block: kill off REQ_UNPLUG
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / buffer.c
blob42534f67d71b23514d9c9c20724b420039f5b860
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 bh->b_end_io = handler;
53 bh->b_private = private;
55 EXPORT_SYMBOL(init_buffer);
57 static int sleep_on_buffer(void *word)
59 io_schedule();
60 return 0;
63 void __lock_buffer(struct buffer_head *bh)
65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 TASK_UNINTERRUPTIBLE);
68 EXPORT_SYMBOL(__lock_buffer);
70 void unlock_buffer(struct buffer_head *bh)
72 clear_bit_unlock(BH_Lock, &bh->b_state);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh->b_state, BH_Lock);
76 EXPORT_SYMBOL(unlock_buffer);
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
83 void __wait_on_buffer(struct buffer_head * bh)
85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
87 EXPORT_SYMBOL(__wait_on_buffer);
89 static void
90 __clear_page_buffers(struct page *page)
92 ClearPagePrivate(page);
93 set_page_private(page, 0);
94 page_cache_release(page);
98 static int quiet_error(struct buffer_head *bh)
100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 return 0;
102 return 1;
106 static void buffer_io_error(struct buffer_head *bh)
108 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
115 * End-of-IO handler helper function which does not touch the bh after
116 * unlocking it.
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
120 * itself.
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
124 if (uptodate) {
125 set_buffer_uptodate(bh);
126 } else {
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh);
130 unlock_buffer(bh);
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
139 __end_buffer_read_notouch(bh, uptodate);
140 put_bh(bh);
142 EXPORT_SYMBOL(end_buffer_read_sync);
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
146 char b[BDEVNAME_SIZE];
148 if (uptodate) {
149 set_buffer_uptodate(bh);
150 } else {
151 if (!quiet_error(bh)) {
152 buffer_io_error(bh);
153 printk(KERN_WARNING "lost page write due to "
154 "I/O error on %s\n",
155 bdevname(bh->b_bdev, b));
157 set_buffer_write_io_error(bh);
158 clear_buffer_uptodate(bh);
160 unlock_buffer(bh);
161 put_bh(bh);
163 EXPORT_SYMBOL(end_buffer_write_sync);
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
169 * private_lock.
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
179 struct inode *bd_inode = bdev->bd_inode;
180 struct address_space *bd_mapping = bd_inode->i_mapping;
181 struct buffer_head *ret = NULL;
182 pgoff_t index;
183 struct buffer_head *bh;
184 struct buffer_head *head;
185 struct page *page;
186 int all_mapped = 1;
188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 page = find_get_page(bd_mapping, index);
190 if (!page)
191 goto out;
193 spin_lock(&bd_mapping->private_lock);
194 if (!page_has_buffers(page))
195 goto out_unlock;
196 head = page_buffers(page);
197 bh = head;
198 do {
199 if (!buffer_mapped(bh))
200 all_mapped = 0;
201 else if (bh->b_blocknr == block) {
202 ret = bh;
203 get_bh(bh);
204 goto out_unlock;
206 bh = bh->b_this_page;
207 } while (bh != head);
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
214 if (all_mapped) {
215 printk("__find_get_block_slow() failed. "
216 "block=%llu, b_blocknr=%llu\n",
217 (unsigned long long)block,
218 (unsigned long long)bh->b_blocknr);
219 printk("b_state=0x%08lx, b_size=%zu\n",
220 bh->b_state, bh->b_size);
221 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
223 out_unlock:
224 spin_unlock(&bd_mapping->private_lock);
225 page_cache_release(page);
226 out:
227 return ret;
230 /* If invalidate_buffers() will trash dirty buffers, it means some kind
231 of fs corruption is going on. Trashing dirty data always imply losing
232 information that was supposed to be just stored on the physical layer
233 by the user.
235 Thus invalidate_buffers in general usage is not allwowed to trash
236 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
237 be preserved. These buffers are simply skipped.
239 We also skip buffers which are still in use. For example this can
240 happen if a userspace program is reading the block device.
242 NOTE: In the case where the user removed a removable-media-disk even if
243 there's still dirty data not synced on disk (due a bug in the device driver
244 or due an error of the user), by not destroying the dirty buffers we could
245 generate corruption also on the next media inserted, thus a parameter is
246 necessary to handle this case in the most safe way possible (trying
247 to not corrupt also the new disk inserted with the data belonging to
248 the old now corrupted disk). Also for the ramdisk the natural thing
249 to do in order to release the ramdisk memory is to destroy dirty buffers.
251 These are two special cases. Normal usage imply the device driver
252 to issue a sync on the device (without waiting I/O completion) and
253 then an invalidate_buffers call that doesn't trash dirty buffers.
255 For handling cache coherency with the blkdev pagecache the 'update' case
256 is been introduced. It is needed to re-read from disk any pinned
257 buffer. NOTE: re-reading from disk is destructive so we can do it only
258 when we assume nobody is changing the buffercache under our I/O and when
259 we think the disk contains more recent information than the buffercache.
260 The update == 1 pass marks the buffers we need to update, the update == 2
261 pass does the actual I/O. */
262 void invalidate_bdev(struct block_device *bdev)
264 struct address_space *mapping = bdev->bd_inode->i_mapping;
266 if (mapping->nrpages == 0)
267 return;
269 invalidate_bh_lrus();
270 lru_add_drain_all(); /* make sure all lru add caches are flushed */
271 invalidate_mapping_pages(mapping, 0, -1);
273 EXPORT_SYMBOL(invalidate_bdev);
276 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
278 static void free_more_memory(void)
280 struct zone *zone;
281 int nid;
283 wakeup_flusher_threads(1024);
284 yield();
286 for_each_online_node(nid) {
287 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
288 gfp_zone(GFP_NOFS), NULL,
289 &zone);
290 if (zone)
291 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
292 GFP_NOFS, NULL);
297 * I/O completion handler for block_read_full_page() - pages
298 * which come unlocked at the end of I/O.
300 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 unsigned long flags;
303 struct buffer_head *first;
304 struct buffer_head *tmp;
305 struct page *page;
306 int page_uptodate = 1;
308 BUG_ON(!buffer_async_read(bh));
310 page = bh->b_page;
311 if (uptodate) {
312 set_buffer_uptodate(bh);
313 } else {
314 clear_buffer_uptodate(bh);
315 if (!quiet_error(bh))
316 buffer_io_error(bh);
317 SetPageError(page);
321 * Be _very_ careful from here on. Bad things can happen if
322 * two buffer heads end IO at almost the same time and both
323 * decide that the page is now completely done.
325 first = page_buffers(page);
326 local_irq_save(flags);
327 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
328 clear_buffer_async_read(bh);
329 unlock_buffer(bh);
330 tmp = bh;
331 do {
332 if (!buffer_uptodate(tmp))
333 page_uptodate = 0;
334 if (buffer_async_read(tmp)) {
335 BUG_ON(!buffer_locked(tmp));
336 goto still_busy;
338 tmp = tmp->b_this_page;
339 } while (tmp != bh);
340 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
341 local_irq_restore(flags);
344 * If none of the buffers had errors and they are all
345 * uptodate then we can set the page uptodate.
347 if (page_uptodate && !PageError(page))
348 SetPageUptodate(page);
349 unlock_page(page);
350 return;
352 still_busy:
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
355 return;
359 * Completion handler for block_write_full_page() - pages which are unlocked
360 * during I/O, and which have PageWriteback cleared upon I/O completion.
362 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 char b[BDEVNAME_SIZE];
365 unsigned long flags;
366 struct buffer_head *first;
367 struct buffer_head *tmp;
368 struct page *page;
370 BUG_ON(!buffer_async_write(bh));
372 page = bh->b_page;
373 if (uptodate) {
374 set_buffer_uptodate(bh);
375 } else {
376 if (!quiet_error(bh)) {
377 buffer_io_error(bh);
378 printk(KERN_WARNING "lost page write due to "
379 "I/O error on %s\n",
380 bdevname(bh->b_bdev, b));
382 set_bit(AS_EIO, &page->mapping->flags);
383 set_buffer_write_io_error(bh);
384 clear_buffer_uptodate(bh);
385 SetPageError(page);
388 first = page_buffers(page);
389 local_irq_save(flags);
390 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392 clear_buffer_async_write(bh);
393 unlock_buffer(bh);
394 tmp = bh->b_this_page;
395 while (tmp != bh) {
396 if (buffer_async_write(tmp)) {
397 BUG_ON(!buffer_locked(tmp));
398 goto still_busy;
400 tmp = tmp->b_this_page;
402 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
403 local_irq_restore(flags);
404 end_page_writeback(page);
405 return;
407 still_busy:
408 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409 local_irq_restore(flags);
410 return;
412 EXPORT_SYMBOL(end_buffer_async_write);
415 * If a page's buffers are under async readin (end_buffer_async_read
416 * completion) then there is a possibility that another thread of
417 * control could lock one of the buffers after it has completed
418 * but while some of the other buffers have not completed. This
419 * locked buffer would confuse end_buffer_async_read() into not unlocking
420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
421 * that this buffer is not under async I/O.
423 * The page comes unlocked when it has no locked buffer_async buffers
424 * left.
426 * PageLocked prevents anyone starting new async I/O reads any of
427 * the buffers.
429 * PageWriteback is used to prevent simultaneous writeout of the same
430 * page.
432 * PageLocked prevents anyone from starting writeback of a page which is
433 * under read I/O (PageWriteback is only ever set against a locked page).
435 static void mark_buffer_async_read(struct buffer_head *bh)
437 bh->b_end_io = end_buffer_async_read;
438 set_buffer_async_read(bh);
441 static void mark_buffer_async_write_endio(struct buffer_head *bh,
442 bh_end_io_t *handler)
444 bh->b_end_io = handler;
445 set_buffer_async_write(bh);
448 void mark_buffer_async_write(struct buffer_head *bh)
450 mark_buffer_async_write_endio(bh, end_buffer_async_write);
452 EXPORT_SYMBOL(mark_buffer_async_write);
456 * fs/buffer.c contains helper functions for buffer-backed address space's
457 * fsync functions. A common requirement for buffer-based filesystems is
458 * that certain data from the backing blockdev needs to be written out for
459 * a successful fsync(). For example, ext2 indirect blocks need to be
460 * written back and waited upon before fsync() returns.
462 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
463 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
464 * management of a list of dependent buffers at ->i_mapping->private_list.
466 * Locking is a little subtle: try_to_free_buffers() will remove buffers
467 * from their controlling inode's queue when they are being freed. But
468 * try_to_free_buffers() will be operating against the *blockdev* mapping
469 * at the time, not against the S_ISREG file which depends on those buffers.
470 * So the locking for private_list is via the private_lock in the address_space
471 * which backs the buffers. Which is different from the address_space
472 * against which the buffers are listed. So for a particular address_space,
473 * mapping->private_lock does *not* protect mapping->private_list! In fact,
474 * mapping->private_list will always be protected by the backing blockdev's
475 * ->private_lock.
477 * Which introduces a requirement: all buffers on an address_space's
478 * ->private_list must be from the same address_space: the blockdev's.
