4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/slab.h>
39 #include <linux/math64.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz
;
52 EXPORT_SYMBOL(sys_tz
);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
64 time_t i
= get_seconds();
74 * sys_stime() can be implemented in user-level using
75 * sys_settimeofday(). Is this for backwards compatibility? If so,
76 * why not move it into the appropriate arch directory (for those
77 * architectures that need it).
80 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
85 if (get_user(tv
.tv_sec
, tptr
))
90 err
= security_settime(&tv
, NULL
);
98 #endif /* __ARCH_WANT_SYS_TIME */
100 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
101 struct timezone __user
*, tz
)
103 if (likely(tv
!= NULL
)) {
105 do_gettimeofday(&ktv
);
106 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
109 if (unlikely(tz
!= NULL
)) {
110 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
117 * Adjust the time obtained from the CMOS to be UTC time instead of
120 * This is ugly, but preferable to the alternatives. Otherwise we
121 * would either need to write a program to do it in /etc/rc (and risk
122 * confusion if the program gets run more than once; it would also be
123 * hard to make the program warp the clock precisely n hours) or
124 * compile in the timezone information into the kernel. Bad, bad....
128 * The best thing to do is to keep the CMOS clock in universal time (UTC)
129 * as real UNIX machines always do it. This avoids all headaches about
130 * daylight saving times and warping kernel clocks.
132 static inline void warp_clock(void)
134 write_seqlock_irq(&xtime_lock
);
135 wall_to_monotonic
.tv_sec
-= sys_tz
.tz_minuteswest
* 60;
136 xtime
.tv_sec
+= sys_tz
.tz_minuteswest
* 60;
137 update_xtime_cache(0);
138 write_sequnlock_irq(&xtime_lock
);
143 * In case for some reason the CMOS clock has not already been running
144 * in UTC, but in some local time: The first time we set the timezone,
145 * we will warp the clock so that it is ticking UTC time instead of
146 * local time. Presumably, if someone is setting the timezone then we
147 * are running in an environment where the programs understand about
148 * timezones. This should be done at boot time in the /etc/rc script,
149 * as soon as possible, so that the clock can be set right. Otherwise,
150 * various programs will get confused when the clock gets warped.
153 int do_sys_settimeofday(struct timespec
*tv
, struct timezone
*tz
)
155 static int firsttime
= 1;
158 if (tv
&& !timespec_valid(tv
))
161 error
= security_settime(tv
, tz
);
166 /* SMP safe, global irq locking makes it work. */
168 update_vsyscall_tz();
177 /* SMP safe, again the code in arch/foo/time.c should
178 * globally block out interrupts when it runs.
180 return do_settimeofday(tv
);
185 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
186 struct timezone __user
*, tz
)
188 struct timeval user_tv
;
189 struct timespec new_ts
;
190 struct timezone new_tz
;
193 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
195 new_ts
.tv_sec
= user_tv
.tv_sec
;
196 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
199 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
203 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
206 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
208 struct timex txc
; /* Local copy of parameter */
211 /* Copy the user data space into the kernel copy
212 * structure. But bear in mind that the structures
215 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
217 ret
= do_adjtimex(&txc
);
218 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
222 * current_fs_time - Return FS time
225 * Return the current time truncated to the time granularity supported by
228 struct timespec
current_fs_time(struct super_block
*sb
)
230 struct timespec now
= current_kernel_time();
231 return timespec_trunc(now
, sb
->s_time_gran
);
233 EXPORT_SYMBOL(current_fs_time
);
236 * Convert jiffies to milliseconds and back.
238 * Avoid unnecessary multiplications/divisions in the
239 * two most common HZ cases:
241 unsigned int inline jiffies_to_msecs(const unsigned long j
)
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 return (MSEC_PER_SEC
/ HZ
) * j
;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
248 # if BITS_PER_LONG == 32
249 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
251 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
255 EXPORT_SYMBOL(jiffies_to_msecs
);
257 unsigned int inline jiffies_to_usecs(const unsigned long j
)
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 return (USEC_PER_SEC
/ HZ
) * j
;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
264 # if BITS_PER_LONG == 32
265 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
267 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
271 EXPORT_SYMBOL(jiffies_to_usecs
);
274 * timespec_trunc - Truncate timespec to a granularity
276 * @gran: Granularity in ns.
278 * Truncate a timespec to a granularity. gran must be smaller than a second.
279 * Always rounds down.
