2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MIN_FREQUENCY_UP_THRESHOLD (11)
36 #define MAX_FREQUENCY_UP_THRESHOLD (100)
39 * The polling frequency of this governor depends on the capability of
40 * the processor. Default polling frequency is 1000 times the transition
41 * latency of the processor. The governor will work on any processor with
42 * transition latency <= 10mS, using appropriate sampling
44 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45 * this governor will not work.
46 * All times here are in uS.
48 static unsigned int def_sampling_rate
;
49 #define MIN_SAMPLING_RATE_RATIO (2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE \
52 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE \
54 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56 * Define the minimal settable sampling rate to the greater of:
57 * - "HW transition latency" * 100 (same as default sampling / 10)
58 * - MIN_STAT_SAMPLING_RATE
59 * To avoid that userspace shoots itself.
61 static unsigned int minimum_sampling_rate(void)
63 return max(def_sampling_rate
/ 10, MIN_STAT_SAMPLING_RATE
);
66 /* This will also vanish soon with removing sampling_rate_max */
67 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
68 #define LATENCY_MULTIPLIER (1000)
69 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
71 static void do_dbs_timer(struct work_struct
*work
);
74 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
76 struct cpu_dbs_info_s
{
77 cputime64_t prev_cpu_idle
;
78 cputime64_t prev_cpu_wall
;
79 cputime64_t prev_cpu_nice
;
80 struct cpufreq_policy
*cur_policy
;
81 struct delayed_work work
;
82 struct cpufreq_frequency_table
*freq_table
;
84 unsigned int freq_lo_jiffies
;
85 unsigned int freq_hi_jiffies
;
87 unsigned int enable
:1,
90 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
92 static unsigned int dbs_enable
; /* number of CPUs using this policy */
95 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96 * lock and dbs_mutex. cpu_hotplug lock should always be held before
97 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100 * is recursive for the same process. -Venki
102 static DEFINE_MUTEX(dbs_mutex
);
104 static struct workqueue_struct
*kondemand_wq
;
106 static struct dbs_tuners
{
107 unsigned int sampling_rate
;
108 unsigned int up_threshold
;
109 unsigned int down_differential
;
110 unsigned int ignore_nice
;
111 unsigned int powersave_bias
;
113 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
114 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
119 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
122 cputime64_t idle_time
;
123 cputime64_t cur_wall_time
;
124 cputime64_t busy_time
;
126 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
127 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
128 kstat_cpu(cpu
).cpustat
.system
);
130 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
131 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
132 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
133 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
135 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
137 *wall
= cur_wall_time
;
142 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
144 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
146 if (idle_time
== -1ULL)
147 return get_cpu_idle_time_jiffy(cpu
, wall
);
153 * Find right freq to be set now with powersave_bias on.
154 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
155 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
157 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
158 unsigned int freq_next
,
159 unsigned int relation
)
161 unsigned int freq_req
, freq_reduc
, freq_avg
;
162 unsigned int freq_hi
, freq_lo
;
163 unsigned int index
= 0;
164 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
165 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, policy
->cpu
);
167 if (!dbs_info
->freq_table
) {
168 dbs_info
->freq_lo
= 0;
169 dbs_info
->freq_lo_jiffies
= 0;
173 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
175 freq_req
= dbs_info
->freq_table
[index
].frequency
;
176 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
177 freq_avg
= freq_req
- freq_reduc
;
179 /* Find freq bounds for freq_avg in freq_table */
181 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
182 CPUFREQ_RELATION_H
, &index
);
183 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
185 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
186 CPUFREQ_RELATION_L
, &index
);
187 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
189 /* Find out how long we have to be in hi and lo freqs */
190 if (freq_hi
== freq_lo
) {
191 dbs_info
->freq_lo
= 0;
