2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static char *io_tlb_start
, *io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static void *io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 __setup("swiotlb=", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 /* Note that this doesn't work with highmem page */
114 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
115 volatile void *address
)
117 return phys_to_dma(hwdev
, virt_to_phys(address
));
120 void swiotlb_print_info(void)
122 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
123 phys_addr_t pstart
, pend
;
125 pstart
= virt_to_phys(io_tlb_start
);
126 pend
= virt_to_phys(io_tlb_end
);
128 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
129 bytes
>> 20, io_tlb_start
, io_tlb_end
);
130 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
131 (unsigned long long)pstart
,
132 (unsigned long long)pend
);
135 void __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
137 unsigned long i
, bytes
;
139 bytes
= nslabs
<< IO_TLB_SHIFT
;
141 io_tlb_nslabs
= nslabs
;
143 io_tlb_end
= io_tlb_start
+ bytes
;
146 * Allocate and initialize the free list array. This array is used
147 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
148 * between io_tlb_start and io_tlb_end.
150 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
151 for (i
= 0; i
< io_tlb_nslabs
; i
++)
152 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
154 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
157 * Get the overflow emergency buffer
159 io_tlb_overflow_buffer
= alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow
));
160 if (!io_tlb_overflow_buffer
)
161 panic("Cannot allocate SWIOTLB overflow buffer!\n");
163 swiotlb_print_info();
167 * Statically reserve bounce buffer space and initialize bounce buffer data
168 * structures for the software IO TLB used to implement the DMA API.
171 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
175 if (!io_tlb_nslabs
) {
176 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
177 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
180 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
183 * Get IO TLB memory from the low pages
185 io_tlb_start
= alloc_bootmem_low_pages(PAGE_ALIGN(bytes
));
187 panic("Cannot allocate SWIOTLB buffer");
189 swiotlb_init_with_tbl(io_tlb_start
, io_tlb_nslabs
, verbose
);
193 swiotlb_init(int verbose
)
195 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
199 * Systems with larger DMA zones (those that don't support ISA) can
200 * initialize the swiotlb later using the slab allocator if needed.
201 * This should be just like above, but with some error catching.
204 swiotlb_late_init_with_default_size(size_t default_size
)
206 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
209 if (!io_tlb_nslabs
) {
210 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
211 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
215 * Get IO TLB memory from the low pages
217 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
218 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
219 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
221 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
222 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
232 if (order
!= get_order(bytes
)) {
233 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
234 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
235 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
236 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
238 io_tlb_end
= io_tlb_start
+ bytes
;
239 memset(io_tlb_start
, 0, bytes
);
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
246 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
247 get_order(io_tlb_nslabs
* sizeof(int)));
251 for (i
= 0; i
< io_tlb_nslabs
; i
++)
252 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
255 io_tlb_orig_addr
= (phys_addr_t
*)
256 __get_free_pages(GFP_KERNEL
,
257 get_order(io_tlb_nslabs
*
258 sizeof(phys_addr_t
)));
259 if (!io_tlb_orig_addr
)
262 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
265 * Get the overflow emergency buffer
267 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
268 get_order(io_tlb_overflow
));
269 if (!io_tlb_overflow_buffer
)
272 swiotlb_print_info();
279 free_pages((unsigned long)io_tlb_orig_addr
,
280 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
281 io_tlb_orig_addr
= NULL
;
283 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
288 free_pages((unsigned long)io_tlb_start
, order
);
291 io_tlb_nslabs
= req_nslabs
;
295 void __init
swiotlb_free(void)
297 if (!io_tlb_overflow_buffer
)
301 free_pages((unsigned long)io_tlb_overflow_buffer
,
302 get_order(io_tlb_overflow
));
303 free_pages((unsigned long)io_tlb_orig_addr
,
304 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
305 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
