2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block
*sb
, ext4_fsblk_t blocknr
,
32 unsigned long *blockgrpp
, ext4_grpblk_t
*offsetp
)
34 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
37 blocknr
= blocknr
- le32_to_cpu(es
->s_first_data_block
);
38 offset
= do_div(blocknr
, EXT4_BLOCKS_PER_GROUP(sb
));
46 /* Initializes an uninitialized block bitmap if given, and returns the
47 * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block
*sb
, struct buffer_head
*bh
,
49 int block_group
, struct ext4_group_desc
*gdp
)
53 unsigned free_blocks
, group_blocks
;
54 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
57 J_ASSERT_BH(bh
, buffer_locked(bh
));
59 /* If checksum is bad mark all blocks used to prevent allocation
60 * essentially implementing a per-group read-only flag. */
61 if (!ext4_group_desc_csum_verify(sbi
, block_group
, gdp
)) {
62 ext4_error(sb
, __FUNCTION__
,
63 "Checksum bad for group %u\n", block_group
);
64 gdp
->bg_free_blocks_count
= 0;
65 gdp
->bg_free_inodes_count
= 0;
66 gdp
->bg_itable_unused
= 0;
67 memset(bh
->b_data
, 0xff, sb
->s_blocksize
);
70 memset(bh
->b_data
, 0, sb
->s_blocksize
);
73 /* Check for superblock and gdt backups in this group */
74 bit_max
= ext4_bg_has_super(sb
, block_group
);
76 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_META_BG
) ||
77 block_group
< le32_to_cpu(sbi
->s_es
->s_first_meta_bg
) *
78 sbi
->s_desc_per_block
) {
80 bit_max
+= ext4_bg_num_gdb(sb
, block_group
);
82 le16_to_cpu(sbi
->s_es
->s_reserved_gdt_blocks
);
84 } else { /* For META_BG_BLOCK_GROUPS */
85 int group_rel
= (block_group
-
86 le32_to_cpu(sbi
->s_es
->s_first_meta_bg
)) %
87 EXT4_DESC_PER_BLOCK(sb
);
88 if (group_rel
== 0 || group_rel
== 1 ||
89 (group_rel
== EXT4_DESC_PER_BLOCK(sb
) - 1))
93 if (block_group
== sbi
->s_groups_count
- 1) {
95 * Even though mke2fs always initialize first and last group
96 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97 * to make sure we calculate the right free blocks
99 group_blocks
= ext4_blocks_count(sbi
->s_es
) -
100 le32_to_cpu(sbi
->s_es
->s_first_data_block
) -
101 (EXT4_BLOCKS_PER_GROUP(sb
) * (sbi
->s_groups_count
-1));
103 group_blocks
= EXT4_BLOCKS_PER_GROUP(sb
);
106 free_blocks
= group_blocks
- bit_max
;
109 for (bit
= 0; bit
< bit_max
; bit
++)
110 ext4_set_bit(bit
, bh
->b_data
);
112 start
= block_group
* EXT4_BLOCKS_PER_GROUP(sb
) +
113 le32_to_cpu(sbi
->s_es
->s_first_data_block
);
115 /* Set bits for block and inode bitmaps, and inode table */
116 ext4_set_bit(ext4_block_bitmap(sb
, gdp
) - start
, bh
->b_data
);
117 ext4_set_bit(ext4_inode_bitmap(sb
, gdp
) - start
, bh
->b_data
);
118 for (bit
= (ext4_inode_table(sb
, gdp
) - start
),
119 bit_max
= bit
+ sbi
->s_itb_per_group
; bit
< bit_max
; bit
++)
120 ext4_set_bit(bit
, bh
->b_data
);
123 * Also if the number of blocks within the group is
124 * less than the blocksize * 8 ( which is the size
125 * of bitmap ), set rest of the block bitmap to 1
127 mark_bitmap_end(group_blocks
, sb
->s_blocksize
* 8, bh
->b_data
);
130 return free_blocks
- sbi
->s_itb_per_group
- 2;
135 * The free blocks are managed by bitmaps. A file system contains several
136 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
137 * block for inodes, N blocks for the inode table and data blocks.
139 * The file system contains group descriptors which are located after the
140 * super block. Each descriptor contains the number of the bitmap block and
141 * the free blocks count in the block. The descriptors are loaded in memory
142 * when a file system is mounted (see ext4_fill_super).
146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
149 * ext4_get_group_desc() -- load group descriptor from disk
151 * @block_group: given block group
152 * @bh: pointer to the buffer head to store the block
155 struct ext4_group_desc
* ext4_get_group_desc(struct super_block
* sb
,
156 unsigned int block_group
,
157 struct buffer_head
** bh
)
159 unsigned long group_desc
;
160 unsigned long offset
;
161 struct ext4_group_desc
* desc
;
162 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
164 if (block_group
>= sbi
->s_groups_count
) {
165 ext4_error (sb
, "ext4_get_group_desc",
166 "block_group >= groups_count - "
167 "block_group = %d, groups_count = %lu",
168 block_group
, sbi
->s_groups_count
);
174 group_desc
= block_group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
175 offset
= block_group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
176 if (!sbi
->s_group_desc
[group_desc
]) {
177 ext4_error (sb
, "ext4_get_group_desc",
178 "Group descriptor not loaded - "
179 "block_group = %d, group_desc = %lu, desc = %lu",
180 block_group
, group_desc
, offset
);
184 desc
= (struct ext4_group_desc
*)(
185 (__u8
*)sbi
->s_group_desc
[group_desc
]->b_data
+
186 offset
* EXT4_DESC_SIZE(sb
));
188 *bh
= sbi
->s_group_desc
[group_desc
];
193 * read_block_bitmap()
195 * @block_group: given block group
197 * Read the bitmap for a given block_group, reading into the specified
198 * slot in the superblock's bitmap cache.
200 * Return buffer_head on success or NULL in case of failure.
203 read_block_bitmap(struct super_block
*sb
, unsigned int block_group
)
205 struct ext4_group_desc
* desc
;
206 struct buffer_head
* bh
= NULL
;
207 ext4_fsblk_t bitmap_blk
;
209 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
212 bitmap_blk
= ext4_block_bitmap(sb
, desc
);
213 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
214 bh
= sb_getblk(sb
, bitmap_blk
);
215 if (!buffer_uptodate(bh
)) {
217 if (!buffer_uptodate(bh
)) {
218 ext4_init_block_bitmap(sb
, bh
, block_group
,
220 set_buffer_uptodate(bh
);
225 bh
= sb_bread(sb
, bitmap_blk
);
228 ext4_error (sb
, __FUNCTION__
,
229 "Cannot read block bitmap - "
230 "block_group = %d, block_bitmap = %llu",
231 block_group
, bitmap_blk
);
235 * The reservation window structure operations
236 * --------------------------------------------
237 * Operations include:
238 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
240 * We use a red-black tree to represent per-filesystem reservation
246 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
247 * @rb_root: root of per-filesystem reservation rb tree
248 * @verbose: verbose mode
249 * @fn: function which wishes to dump the reservation map
251 * If verbose is turned on, it will print the whole block reservation
252 * windows(start, end). Otherwise, it will only print out the "bad" windows,
253 * those windows that overlap with their immediate neighbors.