281 * This function should be only used for timestamps returned by
282 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283 * it doesn't handle the better resolution of the latter.
285 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
288 * Division is pretty slow so avoid it for common cases.
289 * Currently current_kernel_time() never returns better than
290 * jiffies resolution. Exploit that.
292 if (gran
<= jiffies_to_usecs(1) * 1000) {
294 } else if (gran
== 1000000000) {
297 t
.tv_nsec
-= t
.tv_nsec
% gran
;
301 EXPORT_SYMBOL(timespec_trunc
);
303 #ifndef CONFIG_GENERIC_TIME
305 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
306 * and therefore only yields usec accuracy
308 void getnstimeofday(struct timespec
*tv
)
313 tv
->tv_sec
= x
.tv_sec
;
314 tv
->tv_nsec
= x
.tv_usec
* NSEC_PER_USEC
;
316 EXPORT_SYMBOL_GPL(getnstimeofday
);
319 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
320 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
321 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
323 * [For the Julian calendar (which was used in Russia before 1917,
324 * Britain & colonies before 1752, anywhere else before 1582,
325 * and is still in use by some communities) leave out the
326 * -year/100+year/400 terms, and add 10.]
328 * This algorithm was first published by Gauss (I think).
330 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
331 * machines where long is 32-bit! (However, as time_t is signed, we
332 * will already get problems at other places on 2038-01-19 03:14:08)
335 mktime(const unsigned int year0
, const unsigned int mon0
,
336 const unsigned int day
, const unsigned int hour
,
337 const unsigned int min
, const unsigned int sec
)
339 unsigned int mon
= mon0
, year
= year0
;
341 /* 1..12 -> 11,12,1..10 */
342 if (0 >= (int) (mon
-= 2)) {
343 mon
+= 12; /* Puts Feb last since it has leap day */
347 return ((((unsigned long)
348 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
350 )*24 + hour
/* now have hours */
351 )*60 + min
/* now have minutes */
352 )*60 + sec
; /* finally seconds */
355 EXPORT_SYMBOL(mktime
);
358 * set_normalized_timespec - set timespec sec and nsec parts and normalize
360 * @ts: pointer to timespec variable to be set
361 * @sec: seconds to set
362 * @nsec: nanoseconds to set
364 * Set seconds and nanoseconds field of a timespec variable and
365 * normalize to the timespec storage format
367 * Note: The tv_nsec part is always in the range of
368 * 0 <= tv_nsec < NSEC_PER_SEC
369 * For negative values only the tv_sec field is negative !
371 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, long nsec
)
373 while (nsec
>= NSEC_PER_SEC
) {
374 nsec
-= NSEC_PER_SEC
;
378 nsec
+= NSEC_PER_SEC
;
384 EXPORT_SYMBOL(set_normalized_timespec
);
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
390 * Returns the timespec representation of the nsec parameter.
392 struct timespec
ns_to_timespec(const s64 nsec
)
398 return (struct timespec
) {0, 0};
400 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
401 if (unlikely(rem
< 0)) {
409 EXPORT_SYMBOL(ns_to_timespec
);
412 * ns_to_timeval - Convert nanoseconds to timeval
413 * @nsec: the nanoseconds value to be converted
415 * Returns the timeval representation of the nsec parameter.
417 struct timeval
ns_to_timeval(const s64 nsec
)
419 struct timespec ts
= ns_to_timespec(nsec
);
422 tv
.tv_sec
= ts
.tv_sec
;
423 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
427 EXPORT_SYMBOL(ns_to_timeval
);
430 * When we convert to jiffies then we interpret incoming values
433 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
435 * - 'too large' values [that would result in larger than
436 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
438 * - all other values are converted to jiffies by either multiplying
439 * the input value by a factor or dividing it with a factor
441 * We must also be careful about 32-bit overflows.
443 unsigned long msecs_to_jiffies(const unsigned int m
)
446 * Negative value, means infinite timeout:
449 return MAX_JIFFY_OFFSET
;
451 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
453 * HZ is equal to or smaller than 1000, and 1000 is a nice
454 * round multiple of HZ, divide with the factor between them,
457 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
458 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
460 * HZ is larger than 1000, and HZ is a nice round multiple of
461 * 1000 - simply multiply with the factor between them.
