[IPV4]: fib_rules_unregister is essentially void.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / balloc.c
blob71ee95e534fdcb6c7128aa843accea7b9a082eec
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
23 #include "group.h"
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 ext4_grpblk_t offset;
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 if (offsetp)
40 *offsetp = offset;
41 if (blockgrpp)
42 *blockgrpp = blocknr;
46 /* Initializes an uninitialized block bitmap if given, and returns the
47 * number of blocks free in the group. */
48 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
49 int block_group, struct ext4_group_desc *gdp)
51 unsigned long start;
52 int bit, bit_max;
53 unsigned free_blocks, group_blocks;
54 struct ext4_sb_info *sbi = EXT4_SB(sb);
56 if (bh) {
57 J_ASSERT_BH(bh, buffer_locked(bh));
59 /* If checksum is bad mark all blocks used to prevent allocation
60 * essentially implementing a per-group read-only flag. */
61 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
62 ext4_error(sb, __FUNCTION__,
63 "Checksum bad for group %u\n", block_group);
64 gdp->bg_free_blocks_count = 0;
65 gdp->bg_free_inodes_count = 0;
66 gdp->bg_itable_unused = 0;
67 memset(bh->b_data, 0xff, sb->s_blocksize);
68 return 0;
70 memset(bh->b_data, 0, sb->s_blocksize);
73 /* Check for superblock and gdt backups in this group */
74 bit_max = ext4_bg_has_super(sb, block_group);
76 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
77 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
78 sbi->s_desc_per_block) {
79 if (bit_max) {
80 bit_max += ext4_bg_num_gdb(sb, block_group);
81 bit_max +=
82 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
84 } else { /* For META_BG_BLOCK_GROUPS */
85 int group_rel = (block_group -
86 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
87 EXT4_DESC_PER_BLOCK(sb);
88 if (group_rel == 0 || group_rel == 1 ||
89 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
90 bit_max += 1;
93 if (block_group == sbi->s_groups_count - 1) {
95 * Even though mke2fs always initialize first and last group
96 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
97 * to make sure we calculate the right free blocks
99 group_blocks = ext4_blocks_count(sbi->s_es) -
100 le32_to_cpu(sbi->s_es->s_first_data_block) -
101 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
102 } else {
103 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
106 free_blocks = group_blocks - bit_max;
108 if (bh) {
109 for (bit = 0; bit < bit_max; bit++)
110 ext4_set_bit(bit, bh->b_data);
112 start = block_group * EXT4_BLOCKS_PER_GROUP(sb) +
113 le32_to_cpu(sbi->s_es->s_first_data_block);
115 /* Set bits for block and inode bitmaps, and inode table */
116 ext4_set_bit(ext4_block_bitmap(sb, gdp) - start, bh->b_data);
117 ext4_set_bit(ext4_inode_bitmap(sb, gdp) - start, bh->b_data);
118 for (bit = (ext4_inode_table(sb, gdp) - start),
119 bit_max = bit + sbi->s_itb_per_group; bit < bit_max; bit++)
120 ext4_set_bit(bit, bh->b_data);
123 * Also if the number of blocks within the group is
124 * less than the blocksize * 8 ( which is the size
125 * of bitmap ), set rest of the block bitmap to 1
127 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
130 return free_blocks - sbi->s_itb_per_group - 2;
135 * The free blocks are managed by bitmaps. A file system contains several
136 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
137 * block for inodes, N blocks for the inode table and data blocks.
139 * The file system contains group descriptors which are located after the
140 * super block. Each descriptor contains the number of the bitmap block and
141 * the free blocks count in the block. The descriptors are loaded in memory
142 * when a file system is mounted (see ext4_fill_super).
146 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
149 * ext4_get_group_desc() -- load group descriptor from disk
150 * @sb: super block
151 * @block_group: given block group
152 * @bh: pointer to the buffer head to store the block
153 * group descriptor
155 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
156 unsigned int block_group,
157 struct buffer_head ** bh)
159 unsigned long group_desc;
160 unsigned long offset;
161 struct ext4_group_desc * desc;
162 struct ext4_sb_info *sbi = EXT4_SB(sb);
164 if (block_group >= sbi->s_groups_count) {
165 ext4_error (sb, "ext4_get_group_desc",
166 "block_group >= groups_count - "
167 "block_group = %d, groups_count = %lu",
168 block_group, sbi->s_groups_count);
170 return NULL;
172 smp_rmb();
174 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
175 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
176 if (!sbi->s_group_desc[group_desc]) {
177 ext4_error (sb, "ext4_get_group_desc",
178 "Group descriptor not loaded - "
179 "block_group = %d, group_desc = %lu, desc = %lu",
180 block_group, group_desc, offset);
181 return NULL;
184 desc = (struct ext4_group_desc *)(
185 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
186 offset * EXT4_DESC_SIZE(sb));
187 if (bh)
188 *bh = sbi->s_group_desc[group_desc];
189 return desc;
193 * read_block_bitmap()
194 * @sb: super block
195 * @block_group: given block group
197 * Read the bitmap for a given block_group, reading into the specified
198 * slot in the superblock's bitmap cache.
200 * Return buffer_head on success or NULL in case of failure.
202 struct buffer_head *
203 read_block_bitmap(struct super_block *sb, unsigned int block_group)
205 struct ext4_group_desc * desc;
206 struct buffer_head * bh = NULL;
207 ext4_fsblk_t bitmap_blk;
209 desc = ext4_get_group_desc(sb, block_group, NULL);
210 if (!desc)
211 return NULL;
212 bitmap_blk = ext4_block_bitmap(sb, desc);
213 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
214 bh = sb_getblk(sb, bitmap_blk);
215 if (!buffer_uptodate(bh)) {
216 lock_buffer(bh);
217 if (!buffer_uptodate(bh)) {
218 ext4_init_block_bitmap(sb, bh, block_group,
219 desc);
220 set_buffer_uptodate(bh);
222 unlock_buffer(bh);
224 } else {
225 bh = sb_bread(sb, bitmap_blk);
227 if (!bh)
228 ext4_error (sb, __FUNCTION__,
229 "Cannot read block bitmap - "
230 "block_group = %d, block_bitmap = %llu",
231 block_group, bitmap_blk);
232 return bh;
235 * The reservation window structure operations
236 * --------------------------------------------
237 * Operations include:
238 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
240 * We use a red-black tree to represent per-filesystem reservation
241 * windows.
246 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
247 * @rb_root: root of per-filesystem reservation rb tree
248 * @verbose: verbose mode
249 * @fn: function which wishes to dump the reservation map
251 * If verbose is turned on, it will print the whole block reservation
252 * windows(start, end). Otherwise, it will only print out the "bad" windows,
253 * those windows that overlap with their immediate neighbors.
