2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
34 #include <asm/scatterlist.h>
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
53 * Enumeration for sync targets
55 enum dma_sync_target
{
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
67 static char *io_tlb_start
, *io_tlb_end
;
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
73 static unsigned long io_tlb_nslabs
;
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
78 static unsigned long io_tlb_overflow
= 32*1024;
80 void *io_tlb_overflow_buffer
;
83 * This is a free list describing the number of free entries available from
86 static unsigned int *io_tlb_list
;
87 static unsigned int io_tlb_index
;
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
93 static phys_addr_t
*io_tlb_orig_addr
;
96 * Protect the above data structures in the map and unmap calls
98 static DEFINE_SPINLOCK(io_tlb_lock
);
100 static int late_alloc
;
103 setup_io_tlb_npages(char *str
)
106 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
107 /* avoid tail segment of size < IO_TLB_SEGSIZE */
108 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
112 if (!strcmp(str
, "force"))
117 __setup("swiotlb=", setup_io_tlb_npages
);
118 /* make io_tlb_overflow tunable too? */
120 /* Note that this doesn't work with highmem page */
121 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
122 volatile void *address
)
124 return phys_to_dma(hwdev
, virt_to_phys(address
));
127 void swiotlb_print_info(void)
129 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
130 phys_addr_t pstart
, pend
;
132 pstart
= virt_to_phys(io_tlb_start
);
133 pend
= virt_to_phys(io_tlb_end
);
135 printk(KERN_INFO
"Placing %luMB software IO TLB between %p - %p\n",
136 bytes
>> 20, io_tlb_start
, io_tlb_end
);
137 printk(KERN_INFO
"software IO TLB at phys %#llx - %#llx\n",
138 (unsigned long long)pstart
,
139 (unsigned long long)pend
);
143 * Statically reserve bounce buffer space and initialize bounce buffer data
144 * structures for the software IO TLB used to implement the DMA API.
147 swiotlb_init_with_default_size(size_t default_size
, int verbose
)
149 unsigned long i
, bytes
;
151 if (!io_tlb_nslabs
) {
152 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
153 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
156 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
159 * Get IO TLB memory from the low pages
161 io_tlb_start
= alloc_bootmem_low_pages(bytes
);
163 panic("Cannot allocate SWIOTLB buffer");
164 io_tlb_end
= io_tlb_start
+ bytes
;
167 * Allocate and initialize the free list array. This array is used
168 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
169 * between io_tlb_start and io_tlb_end.
171 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
172 for (i
= 0; i
< io_tlb_nslabs
; i
++)
173 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
175 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(phys_addr_t
));
178 * Get the overflow emergency buffer
180 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
181 if (!io_tlb_overflow_buffer
)
182 panic("Cannot allocate SWIOTLB overflow buffer!\n");
184 swiotlb_print_info();
188 swiotlb_init(int verbose
)
190 swiotlb_init_with_default_size(64 * (1<<20), verbose
); /* default to 64MB */
194 * Systems with larger DMA zones (those that don't support ISA) can
195 * initialize the swiotlb later using the slab allocator if needed.
196 * This should be just like above, but with some error catching.
199 swiotlb_late_init_with_default_size(size_t default_size
)
201 unsigned long i
, bytes
, req_nslabs
= io_tlb_nslabs
;
204 if (!io_tlb_nslabs
) {
205 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
206 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
210 * Get IO TLB memory from the low pages
212 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
213 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
214 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
216 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
217 io_tlb_start
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
227 if (order
!= get_order(bytes
)) {
228 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
229 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
230 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
231 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
233 io_tlb_end
= io_tlb_start
+ bytes
;
234 memset(io_tlb_start
, 0, bytes
);
237 * Allocate and initialize the free list array. This array is used
238 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
239 * between io_tlb_start and io_tlb_end.