463 * But first make sure the multiplication result cannot
466 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
467 return MAX_JIFFY_OFFSET
;
469 return m
* (HZ
/ MSEC_PER_SEC
);
472 * Generic case - multiply, round and divide. But first
473 * check that if we are doing a net multiplication, that
474 * we wouldn't overflow:
476 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
477 return MAX_JIFFY_OFFSET
;
479 return (MSEC_TO_HZ_MUL32
* m
+ MSEC_TO_HZ_ADJ32
)
483 EXPORT_SYMBOL(msecs_to_jiffies
);
485 unsigned long usecs_to_jiffies(const unsigned int u
)
487 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
488 return MAX_JIFFY_OFFSET
;
489 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
490 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
491 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
492 return u
* (HZ
/ USEC_PER_SEC
);
494 return (USEC_TO_HZ_MUL32
* u
+ USEC_TO_HZ_ADJ32
)
498 EXPORT_SYMBOL(usecs_to_jiffies
);
501 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
502 * that a remainder subtract here would not do the right thing as the
503 * resolution values don't fall on second boundries. I.e. the line:
504 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
506 * Rather, we just shift the bits off the right.
508 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
509 * value to a scaled second value.
512 timespec_to_jiffies(const struct timespec
*value
)
514 unsigned long sec
= value
->tv_sec
;
515 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
517 if (sec
>= MAX_SEC_IN_JIFFIES
){
518 sec
= MAX_SEC_IN_JIFFIES
;
521 return (((u64
)sec
* SEC_CONVERSION
) +
522 (((u64
)nsec
* NSEC_CONVERSION
) >>
523 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
526 EXPORT_SYMBOL(timespec_to_jiffies
);
529 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
532 * Convert jiffies to nanoseconds and separate with
536 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
538 value
->tv_nsec
= rem
;
540 EXPORT_SYMBOL(jiffies_to_timespec
);
542 /* Same for "timeval"
544 * Well, almost. The problem here is that the real system resolution is
545 * in nanoseconds and the value being converted is in micro seconds.
546 * Also for some machines (those that use HZ = 1024, in-particular),
547 * there is a LARGE error in the tick size in microseconds.
549 * The solution we use is to do the rounding AFTER we convert the
550 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
551 * Instruction wise, this should cost only an additional add with carry
552 * instruction above the way it was done above.
555 timeval_to_jiffies(const struct timeval
*value
)
557 unsigned long sec
= value
->tv_sec
;
558 long usec
= value
->tv_usec
;
560 if (sec
>= MAX_SEC_IN_JIFFIES
){
561 sec
= MAX_SEC_IN_JIFFIES
;
564 return (((u64
)sec
* SEC_CONVERSION
) +
565 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
566 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
568 EXPORT_SYMBOL(timeval_to_jiffies
);
570 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
573 * Convert jiffies to nanoseconds and separate with
578 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
580 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
582 EXPORT_SYMBOL(jiffies_to_timeval
);
585 * Convert jiffies/jiffies_64 to clock_t and back.
587 clock_t jiffies_to_clock_t(long x
)
589 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
591 return x
* (USER_HZ
/ HZ
);
593 return x
/ (HZ
/ USER_HZ
);
596 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
599 EXPORT_SYMBOL(jiffies_to_clock_t
);
601 unsigned long clock_t_to_jiffies(unsigned long x
)
603 #if (HZ % USER_HZ)==0
604 if (x
>= ~0UL / (HZ
/ USER_HZ
))
606 return x
* (HZ
/ USER_HZ
);
608 /* Don't worry about loss of precision here .. */
609 if (x
>= ~0UL / HZ
* USER_HZ
)
612 /* .. but do try to contain it here */
613 return div_u64((u64
)x
* HZ
, USER_HZ
);
616 EXPORT_SYMBOL(clock_t_to_jiffies
);
618 u64
jiffies_64_to_clock_t(u64 x
)
620 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
622 x
= div_u64(x
* USER_HZ
, HZ
);
624 x
= div_u64(x
, HZ
/ USER_HZ
);
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
634 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
638 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
640 u64
nsec_to_clock_t(u64 x
)
642 #if (NSEC_PER_SEC % USER_HZ) == 0
643 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
644 #elif (USER_HZ % 512) == 0
645 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
648 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
649 * overflow after 64.99 years.
650 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
652 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
656 #if (BITS_PER_LONG < 64)
657 u64
get_jiffies_64(void)
663 seq
= read_seqbegin(&xtime_lock
);
665 } while (read_seqretry(&xtime_lock
, seq
));
668 EXPORT_SYMBOL(get_jiffies_64
);
671 EXPORT_SYMBOL(jiffies
);