255 #if 1
256 static void __rsv_window_dump(struct rb_root *root, int verbose,
257 const char *fn)
259 struct rb_node *n;
260 struct ext4_reserve_window_node *rsv, *prev;
261 int bad;
263 restart:
264 n = rb_first(root);
265 bad = 0;
266 prev = NULL;
268 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
269 while (n) {
270 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
271 if (verbose)
272 printk("reservation window 0x%p "
273 "start: %llu, end: %llu\n",
274 rsv, rsv->rsv_start, rsv->rsv_end);
275 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
276 printk("Bad reservation %p (start >= end)\n",
277 rsv);
278 bad = 1;
280 if (prev && prev->rsv_end >= rsv->rsv_start) {
281 printk("Bad reservation %p (prev->end >= start)\n",
282 rsv);
283 bad = 1;
285 if (bad) {
286 if (!verbose) {
287 printk("Restarting reservation walk in verbose mode\n");
288 verbose = 1;
289 goto restart;
292 n = rb_next(n);
293 prev = rsv;
295 printk("Window map complete.\n");
296 if (bad)
297 BUG();
299 #define rsv_window_dump(root, verbose) \
300 __rsv_window_dump((root), (verbose), __FUNCTION__)
301 #else
302 #define rsv_window_dump(root, verbose) do {} while (0)
303 #endif
306 * goal_in_my_reservation()
307 * @rsv: inode's reservation window
308 * @grp_goal: given goal block relative to the allocation block group
309 * @group: the current allocation block group
310 * @sb: filesystem super block
312 * Test if the given goal block (group relative) is within the file's
313 * own block reservation window range.
315 * If the reservation window is outside the goal allocation group, return 0;
316 * grp_goal (given goal block) could be -1, which means no specific
317 * goal block. In this case, always return 1.
318 * If the goal block is within the reservation window, return 1;
319 * otherwise, return 0;
321 static int
322 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
323 unsigned int group, struct super_block * sb)
325 ext4_fsblk_t group_first_block, group_last_block;
327 group_first_block = ext4_group_first_block_no(sb, group);
328 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
330 if ((rsv->_rsv_start > group_last_block) ||
331 (rsv->_rsv_end < group_first_block))
332 return 0;
333 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
334 || (grp_goal + group_first_block > rsv->_rsv_end)))
335 return 0;
336 return 1;
340 * search_reserve_window()
341 * @rb_root: root of reservation tree
342 * @goal: target allocation block
344 * Find the reserved window which includes the goal, or the previous one
345 * if the goal is not in any window.
346 * Returns NULL if there are no windows or if all windows start after the goal.
348 static struct ext4_reserve_window_node *
349 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
351 struct rb_node *n = root->rb_node;
352 struct ext4_reserve_window_node *rsv;
354 if (!n)
355 return NULL;
357 do {
358 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
360 if (goal < rsv->rsv_start)
361 n = n->rb_left;
362 else if (goal > rsv->rsv_end)
363 n = n->rb_right;
364 else
365 return rsv;
366 } while (n);
368 * We've fallen off the end of the tree: the goal wasn't inside
369 * any particular node. OK, the previous node must be to one
370 * side of the interval containing the goal. If it's the RHS,
371 * we need to back up one.
373 if (rsv->rsv_start > goal) {
374 n = rb_prev(&rsv->rsv_node);
375 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
377 return rsv;
381 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
382 * @sb: super block
383 * @rsv: reservation window to add
385 * Must be called with rsv_lock hold.
387 void ext4_rsv_window_add(struct super_block *sb,
388 struct ext4_reserve_window_node *rsv)
390 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
391 struct rb_node *node = &rsv->rsv_node;
392 ext4_fsblk_t start = rsv->rsv_start;
394 struct rb_node ** p = &root->rb_node;
395 struct rb_node * parent = NULL;
396 struct ext4_reserve_window_node *this;
398 while (*p)
400 parent = *p;
401 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
403 if (start < this->rsv_start)
404 p = &(*p)->rb_left;
405 else if (start > this->rsv_end)
406 p = &(*p)->rb_right;
407 else {
408 rsv_window_dump(root, 1);
409 BUG();
413 rb_link_node(node, parent, p);
414 rb_insert_color(node, root);
418 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
419 * @sb: super block
420 * @rsv: reservation window to remove
422 * Mark the block reservation window as not allocated, and unlink it
423 * from the filesystem reservation window rb tree. Must be called with
424 * rsv_lock hold.
426 static void rsv_window_remove(struct super_block *sb,
427 struct ext4_reserve_window_node *rsv)
429 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
430 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
431 rsv->rsv_alloc_hit = 0;
432 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
436 * rsv_is_empty() -- Check if the reservation window is allocated.
437 * @rsv: given reservation window to check
439 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
441 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
443 /* a valid reservation end block could not be 0 */
444 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
448 * ext4_init_block_alloc_info()
449 * @inode: file inode structure
451 * Allocate and initialize the reservation window structure, and
452 * link the window to the ext4 inode structure at last
454 * The reservation window structure is only dynamically allocated
455 * and linked to ext4 inode the first time the open file
456 * needs a new block. So, before every ext4_new_block(s) call, for
457 * regular files, we should check whether the reservation window
458 * structure exists or not. In the latter case, this function is called.
459 * Fail to do so will result in block reservation being turned off for that
460 * open file.
462 * This function is called from ext4_get_blocks_handle(), also called
463 * when setting the reservation window size through ioctl before the file
464 * is open for write (needs block allocation).
466 * Needs truncate_mutex protection prior to call this function.
468 void ext4_init_block_alloc_info(struct inode *inode)
470 struct ext4_inode_info *ei = EXT4_I(inode);
471 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
472 struct super_block *sb = inode->i_sb;
474 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
475 if (block_i) {
476 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
478 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
479 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
482 * if filesystem is mounted with NORESERVATION, the goal
483 * reservation window size is set to zero to indicate
484 * block reservation is off
486 if (!test_opt(sb, RESERVATION))
487 rsv->rsv_goal_size = 0;
488 else
489 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
490 rsv->rsv_alloc_hit = 0;
491 block_i->last_alloc_logical_block = 0;
492 block_i->last_alloc_physical_block = 0;
494 ei->i_block_alloc_info = block_i;
498 * ext4_discard_reservation()
499 * @inode: inode
501 * Discard(free) block reservation window on last file close, or truncate
502 * or at last iput().
504 * It is being called in three cases:
505 * ext4_release_file(): last writer close the file
506 * ext4_clear_inode(): last iput(), when nobody link to this file.
507 * ext4_truncate(): when the block indirect map is about to change.