241 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
242 get_order(io_tlb_nslabs
* sizeof(int)));
246 for (i
= 0; i
< io_tlb_nslabs
; i
++)
247 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
250 io_tlb_orig_addr
= (phys_addr_t
*)
251 __get_free_pages(GFP_KERNEL
,
252 get_order(io_tlb_nslabs
*
253 sizeof(phys_addr_t
)));
254 if (!io_tlb_orig_addr
)
257 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
260 * Get the overflow emergency buffer
262 io_tlb_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
263 get_order(io_tlb_overflow
));
264 if (!io_tlb_overflow_buffer
)
267 swiotlb_print_info();
274 free_pages((unsigned long)io_tlb_orig_addr
,
275 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
276 io_tlb_orig_addr
= NULL
;
278 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
283 free_pages((unsigned long)io_tlb_start
, order
);
286 io_tlb_nslabs
= req_nslabs
;
290 void __init
swiotlb_free(void)
292 if (!io_tlb_overflow_buffer
)
296 free_pages((unsigned long)io_tlb_overflow_buffer
,
297 get_order(io_tlb_overflow
));
298 free_pages((unsigned long)io_tlb_orig_addr
,
299 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
300 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
302 free_pages((unsigned long)io_tlb_start
,
303 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
305 free_bootmem_late(__pa(io_tlb_overflow_buffer
),
307 free_bootmem_late(__pa(io_tlb_orig_addr
),
308 io_tlb_nslabs
* sizeof(phys_addr_t
));
309 free_bootmem_late(__pa(io_tlb_list
),
310 io_tlb_nslabs
* sizeof(int));
311 free_bootmem_late(__pa(io_tlb_start
),
312 io_tlb_nslabs
<< IO_TLB_SHIFT
);
316 static int is_swiotlb_buffer(phys_addr_t paddr
)
318 return paddr
>= virt_to_phys(io_tlb_start
) &&
319 paddr
< virt_to_phys(io_tlb_end
);
323 * Bounce: copy the swiotlb buffer back to the original dma location
325 static void swiotlb_bounce(phys_addr_t phys
, char *dma_addr
, size_t size
,
326 enum dma_data_direction dir
)
328 unsigned long pfn
= PFN_DOWN(phys
);
330 if (PageHighMem(pfn_to_page(pfn
))) {
331 /* The buffer does not have a mapping. Map it in and copy */
332 unsigned int offset
= phys
& ~PAGE_MASK
;
338 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
340 local_irq_save(flags
);
341 buffer
= kmap_atomic(pfn_to_page(pfn
),
343 if (dir
== DMA_TO_DEVICE
)
344 memcpy(dma_addr
, buffer
+ offset
, sz
);
346 memcpy(buffer
+ offset
, dma_addr
, sz
);
347 kunmap_atomic(buffer
, KM_BOUNCE_READ
);
348 local_irq_restore(flags
);
356 if (dir
== DMA_TO_DEVICE
)
357 memcpy(dma_addr
, phys_to_virt(phys
), size
);
359 memcpy(phys_to_virt(phys
), dma_addr
, size
);
364 * Allocates bounce buffer and returns its kernel virtual address.
367 map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
, int dir
)
371 unsigned int nslots
, stride
, index
, wrap
;
373 unsigned long start_dma_addr
;
375 unsigned long offset_slots
;
376 unsigned long max_slots
;
378 mask
= dma_get_seg_boundary(hwdev
);
379 start_dma_addr
= swiotlb_virt_to_bus(hwdev
, io_tlb_start
) & mask
;
381 offset_slots
= ALIGN(start_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
384 * Carefully handle integer overflow which can occur when mask == ~0UL.
387 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
388 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
391 * For mappings greater than a page, we limit the stride (and
392 * hence alignment) to a page size.
394 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
395 if (size
> PAGE_SIZE
)
396 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
403 * Find suitable number of IO TLB entries size that will fit this
404 * request and allocate a buffer from that IO TLB pool.