256 static void __rsv_window_dump(struct rb_root
*root
, int verbose
,
260 struct ext4_reserve_window_node
*rsv
, *prev
;
268 printk("Block Allocation Reservation Windows Map (%s):\n", fn
);
270 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
272 printk("reservation window 0x%p "
273 "start: %llu, end: %llu\n",
274 rsv
, rsv
->rsv_start
, rsv
->rsv_end
);
275 if (rsv
->rsv_start
&& rsv
->rsv_start
>= rsv
->rsv_end
) {
276 printk("Bad reservation %p (start >= end)\n",
280 if (prev
&& prev
->rsv_end
>= rsv
->rsv_start
) {
281 printk("Bad reservation %p (prev->end >= start)\n",
287 printk("Restarting reservation walk in verbose mode\n");
295 printk("Window map complete.\n");
299 #define rsv_window_dump(root, verbose) \
300 __rsv_window_dump((root), (verbose), __FUNCTION__)
302 #define rsv_window_dump(root, verbose) do {} while (0)
306 * goal_in_my_reservation()
307 * @rsv: inode's reservation window
308 * @grp_goal: given goal block relative to the allocation block group
309 * @group: the current allocation block group
310 * @sb: filesystem super block
312 * Test if the given goal block (group relative) is within the file's
313 * own block reservation window range.
315 * If the reservation window is outside the goal allocation group, return 0;
316 * grp_goal (given goal block) could be -1, which means no specific
317 * goal block. In this case, always return 1.
318 * If the goal block is within the reservation window, return 1;
319 * otherwise, return 0;
322 goal_in_my_reservation(struct ext4_reserve_window
*rsv
, ext4_grpblk_t grp_goal
,
323 unsigned int group
, struct super_block
* sb
)
325 ext4_fsblk_t group_first_block
, group_last_block
;
327 group_first_block
= ext4_group_first_block_no(sb
, group
);
328 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
330 if ((rsv
->_rsv_start
> group_last_block
) ||
331 (rsv
->_rsv_end
< group_first_block
))
333 if ((grp_goal
>= 0) && ((grp_goal
+ group_first_block
< rsv
->_rsv_start
)
334 || (grp_goal
+ group_first_block
> rsv
->_rsv_end
)))
340 * search_reserve_window()
341 * @rb_root: root of reservation tree
342 * @goal: target allocation block
344 * Find the reserved window which includes the goal, or the previous one
345 * if the goal is not in any window.
346 * Returns NULL if there are no windows or if all windows start after the goal.
348 static struct ext4_reserve_window_node
*
349 search_reserve_window(struct rb_root
*root
, ext4_fsblk_t goal
)
351 struct rb_node
*n
= root
->rb_node
;
352 struct ext4_reserve_window_node
*rsv
;
358 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
360 if (goal
< rsv
->rsv_start
)
362 else if (goal
> rsv
->rsv_end
)
368 * We've fallen off the end of the tree: the goal wasn't inside
369 * any particular node. OK, the previous node must be to one
370 * side of the interval containing the goal. If it's the RHS,
371 * we need to back up one.
373 if (rsv
->rsv_start
> goal
) {
374 n
= rb_prev(&rsv
->rsv_node
);
375 rsv
= rb_entry(n
, struct ext4_reserve_window_node
, rsv_node
);
381 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
383 * @rsv: reservation window to add
385 * Must be called with rsv_lock hold.
387 void ext4_rsv_window_add(struct super_block
*sb
,
388 struct ext4_reserve_window_node
*rsv
)
390 struct rb_root
*root
= &EXT4_SB(sb
)->s_rsv_window_root
;
391 struct rb_node
*node
= &rsv
->rsv_node
;
392 ext4_fsblk_t start
= rsv
->rsv_start
;
394 struct rb_node
** p
= &root
->rb_node
;
395 struct rb_node
* parent
= NULL
;
396 struct ext4_reserve_window_node
*this;
401 this = rb_entry(parent
, struct ext4_reserve_window_node
, rsv_node
);
403 if (start
< this->rsv_start
)
405 else if (start
> this->rsv_end
)
408 rsv_window_dump(root
, 1);
413 rb_link_node(node
, parent
, p
);
414 rb_insert_color(node
, root
);
418 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
420 * @rsv: reservation window to remove
422 * Mark the block reservation window as not allocated, and unlink it
423 * from the filesystem reservation window rb tree. Must be called with
426 static void rsv_window_remove(struct super_block
*sb
,
427 struct ext4_reserve_window_node
*rsv
)
429 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
430 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
431 rsv
->rsv_alloc_hit
= 0;
432 rb_erase(&rsv
->rsv_node
, &EXT4_SB(sb
)->s_rsv_window_root
);
436 * rsv_is_empty() -- Check if the reservation window is allocated.
437 * @rsv: given reservation window to check
439 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
441 static inline int rsv_is_empty(struct ext4_reserve_window
*rsv
)
443 /* a valid reservation end block could not be 0 */
444 return rsv
->_rsv_end
== EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
448 * ext4_init_block_alloc_info()
449 * @inode: file inode structure
451 * Allocate and initialize the reservation window structure, and
452 * link the window to the ext4 inode structure at last
454 * The reservation window structure is only dynamically allocated
455 * and linked to ext4 inode the first time the open file
456 * needs a new block. So, before every ext4_new_block(s) call, for
457 * regular files, we should check whether the reservation window
458 * structure exists or not. In the latter case, this function is called.
459 * Fail to do so will result in block reservation being turned off for that
462 * This function is called from ext4_get_blocks_handle(), also called
463 * when setting the reservation window size through ioctl before the file
464 * is open for write (needs block allocation).
466 * Needs truncate_mutex protection prior to call this function.
468 void ext4_init_block_alloc_info(struct inode
*inode
)
470 struct ext4_inode_info
*ei
= EXT4_I(inode
);
471 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
472 struct super_block
*sb
= inode
->i_sb
;
474 block_i
= kmalloc(sizeof(*block_i
), GFP_NOFS
);
476 struct ext4_reserve_window_node
*rsv
= &block_i
->rsv_window_node
;
478 rsv
->rsv_start
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
479 rsv
->rsv_end
= EXT4_RESERVE_WINDOW_NOT_ALLOCATED
;
482 * if filesystem is mounted with NORESERVATION, the goal
483 * reservation window size is set to zero to indicate
484 * block reservation is off
486 if (!test_opt(sb
, RESERVATION
))
487 rsv
->rsv_goal_size
= 0;
489 rsv
->rsv_goal_size
= EXT4_DEFAULT_RESERVE_BLOCKS
;
490 rsv
->rsv_alloc_hit
= 0;
491 block_i
->last_alloc_logical_block
= 0;
492 block_i
->last_alloc_physical_block
= 0;
494 ei
->i_block_alloc_info
= block_i
;
498 * ext4_discard_reservation()
501 * Discard(free) block reservation window on last file close, or truncate
504 * It is being called in three cases:
505 * ext4_release_file(): last writer close the file
506 * ext4_clear_inode(): last iput(), when nobody link to this file.
507 * ext4_truncate(): when the block indirect map is about to change.