307 free_pages((unsigned long)io_tlb_start
,
308 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
310 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
311 PAGE_ALIGN(io_tlb_overflow
));
312 free_bootmem_late(__pa(io_tlb_orig_addr
),
313 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
314 free_bootmem_late(__pa(io_tlb_list
),
315 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
316 free_bootmem_late(__pa(io_tlb_start
),
317 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
321 static int is_swiotlb_buffer(phys_addr_t paddr
)
323 return paddr
>= virt_to_phys(io_tlb_start
) &&
324 paddr
< virt_to_phys(io_tlb_end
);
328 * Bounce: copy the swiotlb buffer back to the original dma location
330 void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
331 enum dma_data_direction dir
)
333 unsigned long pfn
= PFN_DOWN(phys
);
335 if (PageHighMem(pfn_to_page(pfn
))) {
336 /* The buffer does not have a mapping. Map it in and copy */
337 unsigned int offset
= phys
& ~PAGE_MASK
;
343 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
345 local_irq_save(flags
);
346 buffer
= kmap_atomic(pfn_to_page(pfn
),
348 if (dir
== DMA_TO_DEVICE
)
349 memcpy(dma_addr
, buffer
+ offset
, sz
);
351 memcpy(buffer
+ offset
, dma_addr
, sz
);
352 kunmap_atomic(buffer
, KM_BOUNCE_READ
);
353 local_irq_restore(flags
);
361 if (dir
== DMA_TO_DEVICE
)
362 memcpy(dma_addr
, phys_to_virt(phys
), size
);
364 memcpy(phys_to_virt(phys
), dma_addr
, size
);
367 EXPORT_SYMBOL_GPL(swiotlb_bounce
);
369 void *swiotlb_tbl_map_single(struct device
*hwdev
, dma_addr_t tbl_dma_addr
,
370 phys_addr_t phys
, size_t size
,
371 enum dma_data_direction dir
)
375 unsigned int nslots
, stride
, index
, wrap
;
378 unsigned long offset_slots
;
379 unsigned long max_slots
;
381 mask
= dma_get_seg_boundary(hwdev
);
383 tbl_dma_addr
&= mask
;
385 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
388 * Carefully handle integer overflow which can occur when mask == ~0UL.
391 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
392 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
395 * For mappings greater than a page, we limit the stride (and
396 * hence alignment) to a page size.
398 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
399 if (size
> PAGE_SIZE
)
400 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
407 * Find suitable number of IO TLB entries size that will fit this
408 * request and allocate a buffer from that IO TLB pool.
410 spin_lock_irqsave(&io_tlb_lock
, flags
);
411 index
= ALIGN(io_tlb_index
, stride
);
412 if (index
>= io_tlb_nslabs
)
417 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
420 if (index
>= io_tlb_nslabs
)
427 * If we find a slot that indicates we have 'nslots' number of
428 * contiguous buffers, we allocate the buffers from that slot
429 * and mark the entries as '0' indicating unavailable.
431 if (io_tlb_list
[index
] >= nslots
) {
434 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
436 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
437 io_tlb_list
[i
] = ++count
;
438 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
441 * Update the indices to avoid searching in the next
444 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
445 ? (index
+ nslots
) : 0);
450 if (index
>= io_tlb_nslabs
)
452 } while (index
!= wrap
);
455 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
458 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
461 * Save away the mapping from the original address to the DMA address.
462 * This is needed when we sync the memory. Then we sync the buffer if
465 for (i
= 0; i
< nslots
; i
++)
466 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
467 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
468 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
472 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
475 * Allocates bounce buffer and returns its kernel virtual address.
479 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
480 enum dma_data_direction dir
)
482 dma_addr_t start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
);
484 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
488 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
491 swiotlb_tbl_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
492 enum dma_data_direction dir
)
495 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
496 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
497 phys_addr_t phys
= io_tlb_orig_addr
[index
];
500 * First, sync the memory before unmapping the entry
502 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
503 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
506 * Return the buffer to the free list by setting the corresponding
507 * entries to indicate the number of contiguous entries available.
508 * While returning the entries to the free list, we merge the entries
509 * with slots below and above the pool being returned.
