4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
96 #include <asm/sections.h>
97 #include <asm/processor.h>
98 #include <asm/atomic.h>
100 #include <linux/kmemleak.h>
103 * Kmemleak configuration and common defines.
105 #define MAX_TRACE 16 /* stack trace length */
106 #define REPORTS_NR 50 /* maximum number of reported leaks */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111 #define BYTES_PER_POINTER sizeof(void *)
113 /* GFP bitmask for kmemleak internal allocations */
114 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116 /* scanning area inside a memory block */
117 struct kmemleak_scan_area
{
118 struct hlist_node node
;
119 unsigned long offset
;
124 * Structure holding the metadata for each allocated memory block.
125 * Modifications to such objects should be made while holding the
126 * object->lock. Insertions or deletions from object_list, gray_list or
127 * tree_node are already protected by the corresponding locks or mutex (see
128 * the notes on locking above). These objects are reference-counted
129 * (use_count) and freed using the RCU mechanism.
131 struct kmemleak_object
{
133 unsigned long flags
; /* object status flags */
134 struct list_head object_list
;
135 struct list_head gray_list
;
136 struct prio_tree_node tree_node
;
137 struct rcu_head rcu
; /* object_list lockless traversal */
138 /* object usage count; object freed when use_count == 0 */
140 unsigned long pointer
;
142 /* minimum number of a pointers found before it is considered leak */
144 /* the total number of pointers found pointing to this object */
146 /* memory ranges to be scanned inside an object (empty for all) */
147 struct hlist_head area_list
;
148 unsigned long trace
[MAX_TRACE
];
149 unsigned int trace_len
;
150 unsigned long jiffies
; /* creation timestamp */
151 pid_t pid
; /* pid of the current task */
152 char comm
[TASK_COMM_LEN
]; /* executable name */
155 /* flag representing the memory block allocation status */
156 #define OBJECT_ALLOCATED (1 << 0)
157 /* flag set after the first reporting of an unreference object */
158 #define OBJECT_REPORTED (1 << 1)
159 /* flag set to not scan the object */
160 #define OBJECT_NO_SCAN (1 << 2)
162 /* the list of all allocated objects */
163 static LIST_HEAD(object_list
);
164 /* the list of gray-colored objects (see color_gray comment below) */
165 static LIST_HEAD(gray_list
);
166 /* prio search tree for object boundaries */
167 static struct prio_tree_root object_tree_root
;
168 /* rw_lock protecting the access to object_list and prio_tree_root */
169 static DEFINE_RWLOCK(kmemleak_lock
);
171 /* allocation caches for kmemleak internal data */
172 static struct kmem_cache
*object_cache
;
173 static struct kmem_cache
*scan_area_cache
;
175 /* set if tracing memory operations is enabled */
176 static atomic_t kmemleak_enabled
= ATOMIC_INIT(0);
177 /* set in the late_initcall if there were no errors */
178 static atomic_t kmemleak_initialized
= ATOMIC_INIT(0);
179 /* enables or disables early logging of the memory operations */
180 static atomic_t kmemleak_early_log
= ATOMIC_INIT(1);
181 /* set if a fata kmemleak error has occurred */
182 static atomic_t kmemleak_error
= ATOMIC_INIT(0);
184 /* minimum and maximum address that may be valid pointers */
185 static unsigned long min_addr
= ULONG_MAX
;
186 static unsigned long max_addr
;
188 static struct task_struct
*scan_thread
;
189 /* used to avoid reporting of recently allocated objects */
190 static unsigned long jiffies_min_age
;
191 static unsigned long jiffies_last_scan
;
192 /* delay between automatic memory scannings */
193 static signed long jiffies_scan_wait
;
194 /* enables or disables the task stacks scanning */
195 static int kmemleak_stack_scan
= 1;
196 /* protects the memory scanning, parameters and debug/kmemleak file access */
197 static DEFINE_MUTEX(scan_mutex
);
199 /* number of leaks reported (for limitation purposes) */
200 static int reported_leaks
;
203 * Early object allocation/freeing logging. Kmemleak is initialized after the
204 * kernel allocator. However, both the kernel allocator and kmemleak may
205 * allocate memory blocks which need to be tracked. Kmemleak defines an
206 * arbitrary buffer to hold the allocation/freeing information before it is
210 /* kmemleak operation type for early logging */
221 * Structure holding the information passed to kmemleak callbacks during the
225 int op_type
; /* kmemleak operation type */
226 const void *ptr
; /* allocated/freed memory block */
227 size_t size
; /* memory block size */
228 int min_count
; /* minimum reference count */
229 unsigned long offset
; /* scan area offset */
230 size_t length
; /* scan area length */
233 /* early logging buffer and current position */
234 static struct early_log early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
];
235 static int crt_early_log
;
237 static void kmemleak_disable(void);
240 * Print a warning and dump the stack trace.