192 dbs_info
->freq_lo_jiffies
= 0;
195 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
196 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
197 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
198 jiffies_hi
/= (freq_hi
- freq_lo
);
199 jiffies_lo
= jiffies_total
- jiffies_hi
;
200 dbs_info
->freq_lo
= freq_lo
;
201 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
202 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
206 static void ondemand_powersave_bias_init(void)
209 for_each_online_cpu(i
) {
210 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(cpu_dbs_info
, i
);
211 dbs_info
->freq_table
= cpufreq_frequency_get_table(i
);
212 dbs_info
->freq_lo
= 0;
216 /************************** sysfs interface ************************/
217 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
219 static int print_once
;
222 printk(KERN_INFO
"CPUFREQ: ondemand sampling_rate_max "
223 "sysfs file is deprecated - used by: %s\n",
227 return sprintf(buf
, "%u\n", MAX_SAMPLING_RATE
);
230 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
232 static int print_once
;
235 printk(KERN_INFO
"CPUFREQ: ondemand sampling_rate_min "
236 "sysfs file is deprecated - used by: %s\n",
240 return sprintf(buf
, "%u\n", MIN_SAMPLING_RATE
);
243 #define define_one_ro(_name) \
244 static struct freq_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
247 define_one_ro(sampling_rate_max
);
248 define_one_ro(sampling_rate_min
);
250 /* cpufreq_ondemand Governor Tunables */
251 #define show_one(file_name, object) \
252 static ssize_t show_##file_name \
253 (struct cpufreq_policy *unused, char *buf) \
255 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
257 show_one(sampling_rate
, sampling_rate
);
258 show_one(up_threshold
, up_threshold
);
259 show_one(ignore_nice_load
, ignore_nice
);
260 show_one(powersave_bias
, powersave_bias
);
262 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
263 const char *buf
, size_t count
)
267 ret
= sscanf(buf
, "%u", &input
);
269 mutex_lock(&dbs_mutex
);
271 mutex_unlock(&dbs_mutex
);
274 dbs_tuners_ins
.sampling_rate
= max(input
, minimum_sampling_rate());
275 mutex_unlock(&dbs_mutex
);
280 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
281 const char *buf
, size_t count
)
285 ret
= sscanf(buf
, "%u", &input
);
287 mutex_lock(&dbs_mutex
);
288 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
289 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
290 mutex_unlock(&dbs_mutex
);
294 dbs_tuners_ins
.up_threshold
= input
;
295 mutex_unlock(&dbs_mutex
);
300 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
301 const char *buf
, size_t count
)
308 ret
= sscanf(buf
, "%u", &input
);
315 mutex_lock(&dbs_mutex
);
316 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
317 mutex_unlock(&dbs_mutex
);
320 dbs_tuners_ins
.ignore_nice
= input
;
322 /* we need to re-evaluate prev_cpu_idle */
323 for_each_online_cpu(j
) {
324 struct cpu_dbs_info_s
*dbs_info
;
325 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
326 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
327 &dbs_info
->prev_cpu_wall
);
328 if (dbs_tuners_ins
.ignore_nice
)
329 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
332 mutex_unlock(&dbs_mutex
);
337 static ssize_t
store_powersave_bias(struct cpufreq_policy
*unused
,
338 const char *buf
, size_t count
)
342 ret
= sscanf(buf
, "%u", &input
);
350 mutex_lock(&dbs_mutex
);
351 dbs_tuners_ins
.powersave_bias
= input
;
352 ondemand_powersave_bias_init();
353 mutex_unlock(&dbs_mutex
);
358 #define define_one_rw(_name) \
359 static struct freq_attr _name = \
360 __ATTR(_name, 0644, show_##_name, store_##_name)
362 define_one_rw(sampling_rate
);
363 define_one_rw(up_threshold
);
364 define_one_rw(ignore_nice_load
);
365 define_one_rw(powersave_bias
);
367 static struct attribute
*dbs_attributes
[] = {
368 &sampling_rate_max
.attr
,
369 &sampling_rate_min
.attr
,
372 &ignore_nice_load
.attr
,
373 &powersave_bias
.attr
,
377 static struct attribute_group dbs_attr_group
= {
378 .attrs
= dbs_attributes
,
382 /************************** sysfs end ************************/
384 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
386 unsigned int max_load_freq
;
388 struct cpufreq_policy
*policy
;
391 if (!this_dbs_info
->enable
)
394 this_dbs_info
->freq_lo
= 0;
395 policy
= this_dbs_info
->cur_policy
;
398 * Every sampling_rate, we check, if current idle time is less
399 * than 20% (default), then we try to increase frequency
400 * Every sampling_rate, we look for a the lowest
401 * frequency which can sustain the load while keeping idle time over
402 * 30%. If such a frequency exist, we try to decrease to this frequency.