406 spin_lock_irqsave(&io_tlb_lock
, flags
);
407 index
= ALIGN(io_tlb_index
, stride
);
408 if (index
>= io_tlb_nslabs
)
413 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
416 if (index
>= io_tlb_nslabs
)
423 * If we find a slot that indicates we have 'nslots' number of
424 * contiguous buffers, we allocate the buffers from that slot
425 * and mark the entries as '0' indicating unavailable.
427 if (io_tlb_list
[index
] >= nslots
) {
430 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
432 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
433 io_tlb_list
[i
] = ++count
;
434 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
437 * Update the indices to avoid searching in the next
440 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
441 ? (index
+ nslots
) : 0);
446 if (index
>= io_tlb_nslabs
)
448 } while (index
!= wrap
);
451 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
454 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
457 * Save away the mapping from the original address to the DMA address.
458 * This is needed when we sync the memory. Then we sync the buffer if
461 for (i
= 0; i
< nslots
; i
++)
462 io_tlb_orig_addr
[index
+i
] = phys
+ (i
<< IO_TLB_SHIFT
);
463 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
464 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
470 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
473 do_unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
476 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
477 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
478 phys_addr_t phys
= io_tlb_orig_addr
[index
];
481 * First, sync the memory before unmapping the entry
483 if (phys
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
484 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
487 * Return the buffer to the free list by setting the corresponding
488 * entries to indicate the number of contigous entries available.
489 * While returning the entries to the free list, we merge the entries
490 * with slots below and above the pool being returned.
492 spin_lock_irqsave(&io_tlb_lock
, flags
);
494 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
495 io_tlb_list
[index
+ nslots
] : 0);
497 * Step 1: return the slots to the free list, merging the
498 * slots with superceeding slots
500 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
501 io_tlb_list
[i
] = ++count
;
503 * Step 2: merge the returned slots with the preceding slots,
504 * if available (non zero)
506 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
507 io_tlb_list
[i
] = ++count
;
509 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
513 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
,
516 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
517 phys_addr_t phys
= io_tlb_orig_addr
[index
];
519 phys
+= ((unsigned long)dma_addr
& ((1 << IO_TLB_SHIFT
) - 1));
523 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
524 swiotlb_bounce(phys
, dma_addr
, size
, DMA_FROM_DEVICE
);
526 BUG_ON(dir
!= DMA_TO_DEVICE
);
528 case SYNC_FOR_DEVICE
:
529 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
530 swiotlb_bounce(phys
, dma_addr
, size
, DMA_TO_DEVICE
);
532 BUG_ON(dir
!= DMA_FROM_DEVICE
);
540 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
541 dma_addr_t
*dma_handle
, gfp_t flags
)
545 int order
= get_order(size
);
546 u64 dma_mask
= DMA_BIT_MASK(32);
548 if (hwdev
&& hwdev
->coherent_dma_mask
)
549 dma_mask
= hwdev
->coherent_dma_mask
;
551 ret
= (void *)__get_free_pages(flags
, order
);
552 if (ret
&& swiotlb_virt_to_bus(hwdev
, ret
) + size
> dma_mask
) {
554 * The allocated memory isn't reachable by the device.
556 free_pages((unsigned long) ret
, order
);
561 * We are either out of memory or the device can't DMA
562 * to GFP_DMA memory; fall back on map_single(), which
563 * will grab memory from the lowest available address range.
565 ret
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
570 memset(ret
, 0, size
);
571 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
573 /* Confirm address can be DMA'd by device */
574 if (dev_addr
+ size
> dma_mask
) {
575 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
576 (unsigned long long)dma_mask
,
577 (unsigned long long)dev_addr
);
579 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
580 do_unmap_single(hwdev
, ret
, size
, DMA_TO_DEVICE
);
583 *dma_handle
= dev_addr
;
586 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
589 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
592 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
594 WARN_ON(irqs_disabled());
595 if (!is_swiotlb_buffer(paddr
))
596 free_pages((unsigned long)vaddr
, get_order(size
));
598 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
599 do_unmap_single(hwdev
, vaddr
, size
, DMA_TO_DEVICE
);
601 EXPORT_SYMBOL(swiotlb_free_coherent
);
604 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
607 * Ran out of IOMMU space for this operation. This is very bad.