242 #define kmemleak_warn(x...) do { \
248 * Macro invoked when a serious kmemleak condition occured and cannot be
249 * recovered from. Kmemleak will be disabled and further allocation/freeing
250 * tracing no longer available.
252 #define kmemleak_stop(x...) do { \
254 kmemleak_disable(); \
258 * Object colors, encoded with count and min_count:
259 * - white - orphan object, not enough references to it (count < min_count)
260 * - gray - not orphan, not marked as false positive (min_count == 0) or
261 * sufficient references to it (count >= min_count)
262 * - black - ignore, it doesn't contain references (e.g. text section)
263 * (min_count == -1). No function defined for this color.
264 * Newly created objects don't have any color assigned (object->count == -1)
265 * before the next memory scan when they become white.
267 static int color_white(const struct kmemleak_object
*object
)
269 return object
->count
!= -1 && object
->count
< object
->min_count
;
272 static int color_gray(const struct kmemleak_object
*object
)
274 return object
->min_count
!= -1 && object
->count
>= object
->min_count
;
278 * Objects are considered unreferenced only if their color is white, they have
279 * not be deleted and have a minimum age to avoid false positives caused by
280 * pointers temporarily stored in CPU registers.
282 static int unreferenced_object(struct kmemleak_object
*object
)
284 return (object
->flags
& OBJECT_ALLOCATED
) && color_white(object
) &&
285 time_before_eq(object
->jiffies
+ jiffies_min_age
,
290 * Printing of the unreferenced objects information to the seq file. The
291 * print_unreferenced function must be called with the object->lock held.
293 static void print_unreferenced(struct seq_file
*seq
,
294 struct kmemleak_object
*object
)
298 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
299 object
->pointer
, object
->size
);
300 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu\n",
301 object
->comm
, object
->pid
, object
->jiffies
);
302 seq_printf(seq
, " backtrace:\n");
304 for (i
= 0; i
< object
->trace_len
; i
++) {
305 void *ptr
= (void *)object
->trace
[i
];
306 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
311 * Print the kmemleak_object information. This function is used mainly for
312 * debugging special cases when kmemleak operations. It must be called with
313 * the object->lock held.
315 static void dump_object_info(struct kmemleak_object
*object
)
317 struct stack_trace trace
;
319 trace
.nr_entries
= object
->trace_len
;
320 trace
.entries
= object
->trace
;
322 pr_notice("Object 0x%08lx (size %zu):\n",
323 object
->tree_node
.start
, object
->size
);
324 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
325 object
->comm
, object
->pid
, object
->jiffies
);
326 pr_notice(" min_count = %d\n", object
->min_count
);
327 pr_notice(" count = %d\n", object
->count
);
328 pr_notice(" backtrace:\n");
329 print_stack_trace(&trace
, 4);
333 * Look-up a memory block metadata (kmemleak_object) in the priority search
334 * tree based on a pointer value. If alias is 0, only values pointing to the
335 * beginning of the memory block are allowed. The kmemleak_lock must be held
336 * when calling this function.
338 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
340 struct prio_tree_node
*node
;
341 struct prio_tree_iter iter
;
342 struct kmemleak_object
*object
;
344 prio_tree_iter_init(&iter
, &object_tree_root
, ptr
, ptr
);
345 node
= prio_tree_next(&iter
);
347 object
= prio_tree_entry(node
, struct kmemleak_object
,
349 if (!alias
&& object
->pointer
!= ptr
) {
350 kmemleak_warn("Found object by alias");
360 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
361 * that once an object's use_count reached 0, the RCU freeing was already
362 * registered and the object should no longer be used. This function must be
363 * called under the protection of rcu_read_lock().
365 static int get_object(struct kmemleak_object
*object
)
367 return atomic_inc_not_zero(&object
->use_count
);
371 * RCU callback to free a kmemleak_object.
