thinkpad-acpi: cleanup debug helpers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / fork.c
blob843ce75021d14faad1c1ed7d31968fc0292ad061
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
62 #include <asm/pgtable.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/cacheflush.h>
67 #include <asm/tlbflush.h>
70 * Protected counters by write_lock_irq(&tasklist_lock)
72 unsigned long total_forks; /* Handle normal Linux uptimes. */
73 int nr_threads; /* The idle threads do not count.. */
75 int max_threads; /* tunable limit on nr_threads */
77 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
81 int nr_processes(void)
83 int cpu;
84 int total = 0;
86 for_each_online_cpu(cpu)
87 total += per_cpu(process_counts, cpu);
89 return total;
92 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
93 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
94 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
95 static struct kmem_cache *task_struct_cachep;
96 #endif
98 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
99 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 #ifdef CONFIG_DEBUG_STACK_USAGE
102 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
103 #else
104 gfp_t mask = GFP_KERNEL;
105 #endif
106 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
109 static inline void free_thread_info(struct thread_info *ti)
111 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 #endif
115 /* SLAB cache for signal_struct structures (tsk->signal) */
116 static struct kmem_cache *signal_cachep;
118 /* SLAB cache for sighand_struct structures (tsk->sighand) */
119 struct kmem_cache *sighand_cachep;
121 /* SLAB cache for files_struct structures (tsk->files) */
122 struct kmem_cache *files_cachep;
124 /* SLAB cache for fs_struct structures (tsk->fs) */
125 struct kmem_cache *fs_cachep;
127 /* SLAB cache for vm_area_struct structures */
128 struct kmem_cache *vm_area_cachep;
130 /* SLAB cache for mm_struct structures (tsk->mm) */
131 static struct kmem_cache *mm_cachep;
133 void free_task(struct task_struct *tsk)
135 prop_local_destroy_single(&tsk->dirties);
136 free_thread_info(tsk->stack);
137 rt_mutex_debug_task_free(tsk);
138 free_task_struct(tsk);
140 EXPORT_SYMBOL(free_task);
142 void __put_task_struct(struct task_struct *tsk)
144 WARN_ON(!tsk->exit_state);
145 WARN_ON(atomic_read(&tsk->usage));
146 WARN_ON(tsk == current);
148 security_task_free(tsk);
149 free_uid(tsk->user);
150 put_group_info(tsk->group_info);
151 delayacct_tsk_free(tsk);
153 if (!profile_handoff_task(tsk))
154 free_task(tsk);
158 * macro override instead of weak attribute alias, to workaround
159 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
165 void __init fork_init(unsigned long mempages)
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
170 #endif
171 /* create a slab on which task_structs can be allocated */
172 task_struct_cachep =
173 kmem_cache_create("task_struct", sizeof(struct task_struct),
174 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
177 /* do the arch specific task caches init */
178 arch_task_cache_init();
181 * The default maximum number of threads is set to a safe
182 * value: the thread structures can take up at most half
183 * of memory.
185 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
188 * we need to allow at least 20 threads to boot a system
190 if(max_threads < 20)
191 max_threads = 20;
193 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195 init_task.signal->rlim[RLIMIT_SIGPENDING] =
196 init_task.signal->rlim[RLIMIT_NPROC];
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200 struct task_struct *src)
202 *dst = *src;
203 return 0;
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
208 struct task_struct *tsk;
209 struct thread_info *ti;
210 int err;
212 prepare_to_copy(orig);
214 tsk = alloc_task_struct();
215 if (!tsk)
216 return NULL;
218 ti = alloc_thread_info(tsk);
219 if (!ti) {
220 free_task_struct(tsk);
221 return NULL;
224 err = arch_dup_task_struct(tsk, orig);