480 * address_spaces which do not place buffers at ->private_list via these
481 * utility functions are free to use private_lock and private_list for
482 * whatever they want. The only requirement is that list_empty(private_list)
483 * be true at clear_inode() time.
485 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
486 * filesystems should do that. invalidate_inode_buffers() should just go
487 * BUG_ON(!list_empty).
489 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
490 * take an address_space, not an inode. And it should be called
491 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
492 * queued up.
494 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
495 * list if it is already on a list. Because if the buffer is on a list,
496 * it *must* already be on the right one. If not, the filesystem is being
497 * silly. This will save a ton of locking. But first we have to ensure
498 * that buffers are taken *off* the old inode's list when they are freed
499 * (presumably in truncate). That requires careful auditing of all
500 * filesystems (do it inside bforget()). It could also be done by bringing
501 * b_inode back.
505 * The buffer's backing address_space's private_lock must be held
507 static void __remove_assoc_queue(struct buffer_head *bh)
509 list_del_init(&bh->b_assoc_buffers);
510 WARN_ON(!bh->b_assoc_map);
511 if (buffer_write_io_error(bh))
512 set_bit(AS_EIO, &bh->b_assoc_map->flags);
513 bh->b_assoc_map = NULL;
516 int inode_has_buffers(struct inode *inode)
518 return !list_empty(&inode->i_data.private_list);
522 * osync is designed to support O_SYNC io. It waits synchronously for
523 * all already-submitted IO to complete, but does not queue any new
524 * writes to the disk.
526 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
527 * you dirty the buffers, and then use osync_inode_buffers to wait for
528 * completion. Any other dirty buffers which are not yet queued for
529 * write will not be flushed to disk by the osync.
531 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 struct buffer_head *bh;
534 struct list_head *p;
535 int err = 0;
537 spin_lock(lock);
538 repeat:
539 list_for_each_prev(p, list) {
540 bh = BH_ENTRY(p);
541 if (buffer_locked(bh)) {
542 get_bh(bh);
543 spin_unlock(lock);
544 wait_on_buffer(bh);
545 if (!buffer_uptodate(bh))
546 err = -EIO;
547 brelse(bh);
548 spin_lock(lock);
549 goto repeat;
552 spin_unlock(lock);
553 return err;
556 static void do_thaw_one(struct super_block *sb, void *unused)
558 char b[BDEVNAME_SIZE];
559 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
560 printk(KERN_WARNING "Emergency Thaw on %s\n",
561 bdevname(sb->s_bdev, b));
564 static void do_thaw_all(struct work_struct *work)
566 iterate_supers(do_thaw_one, NULL);
567 kfree(work);
568 printk(KERN_WARNING "Emergency Thaw complete\n");
572 * emergency_thaw_all -- forcibly thaw every frozen filesystem
574 * Used for emergency unfreeze of all filesystems via SysRq
576 void emergency_thaw_all(void)
578 struct work_struct *work;
580 work = kmalloc(sizeof(*work), GFP_ATOMIC);
581 if (work) {
582 INIT_WORK(work, do_thaw_all);
583 schedule_work(work);
588 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
589 * @mapping: the mapping which wants those buffers written
591 * Starts I/O against the buffers at mapping->private_list, and waits upon
592 * that I/O.
594 * Basically, this is a convenience function for fsync().
595 * @mapping is a file or directory which needs those buffers to be written for
596 * a successful fsync().
598 int sync_mapping_buffers(struct address_space *mapping)
600 struct address_space *buffer_mapping = mapping->assoc_mapping;
602 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
603 return 0;
605 return fsync_buffers_list(&buffer_mapping->private_lock,
606 &mapping->private_list);
608 EXPORT_SYMBOL(sync_mapping_buffers);
611 * Called when we've recently written block `bblock', and it is known that
612 * `bblock' was for a buffer_boundary() buffer. This means that the block at
613 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
614 * dirty, schedule it for IO. So that indirects merge nicely with their data.
616 void write_boundary_block(struct block_device *bdev,
617 sector_t bblock, unsigned blocksize)
619 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
620 if (bh) {
621 if (buffer_dirty(bh))
622 ll_rw_block(WRITE, 1, &bh);
623 put_bh(bh);
627 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
629 struct address_space *mapping = inode->i_mapping;
630 struct address_space *buffer_mapping = bh->b_page->mapping;
632 mark_buffer_dirty(bh);
633 if (!mapping->assoc_mapping) {
634 mapping->assoc_mapping = buffer_mapping;
635 } else {
636 BUG_ON(mapping->assoc_mapping != buffer_mapping);
638 if (!bh->b_assoc_map) {
639 spin_lock(&buffer_mapping->private_lock);
640 list_move_tail(&bh->b_assoc_buffers,
641 &mapping->private_list);
642 bh->b_assoc_map = mapping;
643 spin_unlock(&buffer_mapping->private_lock);
646 EXPORT_SYMBOL(mark_buffer_dirty_inode);
649 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
650 * dirty.
652 * If warn is true, then emit a warning if the page is not uptodate and has
653 * not been truncated.
655 static void __set_page_dirty(struct page *page,
656 struct address_space *mapping, int warn)
658 spin_lock_irq(&mapping->tree_lock);
659 if (page->mapping) { /* Race with truncate? */
660 WARN_ON_ONCE(warn && !PageUptodate(page));
661 account_page_dirtied(page, mapping);
662 radix_tree_tag_set(&mapping->page_tree,
663 page_index(page), PAGECACHE_TAG_DIRTY);
665 spin_unlock_irq(&mapping->tree_lock);
666 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670 * Add a page to the dirty page list.
672 * It is a sad fact of life that this function is called from several places
673 * deeply under spinlocking. It may not sleep.
675 * If the page has buffers, the uptodate buffers are set dirty, to preserve
676 * dirty-state coherency between the page and the buffers. It the page does
677 * not have buffers then when they are later attached they will all be set
678 * dirty.
680 * The buffers are dirtied before the page is dirtied. There's a small race
681 * window in which a writepage caller may see the page cleanness but not the
682 * buffer dirtiness. That's fine. If this code were to set the page dirty
683 * before the buffers, a concurrent writepage caller could clear the page dirty
684 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
685 * page on the dirty page list.
687 * We use private_lock to lock against try_to_free_buffers while using the
688 * page's buffer list. Also use this to protect against clean buffers being
689 * added to the page after it was set dirty.
691 * FIXME: may need to call ->reservepage here as well. That's rather up to the
692 * address_space though.
694 int __set_page_dirty_buffers(struct page *page)
696 int newly_dirty;
697 struct address_space *mapping = page_mapping(page);
699 if (unlikely(!mapping))
700 return !TestSetPageDirty(page);
702 spin_lock(&mapping->private_lock);
703 if (page_has_buffers(page)) {
704 struct buffer_head *head = page_buffers(page);
705 struct buffer_head *bh = head;
707 do {
708 set_buffer_dirty(bh);
709 bh = bh->b_this_page;
710 } while (bh != head);
712 newly_dirty = !TestSetPageDirty(page);
713 spin_unlock(&mapping->private_lock);
715 if (newly_dirty)
716 __set_page_dirty(page, mapping, 1);
717 return newly_dirty;
719 EXPORT_SYMBOL(__set_page_dirty_buffers);
722 * Write out and wait upon a list of buffers.
724 * We have conflicting pressures: we want to make sure that all
725 * initially dirty buffers get waited on, but that any subsequently
726 * dirtied buffers don't. After all, we don't want fsync to last
727 * forever if somebody is actively writing to the file.
729 * Do this in two main stages: first we copy dirty buffers to a
730 * temporary inode list, queueing the writes as we go. Then we clean
731 * up, waiting for those writes to complete.
733 * During this second stage, any subsequent updates to the file may end
734 * up refiling the buffer on the original inode's dirty list again, so
735 * there is a chance we will end up with a buffer queued for write but
736 * not yet completed on that list. So, as a final cleanup we go through
737 * the osync code to catch these locked, dirty buffers without requeuing
738 * any newly dirty buffers for write.
740 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
742 struct buffer_head *bh;
743 struct list_head tmp;
744 struct address_space *mapping;
745 int err = 0, err2;
747 INIT_LIST_HEAD(&tmp);
749 spin_lock(lock);
750 while (!list_empty(list)) {
751 bh = BH_ENTRY(list->next);
752 mapping = bh->b_assoc_map;
753 __remove_assoc_queue(bh);
754 /* Avoid race with mark_buffer_dirty_inode() which does
755 * a lockless check and we rely on seeing the dirty bit */
756 smp_mb();
757 if (buffer_dirty(bh) || buffer_locked(bh)) {
758 list_add(&bh->b_assoc_buffers, &tmp);
759 bh->b_assoc_map = mapping;
760 if (buffer_dirty(bh)) {
761 get_bh(bh);
762 spin_unlock(lock);
764 * Ensure any pending I/O completes so that
765 * write_dirty_buffer() actually writes the
766 * current contents - it is a noop if I/O is
767 * still in flight on potentially older
768 * contents.
770 write_dirty_buffer(bh, WRITE_SYNC);
773 * Kick off IO for the previous mapping. Note
774 * that we will not run the very last mapping,
775 * wait_on_buffer() will do that for us
776 * through sync_buffer().
778 brelse(bh);
779 spin_lock(lock);
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
786 get_bh(bh);
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
794 &mapping->private_list);
795 bh->b_assoc_map = mapping;
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
822 void invalidate_inode_buffers(struct inode *inode)
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
827 struct address_space *buffer_mapping = mapping->assoc_mapping;
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
835 EXPORT_SYMBOL(invalidate_inode_buffers);
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
841 * Returns true if all buffers were removed.
843 int remove_inode_buffers(struct inode *inode)
845 int ret = 1;
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
850 struct address_space *buffer_mapping = mapping->assoc_mapping;
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
859 __remove_assoc_queue(bh);
861 spin_unlock(&buffer_mapping->private_lock);
863 return ret;
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
878 struct buffer_head *bh, *head;
879 long offset;
881 try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
889 bh->b_bdev = NULL;
890 bh->b_this_page = head;
891 bh->b_blocknr = -1;
892 head = bh;
894 bh->b_state = 0;
895 atomic_set(&bh->b_count, 0);
896 bh->b_size = size;
898 /* Link the buffer to its page */
899 set_bh_page(bh, page, offset);
901 init_buffer(bh, NULL, NULL);
903 return head;
905 * In case anything failed, we just free everything we got.
907 no_grow:
908 if (head) {
909 do {
910 bh = head;
911 head = head->b_this_page;
912 free_buffer_head(bh);
913 } while (head);
917 * Return failure for non-async IO requests. Async IO requests
918 * are not allowed to fail, so we have to wait until buffer heads
919 * become available. But we don't want tasks sleeping with
920 * partially complete buffers, so all were released above.
922 if (!retry)
923 return NULL;
925 /* We're _really_ low on memory. Now we just
926 * wait for old buffer heads to become free due to
927 * finishing IO. Since this is an async request and
928 * the reserve list is empty, we're sure there are
929 * async buffer heads in use.
