Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
blob338f428a15b765ceaef4686225715d5d2f9f93e3
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MIN_FREQUENCY_UP_THRESHOLD (11)
36 #define MAX_FREQUENCY_UP_THRESHOLD (100)
39 * The polling frequency of this governor depends on the capability of
40 * the processor. Default polling frequency is 1000 times the transition
41 * latency of the processor. The governor will work on any processor with
42 * transition latency <= 10mS, using appropriate sampling
43 * rate.
44 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45 * this governor will not work.
46 * All times here are in uS.
48 static unsigned int def_sampling_rate;
49 #define MIN_SAMPLING_RATE_RATIO (2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE \
52 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE \
54 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56 * Define the minimal settable sampling rate to the greater of:
57 * - "HW transition latency" * 100 (same as default sampling / 10)
58 * - MIN_STAT_SAMPLING_RATE
59 * To avoid that userspace shoots itself.
61 static unsigned int minimum_sampling_rate(void)
63 return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
66 /* This will also vanish soon with removing sampling_rate_max */
67 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
68 #define LATENCY_MULTIPLIER (1000)
69 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
71 static void do_dbs_timer(struct work_struct *work);
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
76 struct cpu_dbs_info_s {
77 cputime64_t prev_cpu_idle;
78 cputime64_t prev_cpu_wall;
79 cputime64_t prev_cpu_nice;
80 struct cpufreq_policy *cur_policy;
81 struct delayed_work work;
82 struct cpufreq_frequency_table *freq_table;
83 unsigned int freq_lo;
84 unsigned int freq_lo_jiffies;
85 unsigned int freq_hi_jiffies;
86 int cpu;
87 unsigned int enable:1,
88 sample_type:1;
90 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
92 static unsigned int dbs_enable; /* number of CPUs using this policy */
95 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96 * lock and dbs_mutex. cpu_hotplug lock should always be held before
97 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100 * is recursive for the same process. -Venki
102 static DEFINE_MUTEX(dbs_mutex);
104 static struct workqueue_struct *kondemand_wq;
106 static struct dbs_tuners {
107 unsigned int sampling_rate;
108 unsigned int up_threshold;
109 unsigned int down_differential;
110 unsigned int ignore_nice;
111 unsigned int powersave_bias;
112 } dbs_tuners_ins = {
113 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
114 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
115 .ignore_nice = 0,
116 .powersave_bias = 0,
119 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
120 cputime64_t *wall)
122 cputime64_t idle_time;
123 cputime64_t cur_wall_time;
124 cputime64_t busy_time;
126 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
127 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
128 kstat_cpu(cpu).cpustat.system);
130 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
131 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
132 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
133 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
135 idle_time = cputime64_sub(cur_wall_time, busy_time);
136 if (wall)
137 *wall = cur_wall_time;
139 return idle_time;
142 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
144 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
146 if (idle_time == -1ULL)
147 return get_cpu_idle_time_jiffy(cpu, wall);
149 return idle_time;
153 * Find right freq to be set now with powersave_bias on.
154 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
155 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
157 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
158 unsigned int freq_next,
159 unsigned int relation)
161 unsigned int freq_req, freq_reduc, freq_avg;
162 unsigned int freq_hi, freq_lo;
163 unsigned int index = 0;
164 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
165 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
167 if (!dbs_info->freq_table) {
168 dbs_info->freq_lo = 0;
169 dbs_info->freq_lo_jiffies = 0;
170 return freq_next;
173 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174 relation, &index);
175 freq_req = dbs_info->freq_table[index].frequency;
176 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177 freq_avg = freq_req - freq_reduc;
179 /* Find freq bounds for freq_avg in freq_table */
180 index = 0;
181 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182 CPUFREQ_RELATION_H, &index);
183 freq_lo = dbs_info->freq_table[index].frequency;
184 index = 0;
185 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186 CPUFREQ_RELATION_L, &index);
187 freq_hi = dbs_info->freq_table[index].frequency;
189 /* Find out how long we have to be in hi and lo freqs */
190 if (freq_hi == freq_lo) {
191 dbs_info->freq_lo = 0;
192 dbs_info->freq_lo_jiffies = 0;
193 return freq_lo;