404 * Any frequency increase takes it to the maximum frequency.
405 * Frequency reduction happens at minimum steps of
406 * 5% (default) of current frequency
409 /* Get Absolute Load - in terms of freq */
412 for_each_cpu(j
, policy
->cpus
) {
413 struct cpu_dbs_info_s
*j_dbs_info
;
414 cputime64_t cur_wall_time
, cur_idle_time
;
415 unsigned int idle_time
, wall_time
;
416 unsigned int load
, load_freq
;
419 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
421 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
423 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
424 j_dbs_info
->prev_cpu_wall
);
425 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
427 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
428 j_dbs_info
->prev_cpu_idle
);
429 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
431 if (dbs_tuners_ins
.ignore_nice
) {
432 cputime64_t cur_nice
;
433 unsigned long cur_nice_jiffies
;
435 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
436 j_dbs_info
->prev_cpu_nice
);
438 * Assumption: nice time between sampling periods will
439 * be less than 2^32 jiffies for 32 bit sys
441 cur_nice_jiffies
= (unsigned long)
442 cputime64_to_jiffies64(cur_nice
);
444 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
445 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
448 if (unlikely(!wall_time
|| wall_time
< idle_time
))
451 load
= 100 * (wall_time
- idle_time
) / wall_time
;
453 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
455 freq_avg
= policy
->cur
;
457 load_freq
= load
* freq_avg
;
458 if (load_freq
> max_load_freq
)
459 max_load_freq
= load_freq
;
462 /* Check for frequency increase */
463 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
464 /* if we are already at full speed then break out early */
465 if (!dbs_tuners_ins
.powersave_bias
) {
466 if (policy
->cur
== policy
->max
)
469 __cpufreq_driver_target(policy
, policy
->max
,
472 int freq
= powersave_bias_target(policy
, policy
->max
,
474 __cpufreq_driver_target(policy
, freq
,
480 /* Check for frequency decrease */
481 /* if we cannot reduce the frequency anymore, break out early */
482 if (policy
->cur
== policy
->min
)
486 * The optimal frequency is the frequency that is the lowest that
487 * can support the current CPU usage without triggering the up
488 * policy. To be safe, we focus 10 points under the threshold.