931 free_more_memory();
932 goto try_again;
934 EXPORT_SYMBOL_GPL(alloc_page_buffers);
936 static inline void
937 link_dev_buffers(struct page *page, struct buffer_head *head)
939 struct buffer_head *bh, *tail;
941 bh = head;
942 do {
943 tail = bh;
944 bh = bh->b_this_page;
945 } while (bh);
946 tail->b_this_page = head;
947 attach_page_buffers(page, head);
951 * Initialise the state of a blockdev page's buffers.
953 static void
954 init_page_buffers(struct page *page, struct block_device *bdev,
955 sector_t block, int size)
957 struct buffer_head *head = page_buffers(page);
958 struct buffer_head *bh = head;
959 int uptodate = PageUptodate(page);
961 do {
962 if (!buffer_mapped(bh)) {
963 init_buffer(bh, NULL, NULL);
964 bh->b_bdev = bdev;
965 bh->b_blocknr = block;
966 if (uptodate)
967 set_buffer_uptodate(bh);
968 set_buffer_mapped(bh);
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
976 * Create the page-cache page that contains the requested block.
978 * This is user purely for blockdev mappings.
980 static struct page *
981 grow_dev_page(struct block_device *bdev, sector_t block,
982 pgoff_t index, int size)
984 struct inode *inode = bdev->bd_inode;
985 struct page *page;
986 struct buffer_head *bh;
988 page = find_or_create_page(inode->i_mapping, index,
989 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
990 if (!page)
991 return NULL;
993 BUG_ON(!PageLocked(page));
995 if (page_has_buffers(page)) {
996 bh = page_buffers(page);
997 if (bh->b_size == size) {
998 init_page_buffers(page, bdev, block, size);
999 return page;
1001 if (!try_to_free_buffers(page))
1002 goto failed;
1006 * Allocate some buffers for this page
1008 bh = alloc_page_buffers(page, size, 0);
1009 if (!bh)
1010 goto failed;
1013 * Link the page to the buffers and initialise them. Take the
1014 * lock to be atomic wrt __find_get_block(), which does not
1015 * run under the page lock.
1017 spin_lock(&inode->i_mapping->private_lock);
1018 link_dev_buffers(page, bh);
1019 init_page_buffers(page, bdev, block, size);
1020 spin_unlock(&inode->i_mapping->private_lock);
1021 return page;
1023 failed:
1024 BUG();
1025 unlock_page(page);
1026 page_cache_release(page);
1027 return NULL;
1031 * Create buffers for the specified block device block's page. If
1032 * that page was dirty, the buffers are set dirty also.
1034 static int
1035 grow_buffers(struct block_device *bdev, sector_t block, int size)
1037 struct page *page;
1038 pgoff_t index;
1039 int sizebits;
1041 sizebits = -1;
1042 do {
1043 sizebits++;
1044 } while ((size << sizebits) < PAGE_SIZE);
1046 index = block >> sizebits;
1049 * Check for a block which wants to lie outside our maximum possible
1050 * pagecache index. (this comparison is done using sector_t types).
1052 if (unlikely(index != block >> sizebits)) {
1053 char b[BDEVNAME_SIZE];
1055 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1056 "device %s\n",
1057 __func__, (unsigned long long)block,
1058 bdevname(bdev, b));
1059 return -EIO;
1061 block = index << sizebits;
1062 /* Create a page with the proper size buffers.. */
1063 page = grow_dev_page(bdev, block, index, size);
1064 if (!page)
1065 return 0;
1066 unlock_page(page);
1067 page_cache_release(page);
1068 return 1;
1071 static struct buffer_head *
1072 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1074 /* Size must be multiple of hard sectorsize */
1075 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1076 (size < 512 || size > PAGE_SIZE))) {
1077 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1078 size);
1079 printk(KERN_ERR "logical block size: %d\n",
1080 bdev_logical_block_size(bdev));
1082 dump_stack();
1083 return NULL;
1086 for (;;) {
1087 struct buffer_head * bh;
1088 int ret;
1090 bh = __find_get_block(bdev, block, size);
1091 if (bh)
1092 return bh;
1094 ret = grow_buffers(bdev, block, size);
1095 if (ret < 0)
1096 return NULL;
1097 if (ret == 0)
1098 free_more_memory();
1103 * The relationship between dirty buffers and dirty pages:
1105 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1106 * the page is tagged dirty in its radix tree.
1108 * At all times, the dirtiness of the buffers represents the dirtiness of
1109 * subsections of the page. If the page has buffers, the page dirty bit is
1110 * merely a hint about the true dirty state.
1112 * When a page is set dirty in its entirety, all its buffers are marked dirty
1113 * (if the page has buffers).
1115 * When a buffer is marked dirty, its page is dirtied, but the page's other
1116 * buffers are not.
1118 * Also. When blockdev buffers are explicitly read with bread(), they
1119 * individually become uptodate. But their backing page remains not
1120 * uptodate - even if all of its buffers are uptodate. A subsequent
1121 * block_read_full_page() against that page will discover all the uptodate
1122 * buffers, will set the page uptodate and will perform no I/O.
1126 * mark_buffer_dirty - mark a buffer_head as needing writeout
1127 * @bh: the buffer_head to mark dirty
1129 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1130 * backing page dirty, then tag the page as dirty in its address_space's radix
1131 * tree and then attach the address_space's inode to its superblock's dirty
1132 * inode list.
1134 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1135 * mapping->tree_lock and the global inode_lock.
1137 void mark_buffer_dirty(struct buffer_head *bh)
1139 WARN_ON_ONCE(!buffer_uptodate(bh));
1142 * Very *carefully* optimize the it-is-already-dirty case.
1144 * Don't let the final "is it dirty" escape to before we
1145 * perhaps modified the buffer.
1147 if (buffer_dirty(bh)) {
1148 smp_mb();
1149 if (buffer_dirty(bh))
1150 return;
1153 if (!test_set_buffer_dirty(bh)) {
1154 struct page *page = bh->b_page;
1155 if (!TestSetPageDirty(page)) {
1156 struct address_space *mapping = page_mapping(page);
1157 if (mapping)
1158 __set_page_dirty(page, mapping, 0);
1162 EXPORT_SYMBOL(mark_buffer_dirty);
1165 * Decrement a buffer_head's reference count. If all buffers against a page
1166 * have zero reference count, are clean and unlocked, and if the page is clean
1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1169 * a page but it ends up not being freed, and buffers may later be reattached).
1171 void __brelse(struct buffer_head * buf)
1173 if (atomic_read(&buf->b_count)) {
1174 put_bh(buf);
1175 return;
1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1179 EXPORT_SYMBOL(__brelse);
1182 * bforget() is like brelse(), except it discards any
1183 * potentially dirty data.
1185 void __bforget(struct buffer_head *bh)
1187 clear_buffer_dirty(bh);
1188 if (bh->b_assoc_map) {
1189 struct address_space *buffer_mapping = bh->b_page->mapping;
1191 spin_lock(&buffer_mapping->private_lock);
1192 list_del_init(&bh->b_assoc_buffers);
1193 bh->b_assoc_map = NULL;
1194 spin_unlock(&buffer_mapping->private_lock);
1196 __brelse(bh);
1198 EXPORT_SYMBOL(__bforget);
1200 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1202 lock_buffer(bh);
1203 if (buffer_uptodate(bh)) {
1204 unlock_buffer(bh);
1205 return bh;
1206 } else {
1207 get_bh(bh);
1208 bh->b_end_io = end_buffer_read_sync;
1209 submit_bh(READ, bh);
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1214 brelse(bh);
1215 return NULL;
1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1221 * refcount elevated by one when they're in an LRU. A buffer can only appear
1222 * once in a particular CPU's LRU. A single buffer can be present in multiple
1223 * CPU's LRUs at the same time.
1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1226 * sb_find_get_block().
1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1229 * a local interrupt disable for that.
1232 #define BH_LRU_SIZE 8
1234 struct bh_lru {
1235 struct buffer_head *bhs[BH_LRU_SIZE];
1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1240 #ifdef CONFIG_SMP
1241 #define bh_lru_lock() local_irq_disable()
1242 #define bh_lru_unlock() local_irq_enable()
1243 #else
1244 #define bh_lru_lock() preempt_disable()
1245 #define bh_lru_unlock() preempt_enable()
1246 #endif
1248 static inline void check_irqs_on(void)
1250 #ifdef irqs_disabled
1251 BUG_ON(irqs_disabled());
1252 #endif
1256 * The LRU management algorithm is dopey-but-simple. Sorry.
1258 static void bh_lru_install(struct buffer_head *bh)
1260 struct buffer_head *evictee = NULL;
1262 check_irqs_on();
1263 bh_lru_lock();
1264 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1265 struct buffer_head *bhs[BH_LRU_SIZE];
1266 int in;
1267 int out = 0;
1269 get_bh(bh);
1270 bhs[out++] = bh;
1271 for (in = 0; in < BH_LRU_SIZE; in++) {
1272 struct buffer_head *bh2 =
1273 __this_cpu_read(bh_lrus.bhs[in]);
1275 if (bh2 == bh) {
1276 __brelse(bh2);
1277 } else {
1278 if (out >= BH_LRU_SIZE) {
1279 BUG_ON(evictee != NULL);
1280 evictee = bh2;
1281 } else {
1282 bhs[out++] = bh2;
1286 while (out < BH_LRU_SIZE)
1287 bhs[out++] = NULL;
1288 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1290 bh_lru_unlock();
1292 if (evictee)
1293 __brelse(evictee);
1297 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1299 static struct buffer_head *
1300 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1302 struct buffer_head *ret = NULL;
1303 unsigned int i;
1305 check_irqs_on();
1306 bh_lru_lock();
1307 for (i = 0; i < BH_LRU_SIZE; i++) {
1308 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1310 if (bh && bh->b_bdev == bdev &&
1311 bh->b_blocknr == block && bh->b_size == size) {
1312 if (i) {
1313 while (i) {
1314 __this_cpu_write(bh_lrus.bhs[i],
1315 __this_cpu_read(bh_lrus.bhs[i - 1]));
1316 i--;
1318 __this_cpu_write(bh_lrus.bhs[0], bh);
1320 get_bh(bh);
1321 ret = bh;
1322 break;
1325 bh_lru_unlock();
1326 return ret;
1330 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1331 * it in the LRU and mark it as accessed. If it is not present then return
1332 * NULL
1334 struct buffer_head *
1335 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1337 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1339 if (bh == NULL) {
1340 bh = __find_get_block_slow(bdev, block);
1341 if (bh)
1342 bh_lru_install(bh);
1344 if (bh)
1345 touch_buffer(bh);
1346 return bh;
1348 EXPORT_SYMBOL(__find_get_block);
1351 * __getblk will locate (and, if necessary, create) the buffer_head
1352 * which corresponds to the passed block_device, block and size. The
1353 * returned buffer has its reference count incremented.
1355 * __getblk() cannot fail - it just keeps trying. If you pass it an
1356 * illegal block number, __getblk() will happily return a buffer_head
1357 * which represents the non-existent block. Very weird.
1359 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1360 * attempt is failing. FIXME, perhaps?
1362 struct buffer_head *
1363 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1365 struct buffer_head *bh = __find_get_block(bdev, block, size);
1367 might_sleep();
1368 if (bh == NULL)
1369 bh = __getblk_slow(bdev, block, size);
1370 return bh;
1372 EXPORT_SYMBOL(__getblk);
1375 * Do async read-ahead on a buffer..