608 * Unfortunately the drivers cannot handle this operation properly.
609 * unless they check for dma_mapping_error (most don't)
610 * When the mapping is small enough return a static buffer to limit
611 * the damage, or panic when the transfer is too big.
613 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
614 "device %s\n", size
, dev
? dev_name(dev
) : "?");
616 if (size
<= io_tlb_overflow
|| !do_panic
)
619 if (dir
== DMA_BIDIRECTIONAL
)
620 panic("DMA: Random memory could be DMA accessed\n");
621 if (dir
== DMA_FROM_DEVICE
)
622 panic("DMA: Random memory could be DMA written\n");
623 if (dir
== DMA_TO_DEVICE
)
624 panic("DMA: Random memory could be DMA read\n");
628 * Map a single buffer of the indicated size for DMA in streaming mode. The
629 * physical address to use is returned.
631 * Once the device is given the dma address, the device owns this memory until
632 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
634 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
635 unsigned long offset
, size_t size
,
636 enum dma_data_direction dir
,
637 struct dma_attrs
*attrs
)
639 phys_addr_t phys
= page_to_phys(page
) + offset
;
640 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
643 BUG_ON(dir
== DMA_NONE
);
645 * If the address happens to be in the device's DMA window,
646 * we can safely return the device addr and not worry about bounce
649 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
653 * Oh well, have to allocate and map a bounce buffer.
655 map
= map_single(dev
, phys
, size
, dir
);
657 swiotlb_full(dev
, size
, dir
, 1);
658 map
= io_tlb_overflow_buffer
;
661 dev_addr
= swiotlb_virt_to_bus(dev
, map
);
664 * Ensure that the address returned is DMA'ble
666 if (!dma_capable(dev
, dev_addr
, size
))
667 panic("map_single: bounce buffer is not DMA'ble");
671 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
674 * Unmap a single streaming mode DMA translation. The dma_addr and size must
675 * match what was provided for in a previous swiotlb_map_page call. All
676 * other usages are undefined.
678 * After this call, reads by the cpu to the buffer are guaranteed to see
679 * whatever the device wrote there.
681 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
682 size_t size
, int dir
)
684 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
686 BUG_ON(dir
== DMA_NONE
);
688 if (is_swiotlb_buffer(paddr
)) {
689 do_unmap_single(hwdev
, phys_to_virt(paddr
), size
, dir
);
693 if (dir
!= DMA_FROM_DEVICE
)
697 * phys_to_virt doesn't work with hihgmem page but we could
698 * call dma_mark_clean() with hihgmem page here. However, we
699 * are fine since dma_mark_clean() is null on POWERPC. We can
700 * make dma_mark_clean() take a physical address if necessary.
702 dma_mark_clean(phys_to_virt(paddr
), size
);
705 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
706 size_t size
, enum dma_data_direction dir
,
707 struct dma_attrs
*attrs
)
709 unmap_single(hwdev
, dev_addr
, size
, dir
);
711 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
714 * Make physical memory consistent for a single streaming mode DMA translation
717 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
718 * using the cpu, yet do not wish to teardown the dma mapping, you must
719 * call this function before doing so. At the next point you give the dma
720 * address back to the card, you must first perform a
721 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
724 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
725 size_t size
, int dir
, int target
)
727 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
729 BUG_ON(dir
== DMA_NONE
);
731 if (is_swiotlb_buffer(paddr
)) {
732 sync_single(hwdev
, phys_to_virt(paddr
), size
, dir
, target
);
736 if (dir
!= DMA_FROM_DEVICE
)
739 dma_mark_clean(phys_to_virt(paddr
), size
);
743 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
744 size_t size
, enum dma_data_direction dir
)
746 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
748 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
751 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
752 size_t size
, enum dma_data_direction dir
)
754 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
756 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
759 * Same as above, but for a sub-range of the mapping.