373 static void free_object_rcu(struct rcu_head
*rcu
)
375 struct hlist_node
*elem
, *tmp
;
376 struct kmemleak_scan_area
*area
;
377 struct kmemleak_object
*object
=
378 container_of(rcu
, struct kmemleak_object
, rcu
);
381 * Once use_count is 0 (guaranteed by put_object), there is no other
382 * code accessing this object, hence no need for locking.
384 hlist_for_each_entry_safe(area
, elem
, tmp
, &object
->area_list
, node
) {
386 kmem_cache_free(scan_area_cache
, area
);
388 kmem_cache_free(object_cache
, object
);
392 * Decrement the object use_count. Once the count is 0, free the object using
393 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
394 * delete_object() path, the delayed RCU freeing ensures that there is no
395 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
398 static void put_object(struct kmemleak_object
*object
)
400 if (!atomic_dec_and_test(&object
->use_count
))
403 /* should only get here after delete_object was called */
404 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
406 call_rcu(&object
->rcu
, free_object_rcu
);
410 * Look up an object in the prio search tree and increase its use_count.
412 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
415 struct kmemleak_object
*object
= NULL
;
418 read_lock_irqsave(&kmemleak_lock
, flags
);
419 if (ptr
>= min_addr
&& ptr
< max_addr
)
420 object
= lookup_object(ptr
, alias
);
421 read_unlock_irqrestore(&kmemleak_lock
, flags
);
423 /* check whether the object is still available */
424 if (object
&& !get_object(object
))
432 * Create the metadata (struct kmemleak_object) corresponding to an allocated
433 * memory block and add it to the object_list and object_tree_root.
435 static void create_object(unsigned long ptr
, size_t size
, int min_count
,
439 struct kmemleak_object
*object
;
440 struct prio_tree_node
*node
;
441 struct stack_trace trace
;
443 object
= kmem_cache_alloc(object_cache
, gfp
& GFP_KMEMLEAK_MASK
);
445 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
449 INIT_LIST_HEAD(&object
->object_list
);
450 INIT_LIST_HEAD(&object
->gray_list
);
451 INIT_HLIST_HEAD(&object
->area_list
);
452 spin_lock_init(&object
->lock
);
453 atomic_set(&object
->use_count
, 1);
454 object
->flags
= OBJECT_ALLOCATED
;
455 object
->pointer
= ptr
;
457 object
->min_count
= min_count
;
458 object
->count
= -1; /* no color initially */
459 object
->jiffies
= jiffies
;
461 /* task information */
464 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
465 } else if (in_softirq()) {
467 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
469 object
->pid
= current
->pid
;
471 * There is a small chance of a race with set_task_comm(),
472 * however using get_task_comm() here may cause locking
473 * dependency issues with current->alloc_lock. In the worst
474 * case, the command line is not correct.
476 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
479 /* kernel backtrace */
480 trace
.max_entries
= MAX_TRACE
;
481 trace
.nr_entries
= 0;
482 trace
.entries
= object
->trace
;
484 save_stack_trace(&trace
);
485 object
->trace_len
= trace
.nr_entries
;
487 INIT_PRIO_TREE_NODE(&object
->tree_node
);
488 object
->tree_node
.start
= ptr
;
489 object
->tree_node
.last
= ptr
+ size
- 1;
491 write_lock_irqsave(&kmemleak_lock
, flags
);
492 min_addr
= min(min_addr
, ptr
);
493 max_addr
= max(max_addr
, ptr
+ size
);
494 node
= prio_tree_insert(&object_tree_root
, &object
->tree_node
);
496 * The code calling the kernel does not yet have the pointer to the
497 * memory block to be able to free it. However, we still hold the
498 * kmemleak_lock here in case parts of the kernel started freeing
499 * random memory blocks.
501 if (node
!= &object
->tree_node
) {
504 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
505 "(already existing)\n", ptr
);
506 object
= lookup_object(ptr
, 1);
507 spin_lock_irqsave(&object
->lock
, flags
);
508 dump_object_info(object
);
509 spin_unlock_irqrestore(&object
->lock
, flags
);
513 list_add_tail_rcu(&object
->object_list
, &object_list
);
515 write_unlock_irqrestore(&kmemleak_lock
, flags
);
519 * Remove the metadata (struct kmemleak_object) for a memory block from the
520 * object_list and object_tree_root and decrement its use_count.