1377 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1379 struct buffer_head *bh = __getblk(bdev, block, size);
1380 if (likely(bh)) {
1381 ll_rw_block(READA, 1, &bh);
1382 brelse(bh);
1385 EXPORT_SYMBOL(__breadahead);
1388 * __bread() - reads a specified block and returns the bh
1389 * @bdev: the block_device to read from
1390 * @block: number of block
1391 * @size: size (in bytes) to read
1393 * Reads a specified block, and returns buffer head that contains it.
1394 * It returns NULL if the block was unreadable.
1396 struct buffer_head *
1397 __bread(struct block_device *bdev, sector_t block, unsigned size)
1399 struct buffer_head *bh = __getblk(bdev, block, size);
1401 if (likely(bh) && !buffer_uptodate(bh))
1402 bh = __bread_slow(bh);
1403 return bh;
1405 EXPORT_SYMBOL(__bread);
1408 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1409 * This doesn't race because it runs in each cpu either in irq
1410 * or with preempt disabled.
1412 static void invalidate_bh_lru(void *arg)
1414 struct bh_lru *b = &get_cpu_var(bh_lrus);
1415 int i;
1417 for (i = 0; i < BH_LRU_SIZE; i++) {
1418 brelse(b->bhs[i]);
1419 b->bhs[i] = NULL;
1421 put_cpu_var(bh_lrus);
1424 void invalidate_bh_lrus(void)
1426 on_each_cpu(invalidate_bh_lru, NULL, 1);
1428 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1430 void set_bh_page(struct buffer_head *bh,
1431 struct page *page, unsigned long offset)
1433 bh->b_page = page;
1434 BUG_ON(offset >= PAGE_SIZE);
1435 if (PageHighMem(page))
1437 * This catches illegal uses and preserves the offset:
1439 bh->b_data = (char *)(0 + offset);
1440 else
1441 bh->b_data = page_address(page) + offset;
1443 EXPORT_SYMBOL(set_bh_page);
1446 * Called when truncating a buffer on a page completely.
1448 static void discard_buffer(struct buffer_head * bh)
1450 lock_buffer(bh);
1451 clear_buffer_dirty(bh);
1452 bh->b_bdev = NULL;
1453 clear_buffer_mapped(bh);
1454 clear_buffer_req(bh);
1455 clear_buffer_new(bh);
1456 clear_buffer_delay(bh);
1457 clear_buffer_unwritten(bh);
1458 unlock_buffer(bh);
1462 * block_invalidatepage - invalidate part of all of a buffer-backed page
1464 * @page: the page which is affected
1465 * @offset: the index of the truncation point
1467 * block_invalidatepage() is called when all or part of the page has become
1468 * invalidatedby a truncate operation.
1470 * block_invalidatepage() does not have to release all buffers, but it must
1471 * ensure that no dirty buffer is left outside @offset and that no I/O
1472 * is underway against any of the blocks which are outside the truncation
1473 * point. Because the caller is about to free (and possibly reuse) those
1474 * blocks on-disk.
1476 void block_invalidatepage(struct page *page, unsigned long offset)
1478 struct buffer_head *head, *bh, *next;
1479 unsigned int curr_off = 0;
1481 BUG_ON(!PageLocked(page));
1482 if (!page_has_buffers(page))
1483 goto out;
1485 head = page_buffers(page);
1486 bh = head;
1487 do {
1488 unsigned int next_off = curr_off + bh->b_size;
1489 next = bh->b_this_page;
1492 * is this block fully invalidated?
1494 if (offset <= curr_off)
1495 discard_buffer(bh);
1496 curr_off = next_off;
1497 bh = next;
1498 } while (bh != head);
1501 * We release buffers only if the entire page is being invalidated.
1502 * The get_block cached value has been unconditionally invalidated,
1503 * so real IO is not possible anymore.
1505 if (offset == 0)
1506 try_to_release_page(page, 0);
1507 out:
1508 return;
1510 EXPORT_SYMBOL(block_invalidatepage);
1513 * We attach and possibly dirty the buffers atomically wrt
1514 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1515 * is already excluded via the page lock.
1517 void create_empty_buffers(struct page *page,
1518 unsigned long blocksize, unsigned long b_state)
1520 struct buffer_head *bh, *head, *tail;
1522 head = alloc_page_buffers(page, blocksize, 1);
1523 bh = head;
1524 do {
1525 bh->b_state |= b_state;
1526 tail = bh;
1527 bh = bh->b_this_page;
1528 } while (bh);
1529 tail->b_this_page = head;
1531 spin_lock(&page->mapping->private_lock);
1532 if (PageUptodate(page) || PageDirty(page)) {
1533 bh = head;
1534 do {
1535 if (PageDirty(page))
1536 set_buffer_dirty(bh);
1537 if (PageUptodate(page))
1538 set_buffer_uptodate(bh);
1539 bh = bh->b_this_page;
1540 } while (bh != head);
1542 attach_page_buffers(page, head);
1543 spin_unlock(&page->mapping->private_lock);
1545 EXPORT_SYMBOL(create_empty_buffers);
1548 * We are taking a block for data and we don't want any output from any
1549 * buffer-cache aliases starting from return from that function and
1550 * until the moment when something will explicitly mark the buffer
1551 * dirty (hopefully that will not happen until we will free that block ;-)
1552 * We don't even need to mark it not-uptodate - nobody can expect
1553 * anything from a newly allocated buffer anyway. We used to used
1554 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1555 * don't want to mark the alias unmapped, for example - it would confuse
1556 * anyone who might pick it with bread() afterwards...
1558 * Also.. Note that bforget() doesn't lock the buffer. So there can
1559 * be writeout I/O going on against recently-freed buffers. We don't
1560 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1561 * only if we really need to. That happens here.
1563 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1565 struct buffer_head *old_bh;
1567 might_sleep();
1569 old_bh = __find_get_block_slow(bdev, block);
1570 if (old_bh) {
1571 clear_buffer_dirty(old_bh);
1572 wait_on_buffer(old_bh);
1573 clear_buffer_req(old_bh);
1574 __brelse(old_bh);
1577 EXPORT_SYMBOL(unmap_underlying_metadata);
1580 * NOTE! All mapped/uptodate combinations are valid:
1582 * Mapped Uptodate Meaning
1584 * No No "unknown" - must do get_block()
1585 * No Yes "hole" - zero-filled
1586 * Yes No "allocated" - allocated on disk, not read in
1587 * Yes Yes "valid" - allocated and up-to-date in memory.
1589 * "Dirty" is valid only with the last case (mapped+uptodate).
1593 * While block_write_full_page is writing back the dirty buffers under
1594 * the page lock, whoever dirtied the buffers may decide to clean them
1595 * again at any time. We handle that by only looking at the buffer
1596 * state inside lock_buffer().
1598 * If block_write_full_page() is called for regular writeback
1599 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1600 * locked buffer. This only can happen if someone has written the buffer
1601 * directly, with submit_bh(). At the address_space level PageWriteback
1602 * prevents this contention from occurring.
1604 * If block_write_full_page() is called with wbc->sync_mode ==
1605 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1606 * causes the writes to be flagged as synchronous writes.
1608 static int __block_write_full_page(struct inode *inode, struct page *page,
1609 get_block_t *get_block, struct writeback_control *wbc,
1610 bh_end_io_t *handler)
1612 int err;
1613 sector_t block;
1614 sector_t last_block;
1615 struct buffer_head *bh, *head;
1616 const unsigned blocksize = 1 << inode->i_blkbits;
1617 int nr_underway = 0;
1618 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1619 WRITE_SYNC : WRITE);
1621 BUG_ON(!PageLocked(page));
1623 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625 if (!page_has_buffers(page)) {
1626 create_empty_buffers(page, blocksize,
1627 (1 << BH_Dirty)|(1 << BH_Uptodate));
1631 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1632 * here, and the (potentially unmapped) buffers may become dirty at
1633 * any time. If a buffer becomes dirty here after we've inspected it
1634 * then we just miss that fact, and the page stays dirty.
1636 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1637 * handle that here by just cleaning them.
1640 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1641 head = page_buffers(page);
1642 bh = head;
1645 * Get all the dirty buffers mapped to disk addresses and
1646 * handle any aliases from the underlying blockdev's mapping.
1648 do {
1649 if (block > last_block) {
1651 * mapped buffers outside i_size will occur, because
1652 * this page can be outside i_size when there is a
1653 * truncate in progress.
1656 * The buffer was zeroed by block_write_full_page()
1658 clear_buffer_dirty(bh);
1659 set_buffer_uptodate(bh);
1660 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1661 buffer_dirty(bh)) {
1662 WARN_ON(bh->b_size != blocksize);
1663 err = get_block(inode, block, bh, 1);
1664 if (err)
1665 goto recover;
1666 clear_buffer_delay(bh);
1667 if (buffer_new(bh)) {
1668 /* blockdev mappings never come here */
1669 clear_buffer_new(bh);
1670 unmap_underlying_metadata(bh->b_bdev,
1671 bh->b_blocknr);
1674 bh = bh->b_this_page;
1675 block++;
1676 } while (bh != head);
1678 do {
1679 if (!buffer_mapped(bh))
1680 continue;
1682 * If it's a fully non-blocking write attempt and we cannot
1683 * lock the buffer then redirty the page. Note that this can
1684 * potentially cause a busy-wait loop from writeback threads
1685 * and kswapd activity, but those code paths have their own
1686 * higher-level throttling.
1688 if (wbc->sync_mode != WB_SYNC_NONE) {
1689 lock_buffer(bh);
1690 } else if (!trylock_buffer(bh)) {
1691 redirty_page_for_writepage(wbc, page);
1692 continue;
1694 if (test_clear_buffer_dirty(bh)) {
1695 mark_buffer_async_write_endio(bh, handler);
1696 } else {
1697 unlock_buffer(bh);
1699 } while ((bh = bh->b_this_page) != head);
1702 * The page and its buffers are protected by PageWriteback(), so we can
1703 * drop the bh refcounts early.
1705 BUG_ON(PageWriteback(page));
1706 set_page_writeback(page);
1708 do {
1709 struct buffer_head *next = bh->b_this_page;
1710 if (buffer_async_write(bh)) {
1711 submit_bh(write_op, bh);
1712 nr_underway++;
1714 bh = next;
1715 } while (bh != head);
1716 unlock_page(page);
1718 err = 0;
1719 done:
1720 if (nr_underway == 0) {
1722 * The page was marked dirty, but the buffers were
1723 * clean. Someone wrote them back by hand with
1724 * ll_rw_block/submit_bh. A rare case.
1726 end_page_writeback(page);
1729 * The page and buffer_heads can be released at any time from
1730 * here on.
1733 return err;
1735 recover:
1737 * ENOSPC, or some other error. We may already have added some
1738 * blocks to the file, so we need to write these out to avoid
1739 * exposing stale data.