510 void ext4_discard_reservation(struct inode *inode)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
514 struct ext4_reserve_window_node *rsv;
515 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
517 if (!block_i)
518 return;
520 rsv = &block_i->rsv_window_node;
521 if (!rsv_is_empty(&rsv->rsv_window)) {
522 spin_lock(rsv_lock);
523 if (!rsv_is_empty(&rsv->rsv_window))
524 rsv_window_remove(inode->i_sb, rsv);
525 spin_unlock(rsv_lock);
530 * ext4_free_blocks_sb() -- Free given blocks and update quota
531 * @handle: handle to this transaction
532 * @sb: super block
533 * @block: start physcial block to free
534 * @count: number of blocks to free
535 * @pdquot_freed_blocks: pointer to quota
537 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
538 ext4_fsblk_t block, unsigned long count,
539 unsigned long *pdquot_freed_blocks)
541 struct buffer_head *bitmap_bh = NULL;
542 struct buffer_head *gd_bh;
543 unsigned long block_group;
544 ext4_grpblk_t bit;
545 unsigned long i;
546 unsigned long overflow;
547 struct ext4_group_desc * desc;
548 struct ext4_super_block * es;
549 struct ext4_sb_info *sbi;
550 int err = 0, ret;
551 ext4_grpblk_t group_freed;
553 *pdquot_freed_blocks = 0;
554 sbi = EXT4_SB(sb);
555 es = sbi->s_es;
556 if (block < le32_to_cpu(es->s_first_data_block) ||
557 block + count < block ||
558 block + count > ext4_blocks_count(es)) {
559 ext4_error (sb, "ext4_free_blocks",
560 "Freeing blocks not in datazone - "
561 "block = %llu, count = %lu", block, count);
562 goto error_return;
565 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
567 do_more:
568 overflow = 0;
569 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
571 * Check to see if we are freeing blocks across a group
572 * boundary.
574 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
575 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
576 count -= overflow;
578 brelse(bitmap_bh);
579 bitmap_bh = read_block_bitmap(sb, block_group);
580 if (!bitmap_bh)
581 goto error_return;
582 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
583 if (!desc)
584 goto error_return;
586 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
587 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
588 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
589 in_range(block + count - 1, ext4_inode_table(sb, desc),
590 sbi->s_itb_per_group))
591 ext4_error (sb, "ext4_free_blocks",
592 "Freeing blocks in system zones - "
593 "Block = %llu, count = %lu",
594 block, count);
597 * We are about to start releasing blocks in the bitmap,
598 * so we need undo access.
600 /* @@@ check errors */
601 BUFFER_TRACE(bitmap_bh, "getting undo access");
602 err = ext4_journal_get_undo_access(handle, bitmap_bh);
603 if (err)
604 goto error_return;
607 * We are about to modify some metadata. Call the journal APIs
608 * to unshare ->b_data if a currently-committing transaction is
609 * using it
611 BUFFER_TRACE(gd_bh, "get_write_access");
612 err = ext4_journal_get_write_access(handle, gd_bh);
613 if (err)
614 goto error_return;
616 jbd_lock_bh_state(bitmap_bh);
618 for (i = 0, group_freed = 0; i < count; i++) {
620 * An HJ special. This is expensive...
622 #ifdef CONFIG_JBD2_DEBUG
623 jbd_unlock_bh_state(bitmap_bh);
625 struct buffer_head *debug_bh;
626 debug_bh = sb_find_get_block(sb, block + i);
627 if (debug_bh) {
628 BUFFER_TRACE(debug_bh, "Deleted!");
629 if (!bh2jh(bitmap_bh)->b_committed_data)
630 BUFFER_TRACE(debug_bh,
631 "No commited data in bitmap");
632 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
633 __brelse(debug_bh);
636 jbd_lock_bh_state(bitmap_bh);
637 #endif
638 if (need_resched()) {
639 jbd_unlock_bh_state(bitmap_bh);
640 cond_resched();
641 jbd_lock_bh_state(bitmap_bh);
643 /* @@@ This prevents newly-allocated data from being
644 * freed and then reallocated within the same
645 * transaction.
647 * Ideally we would want to allow that to happen, but to
648 * do so requires making jbd2_journal_forget() capable of
649 * revoking the queued write of a data block, which
650 * implies blocking on the journal lock. *forget()
651 * cannot block due to truncate races.
653 * Eventually we can fix this by making jbd2_journal_forget()
654 * return a status indicating whether or not it was able
655 * to revoke the buffer. On successful revoke, it is
656 * safe not to set the allocation bit in the committed
657 * bitmap, because we know that there is no outstanding
658 * activity on the buffer any more and so it is safe to
659 * reallocate it.
661 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
662 J_ASSERT_BH(bitmap_bh,
663 bh2jh(bitmap_bh)->b_committed_data != NULL);
664 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
665 bh2jh(bitmap_bh)->b_committed_data);
668 * We clear the bit in the bitmap after setting the committed
669 * data bit, because this is the reverse order to that which
670 * the allocator uses.
672 BUFFER_TRACE(bitmap_bh, "clear bit");
673 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
674 bit + i, bitmap_bh->b_data)) {
675 jbd_unlock_bh_state(bitmap_bh);
676 ext4_error(sb, __FUNCTION__,
677 "bit already cleared for block %llu",
678 (ext4_fsblk_t)(block + i));
679 jbd_lock_bh_state(bitmap_bh);
680 BUFFER_TRACE(bitmap_bh, "bit already cleared");
681 } else {
682 group_freed++;
685 jbd_unlock_bh_state(bitmap_bh);
687 spin_lock(sb_bgl_lock(sbi, block_group));
688 desc->bg_free_blocks_count =
689 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
690 group_freed);
691 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
692 spin_unlock(sb_bgl_lock(sbi, block_group));
693 percpu_counter_add(&sbi->s_freeblocks_counter, count);
695 /* We dirtied the bitmap block */
696 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
697 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
699 /* And the group descriptor block */
700 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
701 ret = ext4_journal_dirty_metadata(handle, gd_bh);
702 if (!err) err = ret;
703 *pdquot_freed_blocks += group_freed;
705 if (overflow && !err) {
706 block += count;
707 count = overflow;
708 goto do_more;
710 sb->s_dirt = 1;
711 error_return:
712 brelse(bitmap_bh);
713 ext4_std_error(sb, err);
714 return;
718 * ext4_free_blocks() -- Free given blocks and update quota
719 * @handle: handle for this transaction
720 * @inode: inode
721 * @block: start physical block to free
722 * @count: number of blocks to count
724 void ext4_free_blocks(handle_t *handle, struct inode *inode,
725 ext4_fsblk_t block, unsigned long count)
727 struct super_block * sb;
728 unsigned long dquot_freed_blocks;
730 sb = inode->i_sb;
731 if (!sb) {
732 printk ("ext4_free_blocks: nonexistent device");
733 return;
735 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
736 if (dquot_freed_blocks)
737 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
738 return;
742 * ext4_test_allocatable()
743 * @nr: given allocation block group
744 * @bh: bufferhead contains the bitmap of the given block group
746 * For ext4 allocations, we must not reuse any blocks which are
747 * allocated in the bitmap buffer's "last committed data" copy. This
748 * prevents deletes from freeing up the page for reuse until we have
749 * committed the delete transaction.