522 static void delete_object(unsigned long ptr
)
525 struct kmemleak_object
*object
;
527 write_lock_irqsave(&kmemleak_lock
, flags
);
528 object
= lookup_object(ptr
, 0);
531 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
534 write_unlock_irqrestore(&kmemleak_lock
, flags
);
537 prio_tree_remove(&object_tree_root
, &object
->tree_node
);
538 list_del_rcu(&object
->object_list
);
539 write_unlock_irqrestore(&kmemleak_lock
, flags
);
541 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
542 WARN_ON(atomic_read(&object
->use_count
) < 1);
545 * Locking here also ensures that the corresponding memory block
546 * cannot be freed when it is being scanned.
548 spin_lock_irqsave(&object
->lock
, flags
);
549 object
->flags
&= ~OBJECT_ALLOCATED
;
550 spin_unlock_irqrestore(&object
->lock
, flags
);
555 * Make a object permanently as gray-colored so that it can no longer be
556 * reported as a leak. This is used in general to mark a false positive.
558 static void make_gray_object(unsigned long ptr
)
561 struct kmemleak_object
*object
;
563 object
= find_and_get_object(ptr
, 0);
565 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr
);
569 spin_lock_irqsave(&object
->lock
, flags
);
570 object
->min_count
= 0;
571 spin_unlock_irqrestore(&object
->lock
, flags
);
576 * Mark the object as black-colored so that it is ignored from scans and
579 static void make_black_object(unsigned long ptr
)
582 struct kmemleak_object
*object
;
584 object
= find_and_get_object(ptr
, 0);
586 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr
);
590 spin_lock_irqsave(&object
->lock
, flags
);
591 object
->min_count
= -1;
592 spin_unlock_irqrestore(&object
->lock
, flags
);
597 * Add a scanning area to the object. If at least one such area is added,
598 * kmemleak will only scan these ranges rather than the whole memory block.
600 static void add_scan_area(unsigned long ptr
, unsigned long offset
,
601 size_t length
, gfp_t gfp
)
604 struct kmemleak_object
*object
;
605 struct kmemleak_scan_area
*area
;
607 object
= find_and_get_object(ptr
, 0);
609 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
614 area
= kmem_cache_alloc(scan_area_cache
, gfp
& GFP_KMEMLEAK_MASK
);
616 kmemleak_warn("Cannot allocate a scan area\n");
620 spin_lock_irqsave(&object
->lock
, flags
);
621 if (offset
+ length
> object
->size
) {
622 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
623 dump_object_info(object
);
624 kmem_cache_free(scan_area_cache
, area
);
628 INIT_HLIST_NODE(&area
->node
);
629 area
->offset
= offset
;
630 area
->length
= length
;
632 hlist_add_head(&area
->node
, &object
->area_list
);
634 spin_unlock_irqrestore(&object
->lock
, flags
);
640 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
641 * pointer. Such object will not be scanned by kmemleak but references to it
644 static void object_no_scan(unsigned long ptr
)
647 struct kmemleak_object
*object
;
649 object
= find_and_get_object(ptr
, 0);
651 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
655 spin_lock_irqsave(&object
->lock
, flags
);
656 object
->flags
|= OBJECT_NO_SCAN
;
657 spin_unlock_irqrestore(&object
->lock
, flags
);
662 * Log an early kmemleak_* call to the early_log buffer. These calls will be
663 * processed later once kmemleak is fully initialized.
665 static void log_early(int op_type
, const void *ptr
, size_t size
,
666 int min_count
, unsigned long offset
, size_t length
)
669 struct early_log
*log
;
671 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
672 pr_warning("Early log buffer exceeded\n");
678 * There is no need for locking since the kernel is still in UP mode
679 * at this stage. Disabling the IRQs is enough.
681 local_irq_save(flags
);
682 log
= &early_log
[crt_early_log
];
683 log
->op_type
= op_type
;
686 log
->min_count
= min_count
;
687 log
->offset
= offset
;
688 log
->length
= length
;
690 local_irq_restore(flags
);
694 * Memory allocation function callback. This function is called from the
695 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
698 void kmemleak_alloc(const void *ptr
, size_t size
, int min_count
, gfp_t gfp
)
700 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
702 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
703 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
704 else if (atomic_read(&kmemleak_early_log
))
705 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
, 0, 0);
707 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
710 * Memory freeing function callback. This function is called from the kernel
711 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
713 void kmemleak_free(const void *ptr
)
715 pr_debug("%s(0x%p)\n", __func__
, ptr
);
717 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
718 delete_object((unsigned long)ptr
);
719 else if (atomic_read(&kmemleak_early_log
))
720 log_early(KMEMLEAK_FREE
, ptr
, 0, 0, 0, 0);
722 EXPORT_SYMBOL_GPL(kmemleak_free
);
725 * Mark an already allocated memory block as a false positive. This will cause
726 * the block to no longer be reported as leak and always be scanned.