762 swiotlb_sync_single_range(struct device
*hwdev
, dma_addr_t dev_addr
,
763 unsigned long offset
, size_t size
,
766 swiotlb_sync_single(hwdev
, dev_addr
+ offset
, size
, dir
, target
);
770 swiotlb_sync_single_range_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
771 unsigned long offset
, size_t size
,
772 enum dma_data_direction dir
)
774 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
777 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu
);
780 swiotlb_sync_single_range_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
781 unsigned long offset
, size_t size
,
782 enum dma_data_direction dir
)
784 swiotlb_sync_single_range(hwdev
, dev_addr
, offset
, size
, dir
,
787 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device
);
790 * Map a set of buffers described by scatterlist in streaming mode for DMA.
791 * This is the scatter-gather version of the above swiotlb_map_page
792 * interface. Here the scatter gather list elements are each tagged with the
793 * appropriate dma address and length. They are obtained via
794 * sg_dma_{address,length}(SG).
796 * NOTE: An implementation may be able to use a smaller number of
797 * DMA address/length pairs than there are SG table elements.
798 * (for example via virtual mapping capabilities)
799 * The routine returns the number of addr/length pairs actually
800 * used, at most nents.
802 * Device ownership issues as mentioned above for swiotlb_map_page are the
806 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
807 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
809 struct scatterlist
*sg
;
812 BUG_ON(dir
== DMA_NONE
);
814 for_each_sg(sgl
, sg
, nelems
, i
) {
815 phys_addr_t paddr
= sg_phys(sg
);
816 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
819 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
820 void *map
= map_single(hwdev
, sg_phys(sg
),
823 /* Don't panic here, we expect map_sg users
824 to do proper error handling. */
825 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
826 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
828 sgl
[0].dma_length
= 0;
831 sg
->dma_address
= swiotlb_virt_to_bus(hwdev
, map
);
833 sg
->dma_address
= dev_addr
;
834 sg
->dma_length
= sg
->length
;
838 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
841 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
844 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
846 EXPORT_SYMBOL(swiotlb_map_sg
);
849 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
850 * concerning calls here are the same as for swiotlb_unmap_page() above.
853 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
854 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
856 struct scatterlist
*sg
;
859 BUG_ON(dir
== DMA_NONE
);
861 for_each_sg(sgl
, sg
, nelems
, i
)
862 unmap_single(hwdev
, sg
->dma_address
, sg
->dma_length
, dir
);
865 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
868 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
871 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
873 EXPORT_SYMBOL(swiotlb_unmap_sg
);
876 * Make physical memory consistent for a set of streaming mode DMA translations
879 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
883 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
884 int nelems
, int dir
, int target
)
886 struct scatterlist
*sg
;
889 for_each_sg(sgl
, sg
, nelems
, i
)
890 swiotlb_sync_single(hwdev
, sg
->dma_address
,
891 sg
->dma_length
, dir
, target
);
895 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
896 int nelems
, enum dma_data_direction dir
)
898 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
900 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
903 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
904 int nelems
, enum dma_data_direction dir
)
906 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
908 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
911 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
913 return (dma_addr
== swiotlb_virt_to_bus(hwdev
, io_tlb_overflow_buffer
));
915 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
918 * Return whether the given device DMA address mask can be supported
919 * properly. For example, if your device can only drive the low 24-bits
920 * during bus mastering, then you would pass 0x00ffffff as the mask to
924 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
926 return swiotlb_virt_to_bus(hwdev
, io_tlb_end
- 1) <= mask
;
928 EXPORT_SYMBOL(swiotlb_dma_supported
);