and interrupts disabled, the
6180 * and caller must save the original value of the current task (see
6181 * curr_task() above) and restore that value before reenabling interrupts and
6182 * re-starting the system.
6184 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6186 void set_curr_task(int cpu, task_t *p)
6188 cpu_curr(cpu) = p;
6191 #endif