510 void ext4_discard_reservation(struct inode
*inode
)
512 struct ext4_inode_info
*ei
= EXT4_I(inode
);
513 struct ext4_block_alloc_info
*block_i
= ei
->i_block_alloc_info
;
514 struct ext4_reserve_window_node
*rsv
;
515 spinlock_t
*rsv_lock
= &EXT4_SB(inode
->i_sb
)->s_rsv_window_lock
;
520 rsv
= &block_i
->rsv_window_node
;
521 if (!rsv_is_empty(&rsv
->rsv_window
)) {
523 if (!rsv_is_empty(&rsv
->rsv_window
))
524 rsv_window_remove(inode
->i_sb
, rsv
);
525 spin_unlock(rsv_lock
);
530 * ext4_free_blocks_sb() -- Free given blocks and update quota
531 * @handle: handle to this transaction
533 * @block: start physcial block to free
534 * @count: number of blocks to free
535 * @pdquot_freed_blocks: pointer to quota
537 void ext4_free_blocks_sb(handle_t
*handle
, struct super_block
*sb
,
538 ext4_fsblk_t block
, unsigned long count
,
539 unsigned long *pdquot_freed_blocks
)
541 struct buffer_head
*bitmap_bh
= NULL
;
542 struct buffer_head
*gd_bh
;
543 unsigned long block_group
;
546 unsigned long overflow
;
547 struct ext4_group_desc
* desc
;
548 struct ext4_super_block
* es
;
549 struct ext4_sb_info
*sbi
;
551 ext4_grpblk_t group_freed
;
553 *pdquot_freed_blocks
= 0;
556 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
557 block
+ count
< block
||
558 block
+ count
> ext4_blocks_count(es
)) {
559 ext4_error (sb
, "ext4_free_blocks",
560 "Freeing blocks not in datazone - "
561 "block = %llu, count = %lu", block
, count
);
565 ext4_debug ("freeing block(s) %llu-%llu\n", block
, block
+ count
- 1);
569 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
571 * Check to see if we are freeing blocks across a group
574 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
575 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
579 bitmap_bh
= read_block_bitmap(sb
, block_group
);
582 desc
= ext4_get_group_desc (sb
, block_group
, &gd_bh
);
586 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
587 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
588 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
589 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
590 sbi
->s_itb_per_group
))
591 ext4_error (sb
, "ext4_free_blocks",
592 "Freeing blocks in system zones - "
593 "Block = %llu, count = %lu",
597 * We are about to start releasing blocks in the bitmap,
598 * so we need undo access.
600 /* @@@ check errors */
601 BUFFER_TRACE(bitmap_bh
, "getting undo access");
602 err
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
607 * We are about to modify some metadata. Call the journal APIs
608 * to unshare ->b_data if a currently-committing transaction is
611 BUFFER_TRACE(gd_bh
, "get_write_access");
612 err
= ext4_journal_get_write_access(handle
, gd_bh
);
616 jbd_lock_bh_state(bitmap_bh
);
618 for (i
= 0, group_freed
= 0; i
< count
; i
++) {
620 * An HJ special. This is expensive...
622 #ifdef CONFIG_JBD2_DEBUG
623 jbd_unlock_bh_state(bitmap_bh
);
625 struct buffer_head
*debug_bh
;
626 debug_bh
= sb_find_get_block(sb
, block
+ i
);
628 BUFFER_TRACE(debug_bh
, "Deleted!");
629 if (!bh2jh(bitmap_bh
)->b_committed_data
)
630 BUFFER_TRACE(debug_bh
,
631 "No commited data in bitmap");
632 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap");
636 jbd_lock_bh_state(bitmap_bh
);
638 if (need_resched()) {
639 jbd_unlock_bh_state(bitmap_bh
);
641 jbd_lock_bh_state(bitmap_bh
);
643 /* @@@ This prevents newly-allocated data from being
644 * freed and then reallocated within the same
647 * Ideally we would want to allow that to happen, but to
648 * do so requires making jbd2_journal_forget() capable of
649 * revoking the queued write of a data block, which
650 * implies blocking on the journal lock. *forget()
651 * cannot block due to truncate races.
653 * Eventually we can fix this by making jbd2_journal_forget()
654 * return a status indicating whether or not it was able
655 * to revoke the buffer. On successful revoke, it is
656 * safe not to set the allocation bit in the committed
657 * bitmap, because we know that there is no outstanding
658 * activity on the buffer any more and so it is safe to
661 BUFFER_TRACE(bitmap_bh
, "set in b_committed_data");
662 J_ASSERT_BH(bitmap_bh
,
663 bh2jh(bitmap_bh
)->b_committed_data
!= NULL
);
664 ext4_set_bit_atomic(sb_bgl_lock(sbi
, block_group
), bit
+ i
,
665 bh2jh(bitmap_bh
)->b_committed_data
);
668 * We clear the bit in the bitmap after setting the committed
669 * data bit, because this is the reverse order to that which
670 * the allocator uses.
672 BUFFER_TRACE(bitmap_bh
, "clear bit");
673 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi
, block_group
),
674 bit
+ i
, bitmap_bh
->b_data
)) {
675 jbd_unlock_bh_state(bitmap_bh
);
676 ext4_error(sb
, __FUNCTION__
,
677 "bit already cleared for block %llu",
678 (ext4_fsblk_t
)(block
+ i
));
679 jbd_lock_bh_state(bitmap_bh
);
680 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
685 jbd_unlock_bh_state(bitmap_bh
);
687 spin_lock(sb_bgl_lock(sbi
, block_group
));
688 desc
->bg_free_blocks_count
=
689 cpu_to_le16(le16_to_cpu(desc
->bg_free_blocks_count
) +
691 desc
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, desc
);
692 spin_unlock(sb_bgl_lock(sbi
, block_group
));
693 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
695 /* We dirtied the bitmap block */
696 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
697 err
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
699 /* And the group descriptor block */
700 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
701 ret
= ext4_journal_dirty_metadata(handle
, gd_bh
);
703 *pdquot_freed_blocks
+= group_freed
;
705 if (overflow
&& !err
) {
713 ext4_std_error(sb
, err
);
718 * ext4_free_blocks() -- Free given blocks and update quota
719 * @handle: handle for this transaction
721 * @block: start physical block to free
722 * @count: number of blocks to count
724 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
725 ext4_fsblk_t block
, unsigned long count
)
727 struct super_block
* sb
;
728 unsigned long dquot_freed_blocks
;
732 printk ("ext4_free_blocks: nonexistent device");
735 ext4_free_blocks_sb(handle
, sb
, block
, count
, &dquot_freed_blocks
);
736 if (dquot_freed_blocks
)
737 DQUOT_FREE_BLOCK(inode
, dquot_freed_blocks
);
742 * ext4_test_allocatable()
743 * @nr: given allocation block group
744 * @bh: bufferhead contains the bitmap of the given block group
746 * For ext4 allocations, we must not reuse any blocks which are
747 * allocated in the bitmap buffer's "last committed data" copy. This
748 * prevents deletes from freeing up the page for reuse until we have
749 * committed the delete transaction.
751 * If we didn't do this, then deleting something and reallocating it as
752 * data would allow the old block to be overwritten before the
753 * transaction committed (because we force data to disk before commit).
754 * This would lead to corruption if we crashed between overwriting the
755 * data and committing the delete.