751 * If we didn't do this, then deleting something and reallocating it as
752 * data would allow the old block to be overwritten before the
753 * transaction committed (because we force data to disk before commit).
754 * This would lead to corruption if we crashed between overwriting the
755 * data and committing the delete.
757 * @@@ We may want to make this allocation behaviour conditional on
758 * data-writes at some point, and disable it for metadata allocations or
759 * sync-data inodes.
761 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
763 int ret;
764 struct journal_head *jh = bh2jh(bh);
766 if (ext4_test_bit(nr, bh->b_data))
767 return 0;
769 jbd_lock_bh_state(bh);
770 if (!jh->b_committed_data)
771 ret = 1;
772 else
773 ret = !ext4_test_bit(nr, jh->b_committed_data);
774 jbd_unlock_bh_state(bh);
775 return ret;
779 * bitmap_search_next_usable_block()
780 * @start: the starting block (group relative) of the search
781 * @bh: bufferhead contains the block group bitmap
782 * @maxblocks: the ending block (group relative) of the reservation
784 * The bitmap search --- search forward alternately through the actual
785 * bitmap on disk and the last-committed copy in journal, until we find a
786 * bit free in both bitmaps.
788 static ext4_grpblk_t
789 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
790 ext4_grpblk_t maxblocks)
792 ext4_grpblk_t next;
793 struct journal_head *jh = bh2jh(bh);
795 while (start < maxblocks) {
796 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
797 if (next >= maxblocks)
798 return -1;
799 if (ext4_test_allocatable(next, bh))
800 return next;
801 jbd_lock_bh_state(bh);
802 if (jh->b_committed_data)
803 start = ext4_find_next_zero_bit(jh->b_committed_data,
804 maxblocks, next);
805 jbd_unlock_bh_state(bh);
807 return -1;
811 * find_next_usable_block()
812 * @start: the starting block (group relative) to find next
813 * allocatable block in bitmap.
814 * @bh: bufferhead contains the block group bitmap
815 * @maxblocks: the ending block (group relative) for the search
817 * Find an allocatable block in a bitmap. We honor both the bitmap and
818 * its last-committed copy (if that exists), and perform the "most
819 * appropriate allocation" algorithm of looking for a free block near
820 * the initial goal; then for a free byte somewhere in the bitmap; then
821 * for any free bit in the bitmap.
823 static ext4_grpblk_t
824 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
825 ext4_grpblk_t maxblocks)
827 ext4_grpblk_t here, next;
828 char *p, *r;
830 if (start > 0) {
832 * The goal was occupied; search forward for a free
833 * block within the next XX blocks.
835 * end_goal is more or less random, but it has to be
836 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
837 * next 64-bit boundary is simple..
839 ext4_grpblk_t end_goal = (start + 63) & ~63;
840 if (end_goal > maxblocks)
841 end_goal = maxblocks;
842 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
843 if (here < end_goal && ext4_test_allocatable(here, bh))
844 return here;
845 ext4_debug("Bit not found near goal\n");
848 here = start;
849 if (here < 0)
850 here = 0;
852 p = ((char *)bh->b_data) + (here >> 3);
853 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
854 next = (r - ((char *)bh->b_data)) << 3;
856 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
857 return next;
860 * The bitmap search --- search forward alternately through the actual
861 * bitmap and the last-committed copy until we find a bit free in
862 * both
864 here = bitmap_search_next_usable_block(here, bh, maxblocks);
865 return here;
869 * claim_block()
870 * @block: the free block (group relative) to allocate
871 * @bh: the bufferhead containts the block group bitmap
873 * We think we can allocate this block in this bitmap. Try to set the bit.
874 * If that succeeds then check that nobody has allocated and then freed the
875 * block since we saw that is was not marked in b_committed_data. If it _was_
876 * allocated and freed then clear the bit in the bitmap again and return
877 * zero (failure).
879 static inline int
880 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
882 struct journal_head *jh = bh2jh(bh);
883 int ret;
885 if (ext4_set_bit_atomic(lock, block, bh->b_data))
886 return 0;
887 jbd_lock_bh_state(bh);
888 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
889 ext4_clear_bit_atomic(lock, block, bh->b_data);
890 ret = 0;
891 } else {
892 ret = 1;
894 jbd_unlock_bh_state(bh);
895 return ret;
899 * ext4_try_to_allocate()
900 * @sb: superblock
901 * @handle: handle to this transaction
902 * @group: given allocation block group
903 * @bitmap_bh: bufferhead holds the block bitmap
904 * @grp_goal: given target block within the group
905 * @count: target number of blocks to allocate
906 * @my_rsv: reservation window
908 * Attempt to allocate blocks within a give range. Set the range of allocation
909 * first, then find the first free bit(s) from the bitmap (within the range),
910 * and at last, allocate the blocks by claiming the found free bit as allocated.
912 * To set the range of this allocation:
913 * if there is a reservation window, only try to allocate block(s) from the
914 * file's own reservation window;
915 * Otherwise, the allocation range starts from the give goal block, ends at
916 * the block group's last block.
918 * If we failed to allocate the desired block then we may end up crossing to a
919 * new bitmap. In that case we must release write access to the old one via
920 * ext4_journal_release_buffer(), else we'll run out of credits.
922 static ext4_grpblk_t
923 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
924 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
925 unsigned long *count, struct ext4_reserve_window *my_rsv)
927 ext4_fsblk_t group_first_block;
928 ext4_grpblk_t start, end;
929 unsigned long num = 0;
931 /* we do allocation within the reservation window if we have a window */
932 if (my_rsv) {
933 group_first_block = ext4_group_first_block_no(sb, group);
934 if (my_rsv->_rsv_start >= group_first_block)
935 start = my_rsv->_rsv_start - group_first_block;
936 else
937 /* reservation window cross group boundary */
938 start = 0;
939 end = my_rsv->_rsv_end - group_first_block + 1;
940 if (end > EXT4_BLOCKS_PER_GROUP(sb))
941 /* reservation window crosses group boundary */
942 end = EXT4_BLOCKS_PER_GROUP(sb);
943 if ((start <= grp_goal) && (grp_goal < end))
944 start = grp_goal;
945 else
946 grp_goal = -1;
947 } else {
948 if (grp_goal > 0)
949 start = grp_goal;
950 else
951 start = 0;
952 end = EXT4_BLOCKS_PER_GROUP(sb);
955 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
957 repeat:
958 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
959 grp_goal = find_next_usable_block(start, bitmap_bh, end);
960 if (grp_goal < 0)
961 goto fail_access;
962 if (!my_rsv) {
963 int i;
965 for (i = 0; i < 7 && grp_goal > start &&
966 ext4_test_allocatable(grp_goal - 1,
967 bitmap_bh);
968 i++, grp_goal--)
972 start = grp_goal;
974 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
975 grp_goal, bitmap_bh)) {
977 * The block was allocated by another thread, or it was
978 * allocated and then freed by another thread
980 start++;
981 grp_goal++;
982 if (start >= end)
983 goto fail_access;
984 goto repeat;
986 num++;
987 grp_goal++;
988 while (num < *count && grp_goal < end
989 && ext4_test_allocatable(grp_goal, bitmap_bh)
990 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
991 grp_goal, bitmap_bh)) {
992 num++;
993 grp_goal++;
995 *count = num;
996 return grp_goal - num;
997 fail_access:
998 *count = num;
999 return -1;
1003 * find_next_reservable_window():
1004 * find a reservable space within the given range.