511 spin_lock_irqsave(&io_tlb_lock
, flags
);
513 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
514 io_tlb_list
[index
+ nslots
] : 0);
516 * Step 1: return the slots to the free list, merging the
517 * slots with superceeding slots
519 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
520 io_tlb_list
[i
] = ++count
;
522 * Step 2: merge the returned slots with the preceding slots,
523 * if available (non zero)
525 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
526 io_tlb_list
[i
] = ++count
;
528 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
530 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
533 swiotlb_tbl_sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
534 enum dma_data_direction dir
,
535 enum dma_sync_target target
)
537 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
538 phys_addr_t phys
= io_tlb_orig_addr
[index
];
540 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
544 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
545 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
547 BUG_ON(dir
!= DMA_TO_DEVICE
);
549 case SYNC_FOR_DEVICE
:
550 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
551 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
553 BUG_ON(dir
!= DMA_FROM_DEVICE
);
559 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
562 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
563 dma_addr_t
*dma_handle
, gfp_t flags
)
567 int order
= get_order(size
);
568 u64 dma_mask
= DMA_BIT_MASK(32);
570 if (hwdev
&& hwdev
->coherent_dma_mask
)
571 dma_mask
= hwdev
->coherent_dma_mask
;
573 ret
= (void *)__get_free_pages(flags
, order
);
574 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
- 1 > dma_mask
) {
576 * The allocated memory isn't reachable by the device.
578 free_pages((unsigned long) ret
, order
);
583 * We are either out of memory or the device can't DMA to
584 * GFP_DMA memory; fall back on map_single(), which
585 * will grab memory from the lowest available address range.
587 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
592 memset(ret
, 0, size
);
593 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
595 /* Confirm address can be DMA'd by device */
596 if (dev_addr
+ size
- 1 > dma_mask
) {
597 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
598 (unsigned long long)dma_mask
,
599 (unsigned long long)dev_addr
);
601 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
602 swiotlb_tbl_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
605 *dma_handle
= dev_addr
;
608 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
611 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
614 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
616 WARN_ON(irqs_disabled());
617 if (!is_swiotlb_buffer(paddr
))
618 free_pages((unsigned long)vaddr
, get_order(size
));
620 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
621 swiotlb_tbl_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
623 EXPORT_SYMBOL(swiotlb_free_coherent
);
626 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
630 * Ran out of IOMMU space for this operation. This is very bad.
631 * Unfortunately the drivers cannot handle this operation properly.
632 * unless they check for dma_mapping_error (most don't)
633 * When the mapping is small enough return a static buffer to limit
634 * the damage, or panic when the transfer is too big.
636 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
637 "device %s\n", size
, dev
? dev_name(dev
) : "?");
639 if (size
<= io_tlb_overflow
|| !do_panic
)
642 if (dir
== DMA_BIDIRECTIONAL
)
643 panic("DMA: Random memory could be DMA accessed\n");
644 if (dir
== DMA_FROM_DEVICE
)
645 panic("DMA: Random memory could be DMA written\n");
646 if (dir
== DMA_TO_DEVICE
)
647 panic("DMA: Random memory could be DMA read\n");
651 * Map a single buffer of the indicated size for DMA in streaming mode. The
652 * physical address to use is returned.
654 * Once the device is given the dma address, the device owns this memory until
655 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
657 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
658 unsigned long offset
, size_t size
,
659 enum dma_data_direction dir
,
660 struct dma_attrs
*attrs
)
662 phys_addr_t phys
= page_to_phys(page
) + offset
;
663 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
666 BUG_ON(dir
== DMA_NONE
);
668 * If the address happens to be in the device's DMA window,
669 * we can safely return the device addr and not worry about bounce
672 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
676 * Oh well, have to allocate and map a bounce buffer.
678 map
= map_single(dev
, phys
, size
, dir
);
680 swiotlb_full(dev
, size
, dir
, 1);
681 map
= io_tlb_overflow_buffer
;
684 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
687 * Ensure that the address returned is DMA'ble
689 if (!dma_capable(dev
, dev_addr
, size
))
690 panic("map_single: bounce buffer is not DMA'ble");
694 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
697 * Unmap a single streaming mode DMA translation. The dma_addr and size must
698 * match what was provided for in a previous swiotlb_map_page call. All
699 * other usages are undefined.
701 * After this call, reads by the cpu to the buffer are guaranteed to see
702 * whatever the device wrote there.