757 * @@@ We may want to make this allocation behaviour conditional on
758 * data-writes at some point, and disable it for metadata allocations or
761 static int ext4_test_allocatable(ext4_grpblk_t nr
, struct buffer_head
*bh
)
764 struct journal_head
*jh
= bh2jh(bh
);
766 if (ext4_test_bit(nr
, bh
->b_data
))
769 jbd_lock_bh_state(bh
);
770 if (!jh
->b_committed_data
)
773 ret
= !ext4_test_bit(nr
, jh
->b_committed_data
);
774 jbd_unlock_bh_state(bh
);
779 * bitmap_search_next_usable_block()
780 * @start: the starting block (group relative) of the search
781 * @bh: bufferhead contains the block group bitmap
782 * @maxblocks: the ending block (group relative) of the reservation
784 * The bitmap search --- search forward alternately through the actual
785 * bitmap on disk and the last-committed copy in journal, until we find a
786 * bit free in both bitmaps.
789 bitmap_search_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
790 ext4_grpblk_t maxblocks
)
793 struct journal_head
*jh
= bh2jh(bh
);
795 while (start
< maxblocks
) {
796 next
= ext4_find_next_zero_bit(bh
->b_data
, maxblocks
, start
);
797 if (next
>= maxblocks
)
799 if (ext4_test_allocatable(next
, bh
))
801 jbd_lock_bh_state(bh
);
802 if (jh
->b_committed_data
)
803 start
= ext4_find_next_zero_bit(jh
->b_committed_data
,
805 jbd_unlock_bh_state(bh
);
811 * find_next_usable_block()
812 * @start: the starting block (group relative) to find next
813 * allocatable block in bitmap.
814 * @bh: bufferhead contains the block group bitmap
815 * @maxblocks: the ending block (group relative) for the search
817 * Find an allocatable block in a bitmap. We honor both the bitmap and
818 * its last-committed copy (if that exists), and perform the "most
819 * appropriate allocation" algorithm of looking for a free block near
820 * the initial goal; then for a free byte somewhere in the bitmap; then
821 * for any free bit in the bitmap.
824 find_next_usable_block(ext4_grpblk_t start
, struct buffer_head
*bh
,
825 ext4_grpblk_t maxblocks
)
827 ext4_grpblk_t here
, next
;
832 * The goal was occupied; search forward for a free
833 * block within the next XX blocks.
835 * end_goal is more or less random, but it has to be
836 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
837 * next 64-bit boundary is simple..
839 ext4_grpblk_t end_goal
= (start
+ 63) & ~63;
840 if (end_goal
> maxblocks
)
841 end_goal
= maxblocks
;
842 here
= ext4_find_next_zero_bit(bh
->b_data
, end_goal
, start
);
843 if (here
< end_goal
&& ext4_test_allocatable(here
, bh
))
845 ext4_debug("Bit not found near goal\n");
852 p
= ((char *)bh
->b_data
) + (here
>> 3);
853 r
= memscan(p
, 0, ((maxblocks
+ 7) >> 3) - (here
>> 3));
854 next
= (r
- ((char *)bh
->b_data
)) << 3;
856 if (next
< maxblocks
&& next
>= start
&& ext4_test_allocatable(next
, bh
))
860 * The bitmap search --- search forward alternately through the actual
861 * bitmap and the last-committed copy until we find a bit free in
864 here
= bitmap_search_next_usable_block(here
, bh
, maxblocks
);
870 * @block: the free block (group relative) to allocate
871 * @bh: the bufferhead containts the block group bitmap
873 * We think we can allocate this block in this bitmap. Try to set the bit.
874 * If that succeeds then check that nobody has allocated and then freed the
875 * block since we saw that is was not marked in b_committed_data. If it _was_
876 * allocated and freed then clear the bit in the bitmap again and return
880 claim_block(spinlock_t
*lock
, ext4_grpblk_t block
, struct buffer_head
*bh
)
882 struct journal_head
*jh
= bh2jh(bh
);
885 if (ext4_set_bit_atomic(lock
, block
, bh
->b_data
))
887 jbd_lock_bh_state(bh
);
888 if (jh
->b_committed_data
&& ext4_test_bit(block
,jh
->b_committed_data
)) {
889 ext4_clear_bit_atomic(lock
, block
, bh
->b_data
);
894 jbd_unlock_bh_state(bh
);
899 * ext4_try_to_allocate()
901 * @handle: handle to this transaction
902 * @group: given allocation block group
903 * @bitmap_bh: bufferhead holds the block bitmap
904 * @grp_goal: given target block within the group
905 * @count: target number of blocks to allocate
906 * @my_rsv: reservation window
908 * Attempt to allocate blocks within a give range. Set the range of allocation
909 * first, then find the first free bit(s) from the bitmap (within the range),
910 * and at last, allocate the blocks by claiming the found free bit as allocated.
912 * To set the range of this allocation:
913 * if there is a reservation window, only try to allocate block(s) from the
914 * file's own reservation window;
915 * Otherwise, the allocation range starts from the give goal block, ends at
916 * the block group's last block.
918 * If we failed to allocate the desired block then we may end up crossing to a
919 * new bitmap. In that case we must release write access to the old one via
920 * ext4_journal_release_buffer(), else we'll run out of credits.
923 ext4_try_to_allocate(struct super_block
*sb
, handle_t
*handle
, int group
,
924 struct buffer_head
*bitmap_bh
, ext4_grpblk_t grp_goal
,
925 unsigned long *count
, struct ext4_reserve_window
*my_rsv
)
927 ext4_fsblk_t group_first_block
;
928 ext4_grpblk_t start
, end
;
929 unsigned long num
= 0;
931 /* we do allocation within the reservation window if we have a window */
933 group_first_block
= ext4_group_first_block_no(sb
, group
);
934 if (my_rsv
->_rsv_start
>= group_first_block
)
935 start
= my_rsv
->_rsv_start
- group_first_block
;
937 /* reservation window cross group boundary */
939 end
= my_rsv
->_rsv_end
- group_first_block
+ 1;
940 if (end
> EXT4_BLOCKS_PER_GROUP(sb
))
941 /* reservation window crosses group boundary */
942 end
= EXT4_BLOCKS_PER_GROUP(sb
);
943 if ((start
<= grp_goal
) && (grp_goal
< end
))
952 end
= EXT4_BLOCKS_PER_GROUP(sb
);
955 BUG_ON(start
> EXT4_BLOCKS_PER_GROUP(sb
));
958 if (grp_goal
< 0 || !ext4_test_allocatable(grp_goal
, bitmap_bh
)) {
959 grp_goal
= find_next_usable_block(start
, bitmap_bh
, end
);
965 for (i
= 0; i
< 7 && grp_goal
> start
&&
966 ext4_test_allocatable(grp_goal
- 1,
974 if (!claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
975 grp_goal
, bitmap_bh
)) {
977 * The block was allocated by another thread, or it was
978 * allocated and then freed by another thread
988 while (num
< *count
&& grp_goal
< end
989 && ext4_test_allocatable(grp_goal
, bitmap_bh
)
990 && claim_block(sb_bgl_lock(EXT4_SB(sb
), group
),
991 grp_goal
, bitmap_bh
)) {
996 return grp_goal
- num
;
1003 * find_next_reservable_window():
1004 * find a reservable space within the given range.