728 void kmemleak_not_leak(const void *ptr
)
730 pr_debug("%s(0x%p)\n", __func__
, ptr
);
732 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
733 make_gray_object((unsigned long)ptr
);
734 else if (atomic_read(&kmemleak_early_log
))
735 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0, 0, 0);
737 EXPORT_SYMBOL(kmemleak_not_leak
);
740 * Ignore a memory block. This is usually done when it is known that the
741 * corresponding block is not a leak and does not contain any references to
742 * other allocated memory blocks.
744 void kmemleak_ignore(const void *ptr
)
746 pr_debug("%s(0x%p)\n", __func__
, ptr
);
748 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
749 make_black_object((unsigned long)ptr
);
750 else if (atomic_read(&kmemleak_early_log
))
751 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0, 0, 0);
753 EXPORT_SYMBOL(kmemleak_ignore
);
756 * Limit the range to be scanned in an allocated memory block.
758 void kmemleak_scan_area(const void *ptr
, unsigned long offset
, size_t length
,
761 pr_debug("%s(0x%p)\n", __func__
, ptr
);
763 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
764 add_scan_area((unsigned long)ptr
, offset
, length
, gfp
);
765 else if (atomic_read(&kmemleak_early_log
))
766 log_early(KMEMLEAK_SCAN_AREA
, ptr
, 0, 0, offset
, length
);
768 EXPORT_SYMBOL(kmemleak_scan_area
);
771 * Inform kmemleak not to scan the given memory block.
773 void kmemleak_no_scan(const void *ptr
)
775 pr_debug("%s(0x%p)\n", __func__
, ptr
);
777 if (atomic_read(&kmemleak_enabled
) && ptr
&& !IS_ERR(ptr
))
778 object_no_scan((unsigned long)ptr
);
779 else if (atomic_read(&kmemleak_early_log
))
780 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0, 0, 0);
782 EXPORT_SYMBOL(kmemleak_no_scan
);
785 * Memory scanning is a long process and it needs to be interruptable. This
786 * function checks whether such interrupt condition occured.
788 static int scan_should_stop(void)
790 if (!atomic_read(&kmemleak_enabled
))
794 * This function may be called from either process or kthread context,
795 * hence the need to check for both stop conditions.
798 return signal_pending(current
);
800 return kthread_should_stop();
806 * Scan a memory block (exclusive range) for valid pointers and add those
807 * found to the gray list.
809 static void scan_block(void *_start
, void *_end
,
810 struct kmemleak_object
*scanned
)
813 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
814 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
816 for (ptr
= start
; ptr
< end
; ptr
++) {
818 unsigned long pointer
= *ptr
;
819 struct kmemleak_object
*object
;
821 if (scan_should_stop())
824 object
= find_and_get_object(pointer
, 1);
827 if (object
== scanned
) {
828 /* self referenced, ignore */
834 * Avoid the lockdep recursive warning on object->lock being
835 * previously acquired in scan_object(). These locks are
836 * enclosed by scan_mutex.
838 spin_lock_irqsave_nested(&object
->lock
, flags
,
839 SINGLE_DEPTH_NESTING
);
840 if (!color_white(object
)) {
841 /* non-orphan, ignored or new */
842 spin_unlock_irqrestore(&object
->lock
, flags
);
848 * Increase the object's reference count (number of pointers
849 * to the memory block). If this count reaches the required
850 * minimum, the object's color will become gray and it will be
851 * added to the gray_list.
854 if (color_gray(object
))
855 list_add_tail(&object
->gray_list
, &gray_list
);
858 spin_unlock_irqrestore(&object
->lock
, flags
);
863 * Scan a memory block corresponding to a kmemleak_object. A condition is
864 * that object->use_count >= 1.
866 static void scan_object(struct kmemleak_object
*object
)
868 struct kmemleak_scan_area
*area
;
869 struct hlist_node
*elem
;
873 * Once the object->lock is aquired, the corresponding memory block
874 * cannot be freed (the same lock is aquired in delete_object).