195 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197 jiffies_hi += ((freq_hi - freq_lo) / 2);
198 jiffies_hi /= (freq_hi - freq_lo);
199 jiffies_lo = jiffies_total - jiffies_hi;
200 dbs_info->freq_lo = freq_lo;
201 dbs_info->freq_lo_jiffies = jiffies_lo;
202 dbs_info->freq_hi_jiffies = jiffies_hi;
203 return freq_hi;
206 static void ondemand_powersave_bias_init(void)
208 int i;
209 for_each_online_cpu(i) {
210 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
211 dbs_info->freq_table = cpufreq_frequency_get_table(i);
212 dbs_info->freq_lo = 0;
216 /************************** sysfs interface ************************/
217 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
219 static int print_once;
221 if (!print_once) {
222 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
223 "sysfs file is deprecated - used by: %s\n",
224 current->comm);
225 print_once = 1;
227 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
230 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
232 static int print_once;
234 if (!print_once) {
235 printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
236 "sysfs file is deprecated - used by: %s\n",
237 current->comm);
238 print_once = 1;
240 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
243 #define define_one_ro(_name) \
244 static struct freq_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
247 define_one_ro(sampling_rate_max);
248 define_one_ro(sampling_rate_min);
250 /* cpufreq_ondemand Governor Tunables */
251 #define show_one(file_name, object) \
252 static ssize_t show_##file_name \
253 (struct cpufreq_policy *unused, char *buf) \
255 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
257 show_one(sampling_rate, sampling_rate);
258 show_one(up_threshold, up_threshold);
259 show_one(ignore_nice_load, ignore_nice);
260 show_one(powersave_bias, powersave_bias);
262 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
263 const char *buf, size_t count)
265 unsigned int input;
266 int ret;
267 ret = sscanf(buf, "%u", &input);
269 mutex_lock(&dbs_mutex);
270 if (ret != 1) {
271 mutex_unlock(&dbs_mutex);
272 return -EINVAL;
274 dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
275 mutex_unlock(&dbs_mutex);
277 return count;
280 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
281 const char *buf, size_t count)
283 unsigned int input;
284 int ret;
285 ret = sscanf(buf, "%u", &input);
287 mutex_lock(&dbs_mutex);
288 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
289 input < MIN_FREQUENCY_UP_THRESHOLD) {
290 mutex_unlock(&dbs_mutex);
291 return -EINVAL;
294 dbs_tuners_ins.up_threshold = input;
295 mutex_unlock(&dbs_mutex);
297 return count;
300 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
301 const char *buf, size_t count)
303 unsigned int input;
304 int ret;
306 unsigned int j;
308 ret = sscanf(buf, "%u", &input);
309 if (ret != 1)
310 return -EINVAL;
312 if (input > 1)
313 input = 1;
315 mutex_lock(&dbs_mutex);
316 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
317 mutex_unlock(&dbs_mutex);
318 return count;
320 dbs_tuners_ins.ignore_nice = input;
322 /* we need to re-evaluate prev_cpu_idle */
323 for_each_online_cpu(j) {
324 struct cpu_dbs_info_s *dbs_info;
325 dbs_info = &per_cpu(cpu_dbs_info, j);
326 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
327 &dbs_info->prev_cpu_wall);
328 if (dbs_tuners_ins.ignore_nice)
329 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
332 mutex_unlock(&dbs_mutex);
334 return count;
337 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
338 const char *buf, size_t count)
340 unsigned int input;
341 int ret;
342 ret = sscanf(buf, "%u", &input);
344 if (ret != 1)
345 return -EINVAL;
347 if (input > 1000)
348 input = 1000;
350 mutex_lock(&dbs_mutex);
351 dbs_tuners_ins.powersave_bias = input;
352 ondemand_powersave_bias_init();
353 mutex_unlock(&dbs_mutex);
355 return count;
358 #define define_one_rw(_name) \
359 static struct freq_attr _name = \
360 __ATTR(_name, 0644, show_##_name, store_##_name)
362 define_one_rw(sampling_rate);
363 define_one_rw(up_threshold);
364 define_one_rw(ignore_nice_load);
365 define_one_rw(powersave_bias);
367 static struct attribute *dbs_attributes[] = {
368 &sampling_rate_max.attr,
369 &sampling_rate_min.attr,
370 &sampling_rate.attr,
371 &up_threshold.attr,
372 &ignore_nice_load.attr,
373 &powersave_bias.attr,
374 NULL
377 static struct attribute_group dbs_attr_group = {
378 .attrs = dbs_attributes,
379 .name = "ondemand",
382 /************************** sysfs end ************************/
384 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
386 unsigned int max_load_freq;
388 struct cpufreq_policy *policy;
389 unsigned int j;
391 if (!this_dbs_info->enable)
392 return;
394 this_dbs_info->freq_lo = 0;
395 policy = this_dbs_info->cur_policy;
398 * Every sampling_rate, we check, if current idle time is less
399 * than 20% (default), then we try to increase frequency
400 * Every sampling_rate, we look for a the lowest
401 * frequency which can sustain the load while keeping idle time over
402 * 30%. If such a frequency exist, we try to decrease to this frequency.