1005 * It does not allocate the reservation window for now:
1006 * alloc_new_reservation() will do the work later.
1008 * @search_head: the head of the searching list;
1009 * This is not necessarily the list head of the whole filesystem
1011 * We have both head and start_block to assist the search
1012 * for the reservable space. The list starts from head,
1013 * but we will shift to the place where start_block is,
1014 * then start from there, when looking for a reservable space.
1016 * @size: the target new reservation window size
1018 * @group_first_block: the first block we consider to start
1019 * the real search from
1022 * the maximum block number that our goal reservable space
1023 * could start from. This is normally the last block in this
1024 * group. The search will end when we found the start of next
1025 * possible reservable space is out of this boundary.
1026 * This could handle the cross boundary reservation window
1029 * basically we search from the given range, rather than the whole
1030 * reservation double linked list, (start_block, last_block)
1031 * to find a free region that is of my size and has not
1035 static int find_next_reservable_window(
1036 struct ext4_reserve_window_node
*search_head
,
1037 struct ext4_reserve_window_node
*my_rsv
,
1038 struct super_block
* sb
,
1039 ext4_fsblk_t start_block
,
1040 ext4_fsblk_t last_block
)
1042 struct rb_node
*next
;
1043 struct ext4_reserve_window_node
*rsv
, *prev
;
1045 int size
= my_rsv
->rsv_goal_size
;
1047 /* TODO: make the start of the reservation window byte-aligned */
1048 /* cur = *start_block & ~7;*/
1055 if (cur
<= rsv
->rsv_end
)
1056 cur
= rsv
->rsv_end
+ 1;
1059 * in the case we could not find a reservable space
1060 * that is what is expected, during the re-search, we could
1061 * remember what's the largest reservable space we could have
1062 * and return that one.
1064 * For now it will fail if we could not find the reservable
1065 * space with expected-size (or more)...
1067 if (cur
> last_block
)
1068 return -1; /* fail */
1071 next
= rb_next(&rsv
->rsv_node
);
1072 rsv
= rb_entry(next
,struct ext4_reserve_window_node
,rsv_node
);
1075 * Reached the last reservation, we can just append to the
1081 if (cur
+ size
<= rsv
->rsv_start
) {
1083 * Found a reserveable space big enough. We could
1084 * have a reservation across the group boundary here
1090 * we come here either :
1091 * when we reach the end of the whole list,
1092 * and there is empty reservable space after last entry in the list.
1093 * append it to the end of the list.
1095 * or we found one reservable space in the middle of the list,
1096 * return the reservation window that we could append to.
1100 if ((prev
!= my_rsv
) && (!rsv_is_empty(&my_rsv
->rsv_window
)))
1101 rsv_window_remove(sb
, my_rsv
);
1104 * Let's book the whole avaliable window for now. We will check the
1105 * disk bitmap later and then, if there are free blocks then we adjust
1106 * the window size if it's larger than requested.
1107 * Otherwise, we will remove this node from the tree next time
1108 * call find_next_reservable_window.
1110 my_rsv
->rsv_start
= cur
;
1111 my_rsv
->rsv_end
= cur
+ size
- 1;
1112 my_rsv
->rsv_alloc_hit
= 0;
1115 ext4_rsv_window_add(sb
, my_rsv
);
1121 * alloc_new_reservation()--allocate a new reservation window
1123 * To make a new reservation, we search part of the filesystem
1124 * reservation list (the list that inside the group). We try to
1125 * allocate a new reservation window near the allocation goal,
1126 * or the beginning of the group, if there is no goal.
1128 * We first find a reservable space after the goal, then from
1129 * there, we check the bitmap for the first free block after
1130 * it. If there is no free block until the end of group, then the
1131 * whole group is full, we failed. Otherwise, check if the free
1132 * block is inside the expected reservable space, if so, we
1134 * If the first free block is outside the reservable space, then
1135 * start from the first free block, we search for next available
1138 * on succeed, a new reservation will be found and inserted into the list
1139 * It contains at least one free block, and it does not overlap with other
1140 * reservation windows.
1142 * failed: we failed to find a reservation window in this group
1144 * @rsv: the reservation
1146 * @grp_goal: The goal (group-relative). It is where the search for a
1147 * free reservable space should start from.
1148 * if we have a grp_goal(grp_goal >0 ), then start from there,
1149 * no grp_goal(grp_goal = -1), we start from the first block
1152 * @sb: the super block
1153 * @group: the group we are trying to allocate in
1154 * @bitmap_bh: the block group block bitmap
1157 static int alloc_new_reservation(struct ext4_reserve_window_node
*my_rsv
,
1158 ext4_grpblk_t grp_goal
, struct super_block
*sb
,
1159 unsigned int group
, struct buffer_head
*bitmap_bh
)
1161 struct ext4_reserve_window_node
*search_head
;
1162 ext4_fsblk_t group_first_block
, group_end_block
, start_block
;
1163 ext4_grpblk_t first_free_block
;
1164 struct rb_root
*fs_rsv_root
= &EXT4_SB(sb
)->s_rsv_window_root
;
1167 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1169 group_first_block
= ext4_group_first_block_no(sb
, group
);
1170 group_end_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1173 start_block
= group_first_block
;
1175 start_block
= grp_goal
+ group_first_block
;
1177 size
= my_rsv
->rsv_goal_size
;
1179 if (!rsv_is_empty(&my_rsv
->rsv_window
)) {
1181 * if the old reservation is cross group boundary
1182 * and if the goal is inside the old reservation window,
1183 * we will come here when we just failed to allocate from
1184 * the first part of the window. We still have another part
1185 * that belongs to the next group. In this case, there is no
1186 * point to discard our window and try to allocate a new one
1187 * in this group(which will fail). we should
1188 * keep the reservation window, just simply move on.
1190 * Maybe we could shift the start block of the reservation
1191 * window to the first block of next group.
1194 if ((my_rsv
->rsv_start
<= group_end_block
) &&
1195 (my_rsv
->rsv_end
> group_end_block
) &&
1196 (start_block
>= my_rsv
->rsv_start
))
1199 if ((my_rsv
->rsv_alloc_hit
>
1200 (my_rsv
->rsv_end
- my_rsv
->rsv_start
+ 1) / 2)) {
1202 * if the previously allocation hit ratio is
1203 * greater than 1/2, then we double the size of
1204 * the reservation window the next time,
1205 * otherwise we keep the same size window
1208 if (size
> EXT4_MAX_RESERVE_BLOCKS
)
1209 size
= EXT4_MAX_RESERVE_BLOCKS
;
1210 my_rsv
->rsv_goal_size
= size
;
1214 spin_lock(rsv_lock
);
1216 * shift the search start to the window near the goal block
1218 search_head
= search_reserve_window(fs_rsv_root
, start_block
);
1221 * find_next_reservable_window() simply finds a reservable window
1222 * inside the given range(start_block, group_end_block).
1224 * To make sure the reservation window has a free bit inside it, we
1225 * need to check the bitmap after we found a reservable window.