1005 * It does not allocate the reservation window for now:
1006 * alloc_new_reservation() will do the work later.
1008 * @search_head: the head of the searching list;
1009 * This is not necessarily the list head of the whole filesystem
1011 * We have both head and start_block to assist the search
1012 * for the reservable space. The list starts from head,
1013 * but we will shift to the place where start_block is,
1014 * then start from there, when looking for a reservable space.
1016 * @size: the target new reservation window size
1018 * @group_first_block: the first block we consider to start
1019 * the real search from
1021 * @last_block:
1022 * the maximum block number that our goal reservable space
1023 * could start from. This is normally the last block in this
1024 * group. The search will end when we found the start of next
1025 * possible reservable space is out of this boundary.
1026 * This could handle the cross boundary reservation window
1027 * request.
1029 * basically we search from the given range, rather than the whole
1030 * reservation double linked list, (start_block, last_block)
1031 * to find a free region that is of my size and has not
1032 * been reserved.
1035 static int find_next_reservable_window(
1036 struct ext4_reserve_window_node *search_head,
1037 struct ext4_reserve_window_node *my_rsv,
1038 struct super_block * sb,
1039 ext4_fsblk_t start_block,
1040 ext4_fsblk_t last_block)
1042 struct rb_node *next;
1043 struct ext4_reserve_window_node *rsv, *prev;
1044 ext4_fsblk_t cur;
1045 int size = my_rsv->rsv_goal_size;
1047 /* TODO: make the start of the reservation window byte-aligned */
1048 /* cur = *start_block & ~7;*/
1049 cur = start_block;
1050 rsv = search_head;
1051 if (!rsv)
1052 return -1;
1054 while (1) {
1055 if (cur <= rsv->rsv_end)
1056 cur = rsv->rsv_end + 1;
1058 /* TODO?
1059 * in the case we could not find a reservable space
1060 * that is what is expected, during the re-search, we could
1061 * remember what's the largest reservable space we could have
1062 * and return that one.
1064 * For now it will fail if we could not find the reservable
1065 * space with expected-size (or more)...
1067 if (cur > last_block)
1068 return -1; /* fail */
1070 prev = rsv;
1071 next = rb_next(&rsv->rsv_node);
1072 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1075 * Reached the last reservation, we can just append to the
1076 * previous one.
1078 if (!next)
1079 break;
1081 if (cur + size <= rsv->rsv_start) {
1083 * Found a reserveable space big enough. We could
1084 * have a reservation across the group boundary here
1086 break;
1090 * we come here either :
1091 * when we reach the end of the whole list,
1092 * and there is empty reservable space after last entry in the list.
1093 * append it to the end of the list.
1095 * or we found one reservable space in the middle of the list,
1096 * return the reservation window that we could append to.
1097 * succeed.
1100 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1101 rsv_window_remove(sb, my_rsv);
1104 * Let's book the whole avaliable window for now. We will check the
1105 * disk bitmap later and then, if there are free blocks then we adjust
1106 * the window size if it's larger than requested.
1107 * Otherwise, we will remove this node from the tree next time
1108 * call find_next_reservable_window.
1110 my_rsv->rsv_start = cur;
1111 my_rsv->rsv_end = cur + size - 1;
1112 my_rsv->rsv_alloc_hit = 0;
1114 if (prev != my_rsv)
1115 ext4_rsv_window_add(sb, my_rsv);
1117 return 0;
1121 * alloc_new_reservation()--allocate a new reservation window
1123 * To make a new reservation, we search part of the filesystem
1124 * reservation list (the list that inside the group). We try to
1125 * allocate a new reservation window near the allocation goal,
1126 * or the beginning of the group, if there is no goal.
1128 * We first find a reservable space after the goal, then from
1129 * there, we check the bitmap for the first free block after
1130 * it. If there is no free block until the end of group, then the
1131 * whole group is full, we failed. Otherwise, check if the free
1132 * block is inside the expected reservable space, if so, we
1133 * succeed.
1134 * If the first free block is outside the reservable space, then
1135 * start from the first free block, we search for next available
1136 * space, and go on.
1138 * on succeed, a new reservation will be found and inserted into the list
1139 * It contains at least one free block, and it does not overlap with other
1140 * reservation windows.
1142 * failed: we failed to find a reservation window in this group
1144 * @rsv: the reservation
1146 * @grp_goal: The goal (group-relative). It is where the search for a
1147 * free reservable space should start from.
1148 * if we have a grp_goal(grp_goal >0 ), then start from there,
1149 * no grp_goal(grp_goal = -1), we start from the first block
1150 * of the group.
1152 * @sb: the super block
1153 * @group: the group we are trying to allocate in
1154 * @bitmap_bh: the block group block bitmap
1157 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1158 ext4_grpblk_t grp_goal, struct super_block *sb,
1159 unsigned int group, struct buffer_head *bitmap_bh)
1161 struct ext4_reserve_window_node *search_head;
1162 ext4_fsblk_t group_first_block, group_end_block, start_block;
1163 ext4_grpblk_t first_free_block;
1164 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1165 unsigned long size;
1166 int ret;
1167 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1169 group_first_block = ext4_group_first_block_no(sb, group);
1170 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1172 if (grp_goal < 0)
1173 start_block = group_first_block;
1174 else
1175 start_block = grp_goal + group_first_block;
1177 size = my_rsv->rsv_goal_size;
1179 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1181 * if the old reservation is cross group boundary
1182 * and if the goal is inside the old reservation window,
1183 * we will come here when we just failed to allocate from
1184 * the first part of the window. We still have another part
1185 * that belongs to the next group. In this case, there is no
1186 * point to discard our window and try to allocate a new one
1187 * in this group(which will fail). we should
1188 * keep the reservation window, just simply move on.
1190 * Maybe we could shift the start block of the reservation
1191 * window to the first block of next group.