404 * Any frequency increase takes it to the maximum frequency.
405 * Frequency reduction happens at minimum steps of
406 * 5% (default) of current frequency
409 /* Get Absolute Load - in terms of freq */
410 max_load_freq = 0;
412 for_each_cpu(j, policy->cpus) {
413 struct cpu_dbs_info_s *j_dbs_info;
414 cputime64_t cur_wall_time, cur_idle_time;
415 unsigned int idle_time, wall_time;
416 unsigned int load, load_freq;
417 int freq_avg;
419 j_dbs_info = &per_cpu(cpu_dbs_info, j);
421 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
423 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
424 j_dbs_info->prev_cpu_wall);
425 j_dbs_info->prev_cpu_wall = cur_wall_time;
427 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
428 j_dbs_info->prev_cpu_idle);
429 j_dbs_info->prev_cpu_idle = cur_idle_time;
431 if (dbs_tuners_ins.ignore_nice) {
432 cputime64_t cur_nice;
433 unsigned long cur_nice_jiffies;
435 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
436 j_dbs_info->prev_cpu_nice);
438 * Assumption: nice time between sampling periods will
439 * be less than 2^32 jiffies for 32 bit sys
441 cur_nice_jiffies = (unsigned long)
442 cputime64_to_jiffies64(cur_nice);
444 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
445 idle_time += jiffies_to_usecs(cur_nice_jiffies);
448 if (unlikely(!wall_time || wall_time < idle_time))
449 continue;
451 load = 100 * (wall_time - idle_time) / wall_time;
453 freq_avg = __cpufreq_driver_getavg(policy, j);
454 if (freq_avg <= 0)
455 freq_avg = policy->cur;
457 load_freq = load * freq_avg;
458 if (load_freq > max_load_freq)
459 max_load_freq = load_freq;
462 /* Check for frequency increase */
463 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
464 /* if we are already at full speed then break out early */
465 if (!dbs_tuners_ins.powersave_bias) {
466 if (policy->cur == policy->max)
467 return;
469 __cpufreq_driver_target(policy, policy->max,
470 CPUFREQ_RELATION_H);
471 } else {
472 int freq = powersave_bias_target(policy, policy->max,
473 CPUFREQ_RELATION_H);
474 __cpufreq_driver_target(policy, freq,
475 CPUFREQ_RELATION_L);
477 return;
480 /* Check for frequency decrease */
481 /* if we cannot reduce the frequency anymore, break out early */
482 if (policy->cur == policy->min)
483 return;
486 * The optimal frequency is the frequency that is the lowest that
487 * can support the current CPU usage without triggering the up
488 * policy. To be safe, we focus 10 points under the threshold.
490 if (max_load_freq <
491 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
492 policy->cur) {
493 unsigned int freq_next;
494 freq_next = max_load_freq /
495 (dbs_tuners_ins.up_threshold -
496 dbs_tuners_ins.down_differential);
498 if (!dbs_tuners_ins.powersave_bias) {
499 __cpufreq_driver_target(policy, freq_next,
500 CPUFREQ_RELATION_L);
501 } else {
502 int freq = powersave_bias_target(policy, freq_next,
503 CPUFREQ_RELATION_L);
504 __cpufreq_driver_target(policy, freq,
505 CPUFREQ_RELATION_L);
510 static void do_dbs_timer(struct work_struct *work)
512 struct cpu_dbs_info_s *dbs_info =
513 container_of(work, struct cpu_dbs_info_s, work.work);
514 unsigned int cpu = dbs_info->cpu;
515 int sample_type = dbs_info->sample_type;
517 /* We want all CPUs to do sampling nearly on same jiffy */
518 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
520 delay -= jiffies % delay;
522 if (lock_policy_rwsem_write(cpu) < 0)
523 return;
525 if (!dbs_info->enable) {
526 unlock_policy_rwsem_write(cpu);
527 return;
530 /* Common NORMAL_SAMPLE setup */
531 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532 if (!dbs_tuners_ins.powersave_bias ||
533 sample_type == DBS_NORMAL_SAMPLE) {
534 dbs_check_cpu(dbs_info);
535 if (dbs_info->freq_lo) {
536 /* Setup timer for SUB_SAMPLE */
537 dbs_info->sample_type = DBS_SUB_SAMPLE;
538 delay = dbs_info->freq_hi_jiffies;
540 } else {
541 __cpufreq_driver_target(dbs_info->cur_policy,
542 dbs_info->freq_lo, CPUFREQ_RELATION_H);
544 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
545 unlock_policy_rwsem_write(cpu);
548 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
550 /* We want all CPUs to do sampling nearly on same jiffy */