1228 ret
= find_next_reservable_window(search_head
, my_rsv
, sb
,
1229 start_block
, group_end_block
);
1232 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1233 rsv_window_remove(sb
, my_rsv
);
1234 spin_unlock(rsv_lock
);
1239 * On success, find_next_reservable_window() returns the
1240 * reservation window where there is a reservable space after it.
1241 * Before we reserve this reservable space, we need
1242 * to make sure there is at least a free block inside this region.
1244 * searching the first free bit on the block bitmap and copy of
1245 * last committed bitmap alternatively, until we found a allocatable
1246 * block. Search start from the start block of the reservable space
1249 spin_unlock(rsv_lock
);
1250 first_free_block
= bitmap_search_next_usable_block(
1251 my_rsv
->rsv_start
- group_first_block
,
1252 bitmap_bh
, group_end_block
- group_first_block
+ 1);
1254 if (first_free_block
< 0) {
1256 * no free block left on the bitmap, no point
1257 * to reserve the space. return failed.
1259 spin_lock(rsv_lock
);
1260 if (!rsv_is_empty(&my_rsv
->rsv_window
))
1261 rsv_window_remove(sb
, my_rsv
);
1262 spin_unlock(rsv_lock
);
1263 return -1; /* failed */
1266 start_block
= first_free_block
+ group_first_block
;
1268 * check if the first free block is within the
1269 * free space we just reserved
1271 if (start_block
>= my_rsv
->rsv_start
&& start_block
<= my_rsv
->rsv_end
)
1272 return 0; /* success */
1274 * if the first free bit we found is out of the reservable space
1275 * continue search for next reservable space,
1276 * start from where the free block is,
1277 * we also shift the list head to where we stopped last time
1279 search_head
= my_rsv
;
1280 spin_lock(rsv_lock
);
1285 * try_to_extend_reservation()
1286 * @my_rsv: given reservation window
1288 * @size: the delta to extend
1290 * Attempt to expand the reservation window large enough to have
1291 * required number of free blocks
1293 * Since ext4_try_to_allocate() will always allocate blocks within
1294 * the reservation window range, if the window size is too small,
1295 * multiple blocks allocation has to stop at the end of the reservation
1296 * window. To make this more efficient, given the total number of
1297 * blocks needed and the current size of the window, we try to
1298 * expand the reservation window size if necessary on a best-effort
1299 * basis before ext4_new_blocks() tries to allocate blocks,
1301 static void try_to_extend_reservation(struct ext4_reserve_window_node
*my_rsv
,
1302 struct super_block
*sb
, int size
)
1304 struct ext4_reserve_window_node
*next_rsv
;
1305 struct rb_node
*next
;
1306 spinlock_t
*rsv_lock
= &EXT4_SB(sb
)->s_rsv_window_lock
;
1308 if (!spin_trylock(rsv_lock
))
1311 next
= rb_next(&my_rsv
->rsv_node
);
1314 my_rsv
->rsv_end
+= size
;
1316 next_rsv
= rb_entry(next
, struct ext4_reserve_window_node
, rsv_node
);
1318 if ((next_rsv
->rsv_start
- my_rsv
->rsv_end
- 1) >= size
)
1319 my_rsv
->rsv_end
+= size
;
1321 my_rsv
->rsv_end
= next_rsv
->rsv_start
- 1;
1323 spin_unlock(rsv_lock
);
1327 * ext4_try_to_allocate_with_rsv()
1329 * @handle: handle to this transaction
1330 * @group: given allocation block group
1331 * @bitmap_bh: bufferhead holds the block bitmap
1332 * @grp_goal: given target block within the group
1333 * @count: target number of blocks to allocate
1334 * @my_rsv: reservation window
1335 * @errp: pointer to store the error code
1337 * This is the main function used to allocate a new block and its reservation
1340 * Each time when a new block allocation is need, first try to allocate from
1341 * its own reservation. If it does not have a reservation window, instead of
1342 * looking for a free bit on bitmap first, then look up the reservation list to
1343 * see if it is inside somebody else's reservation window, we try to allocate a
1344 * reservation window for it starting from the goal first. Then do the block
1345 * allocation within the reservation window.
1347 * This will avoid keeping on searching the reservation list again and
1348 * again when somebody is looking for a free block (without
1349 * reservation), and there are lots of free blocks, but they are all
1352 * We use a red-black tree for the per-filesystem reservation list.
1355 static ext4_grpblk_t
1356 ext4_try_to_allocate_with_rsv(struct super_block
*sb
, handle_t
*handle
,
1357 unsigned int group
, struct buffer_head
*bitmap_bh
,
1358 ext4_grpblk_t grp_goal
,
1359 struct ext4_reserve_window_node
* my_rsv
,
1360 unsigned long *count
, int *errp
)
1362 ext4_fsblk_t group_first_block
, group_last_block
;
1363 ext4_grpblk_t ret
= 0;
1365 unsigned long num
= *count
;
1370 * Make sure we use undo access for the bitmap, because it is critical
1371 * that we do the frozen_data COW on bitmap buffers in all cases even
1372 * if the buffer is in BJ_Forget state in the committing transaction.
1374 BUFFER_TRACE(bitmap_bh
, "get undo access for new block");
1375 fatal
= ext4_journal_get_undo_access(handle
, bitmap_bh
);
1382 * we don't deal with reservation when
1383 * filesystem is mounted without reservation
1384 * or the file is not a regular file
1385 * or last attempt to allocate a block with reservation turned on failed
1387 if (my_rsv
== NULL
) {
1388 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1389 grp_goal
, count
, NULL
);
1393 * grp_goal is a group relative block number (if there is a goal)
1394 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1395 * first block is a filesystem wide block number
1396 * first block is the block number of the first block in this group
1398 group_first_block
= ext4_group_first_block_no(sb
, group
);
1399 group_last_block
= group_first_block
+ (EXT4_BLOCKS_PER_GROUP(sb
) - 1);
1402 * Basically we will allocate a new block from inode's reservation
1405 * We need to allocate a new reservation window, if:
1406 * a) inode does not have a reservation window; or
1407 * b) last attempt to allocate a block from existing reservation
1409 * c) we come here with a goal and with a reservation window
1411 * We do not need to allocate a new reservation window if we come here
1412 * at the beginning with a goal and the goal is inside the window, or
1413 * we don't have a goal but already have a reservation window.
1414 * then we could go to allocate from the reservation window directly.
1417 if (rsv_is_empty(&my_rsv
->rsv_window
) || (ret
< 0) ||
1418 !goal_in_my_reservation(&my_rsv
->rsv_window
,
1419 grp_goal
, group
, sb
)) {
1420 if (my_rsv
->rsv_goal_size
< *count
)
1421 my_rsv
->rsv_goal_size
= *count
;
1422 ret
= alloc_new_reservation(my_rsv
, grp_goal
, sb
,
1427 if (!goal_in_my_reservation(&my_rsv
->rsv_window
,
1428 grp_goal
, group
, sb
))
1430 } else if (grp_goal
>= 0) {
1431 int curr
= my_rsv
->rsv_end
-
1432 (grp_goal
+ group_first_block
) + 1;
1435 try_to_extend_reservation(my_rsv
, sb
,
1439 if ((my_rsv
->rsv_start
> group_last_block
) ||
1440 (my_rsv
->rsv_end
< group_first_block
)) {
1441 rsv_window_dump(&EXT4_SB(sb
)->s_rsv_window_root
, 1);
1444 ret
= ext4_try_to_allocate(sb
, handle
, group
, bitmap_bh
,
1445 grp_goal
, &num
, &my_rsv
->rsv_window
);
1447 my_rsv
->rsv_alloc_hit
+= num
;
1449 break; /* succeed */
1455 BUFFER_TRACE(bitmap_bh
, "journal_dirty_metadata for "
1457 fatal
= ext4_journal_dirty_metadata(handle
, bitmap_bh
);
1465 BUFFER_TRACE(bitmap_bh
, "journal_release_buffer");
1466 ext4_journal_release_buffer(handle
, bitmap_bh
);
1471 * ext4_has_free_blocks()
1472 * @sbi: in-core super block structure.