491 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
493 unsigned int freq_next
;
494 freq_next
= max_load_freq
/
495 (dbs_tuners_ins
.up_threshold
-
496 dbs_tuners_ins
.down_differential
);
498 if (!dbs_tuners_ins
.powersave_bias
) {
499 __cpufreq_driver_target(policy
, freq_next
,
502 int freq
= powersave_bias_target(policy
, freq_next
,
504 __cpufreq_driver_target(policy
, freq
,
510 static void do_dbs_timer(struct work_struct
*work
)
512 struct cpu_dbs_info_s
*dbs_info
=
513 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
514 unsigned int cpu
= dbs_info
->cpu
;
515 int sample_type
= dbs_info
->sample_type
;
517 /* We want all CPUs to do sampling nearly on same jiffy */
518 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
520 delay
-= jiffies
% delay
;
522 if (lock_policy_rwsem_write(cpu
) < 0)
525 if (!dbs_info
->enable
) {
526 unlock_policy_rwsem_write(cpu
);
530 /* Common NORMAL_SAMPLE setup */
531 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
532 if (!dbs_tuners_ins
.powersave_bias
||
533 sample_type
== DBS_NORMAL_SAMPLE
) {
534 dbs_check_cpu(dbs_info
);
535 if (dbs_info
->freq_lo
) {
536 /* Setup timer for SUB_SAMPLE */
537 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
538 delay
= dbs_info
->freq_hi_jiffies
;
541 __cpufreq_driver_target(dbs_info
->cur_policy
,
542 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
544 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
545 unlock_policy_rwsem_write(cpu
);
548 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
550 /* We want all CPUs to do sampling nearly on same jiffy */
551 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
552 delay
-= jiffies
% delay
;
554 dbs_info
->enable
= 1;
555 ondemand_powersave_bias_init();
556 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
557 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
558 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
562 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
564 dbs_info
->enable
= 0;
565 cancel_delayed_work(&dbs_info
->work
);
568 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
571 unsigned int cpu
= policy
->cpu
;
572 struct cpu_dbs_info_s
*this_dbs_info
;
576 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
579 case CPUFREQ_GOV_START
:
580 if ((!cpu_online(cpu
)) || (!policy
->cur
))
583 if (this_dbs_info
->enable
) /* Already enabled */
586 mutex_lock(&dbs_mutex
);
589 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
592 mutex_unlock(&dbs_mutex
);
596 for_each_cpu(j
, policy
->cpus
) {
597 struct cpu_dbs_info_s
*j_dbs_info
;
598 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
599 j_dbs_info
->cur_policy
= policy
;
601 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
602 &j_dbs_info
->prev_cpu_wall
);
603 if (dbs_tuners_ins
.ignore_nice
) {
604 j_dbs_info
->prev_cpu_nice
=
605 kstat_cpu(j
).cpustat
.nice
;
608 this_dbs_info
->cpu
= cpu
;
610 * Start the timerschedule work, when this governor
611 * is used for first time
613 if (dbs_enable
== 1) {
614 unsigned int latency
;
615 /* policy latency is in nS. Convert it to uS first */
616 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
621 max(latency
* LATENCY_MULTIPLIER
,
622 MIN_STAT_SAMPLING_RATE
);
624 dbs_tuners_ins
.sampling_rate
= def_sampling_rate
;
626 dbs_timer_init(this_dbs_info
);
628 mutex_unlock(&dbs_mutex
);
631 case CPUFREQ_GOV_STOP
:
632 mutex_lock(&dbs_mutex
);
633 dbs_timer_exit(this_dbs_info
);
634 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
636 mutex_unlock(&dbs_mutex
);
640 case CPUFREQ_GOV_LIMITS
:
641 mutex_lock(&dbs_mutex
);
642 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
643 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
644 policy
->max
, CPUFREQ_RELATION_H
);
645 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
646 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
647 policy
->min
, CPUFREQ_RELATION_L
);
648 mutex_unlock(&dbs_mutex
);
654 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
657 struct cpufreq_governor cpufreq_gov_ondemand
= {
659 .governor
= cpufreq_governor_dbs
,
660 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
661 .owner
= THIS_MODULE
,
664 static int __init
cpufreq_gov_dbs_init(void)
671 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
673 if (idle_time
!= -1ULL) {
674 /* Idle micro accounting is supported. Use finer thresholds */
675 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
676 dbs_tuners_ins
.down_differential
=
677 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
680 kondemand_wq
= create_workqueue("kondemand");
682 printk(KERN_ERR
"Creation of kondemand failed\n");
685 err
= cpufreq_register_governor(&cpufreq_gov_ondemand
);
687 destroy_workqueue(kondemand_wq
);
692 static void __exit
cpufreq_gov_dbs_exit(void)
694 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
695 destroy_workqueue(kondemand_wq
);
699 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
700 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
701 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
702 "Low Latency Frequency Transition capable processors");
703 MODULE_LICENSE("GPL");
705 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
706 fs_initcall(cpufreq_gov_dbs_init
);
708 module_init(cpufreq_gov_dbs_init
);
710 module_exit(cpufreq_gov_dbs_exit
);