876 spin_lock_irqsave(&object
->lock
, flags
);
877 if (object
->flags
& OBJECT_NO_SCAN
)
879 if (!(object
->flags
& OBJECT_ALLOCATED
))
880 /* already freed object */
882 if (hlist_empty(&object
->area_list
))
883 scan_block((void *)object
->pointer
,
884 (void *)(object
->pointer
+ object
->size
), object
);
886 hlist_for_each_entry(area
, elem
, &object
->area_list
, node
)
887 scan_block((void *)(object
->pointer
+ area
->offset
),
888 (void *)(object
->pointer
+ area
->offset
889 + area
->length
), object
);
891 spin_unlock_irqrestore(&object
->lock
, flags
);
895 * Scan data sections and all the referenced memory blocks allocated via the
896 * kernel's standard allocators. This function must be called with the
899 static void kmemleak_scan(void)
902 struct kmemleak_object
*object
, *tmp
;
903 struct task_struct
*task
;
907 jiffies_last_scan
= jiffies
;
909 /* prepare the kmemleak_object's */
911 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
912 spin_lock_irqsave(&object
->lock
, flags
);
915 * With a few exceptions there should be a maximum of
916 * 1 reference to any object at this point.
918 if (atomic_read(&object
->use_count
) > 1) {
919 pr_debug("object->use_count = %d\n",
920 atomic_read(&object
->use_count
));
921 dump_object_info(object
);
924 /* reset the reference count (whiten the object) */
926 if (color_gray(object
) && get_object(object
))
927 list_add_tail(&object
->gray_list
, &gray_list
);
929 spin_unlock_irqrestore(&object
->lock
, flags
);
933 /* data/bss scanning */
934 scan_block(_sdata
, _edata
, NULL
);
935 scan_block(__bss_start
, __bss_stop
, NULL
);
938 /* per-cpu sections scanning */
939 for_each_possible_cpu(i
)
940 scan_block(__per_cpu_start
+ per_cpu_offset(i
),
941 __per_cpu_end
+ per_cpu_offset(i
), NULL
);
945 * Struct page scanning for each node. The code below is not yet safe
946 * with MEMORY_HOTPLUG.
948 for_each_online_node(i
) {
949 pg_data_t
*pgdat
= NODE_DATA(i
);
950 unsigned long start_pfn
= pgdat
->node_start_pfn
;
951 unsigned long end_pfn
= start_pfn
+ pgdat
->node_spanned_pages
;
954 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
959 page
= pfn_to_page(pfn
);
960 /* only scan if page is in use */
961 if (page_count(page
) == 0)
963 scan_block(page
, page
+ 1, NULL
);
968 * Scanning the task stacks may introduce false negatives and it is
969 * not enabled by default.
971 if (kmemleak_stack_scan
) {
972 read_lock(&tasklist_lock
);
973 for_each_process(task
)
974 scan_block(task_stack_page(task
),
975 task_stack_page(task
) + THREAD_SIZE
, NULL
);
976 read_unlock(&tasklist_lock
);
980 * Scan the objects already referenced from the sections scanned
981 * above. More objects will be referenced and, if there are no memory
982 * leaks, all the objects will be scanned. The list traversal is safe
983 * for both tail additions and removals from inside the loop. The
984 * kmemleak objects cannot be freed from outside the loop because their
985 * use_count was increased.
987 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
988 while (&object
->gray_list
!= &gray_list
) {
991 /* may add new objects to the list */
992 if (!scan_should_stop())
995 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
998 /* remove the object from the list and release it */
999 list_del(&object
->gray_list
);
1004 WARN_ON(!list_empty(&gray_list
));
1007 * If scanning was stopped do not report any new unreferenced objects.
1009 if (scan_should_stop())
1013 * Scanning result reporting.
1016 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1017 spin_lock_irqsave(&object
->lock
, flags
);
1018 if (unreferenced_object(object
) &&
1019 !(object
->flags
& OBJECT_REPORTED
)) {
1020 object
->flags
|= OBJECT_REPORTED
;
1023 spin_unlock_irqrestore(&object
->lock
, flags
);
1028 pr_info("%d new suspected memory leaks (see "
1029 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1034 * Thread function performing automatic memory scanning. Unreferenced objects
1035 * at the end of a memory scan are reported but only the first time.
1037 static int kmemleak_scan_thread(void *arg
)
1039 static int first_run
= 1;
1041 pr_info("Automatic memory scanning thread started\n");
1044 * Wait before the first scan to allow the system to fully initialize.