1740 * The page is currently locked and not marked for writeback
1742 bh = head;
1743 /* Recovery: lock and submit the mapped buffers */
1744 do {
1745 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1746 !buffer_delay(bh)) {
1747 lock_buffer(bh);
1748 mark_buffer_async_write_endio(bh, handler);
1749 } else {
1751 * The buffer may have been set dirty during
1752 * attachment to a dirty page.
1754 clear_buffer_dirty(bh);
1756 } while ((bh = bh->b_this_page) != head);
1757 SetPageError(page);
1758 BUG_ON(PageWriteback(page));
1759 mapping_set_error(page->mapping, err);
1760 set_page_writeback(page);
1761 do {
1762 struct buffer_head *next = bh->b_this_page;
1763 if (buffer_async_write(bh)) {
1764 clear_buffer_dirty(bh);
1765 submit_bh(write_op, bh);
1766 nr_underway++;
1768 bh = next;
1769 } while (bh != head);
1770 unlock_page(page);
1771 goto done;
1775 * If a page has any new buffers, zero them out here, and mark them uptodate
1776 * and dirty so they'll be written out (in order to prevent uninitialised
1777 * block data from leaking). And clear the new bit.
1779 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1781 unsigned int block_start, block_end;
1782 struct buffer_head *head, *bh;
1784 BUG_ON(!PageLocked(page));
1785 if (!page_has_buffers(page))
1786 return;
1788 bh = head = page_buffers(page);
1789 block_start = 0;
1790 do {
1791 block_end = block_start + bh->b_size;
1793 if (buffer_new(bh)) {
1794 if (block_end > from && block_start < to) {
1795 if (!PageUptodate(page)) {
1796 unsigned start, size;
1798 start = max(from, block_start);
1799 size = min(to, block_end) - start;
1801 zero_user(page, start, size);
1802 set_buffer_uptodate(bh);
1805 clear_buffer_new(bh);
1806 mark_buffer_dirty(bh);
1810 block_start = block_end;
1811 bh = bh->b_this_page;
1812 } while (bh != head);
1814 EXPORT_SYMBOL(page_zero_new_buffers);
1816 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1817 get_block_t *get_block)
1819 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1820 unsigned to = from + len;
1821 struct inode *inode = page->mapping->host;
1822 unsigned block_start, block_end;
1823 sector_t block;
1824 int err = 0;
1825 unsigned blocksize, bbits;
1826 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1828 BUG_ON(!PageLocked(page));
1829 BUG_ON(from > PAGE_CACHE_SIZE);
1830 BUG_ON(to > PAGE_CACHE_SIZE);
1831 BUG_ON(from > to);
1833 blocksize = 1 << inode->i_blkbits;
1834 if (!page_has_buffers(page))
1835 create_empty_buffers(page, blocksize, 0);
1836 head = page_buffers(page);
1838 bbits = inode->i_blkbits;
1839 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1841 for(bh = head, block_start = 0; bh != head || !block_start;
1842 block++, block_start=block_end, bh = bh->b_this_page) {
1843 block_end = block_start + blocksize;
1844 if (block_end <= from || block_start >= to) {
1845 if (PageUptodate(page)) {
1846 if (!buffer_uptodate(bh))
1847 set_buffer_uptodate(bh);
1849 continue;
1851 if (buffer_new(bh))
1852 clear_buffer_new(bh);
1853 if (!buffer_mapped(bh)) {
1854 WARN_ON(bh->b_size != blocksize);
1855 err = get_block(inode, block, bh, 1);
1856 if (err)
1857 break;
1858 if (buffer_new(bh)) {
1859 unmap_underlying_metadata(bh->b_bdev,
1860 bh->b_blocknr);
1861 if (PageUptodate(page)) {
1862 clear_buffer_new(bh);
1863 set_buffer_uptodate(bh);
1864 mark_buffer_dirty(bh);
1865 continue;
1867 if (block_end > to || block_start < from)
1868 zero_user_segments(page,
1869 to, block_end,
1870 block_start, from);
1871 continue;
1874 if (PageUptodate(page)) {
1875 if (!buffer_uptodate(bh))
1876 set_buffer_uptodate(bh);
1877 continue;
1879 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1880 !buffer_unwritten(bh) &&
1881 (block_start < from || block_end > to)) {
1882 ll_rw_block(READ, 1, &bh);
1883 *wait_bh++=bh;
1887 * If we issued read requests - let them complete.
1889 while(wait_bh > wait) {
1890 wait_on_buffer(*--wait_bh);
1891 if (!buffer_uptodate(*wait_bh))
1892 err = -EIO;
1894 if (unlikely(err)) {
1895 page_zero_new_buffers(page, from, to);
1896 ClearPageUptodate(page);
1898 return err;
1900 EXPORT_SYMBOL(__block_write_begin);
1902 static int __block_commit_write(struct inode *inode, struct page *page,
1903 unsigned from, unsigned to)
1905 unsigned block_start, block_end;
1906 int partial = 0;
1907 unsigned blocksize;
1908 struct buffer_head *bh, *head;
1910 blocksize = 1 << inode->i_blkbits;
1912 for(bh = head = page_buffers(page), block_start = 0;
1913 bh != head || !block_start;
1914 block_start=block_end, bh = bh->b_this_page) {
1915 block_end = block_start + blocksize;
1916 if (block_end <= from || block_start >= to) {
1917 if (!buffer_uptodate(bh))
1918 partial = 1;
1919 } else {
1920 set_buffer_uptodate(bh);
1921 mark_buffer_dirty(bh);
1923 clear_buffer_new(bh);
1927 * If this is a partial write which happened to make all buffers
1928 * uptodate then we can optimize away a bogus readpage() for
1929 * the next read(). Here we 'discover' whether the page went
1930 * uptodate as a result of this (potentially partial) write.
1932 if (!partial)
1933 SetPageUptodate(page);
1934 return 0;
1938 * block_write_begin takes care of the basic task of block allocation and
1939 * bringing partial write blocks uptodate first.
1941 * The filesystem needs to handle block truncation upon failure.
1943 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1944 unsigned flags, struct page **pagep, get_block_t *get_block)
1946 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1947 struct page *page;
1948 int status;
1950 page = grab_cache_page_write_begin(mapping, index, flags);
1951 if (!page)
1952 return -ENOMEM;
1954 status = __block_write_begin(page, pos, len, get_block);
1955 if (unlikely(status)) {
1956 unlock_page(page);
1957 page_cache_release(page);
1958 page = NULL;
1961 *pagep = page;
1962 return status;
1964 EXPORT_SYMBOL(block_write_begin);
1966 int block_write_end(struct file *file, struct address_space *mapping,
1967 loff_t pos, unsigned len, unsigned copied,
1968 struct page *page, void *fsdata)
1970 struct inode *inode = mapping->host;
1971 unsigned start;
1973 start = pos & (PAGE_CACHE_SIZE - 1);
1975 if (unlikely(copied < len)) {
1977 * The buffers that were written will now be uptodate, so we
1978 * don't have to worry about a readpage reading them and
1979 * overwriting a partial write. However if we have encountered
1980 * a short write and only partially written into a buffer, it
1981 * will not be marked uptodate, so a readpage might come in and
1982 * destroy our partial write.
1984 * Do the simplest thing, and just treat any short write to a
1985 * non uptodate page as a zero-length write, and force the
1986 * caller to redo the whole thing.
1988 if (!PageUptodate(page))
1989 copied = 0;
1991 page_zero_new_buffers(page, start+copied, start+len);
1993 flush_dcache_page(page);
1995 /* This could be a short (even 0-length) commit */
1996 __block_commit_write(inode, page, start, start+copied);
1998 return copied;
2000 EXPORT_SYMBOL(block_write_end);
2002 int generic_write_end(struct file *file, struct address_space *mapping,
2003 loff_t pos, unsigned len, unsigned copied,
2004 struct page *page, void *fsdata)
2006 struct inode *inode = mapping->host;
2007 int i_size_changed = 0;
2009 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2012 * No need to use i_size_read() here, the i_size
2013 * cannot change under us because we hold i_mutex.
2015 * But it's important to update i_size while still holding page lock:
2016 * page writeout could otherwise come in and zero beyond i_size.
2018 if (pos+copied > inode->i_size) {
2019 i_size_write(inode, pos+copied);
2020 i_size_changed = 1;
2023 unlock_page(page);
2024 page_cache_release(page);
2027 * Don't mark the inode dirty under page lock. First, it unnecessarily
2028 * makes the holding time of page lock longer. Second, it forces lock
2029 * ordering of page lock and transaction start for journaling
2030 * filesystems.
2032 if (i_size_changed)
2033 mark_inode_dirty(inode);
2035 return copied;
2037 EXPORT_SYMBOL(generic_write_end);
2040 * block_is_partially_uptodate checks whether buffers within a page are
2041 * uptodate or not.
2043 * Returns true if all buffers which correspond to a file portion
2044 * we want to read are uptodate.
2046 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2047 unsigned long from)
2049 struct inode *inode = page->mapping->host;
2050 unsigned block_start, block_end, blocksize;
2051 unsigned to;
2052 struct buffer_head *bh, *head;
2053 int ret = 1;
2055 if (!page_has_buffers(page))
2056 return 0;
2058 blocksize = 1 << inode->i_blkbits;
2059 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2060 to = from + to;
2061 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2062 return 0;
2064 head = page_buffers(page);
2065 bh = head;
2066 block_start = 0;
2067 do {
2068 block_end = block_start + blocksize;
2069 if (block_end > from && block_start < to) {
2070 if (!buffer_uptodate(bh)) {
2071 ret = 0;
2072 break;
2074 if (block_end >= to)
2075 break;
2077 block_start = block_end;
2078 bh = bh->b_this_page;
2079 } while (bh != head);
2081 return ret;
2083 EXPORT_SYMBOL(block_is_partially_uptodate);
2086 * Generic "read page" function for block devices that have the normal
2087 * get_block functionality. This is most of the block device filesystems.
2088 * Reads the page asynchronously --- the unlock_buffer() and
2089 * set/clear_buffer_uptodate() functions propagate buffer state into the
2090 * page struct once IO has completed.
2092 int block_read_full_page(struct page *page, get_block_t *get_block)
2094 struct inode *inode = page->mapping->host;
2095 sector_t iblock, lblock;
2096 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2097 unsigned int blocksize;
2098 int nr, i;
2099 int fully_mapped = 1;
2101 BUG_ON(!PageLocked(page));
2102 blocksize = 1 << inode->i_blkbits;
2103 if (!page_has_buffers(page))
2104 create_empty_buffers(page, blocksize, 0);
2105 head = page_buffers(page);
2107 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2108 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2109 bh = head;
2110 nr = 0;
2111 i = 0;
2113 do {
2114 if (buffer_uptodate(bh))
2115 continue;
2117 if (!buffer_mapped(bh)) {
2118 int err = 0;
2120 fully_mapped = 0;
2121 if (iblock < lblock) {
2122 WARN_ON(bh->b_size != blocksize);
2123 err = get_block(inode, iblock, bh, 0);
2124 if (err)
2125 SetPageError(page);
2127 if (!buffer_mapped(bh)) {
2128 zero_user(page, i * blocksize, blocksize);
2129 if (!err)
2130 set_buffer_uptodate(bh);
2131 continue;
2134 * get_block() might have updated the buffer
2135 * synchronously
2137 if (buffer_uptodate(bh))
2138 continue;
2140 arr[nr++] = bh;
2141 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2143 if (fully_mapped)
2144 SetPageMappedToDisk(page);
2146 if (!nr) {
2148 * All buffers are uptodate - we can set the page uptodate
2149 * as well. But not if get_block() returned an error.