1194 if ((my_rsv->rsv_start <= group_end_block) &&
1195 (my_rsv->rsv_end > group_end_block) &&
1196 (start_block >= my_rsv->rsv_start))
1197 return -1;
1199 if ((my_rsv->rsv_alloc_hit >
1200 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1202 * if the previously allocation hit ratio is
1203 * greater than 1/2, then we double the size of
1204 * the reservation window the next time,
1205 * otherwise we keep the same size window
1207 size = size * 2;
1208 if (size > EXT4_MAX_RESERVE_BLOCKS)
1209 size = EXT4_MAX_RESERVE_BLOCKS;
1210 my_rsv->rsv_goal_size= size;
1214 spin_lock(rsv_lock);
1216 * shift the search start to the window near the goal block
1218 search_head = search_reserve_window(fs_rsv_root, start_block);
1221 * find_next_reservable_window() simply finds a reservable window
1222 * inside the given range(start_block, group_end_block).
1224 * To make sure the reservation window has a free bit inside it, we
1225 * need to check the bitmap after we found a reservable window.
1227 retry:
1228 ret = find_next_reservable_window(search_head, my_rsv, sb,
1229 start_block, group_end_block);
1231 if (ret == -1) {
1232 if (!rsv_is_empty(&my_rsv->rsv_window))
1233 rsv_window_remove(sb, my_rsv);
1234 spin_unlock(rsv_lock);
1235 return -1;
1239 * On success, find_next_reservable_window() returns the
1240 * reservation window where there is a reservable space after it.
1241 * Before we reserve this reservable space, we need
1242 * to make sure there is at least a free block inside this region.
1244 * searching the first free bit on the block bitmap and copy of
1245 * last committed bitmap alternatively, until we found a allocatable
1246 * block. Search start from the start block of the reservable space
1247 * we just found.
1249 spin_unlock(rsv_lock);
1250 first_free_block = bitmap_search_next_usable_block(
1251 my_rsv->rsv_start - group_first_block,
1252 bitmap_bh, group_end_block - group_first_block + 1);
1254 if (first_free_block < 0) {
1256 * no free block left on the bitmap, no point
1257 * to reserve the space. return failed.
1259 spin_lock(rsv_lock);
1260 if (!rsv_is_empty(&my_rsv->rsv_window))
1261 rsv_window_remove(sb, my_rsv);
1262 spin_unlock(rsv_lock);
1263 return -1; /* failed */
1266 start_block = first_free_block + group_first_block;
1268 * check if the first free block is within the
1269 * free space we just reserved
1271 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1272 return 0; /* success */
1274 * if the first free bit we found is out of the reservable space
1275 * continue search for next reservable space,
1276 * start from where the free block is,
1277 * we also shift the list head to where we stopped last time
1279 search_head = my_rsv;
1280 spin_lock(rsv_lock);
1281 goto retry;
1285 * try_to_extend_reservation()
1286 * @my_rsv: given reservation window
1287 * @sb: super block
1288 * @size: the delta to extend
1290 * Attempt to expand the reservation window large enough to have
1291 * required number of free blocks
1293 * Since ext4_try_to_allocate() will always allocate blocks within
1294 * the reservation window range, if the window size is too small,
1295 * multiple blocks allocation has to stop at the end of the reservation
1296 * window. To make this more efficient, given the total number of
1297 * blocks needed and the current size of the window, we try to
1298 * expand the reservation window size if necessary on a best-effort
1299 * basis before ext4_new_blocks() tries to allocate blocks,
1301 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1302 struct super_block *sb, int size)
1304 struct ext4_reserve_window_node *next_rsv;
1305 struct rb_node *next;
1306 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1308 if (!spin_trylock(rsv_lock))
1309 return;
1311 next = rb_next(&my_rsv->rsv_node);
1313 if (!next)
1314 my_rsv->rsv_end += size;
1315 else {
1316 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1318 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1319 my_rsv->rsv_end += size;
1320 else
1321 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1323 spin_unlock(rsv_lock);
1327 * ext4_try_to_allocate_with_rsv()
1328 * @sb: superblock
1329 * @handle: handle to this transaction
1330 * @group: given allocation block group
1331 * @bitmap_bh: bufferhead holds the block bitmap
1332 * @grp_goal: given target block within the group
1333 * @count: target number of blocks to allocate
1334 * @my_rsv: reservation window
1335 * @errp: pointer to store the error code
1337 * This is the main function used to allocate a new block and its reservation
1338 * window.
1340 * Each time when a new block allocation is need, first try to allocate from
1341 * its own reservation. If it does not have a reservation window, instead of
1342 * looking for a free bit on bitmap first, then look up the reservation list to
1343 * see if it is inside somebody else's reservation window, we try to allocate a
1344 * reservation window for it starting from the goal first. Then do the block
1345 * allocation within the reservation window.
1347 * This will avoid keeping on searching the reservation list again and
1348 * again when somebody is looking for a free block (without
1349 * reservation), and there are lots of free blocks, but they are all
1350 * being reserved.
1352 * We use a red-black tree for the per-filesystem reservation list.
1355 static ext4_grpblk_t
1356 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1357 unsigned int group, struct buffer_head *bitmap_bh,
1358 ext4_grpblk_t grp_goal,
1359 struct ext4_reserve_window_node * my_rsv,
1360 unsigned long *count, int *errp)
1362 ext4_fsblk_t group_first_block, group_last_block;
1363 ext4_grpblk_t ret = 0;
1364 int fatal;
1365 unsigned long num = *count;
1367 *errp = 0;
1370 * Make sure we use undo access for the bitmap, because it is critical
1371 * that we do the frozen_data COW on bitmap buffers in all cases even
1372 * if the buffer is in BJ_Forget state in the committing transaction.
1374 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1375 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1376 if (fatal) {
1377 *errp = fatal;
1378 return -1;
1382 * we don't deal with reservation when
1383 * filesystem is mounted without reservation
1384 * or the file is not a regular file
1385 * or last attempt to allocate a block with reservation turned on failed
1387 if (my_rsv == NULL ) {
1388 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1389 grp_goal, count, NULL);
1390 goto out;
1393 * grp_goal is a group relative block number (if there is a goal)
1394 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1395 * first block is a filesystem wide block number
1396 * first block is the block number of the first block in this group
1398 group_first_block = ext4_group_first_block_no(sb, group);
1399 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1402 * Basically we will allocate a new block from inode's reservation
1403 * window.
1405 * We need to allocate a new reservation window, if:
1406 * a) inode does not have a reservation window; or
1407 * b) last attempt to allocate a block from existing reservation
1408 * failed; or
1409 * c) we come here with a goal and with a reservation window
1411 * We do not need to allocate a new reservation window if we come here
1412 * at the beginning with a goal and the goal is inside the window, or
1413 * we don't have a goal but already have a reservation window.
1414 * then we could go to allocate from the reservation window directly.