551 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
552 delay -= jiffies % delay;
554 dbs_info->enable = 1;
555 ondemand_powersave_bias_init();
556 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
557 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
558 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
559 delay);
562 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
564 dbs_info->enable = 0;
565 cancel_delayed_work(&dbs_info->work);
568 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
569 unsigned int event)
571 unsigned int cpu = policy->cpu;
572 struct cpu_dbs_info_s *this_dbs_info;
573 unsigned int j;
574 int rc;
576 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
578 switch (event) {
579 case CPUFREQ_GOV_START:
580 if ((!cpu_online(cpu)) || (!policy->cur))
581 return -EINVAL;
583 if (this_dbs_info->enable) /* Already enabled */
584 break;
586 mutex_lock(&dbs_mutex);
587 dbs_enable++;
589 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
590 if (rc) {
591 dbs_enable--;
592 mutex_unlock(&dbs_mutex);
593 return rc;
596 for_each_cpu(j, policy->cpus) {
597 struct cpu_dbs_info_s *j_dbs_info;
598 j_dbs_info = &per_cpu(cpu_dbs_info, j);
599 j_dbs_info->cur_policy = policy;
601 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
602 &j_dbs_info->prev_cpu_wall);
603 if (dbs_tuners_ins.ignore_nice) {
604 j_dbs_info->prev_cpu_nice =
605 kstat_cpu(j).cpustat.nice;
608 this_dbs_info->cpu = cpu;
610 * Start the timerschedule work, when this governor
611 * is used for first time
613 if (dbs_enable == 1) {
614 unsigned int latency;
615 /* policy latency is in nS. Convert it to uS first */
616 latency = policy->cpuinfo.transition_latency / 1000;
617 if (latency == 0)
618 latency = 1;
620 def_sampling_rate =
621 max(latency * LATENCY_MULTIPLIER,
622 MIN_STAT_SAMPLING_RATE);
624 dbs_tuners_ins.sampling_rate = def_sampling_rate;
626 dbs_timer_init(this_dbs_info);
628 mutex_unlock(&dbs_mutex);
629 break;
631 case CPUFREQ_GOV_STOP:
632 mutex_lock(&dbs_mutex);
633 dbs_timer_exit(this_dbs_info);
634 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
635 dbs_enable--;
636 mutex_unlock(&dbs_mutex);
638 break;
640 case CPUFREQ_GOV_LIMITS:
641 mutex_lock(&dbs_mutex);
642 if (policy->max < this_dbs_info->cur_policy->cur)
643 __cpufreq_driver_target(this_dbs_info->cur_policy,
644 policy->max, CPUFREQ_RELATION_H);
645 else if (policy->min > this_dbs_info->cur_policy->cur)
646 __cpufreq_driver_target(this_dbs_info->cur_policy,
647 policy->min, CPUFREQ_RELATION_L);
648 mutex_unlock(&dbs_mutex);
649 break;
651 return 0;
654 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
655 static
656 #endif
657 struct cpufreq_governor cpufreq_gov_ondemand = {
658 .name = "ondemand",
659 .governor = cpufreq_governor_dbs,
660 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
661 .owner = THIS_MODULE,
664 static int __init cpufreq_gov_dbs_init(void)
666 int err;
667 cputime64_t wall;
668 u64 idle_time;
669 int cpu = get_cpu();
671 idle_time = get_cpu_idle_time_us(cpu, &wall);
672 put_cpu();
673 if (idle_time != -1ULL) {
674 /* Idle micro accounting is supported. Use finer thresholds */
675 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
676 dbs_tuners_ins.down_differential =
677 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
680 kondemand_wq = create_workqueue("kondemand");
681 if (!kondemand_wq) {
682 printk(KERN_ERR "Creation of kondemand failed\n");
683 return -EFAULT;
685 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
686 if (err)
687 destroy_workqueue(kondemand_wq);
689 return err;
692 static void __exit cpufreq_gov_dbs_exit(void)
694 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
695 destroy_workqueue(kondemand_wq);
699 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
700 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
701 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
702 "Low Latency Frequency Transition capable processors");
703 MODULE_LICENSE("GPL");
705 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
706 fs_initcall(cpufreq_gov_dbs_init);
707 #else
708 module_init(cpufreq_gov_dbs_init);
709 #endif
710 module_exit(cpufreq_gov_dbs_exit);