1474 * Check if filesystem has at least 1 free block available for allocation.
1476 static int ext4_has_free_blocks(struct ext4_sb_info
*sbi
)
1478 ext4_fsblk_t free_blocks
, root_blocks
;
1480 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
1481 root_blocks
= ext4_r_blocks_count(sbi
->s_es
);
1482 if (free_blocks
< root_blocks
+ 1 && !capable(CAP_SYS_RESOURCE
) &&
1483 sbi
->s_resuid
!= current
->fsuid
&&
1484 (sbi
->s_resgid
== 0 || !in_group_p (sbi
->s_resgid
))) {
1491 * ext4_should_retry_alloc()
1493 * @retries number of attemps has been made
1495 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1496 * it is profitable to retry the operation, this function will wait
1497 * for the current or commiting transaction to complete, and then
1500 * if the total number of retries exceed three times, return FALSE.
1502 int ext4_should_retry_alloc(struct super_block
*sb
, int *retries
)
1504 if (!ext4_has_free_blocks(EXT4_SB(sb
)) || (*retries
)++ > 3)
1507 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb
->s_id
);
1509 return jbd2_journal_force_commit_nested(EXT4_SB(sb
)->s_journal
);
1513 * ext4_new_blocks() -- core block(s) allocation function
1514 * @handle: handle to this transaction
1515 * @inode: file inode
1516 * @goal: given target block(filesystem wide)
1517 * @count: target number of blocks to allocate
1520 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1521 * allocate block(s) from the block group contains the goal block first. If that
1522 * fails, it will try to allocate block(s) from other block groups without
1523 * any specific goal block.
1526 ext4_fsblk_t
ext4_new_blocks(handle_t
*handle
, struct inode
*inode
,
1527 ext4_fsblk_t goal
, unsigned long *count
, int *errp
)
1529 struct buffer_head
*bitmap_bh
= NULL
;
1530 struct buffer_head
*gdp_bh
;
1531 unsigned long group_no
;
1533 ext4_grpblk_t grp_target_blk
; /* blockgroup relative goal block */
1534 ext4_grpblk_t grp_alloc_blk
; /* blockgroup-relative allocated block*/
1535 ext4_fsblk_t ret_block
; /* filesyetem-wide allocated block */
1536 int bgi
; /* blockgroup iteration index */
1538 int performed_allocation
= 0;
1539 ext4_grpblk_t free_blocks
; /* number of free blocks in a group */
1540 struct super_block
*sb
;
1541 struct ext4_group_desc
*gdp
;
1542 struct ext4_super_block
*es
;
1543 struct ext4_sb_info
*sbi
;
1544 struct ext4_reserve_window_node
*my_rsv
= NULL
;
1545 struct ext4_block_alloc_info
*block_i
;
1546 unsigned short windowsz
= 0;
1548 static int goal_hits
, goal_attempts
;
1550 unsigned long ngroups
;
1551 unsigned long num
= *count
;
1556 printk("ext4_new_block: nonexistent device");
1561 * Check quota for allocation of this block.
1563 if (DQUOT_ALLOC_BLOCK(inode
, num
)) {
1569 es
= EXT4_SB(sb
)->s_es
;
1570 ext4_debug("goal=%lu.\n", goal
);
1572 * Allocate a block from reservation only when
1573 * filesystem is mounted with reservation(default,-o reservation), and
1574 * it's a regular file, and
1575 * the desired window size is greater than 0 (One could use ioctl
1576 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1577 * reservation on that particular file)
1579 block_i
= EXT4_I(inode
)->i_block_alloc_info
;
1580 if (block_i
&& ((windowsz
= block_i
->rsv_window_node
.rsv_goal_size
) > 0))
1581 my_rsv
= &block_i
->rsv_window_node
;
1583 if (!ext4_has_free_blocks(sbi
)) {
1589 * First, test whether the goal block is free.
1591 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
1592 goal
>= ext4_blocks_count(es
))
1593 goal
= le32_to_cpu(es
->s_first_data_block
);
1594 ext4_get_group_no_and_offset(sb
, goal
, &group_no
, &grp_target_blk
);
1595 goal_group
= group_no
;
1597 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1601 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1603 * if there is not enough free blocks to make a new resevation
1604 * turn off reservation for this allocation
1606 if (my_rsv
&& (free_blocks
< windowsz
)
1607 && (rsv_is_empty(&my_rsv
->rsv_window
)))
1610 if (free_blocks
> 0) {
1611 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1614 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1615 group_no
, bitmap_bh
, grp_target_blk
,
1616 my_rsv
, &num
, &fatal
);
1619 if (grp_alloc_blk
>= 0)
1623 ngroups
= EXT4_SB(sb
)->s_groups_count
;
1627 * Now search the rest of the groups. We assume that
1628 * i and gdp correctly point to the last group visited.
1630 for (bgi
= 0; bgi
< ngroups
; bgi
++) {
1632 if (group_no
>= ngroups
)
1634 gdp
= ext4_get_group_desc(sb
, group_no
, &gdp_bh
);
1637 free_blocks
= le16_to_cpu(gdp
->bg_free_blocks_count
);
1639 * skip this group if the number of
1640 * free blocks is less than half of the reservation
1643 if (free_blocks
<= (windowsz
/2))
1647 bitmap_bh
= read_block_bitmap(sb
, group_no
);
1651 * try to allocate block(s) from this group, without a goal(-1).
1653 grp_alloc_blk
= ext4_try_to_allocate_with_rsv(sb
, handle
,
1654 group_no
, bitmap_bh
, -1, my_rsv
,
1658 if (grp_alloc_blk
>= 0)
1662 * We may end up a bogus ealier ENOSPC error due to
1663 * filesystem is "full" of reservations, but
1664 * there maybe indeed free blocks avaliable on disk
1665 * In this case, we just forget about the reservations
1666 * just do block allocation as without reservations.