704 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
705 size_t size
, enum dma_data_direction dir
)
707 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
709 BUG_ON(dir
== DMA_NONE
);
711 if (is_swiotlb_buffer(paddr
)) {
712 swiotlb_tbl_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
716 if (dir
!= DMA_FROM_DEVICE
)
720 * phys_to_virt doesn't work with hihgmem page but we could
721 * call dma_mark_clean() with hihgmem page here. However, we
722 * are fine since dma_mark_clean() is null on POWERPC. We can
723 * make dma_mark_clean() take a physical address if necessary.
725 dma_mark_clean(phys_to_virt(paddr
), size
);
728 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
729 size_t size
, enum dma_data_direction dir
,
730 struct dma_attrs
*attrs
)
732 unmap_single(hwdev
, dev_addr
, size
, dir
);
734 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
737 * Make physical memory consistent for a single streaming mode DMA translation
740 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
741 * using the cpu, yet do not wish to teardown the dma mapping, you must
742 * call this function before doing so. At the next point you give the dma
743 * address back to the card, you must first perform a
744 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
747 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
748 size_t size
, enum dma_data_direction dir
,
749 enum dma_sync_target target
)
751 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
753 BUG_ON(dir
== DMA_NONE
);
755 if (is_swiotlb_buffer(paddr
)) {
756 swiotlb_tbl_sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
,
761 if (dir
!= DMA_FROM_DEVICE
)
764 dma_mark_clean(phys_to_virt(paddr
), size
);
768 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
769 size_t size
, enum dma_data_direction dir
)
771 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
773 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
776 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
777 size_t size
, enum dma_data_direction dir
)
779 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
781 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
784 * Map a set of buffers described by scatterlist in streaming mode for DMA.
785 * This is the scatter-gather version of the above swiotlb_map_page
786 * interface. Here the scatter gather list elements are each tagged with the
787 * appropriate dma address and length. They are obtained via
788 * sg_dma_{address,length}(SG).
790 * NOTE: An implementation may be able to use a smaller number of
791 * DMA address/length pairs than there are SG table elements.
792 * (for example via virtual mapping capabilities)
793 * The routine returns the number of addr/length pairs actually
794 * used, at most nents.
796 * Device ownership issues as mentioned above for swiotlb_map_page are the
800 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
801 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
803 struct scatterlist
*sg
;
806 BUG_ON(dir
== DMA_NONE
);
808 for_each_sg(sgl
, sg
, nelems
, i
) {
809 phys_addr_t paddr
= sg_phys(sg
);
810 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
813 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
814 void *map
= map_single(hwdev
, sg_phys(sg
),
817 /* Don't panic here, we expect map_sg users
818 to do proper error handling. */
819 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
820 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
822 sgl
[0].dma_length
= 0;
825 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
827 sg
->dma_address
= dev_addr
;
828 sg
->dma_length
= sg
->length
;
832 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
835 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
836 enum dma_data_direction dir
)
838 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
840 EXPORT_SYMBOL(swiotlb_map_sg
);
843 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
844 * concerning calls here are the same as for swiotlb_unmap_page() above.
847 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
848 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
850 struct scatterlist
*sg
;
853 BUG_ON(dir
== DMA_NONE
);
855 for_each_sg(sgl
, sg
, nelems
, i
)
856 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
859 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
862 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
863 enum dma_data_direction dir
)
865 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
867 EXPORT_SYMBOL(swiotlb_unmap_sg
);
870 * Make physical memory consistent for a set of streaming mode DMA translations
873 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
877 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
878 int nelems
, enum dma_data_direction dir
,
879 enum dma_sync_target target
)
881 struct scatterlist
*sg
;
884 for_each_sg(sgl
, sg
, nelems
, i
)
885 swiotlb_sync_single(hwdev
, sg
->dma_address
,
886 sg
->dma_length
, dir
, target
);
890 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
891 int nelems
, enum dma_data_direction dir
)
893 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
895 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
898 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
899 int nelems
, enum dma_data_direction dir
)
901 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
903 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
906 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
908 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
910 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
913 * Return whether the given device DMA address mask can be supported
914 * properly. For example, if your device can only drive the low 24-bits
915 * during bus mastering, then you would pass 0x00ffffff as the mask to
919 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
921 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
923 EXPORT_SYMBOL(swiotlb_dma_supported
);