1416 while (1) {
1417 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1418 !goal_in_my_reservation(&my_rsv->rsv_window,
1419 grp_goal, group, sb)) {
1420 if (my_rsv->rsv_goal_size < *count)
1421 my_rsv->rsv_goal_size = *count;
1422 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1423 group, bitmap_bh);
1424 if (ret < 0)
1425 break; /* failed */
1427 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1428 grp_goal, group, sb))
1429 grp_goal = -1;
1430 } else if (grp_goal >= 0) {
1431 int curr = my_rsv->rsv_end -
1432 (grp_goal + group_first_block) + 1;
1434 if (curr < *count)
1435 try_to_extend_reservation(my_rsv, sb,
1436 *count - curr);
1439 if ((my_rsv->rsv_start > group_last_block) ||
1440 (my_rsv->rsv_end < group_first_block)) {
1441 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1442 BUG();
1444 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1445 grp_goal, &num, &my_rsv->rsv_window);
1446 if (ret >= 0) {
1447 my_rsv->rsv_alloc_hit += num;
1448 *count = num;
1449 break; /* succeed */
1451 num = *count;
1453 out:
1454 if (ret >= 0) {
1455 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1456 "bitmap block");
1457 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1458 if (fatal) {
1459 *errp = fatal;
1460 return -1;
1462 return ret;
1465 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1466 ext4_journal_release_buffer(handle, bitmap_bh);
1467 return ret;
1471 * ext4_has_free_blocks()
1472 * @sbi: in-core super block structure.
1474 * Check if filesystem has at least 1 free block available for allocation.
1476 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1478 ext4_fsblk_t free_blocks, root_blocks;
1480 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1481 root_blocks = ext4_r_blocks_count(sbi->s_es);
1482 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1483 sbi->s_resuid != current->fsuid &&
1484 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1485 return 0;
1487 return 1;
1491 * ext4_should_retry_alloc()
1492 * @sb: super block
1493 * @retries number of attemps has been made
1495 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1496 * it is profitable to retry the operation, this function will wait
1497 * for the current or commiting transaction to complete, and then
1498 * return TRUE.
1500 * if the total number of retries exceed three times, return FALSE.
1502 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1504 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1505 return 0;
1507 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1509 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1513 * ext4_new_blocks() -- core block(s) allocation function
1514 * @handle: handle to this transaction
1515 * @inode: file inode
1516 * @goal: given target block(filesystem wide)
1517 * @count: target number of blocks to allocate
1518 * @errp: error code
1520 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1521 * allocate block(s) from the block group contains the goal block first. If that
1522 * fails, it will try to allocate block(s) from other block groups without
1523 * any specific goal block.
1526 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1527 ext4_fsblk_t goal, unsigned long *count, int *errp)
1529 struct buffer_head *bitmap_bh = NULL;
1530 struct buffer_head *gdp_bh;
1531 unsigned long group_no;
1532 int goal_group;
1533 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1534 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1535 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1536 int bgi; /* blockgroup iteration index */
1537 int fatal = 0, err;
1538 int performed_allocation = 0;
1539 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1540 struct super_block *sb;
1541 struct ext4_group_desc *gdp;
1542 struct ext4_super_block *es;
1543 struct ext4_sb_info *sbi;
1544 struct ext4_reserve_window_node *my_rsv = NULL;
1545 struct ext4_block_alloc_info *block_i;
1546 unsigned short windowsz = 0;
1547 #ifdef EXT4FS_DEBUG
1548 static int goal_hits, goal_attempts;
1549 #endif
1550 unsigned long ngroups;
1551 unsigned long num = *count;
1553 *errp = -ENOSPC;
1554 sb = inode->i_sb;
1555 if (!sb) {
1556 printk("ext4_new_block: nonexistent device");
1557 return 0;
1561 * Check quota for allocation of this block.
1563 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1564 *errp = -EDQUOT;
1565 return 0;
1568 sbi = EXT4_SB(sb);
1569 es = EXT4_SB(sb)->s_es;
1570 ext4_debug("goal=%lu.\n", goal);
1572 * Allocate a block from reservation only when
1573 * filesystem is mounted with reservation(default,-o reservation), and
1574 * it's a regular file, and
1575 * the desired window size is greater than 0 (One could use ioctl
1576 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1577 * reservation on that particular file)
1579 block_i = EXT4_I(inode)->i_block_alloc_info;
1580 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1581 my_rsv = &block_i->rsv_window_node;
1583 if (!ext4_has_free_blocks(sbi)) {
1584 *errp = -ENOSPC;
1585 goto out;
1589 * First, test whether the goal block is free.
1591 if (goal < le32_to_cpu(es->s_first_data_block) ||
1592 goal >= ext4_blocks_count(es))
1593 goal = le32_to_cpu(es->s_first_data_block);
1594 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1595 goal_group = group_no;
1596 retry_alloc:
1597 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1598 if (!gdp)
1599 goto io_error;
1601 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1603 * if there is not enough free blocks to make a new resevation
1604 * turn off reservation for this allocation
1606 if (my_rsv && (free_blocks < windowsz)
1607 && (rsv_is_empty(&my_rsv->rsv_window)))
1608 my_rsv = NULL;
1610 if (free_blocks > 0) {
1611 bitmap_bh = read_block_bitmap(sb, group_no);
1612 if (!bitmap_bh)
1613 goto io_error;
1614 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1615 group_no, bitmap_bh, grp_target_blk,
1616 my_rsv, &num, &fatal);
1617 if (fatal)
1618 goto out;
1619 if (grp_alloc_blk >= 0)
1620 goto allocated;
1623 ngroups = EXT4_SB(sb)->s_groups_count;
1624 smp_rmb();
1627 * Now search the rest of the groups. We assume that
1628 * i and gdp correctly point to the last group visited.
1630 for (bgi = 0; bgi < ngroups; bgi++) {
1631 group_no++;
1632 if (group_no >= ngroups)
1633 group_no = 0;
1634 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1635 if (!gdp)
1636 goto io_error;
1637 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1639 * skip this group if the number of
1640 * free blocks is less than half of the reservation
1641 * window size.
1643 if (free_blocks <= (windowsz/2))
1644 continue;
1646 brelse(bitmap_bh);
1647 bitmap_bh = read_block_bitmap(sb, group_no);
1648 if (!bitmap_bh)
1649 goto io_error;
1651 * try to allocate block(s) from this group, without a goal(-1).
1653 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1654 group_no, bitmap_bh, -1, my_rsv,
1655 &num, &fatal);
1656 if (fatal)
1657 goto out;
1658 if (grp_alloc_blk >= 0)
1659 goto allocated;
1662 * We may end up a bogus ealier ENOSPC error due to
1663 * filesystem is "full" of reservations, but
1664 * there maybe indeed free blocks avaliable on disk
1665 * In this case, we just forget about the reservations
1666 * just do block allocation as without reservations.