1048 ssleep(SECS_FIRST_SCAN
);
1051 while (!kthread_should_stop()) {
1052 signed long timeout
= jiffies_scan_wait
;
1054 mutex_lock(&scan_mutex
);
1056 mutex_unlock(&scan_mutex
);
1058 /* wait before the next scan */
1059 while (timeout
&& !kthread_should_stop())
1060 timeout
= schedule_timeout_interruptible(timeout
);
1063 pr_info("Automatic memory scanning thread ended\n");
1069 * Start the automatic memory scanning thread. This function must be called
1070 * with the scan_mutex held.
1072 void start_scan_thread(void)
1076 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1077 if (IS_ERR(scan_thread
)) {
1078 pr_warning("Failed to create the scan thread\n");
1084 * Stop the automatic memory scanning thread. This function must be called
1085 * with the scan_mutex held.
1087 void stop_scan_thread(void)
1090 kthread_stop(scan_thread
);
1096 * Iterate over the object_list and return the first valid object at or after
1097 * the required position with its use_count incremented. The function triggers
1098 * a memory scanning when the pos argument points to the first position.
1100 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1102 struct kmemleak_object
*object
;
1107 if (reported_leaks
>= REPORTS_NR
)
1111 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1114 if (get_object(object
))
1124 * Return the next object in the object_list. The function decrements the
1125 * use_count of the previous object and increases that of the next one.
1127 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1129 struct kmemleak_object
*prev_obj
= v
;
1130 struct kmemleak_object
*next_obj
= NULL
;
1131 struct list_head
*n
= &prev_obj
->object_list
;
1134 if (reported_leaks
>= REPORTS_NR
)
1138 list_for_each_continue_rcu(n
, &object_list
) {
1139 next_obj
= list_entry(n
, struct kmemleak_object
, object_list
);
1140 if (get_object(next_obj
))
1145 put_object(prev_obj
);
1150 * Decrement the use_count of the last object required, if any.
1152 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1159 * Print the information for an unreferenced object to the seq file.
1161 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1163 struct kmemleak_object
*object
= v
;
1164 unsigned long flags
;
1166 spin_lock_irqsave(&object
->lock
, flags
);
1167 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
)) {
1168 print_unreferenced(seq
, object
);
1171 spin_unlock_irqrestore(&object
->lock
, flags
);
1175 static const struct seq_operations kmemleak_seq_ops
= {
1176 .start
= kmemleak_seq_start
,
1177 .next
= kmemleak_seq_next
,
1178 .stop
= kmemleak_seq_stop
,
1179 .show
= kmemleak_seq_show
,
1182 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1186 if (!atomic_read(&kmemleak_enabled
))
1189 ret
= mutex_lock_interruptible(&scan_mutex
);
1192 if (file
->f_mode
& FMODE_READ
) {
1193 ret
= seq_open(file
, &kmemleak_seq_ops
);
1200 mutex_unlock(&scan_mutex
);
1205 static int kmemleak_release(struct inode
*inode
, struct file
*file
)
1209 if (file
->f_mode
& FMODE_READ
)
1210 seq_release(inode
, file
);
1211 mutex_unlock(&scan_mutex
);
1217 * File write operation to configure kmemleak at run-time. The following
1218 * commands can be written to the /sys/kernel/debug/kmemleak file:
1219 * off - disable kmemleak (irreversible)
1220 * stack=on - enable the task stacks scanning
1221 * stack=off - disable the tasks stacks scanning
1222 * scan=on - start the automatic memory scanning thread
1223 * scan=off - stop the automatic memory scanning thread
1224 * scan=... - set the automatic memory scanning period in seconds (0 to
1226 * scan - trigger a memory scan
1228 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1229 size_t size
, loff_t
*ppos
)
1234 if (!atomic_read(&kmemleak_enabled
))
1237 buf_size
= min(size
, (sizeof(buf
) - 1));
1238 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1242 if (strncmp(buf
, "off", 3) == 0)
1244 else if (strncmp(buf
, "stack=on", 8) == 0)
1245 kmemleak_stack_scan
= 1;
1246 else if (strncmp(buf
, "stack=off", 9) == 0)
1247 kmemleak_stack_scan
= 0;
1248 else if (strncmp(buf
, "scan=on", 7) == 0)
1249 start_scan_thread();
1250 else if (strncmp(buf
, "scan=off", 8) == 0)
1252 else if (strncmp(buf
, "scan=", 5) == 0) {
1256 err
= strict_strtoul(buf
+ 5, 0, &secs
);
1261 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1262 start_scan_thread();
1264 } else if (strncmp(buf
, "scan", 4) == 0)
1269 /* ignore the rest of the buffer, only one command at a time */
1274 static const struct file_operations kmemleak_fops
= {
1275 .owner
= THIS_MODULE
,
1276 .open
= kmemleak_open
,
1278 .write
= kmemleak_write
,
1279 .llseek
= seq_lseek
,
1280 .release
= kmemleak_release
,
1284 * Perform the freeing of the kmemleak internal objects after waiting for any
1285 * current memory scan to complete.