2151 if (!PageError(page))
2152 SetPageUptodate(page);
2153 unlock_page(page);
2154 return 0;
2157 /* Stage two: lock the buffers */
2158 for (i = 0; i < nr; i++) {
2159 bh = arr[i];
2160 lock_buffer(bh);
2161 mark_buffer_async_read(bh);
2165 * Stage 3: start the IO. Check for uptodateness
2166 * inside the buffer lock in case another process reading
2167 * the underlying blockdev brought it uptodate (the sct fix).
2169 for (i = 0; i < nr; i++) {
2170 bh = arr[i];
2171 if (buffer_uptodate(bh))
2172 end_buffer_async_read(bh, 1);
2173 else
2174 submit_bh(READ, bh);
2176 return 0;
2178 EXPORT_SYMBOL(block_read_full_page);
2180 /* utility function for filesystems that need to do work on expanding
2181 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2182 * deal with the hole.
2184 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2186 struct address_space *mapping = inode->i_mapping;
2187 struct page *page;
2188 void *fsdata;
2189 int err;
2191 err = inode_newsize_ok(inode, size);
2192 if (err)
2193 goto out;
2195 err = pagecache_write_begin(NULL, mapping, size, 0,
2196 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2197 &page, &fsdata);
2198 if (err)
2199 goto out;
2201 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2202 BUG_ON(err > 0);
2204 out:
2205 return err;
2207 EXPORT_SYMBOL(generic_cont_expand_simple);
2209 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2210 loff_t pos, loff_t *bytes)
2212 struct inode *inode = mapping->host;
2213 unsigned blocksize = 1 << inode->i_blkbits;
2214 struct page *page;
2215 void *fsdata;
2216 pgoff_t index, curidx;
2217 loff_t curpos;
2218 unsigned zerofrom, offset, len;
2219 int err = 0;
2221 index = pos >> PAGE_CACHE_SHIFT;
2222 offset = pos & ~PAGE_CACHE_MASK;
2224 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2225 zerofrom = curpos & ~PAGE_CACHE_MASK;
2226 if (zerofrom & (blocksize-1)) {
2227 *bytes |= (blocksize-1);
2228 (*bytes)++;
2230 len = PAGE_CACHE_SIZE - zerofrom;
2232 err = pagecache_write_begin(file, mapping, curpos, len,
2233 AOP_FLAG_UNINTERRUPTIBLE,
2234 &page, &fsdata);
2235 if (err)
2236 goto out;
2237 zero_user(page, zerofrom, len);
2238 err = pagecache_write_end(file, mapping, curpos, len, len,
2239 page, fsdata);
2240 if (err < 0)
2241 goto out;
2242 BUG_ON(err != len);
2243 err = 0;
2245 balance_dirty_pages_ratelimited(mapping);
2248 /* page covers the boundary, find the boundary offset */
2249 if (index == curidx) {
2250 zerofrom = curpos & ~PAGE_CACHE_MASK;
2251 /* if we will expand the thing last block will be filled */
2252 if (offset <= zerofrom) {
2253 goto out;
2255 if (zerofrom & (blocksize-1)) {
2256 *bytes |= (blocksize-1);
2257 (*bytes)++;
2259 len = offset - zerofrom;
2261 err = pagecache_write_begin(file, mapping, curpos, len,
2262 AOP_FLAG_UNINTERRUPTIBLE,
2263 &page, &fsdata);
2264 if (err)
2265 goto out;
2266 zero_user(page, zerofrom, len);
2267 err = pagecache_write_end(file, mapping, curpos, len, len,
2268 page, fsdata);
2269 if (err < 0)
2270 goto out;
2271 BUG_ON(err != len);
2272 err = 0;
2274 out:
2275 return err;
2279 * For moronic filesystems that do not allow holes in file.
2280 * We may have to extend the file.
2282 int cont_write_begin(struct file *file, struct address_space *mapping,
2283 loff_t pos, unsigned len, unsigned flags,
2284 struct page **pagep, void **fsdata,
2285 get_block_t *get_block, loff_t *bytes)
2287 struct inode *inode = mapping->host;
2288 unsigned blocksize = 1 << inode->i_blkbits;
2289 unsigned zerofrom;
2290 int err;
2292 err = cont_expand_zero(file, mapping, pos, bytes);
2293 if (err)
2294 return err;
2296 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2297 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2298 *bytes |= (blocksize-1);
2299 (*bytes)++;
2302 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2304 EXPORT_SYMBOL(cont_write_begin);
2306 int block_commit_write(struct page *page, unsigned from, unsigned to)
2308 struct inode *inode = page->mapping->host;
2309 __block_commit_write(inode,page,from,to);
2310 return 0;
2312 EXPORT_SYMBOL(block_commit_write);
2315 * block_page_mkwrite() is not allowed to change the file size as it gets
2316 * called from a page fault handler when a page is first dirtied. Hence we must
2317 * be careful to check for EOF conditions here. We set the page up correctly
2318 * for a written page which means we get ENOSPC checking when writing into
2319 * holes and correct delalloc and unwritten extent mapping on filesystems that
2320 * support these features.
2322 * We are not allowed to take the i_mutex here so we have to play games to
2323 * protect against truncate races as the page could now be beyond EOF. Because
2324 * truncate writes the inode size before removing pages, once we have the
2325 * page lock we can determine safely if the page is beyond EOF. If it is not
2326 * beyond EOF, then the page is guaranteed safe against truncation until we
2327 * unlock the page.
2330 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2331 get_block_t get_block)
2333 struct page *page = vmf->page;
2334 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2335 unsigned long end;
2336 loff_t size;
2337 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2339 lock_page(page);
2340 size = i_size_read(inode);
2341 if ((page->mapping != inode->i_mapping) ||
2342 (page_offset(page) > size)) {
2343 /* page got truncated out from underneath us */
2344 unlock_page(page);
2345 goto out;
2348 /* page is wholly or partially inside EOF */
2349 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2350 end = size & ~PAGE_CACHE_MASK;
2351 else
2352 end = PAGE_CACHE_SIZE;
2354 ret = __block_write_begin(page, 0, end, get_block);
2355 if (!ret)
2356 ret = block_commit_write(page, 0, end);
2358 if (unlikely(ret)) {
2359 unlock_page(page);
2360 if (ret == -ENOMEM)
2361 ret = VM_FAULT_OOM;
2362 else /* -ENOSPC, -EIO, etc */
2363 ret = VM_FAULT_SIGBUS;
2364 } else
2365 ret = VM_FAULT_LOCKED;
2367 out:
2368 return ret;
2370 EXPORT_SYMBOL(block_page_mkwrite);
2373 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2374 * immediately, while under the page lock. So it needs a special end_io
2375 * handler which does not touch the bh after unlocking it.
2377 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2379 __end_buffer_read_notouch(bh, uptodate);
2383 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384 * the page (converting it to circular linked list and taking care of page
2385 * dirty races).
2387 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2389 struct buffer_head *bh;
2391 BUG_ON(!PageLocked(page));
2393 spin_lock(&page->mapping->private_lock);
2394 bh = head;
2395 do {
2396 if (PageDirty(page))
2397 set_buffer_dirty(bh);
2398 if (!bh->b_this_page)
2399 bh->b_this_page = head;
2400 bh = bh->b_this_page;
2401 } while (bh != head);
2402 attach_page_buffers(page, head);
2403 spin_unlock(&page->mapping->private_lock);
2407 * On entry, the page is fully not uptodate.
2408 * On exit the page is fully uptodate in the areas outside (from,to)
2409 * The filesystem needs to handle block truncation upon failure.
2411 int nobh_write_begin(struct address_space *mapping,
2412 loff_t pos, unsigned len, unsigned flags,
2413 struct page **pagep, void **fsdata,
2414 get_block_t *get_block)
2416 struct inode *inode = mapping->host;
2417 const unsigned blkbits = inode->i_blkbits;
2418 const unsigned blocksize = 1 << blkbits;
2419 struct buffer_head *head, *bh;
2420 struct page *page;
2421 pgoff_t index;
2422 unsigned from, to;
2423 unsigned block_in_page;
2424 unsigned block_start, block_end;
2425 sector_t block_in_file;
2426 int nr_reads = 0;
2427 int ret = 0;
2428 int is_mapped_to_disk = 1;
2430 index = pos >> PAGE_CACHE_SHIFT;
2431 from = pos & (PAGE_CACHE_SIZE - 1);
2432 to = from + len;
2434 page = grab_cache_page_write_begin(mapping, index, flags);
2435 if (!page)
2436 return -ENOMEM;
2437 *pagep = page;
2438 *fsdata = NULL;
2440 if (page_has_buffers(page)) {
2441 ret = __block_write_begin(page, pos, len, get_block);
2442 if (unlikely(ret))
2443 goto out_release;
2444 return ret;
2447 if (PageMappedToDisk(page))
2448 return 0;
2451 * Allocate buffers so that we can keep track of state, and potentially
2452 * attach them to the page if an error occurs. In the common case of
2453 * no error, they will just be freed again without ever being attached
2454 * to the page (which is all OK, because we're under the page lock).
2456 * Be careful: the buffer linked list is a NULL terminated one, rather
2457 * than the circular one we're used to.
2459 head = alloc_page_buffers(page, blocksize, 0);
2460 if (!head) {
2461 ret = -ENOMEM;
2462 goto out_release;
2465 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2468 * We loop across all blocks in the page, whether or not they are
2469 * part of the affected region. This is so we can discover if the
2470 * page is fully mapped-to-disk.
2472 for (block_start = 0, block_in_page = 0, bh = head;
2473 block_start < PAGE_CACHE_SIZE;
2474 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2475 int create;
2477 block_end = block_start + blocksize;
2478 bh->b_state = 0;
2479 create = 1;
2480 if (block_start >= to)
2481 create = 0;
2482 ret = get_block(inode, block_in_file + block_in_page,
2483 bh, create);
2484 if (ret)
2485 goto failed;
2486 if (!buffer_mapped(bh))
2487 is_mapped_to_disk = 0;
2488 if (buffer_new(bh))
2489 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2490 if (PageUptodate(page)) {
2491 set_buffer_uptodate(bh);
2492 continue;
2494 if (buffer_new(bh) || !buffer_mapped(bh)) {
2495 zero_user_segments(page, block_start, from,
2496 to, block_end);
2497 continue;
2499 if (buffer_uptodate(bh))
2500 continue; /* reiserfs does this */
2501 if (block_start < from || block_end > to) {
2502 lock_buffer(bh);
2503 bh->b_end_io = end_buffer_read_nobh;
2504 submit_bh(READ, bh);
2505 nr_reads++;
2509 if (nr_reads) {
2511 * The page is locked, so these buffers are protected from
2512 * any VM or truncate activity. Hence we don't need to care
2513 * for the buffer_head refcounts.