1668 if (my_rsv) {
1669 my_rsv = NULL;
1670 windowsz = 0;
1671 group_no = goal_group;
1672 goto retry_alloc;
1674 /* No space left on the device */
1675 *errp = -ENOSPC;
1676 goto out;
1678 allocated:
1680 ext4_debug("using block group %d(%d)\n",
1681 group_no, gdp->bg_free_blocks_count);
1683 BUFFER_TRACE(gdp_bh, "get_write_access");
1684 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1685 if (fatal)
1686 goto out;
1688 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1690 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1691 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1692 in_range(ret_block, ext4_inode_table(sb, gdp),
1693 EXT4_SB(sb)->s_itb_per_group) ||
1694 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1695 EXT4_SB(sb)->s_itb_per_group))
1696 ext4_error(sb, "ext4_new_block",
1697 "Allocating block in system zone - "
1698 "blocks from %llu, length %lu",
1699 ret_block, num);
1701 performed_allocation = 1;
1703 #ifdef CONFIG_JBD2_DEBUG
1705 struct buffer_head *debug_bh;
1707 /* Record bitmap buffer state in the newly allocated block */
1708 debug_bh = sb_find_get_block(sb, ret_block);
1709 if (debug_bh) {
1710 BUFFER_TRACE(debug_bh, "state when allocated");
1711 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1712 brelse(debug_bh);
1715 jbd_lock_bh_state(bitmap_bh);
1716 spin_lock(sb_bgl_lock(sbi, group_no));
1717 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1718 int i;
1720 for (i = 0; i < num; i++) {
1721 if (ext4_test_bit(grp_alloc_blk+i,
1722 bh2jh(bitmap_bh)->b_committed_data)) {
1723 printk("%s: block was unexpectedly set in "
1724 "b_committed_data\n", __FUNCTION__);
1728 ext4_debug("found bit %d\n", grp_alloc_blk);
1729 spin_unlock(sb_bgl_lock(sbi, group_no));
1730 jbd_unlock_bh_state(bitmap_bh);
1731 #endif
1733 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1734 ext4_error(sb, "ext4_new_block",
1735 "block(%llu) >= blocks count(%llu) - "
1736 "block_group = %lu, es == %p ", ret_block,
1737 ext4_blocks_count(es), group_no, es);
1738 goto out;
1742 * It is up to the caller to add the new buffer to a journal
1743 * list of some description. We don't know in advance whether
1744 * the caller wants to use it as metadata or data.
1746 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1747 ret_block, goal_hits, goal_attempts);
1749 spin_lock(sb_bgl_lock(sbi, group_no));
1750 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1751 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1752 gdp->bg_free_blocks_count =
1753 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1754 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1755 spin_unlock(sb_bgl_lock(sbi, group_no));
1756 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1758 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1759 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1760 if (!fatal)
1761 fatal = err;
1763 sb->s_dirt = 1;
1764 if (fatal)
1765 goto out;
1767 *errp = 0;
1768 brelse(bitmap_bh);
1769 DQUOT_FREE_BLOCK(inode, *count-num);
1770 *count = num;
1771 return ret_block;
1773 io_error:
1774 *errp = -EIO;
1775 out:
1776 if (fatal) {
1777 *errp = fatal;
1778 ext4_std_error(sb, fatal);
1781 * Undo the block allocation
1783 if (!performed_allocation)
1784 DQUOT_FREE_BLOCK(inode, *count);
1785 brelse(bitmap_bh);
1786 return 0;
1789 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1790 ext4_fsblk_t goal, int *errp)
1792 unsigned long count = 1;
1794 return ext4_new_blocks(handle, inode, goal, &count, errp);
1798 * ext4_count_free_blocks() -- count filesystem free blocks
1799 * @sb: superblock
1801 * Adds up the number of free blocks from each block group.
1803 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1805 ext4_fsblk_t desc_count;
1806 struct ext4_group_desc *gdp;
1807 int i;
1808 unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1809 #ifdef EXT4FS_DEBUG
1810 struct ext4_super_block *es;
1811 ext4_fsblk_t bitmap_count;
1812 unsigned long x;
1813 struct buffer_head *bitmap_bh = NULL;
1815 es = EXT4_SB(sb)->s_es;
1816 desc_count = 0;
1817 bitmap_count = 0;
1818 gdp = NULL;
1820 smp_rmb();
1821 for (i = 0; i < ngroups; i++) {
1822 gdp = ext4_get_group_desc(sb, i, NULL);
1823 if (!gdp)
1824 continue;
1825 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1826 brelse(bitmap_bh);
1827 bitmap_bh = read_block_bitmap(sb, i);
1828 if (bitmap_bh == NULL)
1829 continue;
1831 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1832 printk("group %d: stored = %d, counted = %lu\n",
1833 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1834 bitmap_count += x;
1836 brelse(bitmap_bh);
1837 printk("ext4_count_free_blocks: stored = %llu"
1838 ", computed = %llu, %llu\n",
1839 EXT4_FREE_BLOCKS_COUNT(es),
1840 desc_count, bitmap_count);
1841 return bitmap_count;
1842 #else
1843 desc_count = 0;
1844 smp_rmb();
1845 for (i = 0; i < ngroups; i++) {
1846 gdp = ext4_get_group_desc(sb, i, NULL);
1847 if (!gdp)
1848 continue;
1849 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1852 return desc_count;
1853 #endif
1856 static inline int test_root(int a, int b)
1858 int num = b;
1860 while (a > num)
1861 num *= b;
1862 return num == a;
1865 static int ext4_group_sparse(int group)
1867 if (group <= 1)
1868 return 1;
1869 if (!(group & 1))
1870 return 0;
1871 return (test_root(group, 7) || test_root(group, 5) ||
1872 test_root(group, 3));
1876 * ext4_bg_has_super - number of blocks used by the superblock in group
1877 * @sb: superblock for filesystem
1878 * @group: group number to check
1880 * Return the number of blocks used by the superblock (primary or backup)
1881 * in this group. Currently this will be only 0 or 1.
1883 int ext4_bg_has_super(struct super_block *sb, int group)
1885 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1886 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1887 !ext4_group_sparse(group))
1888 return 0;
1889 return 1;
1892 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1894 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1895 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1896 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1898 if (group == first || group == first + 1 || group == last)
1899 return 1;
1900 return 0;
1903 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1905 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1906 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1907 !ext4_group_sparse(group))
1908 return 0;
1909 return EXT4_SB(sb)->s_gdb_count;
1913 * ext4_bg_num_gdb - number of blocks used by the group table in group
1914 * @sb: superblock for filesystem
1915 * @group: group number to check
1917 * Return the number of blocks used by the group descriptor table
1918 * (primary or backup) in this group. In the future there may be a
1919 * different number of descriptor blocks in each group.
1921 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1923 unsigned long first_meta_bg =
1924 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1925 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1927 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1928 metagroup < first_meta_bg)
1929 return ext4_bg_num_gdb_nometa(sb,group);
1931 return ext4_bg_num_gdb_meta(sb,group);