1287 static int kmemleak_cleanup_thread(void *arg
)
1289 struct kmemleak_object
*object
;
1291 mutex_lock(&scan_mutex
);
1295 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1296 delete_object(object
->pointer
);
1298 mutex_unlock(&scan_mutex
);
1304 * Start the clean-up thread.
1306 static void kmemleak_cleanup(void)
1308 struct task_struct
*cleanup_thread
;
1310 cleanup_thread
= kthread_run(kmemleak_cleanup_thread
, NULL
,
1312 if (IS_ERR(cleanup_thread
))
1313 pr_warning("Failed to create the clean-up thread\n");
1317 * Disable kmemleak. No memory allocation/freeing will be traced once this
1318 * function is called. Disabling kmemleak is an irreversible operation.
1320 static void kmemleak_disable(void)
1322 /* atomically check whether it was already invoked */
1323 if (atomic_cmpxchg(&kmemleak_error
, 0, 1))
1326 /* stop any memory operation tracing */
1327 atomic_set(&kmemleak_early_log
, 0);
1328 atomic_set(&kmemleak_enabled
, 0);
1330 /* check whether it is too early for a kernel thread */
1331 if (atomic_read(&kmemleak_initialized
))
1334 pr_info("Kernel memory leak detector disabled\n");
1338 * Allow boot-time kmemleak disabling (enabled by default).
1340 static int kmemleak_boot_config(char *str
)
1344 if (strcmp(str
, "off") == 0)
1346 else if (strcmp(str
, "on") != 0)
1350 early_param("kmemleak", kmemleak_boot_config
);
1353 * Kmemleak initialization.
1355 void __init
kmemleak_init(void)
1358 unsigned long flags
;
1360 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1361 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1363 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1364 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1365 INIT_PRIO_TREE_ROOT(&object_tree_root
);
1367 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1368 local_irq_save(flags
);
1369 if (!atomic_read(&kmemleak_error
)) {
1370 atomic_set(&kmemleak_enabled
, 1);
1371 atomic_set(&kmemleak_early_log
, 0);
1373 local_irq_restore(flags
);
1376 * This is the point where tracking allocations is safe. Automatic
1377 * scanning is started during the late initcall. Add the early logged
1378 * callbacks to the kmemleak infrastructure.
1380 for (i
= 0; i
< crt_early_log
; i
++) {
1381 struct early_log
*log
= &early_log
[i
];
1383 switch (log
->op_type
) {
1384 case KMEMLEAK_ALLOC
:
1385 kmemleak_alloc(log
->ptr
, log
->size
, log
->min_count
,
1389 kmemleak_free(log
->ptr
);
1391 case KMEMLEAK_NOT_LEAK
:
1392 kmemleak_not_leak(log
->ptr
);
1394 case KMEMLEAK_IGNORE
:
1395 kmemleak_ignore(log
->ptr
);
1397 case KMEMLEAK_SCAN_AREA
:
1398 kmemleak_scan_area(log
->ptr
, log
->offset
, log
->length
,
1401 case KMEMLEAK_NO_SCAN
:
1402 kmemleak_no_scan(log
->ptr
);
1411 * Late initialization function.
1413 static int __init
kmemleak_late_init(void)
1415 struct dentry
*dentry
;
1417 atomic_set(&kmemleak_initialized
, 1);
1419 if (atomic_read(&kmemleak_error
)) {
1421 * Some error occured and kmemleak was disabled. There is a
1422 * small chance that kmemleak_disable() was called immediately
1423 * after setting kmemleak_initialized and we may end up with
1424 * two clean-up threads but serialized by scan_mutex.
1430 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1433 pr_warning("Failed to create the debugfs kmemleak file\n");
1434 mutex_lock(&scan_mutex
);
1435 start_scan_thread();
1436 mutex_unlock(&scan_mutex
);
1438 pr_info("Kernel memory leak detector initialized\n");
1442 late_initcall(kmemleak_late_init
);