2515 for (bh = head; bh; bh = bh->b_this_page) {
2516 wait_on_buffer(bh);
2517 if (!buffer_uptodate(bh))
2518 ret = -EIO;
2520 if (ret)
2521 goto failed;
2524 if (is_mapped_to_disk)
2525 SetPageMappedToDisk(page);
2527 *fsdata = head; /* to be released by nobh_write_end */
2529 return 0;
2531 failed:
2532 BUG_ON(!ret);
2534 * Error recovery is a bit difficult. We need to zero out blocks that
2535 * were newly allocated, and dirty them to ensure they get written out.
2536 * Buffers need to be attached to the page at this point, otherwise
2537 * the handling of potential IO errors during writeout would be hard
2538 * (could try doing synchronous writeout, but what if that fails too?)
2540 attach_nobh_buffers(page, head);
2541 page_zero_new_buffers(page, from, to);
2543 out_release:
2544 unlock_page(page);
2545 page_cache_release(page);
2546 *pagep = NULL;
2548 return ret;
2550 EXPORT_SYMBOL(nobh_write_begin);
2552 int nobh_write_end(struct file *file, struct address_space *mapping,
2553 loff_t pos, unsigned len, unsigned copied,
2554 struct page *page, void *fsdata)
2556 struct inode *inode = page->mapping->host;
2557 struct buffer_head *head = fsdata;
2558 struct buffer_head *bh;
2559 BUG_ON(fsdata != NULL && page_has_buffers(page));
2561 if (unlikely(copied < len) && head)
2562 attach_nobh_buffers(page, head);
2563 if (page_has_buffers(page))
2564 return generic_write_end(file, mapping, pos, len,
2565 copied, page, fsdata);
2567 SetPageUptodate(page);
2568 set_page_dirty(page);
2569 if (pos+copied > inode->i_size) {
2570 i_size_write(inode, pos+copied);
2571 mark_inode_dirty(inode);
2574 unlock_page(page);
2575 page_cache_release(page);
2577 while (head) {
2578 bh = head;
2579 head = head->b_this_page;
2580 free_buffer_head(bh);
2583 return copied;
2585 EXPORT_SYMBOL(nobh_write_end);
2588 * nobh_writepage() - based on block_full_write_page() except
2589 * that it tries to operate without attaching bufferheads to
2590 * the page.
2592 int nobh_writepage(struct page *page, get_block_t *get_block,
2593 struct writeback_control *wbc)
2595 struct inode * const inode = page->mapping->host;
2596 loff_t i_size = i_size_read(inode);
2597 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2598 unsigned offset;
2599 int ret;
2601 /* Is the page fully inside i_size? */
2602 if (page->index < end_index)
2603 goto out;
2605 /* Is the page fully outside i_size? (truncate in progress) */
2606 offset = i_size & (PAGE_CACHE_SIZE-1);
2607 if (page->index >= end_index+1 || !offset) {
2609 * The page may have dirty, unmapped buffers. For example,
2610 * they may have been added in ext3_writepage(). Make them
2611 * freeable here, so the page does not leak.
2613 #if 0
2614 /* Not really sure about this - do we need this ? */
2615 if (page->mapping->a_ops->invalidatepage)
2616 page->mapping->a_ops->invalidatepage(page, offset);
2617 #endif
2618 unlock_page(page);
2619 return 0; /* don't care */
2623 * The page straddles i_size. It must be zeroed out on each and every
2624 * writepage invocation because it may be mmapped. "A file is mapped
2625 * in multiples of the page size. For a file that is not a multiple of
2626 * the page size, the remaining memory is zeroed when mapped, and
2627 * writes to that region are not written out to the file."
2629 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2630 out:
2631 ret = mpage_writepage(page, get_block, wbc);
2632 if (ret == -EAGAIN)
2633 ret = __block_write_full_page(inode, page, get_block, wbc,
2634 end_buffer_async_write);
2635 return ret;
2637 EXPORT_SYMBOL(nobh_writepage);
2639 int nobh_truncate_page(struct address_space *mapping,
2640 loff_t from, get_block_t *get_block)
2642 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2643 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2644 unsigned blocksize;
2645 sector_t iblock;
2646 unsigned length, pos;
2647 struct inode *inode = mapping->host;
2648 struct page *page;
2649 struct buffer_head map_bh;
2650 int err;
2652 blocksize = 1 << inode->i_blkbits;
2653 length = offset & (blocksize - 1);
2655 /* Block boundary? Nothing to do */
2656 if (!length)
2657 return 0;
2659 length = blocksize - length;
2660 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2662 page = grab_cache_page(mapping, index);
2663 err = -ENOMEM;
2664 if (!page)
2665 goto out;
2667 if (page_has_buffers(page)) {
2668 has_buffers:
2669 unlock_page(page);
2670 page_cache_release(page);
2671 return block_truncate_page(mapping, from, get_block);
2674 /* Find the buffer that contains "offset" */
2675 pos = blocksize;
2676 while (offset >= pos) {
2677 iblock++;
2678 pos += blocksize;
2681 map_bh.b_size = blocksize;
2682 map_bh.b_state = 0;
2683 err = get_block(inode, iblock, &map_bh, 0);
2684 if (err)
2685 goto unlock;
2686 /* unmapped? It's a hole - nothing to do */
2687 if (!buffer_mapped(&map_bh))
2688 goto unlock;
2690 /* Ok, it's mapped. Make sure it's up-to-date */
2691 if (!PageUptodate(page)) {
2692 err = mapping->a_ops->readpage(NULL, page);
2693 if (err) {
2694 page_cache_release(page);
2695 goto out;
2697 lock_page(page);
2698 if (!PageUptodate(page)) {
2699 err = -EIO;
2700 goto unlock;
2702 if (page_has_buffers(page))
2703 goto has_buffers;
2705 zero_user(page, offset, length);
2706 set_page_dirty(page);
2707 err = 0;
2709 unlock:
2710 unlock_page(page);
2711 page_cache_release(page);
2712 out:
2713 return err;
2715 EXPORT_SYMBOL(nobh_truncate_page);
2717 int block_truncate_page(struct address_space *mapping,
2718 loff_t from, get_block_t *get_block)
2720 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2721 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2722 unsigned blocksize;
2723 sector_t iblock;
2724 unsigned length, pos;
2725 struct inode *inode = mapping->host;
2726 struct page *page;
2727 struct buffer_head *bh;
2728 int err;
2730 blocksize = 1 << inode->i_blkbits;
2731 length = offset & (blocksize - 1);
2733 /* Block boundary? Nothing to do */
2734 if (!length)
2735 return 0;
2737 length = blocksize - length;
2738 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2740 page = grab_cache_page(mapping, index);
2741 err = -ENOMEM;
2742 if (!page)
2743 goto out;
2745 if (!page_has_buffers(page))
2746 create_empty_buffers(page, blocksize, 0);
2748 /* Find the buffer that contains "offset" */
2749 bh = page_buffers(page);
2750 pos = blocksize;
2751 while (offset >= pos) {
2752 bh = bh->b_this_page;
2753 iblock++;
2754 pos += blocksize;
2757 err = 0;
2758 if (!buffer_mapped(bh)) {
2759 WARN_ON(bh->b_size != blocksize);
2760 err = get_block(inode, iblock, bh, 0);
2761 if (err)
2762 goto unlock;
2763 /* unmapped? It's a hole - nothing to do */
2764 if (!buffer_mapped(bh))
2765 goto unlock;
2768 /* Ok, it's mapped. Make sure it's up-to-date */
2769 if (PageUptodate(page))
2770 set_buffer_uptodate(bh);
2772 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2773 err = -EIO;
2774 ll_rw_block(READ, 1, &bh);
2775 wait_on_buffer(bh);
2776 /* Uhhuh. Read error. Complain and punt. */
2777 if (!buffer_uptodate(bh))
2778 goto unlock;
2781 zero_user(page, offset, length);
2782 mark_buffer_dirty(bh);
2783 err = 0;
2785 unlock:
2786 unlock_page(page);
2787 page_cache_release(page);
2788 out:
2789 return err;
2791 EXPORT_SYMBOL(block_truncate_page);
2794 * The generic ->writepage function for buffer-backed address_spaces
2795 * this form passes in the end_io handler used to finish the IO.
2797 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2798 struct writeback_control *wbc, bh_end_io_t *handler)
2800 struct inode * const inode = page->mapping->host;
2801 loff_t i_size = i_size_read(inode);
2802 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2803 unsigned offset;
2805 /* Is the page fully inside i_size? */
2806 if (page->index < end_index)
2807 return __block_write_full_page(inode, page, get_block, wbc,
2808 handler);
2810 /* Is the page fully outside i_size? (truncate in progress) */
2811 offset = i_size & (PAGE_CACHE_SIZE-1);
2812 if (page->index >= end_index+1 || !offset) {
2814 * The page may have dirty, unmapped buffers. For example,
2815 * they may have been added in ext3_writepage(). Make them
2816 * freeable here, so the page does not leak.
2818 do_invalidatepage(page, 0);
2819 unlock_page(page);
2820 return 0; /* don't care */
2824 * The page straddles i_size. It must be zeroed out on each and every
2825 * writepage invocation because it may be mmapped. "A file is mapped
2826 * in multiples of the page size. For a file that is not a multiple of
2827 * the page size, the remaining memory is zeroed when mapped, and
2828 * writes to that region are not written out to the file."
2830 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2831 return __block_write_full_page(inode, page, get_block, wbc, handler);
2833 EXPORT_SYMBOL(block_write_full_page_endio);
2836 * The generic ->writepage function for buffer-backed address_spaces
2838 int block_write_full_page(struct page *page, get_block_t *get_block,
2839 struct writeback_control *wbc)
2841 return block_write_full_page_endio(page, get_block, wbc,
2842 end_buffer_async_write);
2844 EXPORT_SYMBOL(block_write_full_page);
2846 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2847 get_block_t *get_block)
2849 struct buffer_head tmp;
2850 struct inode *inode = mapping->host;
2851 tmp.b_state = 0;
2852 tmp.b_blocknr = 0;
2853 tmp.b_size = 1 << inode->i_blkbits;
2854 get_block(inode, block, &tmp, 0);
2855 return tmp.b_blocknr;
2857 EXPORT_SYMBOL(generic_block_bmap);
2859 static void end_bio_bh_io_sync(struct bio *bio, int err)
2861 struct buffer_head *bh = bio->bi_private;
2863 if (err == -EOPNOTSUPP) {
2864 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2867 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2868 set_bit(BH_Quiet, &bh->b_state);
2870 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2871 bio_put(bio);
2874 int submit_bh(int rw, struct buffer_head * bh)
2876 struct bio *bio;
2877 int ret = 0;
2879 BUG_ON(!buffer_locked(bh));
2880 BUG_ON(!buffer_mapped(bh));
2881 BUG_ON(!bh->b_end_io);
2882 BUG_ON(buffer_delay(bh));
2883 BUG_ON(buffer_unwritten(bh));
2886 * Only clear out a write error when rewriting
2888 if (test_set_buffer_req(bh) && (rw & WRITE))
2889 clear_buffer_write_io_error(bh);
2892 * from here on down, it's all bio -- do the initial mapping,
2893 * submit_bio -> generic_make_request may further map this bio around
2895 bio = bio_alloc(GFP_NOIO, 1);
2897 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2898 bio->bi_bdev = bh->b_bdev;
2899 bio->bi_io_vec[0].bv_page = bh->b_page;
2900 bio->bi_io_vec[0].bv_len = bh->b_size;
2901 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2903 bio->bi_vcnt = 1;
2904 bio->bi_idx = 0;
2905 bio->bi_size = bh->b_size;
2907 bio->bi_end_io = end_bio_bh_io_sync;
2908 bio->bi_private = bh;
2910 bio_get(bio);
2911 submit_bio(rw, bio);
2913 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2914 ret = -EOPNOTSUPP;
2916 bio_put(bio);
2917 return ret;
2919 EXPORT_SYMBOL(submit_bh);
2922 * ll_rw_block: low-level access to block devices (DEPRECATED)
2923 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2924 * @nr: number of &struct buffer_heads in the array
2925 * @bhs: array of pointers to &struct buffer_head
2927 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2928 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2929 * %READA option is described in the documentation for generic_make_request()
2930 * which ll_rw_block() calls.