1671 group_no
= goal_group
;
1674 /* No space left on the device */
1680 ext4_debug("using block group %d(%d)\n",
1681 group_no
, gdp
->bg_free_blocks_count
);
1683 BUFFER_TRACE(gdp_bh
, "get_write_access");
1684 fatal
= ext4_journal_get_write_access(handle
, gdp_bh
);
1688 ret_block
= grp_alloc_blk
+ ext4_group_first_block_no(sb
, group_no
);
1690 if (in_range(ext4_block_bitmap(sb
, gdp
), ret_block
, num
) ||
1691 in_range(ext4_inode_bitmap(sb
, gdp
), ret_block
, num
) ||
1692 in_range(ret_block
, ext4_inode_table(sb
, gdp
),
1693 EXT4_SB(sb
)->s_itb_per_group
) ||
1694 in_range(ret_block
+ num
- 1, ext4_inode_table(sb
, gdp
),
1695 EXT4_SB(sb
)->s_itb_per_group
))
1696 ext4_error(sb
, "ext4_new_block",
1697 "Allocating block in system zone - "
1698 "blocks from %llu, length %lu",
1701 performed_allocation
= 1;
1703 #ifdef CONFIG_JBD2_DEBUG
1705 struct buffer_head
*debug_bh
;
1707 /* Record bitmap buffer state in the newly allocated block */
1708 debug_bh
= sb_find_get_block(sb
, ret_block
);
1710 BUFFER_TRACE(debug_bh
, "state when allocated");
1711 BUFFER_TRACE2(debug_bh
, bitmap_bh
, "bitmap state");
1715 jbd_lock_bh_state(bitmap_bh
);
1716 spin_lock(sb_bgl_lock(sbi
, group_no
));
1717 if (buffer_jbd(bitmap_bh
) && bh2jh(bitmap_bh
)->b_committed_data
) {
1720 for (i
= 0; i
< num
; i
++) {
1721 if (ext4_test_bit(grp_alloc_blk
+i
,
1722 bh2jh(bitmap_bh
)->b_committed_data
)) {
1723 printk("%s: block was unexpectedly set in "
1724 "b_committed_data\n", __FUNCTION__
);
1728 ext4_debug("found bit %d\n", grp_alloc_blk
);
1729 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1730 jbd_unlock_bh_state(bitmap_bh
);
1733 if (ret_block
+ num
- 1 >= ext4_blocks_count(es
)) {
1734 ext4_error(sb
, "ext4_new_block",
1735 "block(%llu) >= blocks count(%llu) - "
1736 "block_group = %lu, es == %p ", ret_block
,
1737 ext4_blocks_count(es
), group_no
, es
);
1742 * It is up to the caller to add the new buffer to a journal
1743 * list of some description. We don't know in advance whether
1744 * the caller wants to use it as metadata or data.
1746 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1747 ret_block
, goal_hits
, goal_attempts
);
1749 spin_lock(sb_bgl_lock(sbi
, group_no
));
1750 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))
1751 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
1752 gdp
->bg_free_blocks_count
=
1753 cpu_to_le16(le16_to_cpu(gdp
->bg_free_blocks_count
)-num
);
1754 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, group_no
, gdp
);
1755 spin_unlock(sb_bgl_lock(sbi
, group_no
));
1756 percpu_counter_sub(&sbi
->s_freeblocks_counter
, num
);
1758 BUFFER_TRACE(gdp_bh
, "journal_dirty_metadata for group descriptor");
1759 err
= ext4_journal_dirty_metadata(handle
, gdp_bh
);
1769 DQUOT_FREE_BLOCK(inode
, *count
-num
);
1778 ext4_std_error(sb
, fatal
);
1781 * Undo the block allocation
1783 if (!performed_allocation
)
1784 DQUOT_FREE_BLOCK(inode
, *count
);
1789 ext4_fsblk_t
ext4_new_block(handle_t
*handle
, struct inode
*inode
,
1790 ext4_fsblk_t goal
, int *errp
)
1792 unsigned long count
= 1;
1794 return ext4_new_blocks(handle
, inode
, goal
, &count
, errp
);
1798 * ext4_count_free_blocks() -- count filesystem free blocks
1801 * Adds up the number of free blocks from each block group.
1803 ext4_fsblk_t
ext4_count_free_blocks(struct super_block
*sb
)
1805 ext4_fsblk_t desc_count
;
1806 struct ext4_group_desc
*gdp
;
1808 unsigned long ngroups
= EXT4_SB(sb
)->s_groups_count
;
1810 struct ext4_super_block
*es
;
1811 ext4_fsblk_t bitmap_count
;
1813 struct buffer_head
*bitmap_bh
= NULL
;
1815 es
= EXT4_SB(sb
)->s_es
;
1821 for (i
= 0; i
< ngroups
; i
++) {
1822 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1825 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1827 bitmap_bh
= read_block_bitmap(sb
, i
);
1828 if (bitmap_bh
== NULL
)
1831 x
= ext4_count_free(bitmap_bh
, sb
->s_blocksize
);
1832 printk("group %d: stored = %d, counted = %lu\n",
1833 i
, le16_to_cpu(gdp
->bg_free_blocks_count
), x
);
1837 printk("ext4_count_free_blocks: stored = %llu"
1838 ", computed = %llu, %llu\n",
1839 EXT4_FREE_BLOCKS_COUNT(es
),
1840 desc_count
, bitmap_count
);
1841 return bitmap_count
;
1845 for (i
= 0; i
< ngroups
; i
++) {
1846 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1849 desc_count
+= le16_to_cpu(gdp
->bg_free_blocks_count
);
1856 static inline int test_root(int a
, int b
)
1865 static int ext4_group_sparse(int group
)
1871 return (test_root(group
, 7) || test_root(group
, 5) ||
1872 test_root(group
, 3));
1876 * ext4_bg_has_super - number of blocks used by the superblock in group
1877 * @sb: superblock for filesystem
1878 * @group: group number to check
1880 * Return the number of blocks used by the superblock (primary or backup)
1881 * in this group. Currently this will be only 0 or 1.
1883 int ext4_bg_has_super(struct super_block
*sb
, int group
)
1885 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
1886 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER
) &&
1887 !ext4_group_sparse(group
))
1892 static unsigned long ext4_bg_num_gdb_meta(struct super_block
*sb
, int group
)
1894 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
1895 unsigned long first
= metagroup
* EXT4_DESC_PER_BLOCK(sb
);
1896 unsigned long last
= first
+ EXT4_DESC_PER_BLOCK(sb
) - 1;
1898 if (group
== first
|| group
== first
+ 1 || group
== last
)
1903 static unsigned long ext4_bg_num_gdb_nometa(struct super_block
*sb
, int group
)
1905 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
1906 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER
) &&
1907 !ext4_group_sparse(group
))
1909 return EXT4_SB(sb
)->s_gdb_count
;
1913 * ext4_bg_num_gdb - number of blocks used by the group table in group
1914 * @sb: superblock for filesystem
1915 * @group: group number to check
1917 * Return the number of blocks used by the group descriptor table
1918 * (primary or backup) in this group. In the future there may be a
1919 * different number of descriptor blocks in each group.
1921 unsigned long ext4_bg_num_gdb(struct super_block
*sb
, int group
)
1923 unsigned long first_meta_bg
=
1924 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_meta_bg
);
1925 unsigned long metagroup
= group
/ EXT4_DESC_PER_BLOCK(sb
);
1927 if (!EXT4_HAS_INCOMPAT_FEATURE(sb
,EXT4_FEATURE_INCOMPAT_META_BG
) ||
1928 metagroup
< first_meta_bg
)
1929 return ext4_bg_num_gdb_nometa(sb
,group
);
1931 return ext4_bg_num_gdb_meta(sb
,group
);