2932 * This function drops any buffer that it cannot get a lock on (with the
2933 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2934 * request, and any buffer that appears to be up-to-date when doing read
2935 * request. Further it marks as clean buffers that are processed for
2936 * writing (the buffer cache won't assume that they are actually clean
2937 * until the buffer gets unlocked).
2939 * ll_rw_block sets b_end_io to simple completion handler that marks
2940 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2941 * any waiters.
2943 * All of the buffers must be for the same device, and must also be a
2944 * multiple of the current approved size for the device.
2946 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2948 int i;
2950 for (i = 0; i < nr; i++) {
2951 struct buffer_head *bh = bhs[i];
2953 if (!trylock_buffer(bh))
2954 continue;
2955 if (rw == WRITE) {
2956 if (test_clear_buffer_dirty(bh)) {
2957 bh->b_end_io = end_buffer_write_sync;
2958 get_bh(bh);
2959 submit_bh(WRITE, bh);
2960 continue;
2962 } else {
2963 if (!buffer_uptodate(bh)) {
2964 bh->b_end_io = end_buffer_read_sync;
2965 get_bh(bh);
2966 submit_bh(rw, bh);
2967 continue;
2970 unlock_buffer(bh);
2973 EXPORT_SYMBOL(ll_rw_block);
2975 void write_dirty_buffer(struct buffer_head *bh, int rw)
2977 lock_buffer(bh);
2978 if (!test_clear_buffer_dirty(bh)) {
2979 unlock_buffer(bh);
2980 return;
2982 bh->b_end_io = end_buffer_write_sync;
2983 get_bh(bh);
2984 submit_bh(rw, bh);
2986 EXPORT_SYMBOL(write_dirty_buffer);
2989 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2990 * and then start new I/O and then wait upon it. The caller must have a ref on
2991 * the buffer_head.
2993 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
2995 int ret = 0;
2997 WARN_ON(atomic_read(&bh->b_count) < 1);
2998 lock_buffer(bh);
2999 if (test_clear_buffer_dirty(bh)) {
3000 get_bh(bh);
3001 bh->b_end_io = end_buffer_write_sync;
3002 ret = submit_bh(rw, bh);
3003 wait_on_buffer(bh);
3004 if (!ret && !buffer_uptodate(bh))
3005 ret = -EIO;
3006 } else {
3007 unlock_buffer(bh);
3009 return ret;
3011 EXPORT_SYMBOL(__sync_dirty_buffer);
3013 int sync_dirty_buffer(struct buffer_head *bh)
3015 return __sync_dirty_buffer(bh, WRITE_SYNC);
3017 EXPORT_SYMBOL(sync_dirty_buffer);
3020 * try_to_free_buffers() checks if all the buffers on this particular page
3021 * are unused, and releases them if so.
3023 * Exclusion against try_to_free_buffers may be obtained by either
3024 * locking the page or by holding its mapping's private_lock.
3026 * If the page is dirty but all the buffers are clean then we need to
3027 * be sure to mark the page clean as well. This is because the page
3028 * may be against a block device, and a later reattachment of buffers
3029 * to a dirty page will set *all* buffers dirty. Which would corrupt
3030 * filesystem data on the same device.
3032 * The same applies to regular filesystem pages: if all the buffers are
3033 * clean then we set the page clean and proceed. To do that, we require
3034 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3035 * private_lock.
3037 * try_to_free_buffers() is non-blocking.
3039 static inline int buffer_busy(struct buffer_head *bh)
3041 return atomic_read(&bh->b_count) |
3042 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3045 static int
3046 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3048 struct buffer_head *head = page_buffers(page);
3049 struct buffer_head *bh;
3051 bh = head;
3052 do {
3053 if (buffer_write_io_error(bh) && page->mapping)
3054 set_bit(AS_EIO, &page->mapping->flags);
3055 if (buffer_busy(bh))
3056 goto failed;
3057 bh = bh->b_this_page;
3058 } while (bh != head);
3060 do {
3061 struct buffer_head *next = bh->b_this_page;
3063 if (bh->b_assoc_map)
3064 __remove_assoc_queue(bh);
3065 bh = next;
3066 } while (bh != head);
3067 *buffers_to_free = head;
3068 __clear_page_buffers(page);
3069 return 1;
3070 failed:
3071 return 0;
3074 int try_to_free_buffers(struct page *page)
3076 struct address_space * const mapping = page->mapping;
3077 struct buffer_head *buffers_to_free = NULL;
3078 int ret = 0;
3080 BUG_ON(!PageLocked(page));
3081 if (PageWriteback(page))
3082 return 0;
3084 if (mapping == NULL) { /* can this still happen? */
3085 ret = drop_buffers(page, &buffers_to_free);
3086 goto out;
3089 spin_lock(&mapping->private_lock);
3090 ret = drop_buffers(page, &buffers_to_free);
3093 * If the filesystem writes its buffers by hand (eg ext3)
3094 * then we can have clean buffers against a dirty page. We
3095 * clean the page here; otherwise the VM will never notice
3096 * that the filesystem did any IO at all.
3098 * Also, during truncate, discard_buffer will have marked all
3099 * the page's buffers clean. We discover that here and clean
3100 * the page also.
3102 * private_lock must be held over this entire operation in order
3103 * to synchronise against __set_page_dirty_buffers and prevent the
3104 * dirty bit from being lost.
3106 if (ret)
3107 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3108 spin_unlock(&mapping->private_lock);
3109 out:
3110 if (buffers_to_free) {
3111 struct buffer_head *bh = buffers_to_free;
3113 do {
3114 struct buffer_head *next = bh->b_this_page;
3115 free_buffer_head(bh);
3116 bh = next;
3117 } while (bh != buffers_to_free);
3119 return ret;
3121 EXPORT_SYMBOL(try_to_free_buffers);
3124 * There are no bdflush tunables left. But distributions are
3125 * still running obsolete flush daemons, so we terminate them here.
3127 * Use of bdflush() is deprecated and will be removed in a future kernel.
3128 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3130 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3132 static int msg_count;
3134 if (!capable(CAP_SYS_ADMIN))
3135 return -EPERM;
3137 if (msg_count < 5) {
3138 msg_count++;
3139 printk(KERN_INFO
3140 "warning: process `%s' used the obsolete bdflush"
3141 " system call\n", current->comm);
3142 printk(KERN_INFO "Fix your initscripts?\n");
3145 if (func == 1)
3146 do_exit(0);
3147 return 0;
3151 * Buffer-head allocation
3153 static struct kmem_cache *bh_cachep;
3156 * Once the number of bh's in the machine exceeds this level, we start
3157 * stripping them in writeback.
3159 static int max_buffer_heads;
3161 int buffer_heads_over_limit;
3163 struct bh_accounting {
3164 int nr; /* Number of live bh's */
3165 int ratelimit; /* Limit cacheline bouncing */
3168 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3170 static void recalc_bh_state(void)
3172 int i;
3173 int tot = 0;
3175 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3176 return;
3177 __this_cpu_write(bh_accounting.ratelimit, 0);
3178 for_each_online_cpu(i)
3179 tot += per_cpu(bh_accounting, i).nr;
3180 buffer_heads_over_limit = (tot > max_buffer_heads);
3183 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3185 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3186 if (ret) {
3187 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3188 preempt_disable();
3189 __this_cpu_inc(bh_accounting.nr);
3190 recalc_bh_state();
3191 preempt_enable();
3193 return ret;
3195 EXPORT_SYMBOL(alloc_buffer_head);
3197 void free_buffer_head(struct buffer_head *bh)
3199 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3200 kmem_cache_free(bh_cachep, bh);
3201 preempt_disable();
3202 __this_cpu_dec(bh_accounting.nr);
3203 recalc_bh_state();
3204 preempt_enable();
3206 EXPORT_SYMBOL(free_buffer_head);
3208 static void buffer_exit_cpu(int cpu)
3210 int i;
3211 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3213 for (i = 0; i < BH_LRU_SIZE; i++) {
3214 brelse(b->bhs[i]);
3215 b->bhs[i] = NULL;
3217 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3218 per_cpu(bh_accounting, cpu).nr = 0;
3221 static int buffer_cpu_notify(struct notifier_block *self,
3222 unsigned long action, void *hcpu)
3224 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3225 buffer_exit_cpu((unsigned long)hcpu);
3226 return NOTIFY_OK;
3230 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3231 * @bh: struct buffer_head
3233 * Return true if the buffer is up-to-date and false,
3234 * with the buffer locked, if not.
3236 int bh_uptodate_or_lock(struct buffer_head *bh)
3238 if (!buffer_uptodate(bh)) {
3239 lock_buffer(bh);
3240 if (!buffer_uptodate(bh))
3241 return 0;
3242 unlock_buffer(bh);
3244 return 1;
3246 EXPORT_SYMBOL(bh_uptodate_or_lock);
3249 * bh_submit_read - Submit a locked buffer for reading
3250 * @bh: struct buffer_head
3252 * Returns zero on success and -EIO on error.
3254 int bh_submit_read(struct buffer_head *bh)
3256 BUG_ON(!buffer_locked(bh));
3258 if (buffer_uptodate(bh)) {
3259 unlock_buffer(bh);
3260 return 0;
3263 get_bh(bh);
3264 bh->b_end_io = end_buffer_read_sync;
3265 submit_bh(READ, bh);
3266 wait_on_buffer(bh);
3267 if (buffer_uptodate(bh))
3268 return 0;
3269 return -EIO;
3271 EXPORT_SYMBOL(bh_submit_read);
3273 void __init buffer_init(void)
3275 int nrpages;
3277 bh_cachep = kmem_cache_create("buffer_head",
3278 sizeof(struct buffer_head), 0,
3279 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3280 SLAB_MEM_SPREAD),
3281 NULL);
3284 * Limit the bh occupancy to 10% of ZONE_NORMAL
3286 nrpages = (nr_free_buffer_pages() * 10) / 100;
3287 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3288 hotcpu_notifier(buffer_cpu_notify, 0);