225 if (err)
226 goto out;
228 tsk->stack = ti;
230 err = prop_local_init_single(&tsk->dirties);
231 if (err)
232 goto out;
234 setup_thread_stack(tsk, orig);
236 #ifdef CONFIG_CC_STACKPROTECTOR
237 tsk->stack_canary = get_random_int();
238 #endif
240 /* One for us, one for whoever does the "release_task()" (usually parent) */
241 atomic_set(&tsk->usage,2);
242 atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244 tsk->btrace_seq = 0;
245 #endif
246 tsk->splice_pipe = NULL;
247 return tsk;
249 out:
250 free_thread_info(ti);
251 free_task_struct(tsk);
252 return NULL;
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
258 struct vm_area_struct *mpnt, *tmp, **pprev;
259 struct rb_node **rb_link, *rb_parent;
260 int retval;
261 unsigned long charge;
262 struct mempolicy *pol;
264 down_write(&oldmm->mmap_sem);
265 flush_cache_dup_mm(oldmm);
267 * Not linked in yet - no deadlock potential:
269 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
271 mm->locked_vm = 0;
272 mm->mmap = NULL;
273 mm->mmap_cache = NULL;
274 mm->free_area_cache = oldmm->mmap_base;
275 mm->cached_hole_size = ~0UL;
276 mm->map_count = 0;
277 cpus_clear(mm->cpu_vm_mask);
278 mm->mm_rb = RB_ROOT;
279 rb_link = &mm->mm_rb.rb_node;
280 rb_parent = NULL;
281 pprev = &mm->mmap;
283 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284 struct file *file;
286 if (mpnt->vm_flags & VM_DONTCOPY) {
287 long pages = vma_pages(mpnt);
288 mm->total_vm -= pages;
289 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290 -pages);
291 continue;
293 charge = 0;
294 if (mpnt->vm_flags & VM_ACCOUNT) {
295 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296 if (security_vm_enough_memory(len))
297 goto fail_nomem;
298 charge = len;
300 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301 if (!tmp)
302 goto fail_nomem;
303 *tmp = *mpnt;
304 pol = mpol_dup(vma_policy(mpnt));
305 retval = PTR_ERR(pol);
306 if (IS_ERR(pol))
307 goto fail_nomem_policy;
308 vma_set_policy(tmp, pol);
309 tmp->vm_flags &= ~VM_LOCKED;
310 tmp->vm_mm = mm;
311 tmp->vm_next = NULL;
312 anon_vma_link(tmp);
313 file = tmp->vm_file;
314 if (file) {
315 struct inode *inode = file->f_path.dentry->d_inode;
316 struct address_space *mapping = file->f_mapping;
318 get_file(file);
319 if (tmp->vm_flags & VM_DENYWRITE)
320 atomic_dec(&inode->i_writecount);
321 spin_lock(&mapping->i_mmap_lock);
322 if (tmp->vm_flags & VM_SHARED)
323 mapping->i_mmap_writable++;
324 tmp->vm_truncate_count = mpnt->vm_truncate_count;
325 flush_dcache_mmap_lock(mapping);
326 /* insert tmp into the share list, just after mpnt */
327 vma_prio_tree_add(tmp, mpnt);
328 flush_dcache_mmap_unlock(mapping);
329 spin_unlock(&mapping->i_mmap_lock);
333 * Clear hugetlb-related page reserves for children. This only
334 * affects MAP_PRIVATE mappings. Faults generated by the child
335 * are not guaranteed to succeed, even if read-only
337 if (is_vm_hugetlb_page(tmp))
338 reset_vma_resv_huge_pages(tmp);
341 * Link in the new vma and copy the page table entries.
343 *pprev = tmp;
344 pprev = &tmp->vm_next;
346 __vma_link_rb(mm, tmp, rb_link, rb_parent);
347 rb_link = &tmp->vm_rb.rb_right;
348 rb_parent = &tmp->vm_rb;
350 mm->map_count++;
351 retval = copy_page_range(mm, oldmm, mpnt);
353 if (tmp->vm_ops && tmp->vm_ops->open)
354 tmp->vm_ops->open(tmp);
356 if (retval)
357 goto out;
359 /* a new mm has just been created */
360 arch_dup_mmap(oldmm, mm);
361 retval = 0;
362 out:
363 up_write(&mm->mmap_sem);
364 flush_tlb_mm(oldmm);
365 up_write(&oldmm->mmap_sem);
366 return retval;
367 fail_nomem_policy:
368 kmem_cache_free(vm_area_cachep, tmp);
369 fail_nomem:
370 retval = -ENOMEM;
371 vm_unacct_memory(charge);
372 goto out;
375 static inline int mm_alloc_pgd(struct mm_struct * mm)
377 mm->pgd = pgd_alloc(mm);
378 if (unlikely(!mm->pgd))
379 return -ENOMEM;
380 return 0;
383 static inline void mm_free_pgd(struct mm_struct * mm)
385 pgd_free(mm, mm->pgd);
387 #else
388 #define dup_mmap(mm, oldmm) (0)
389 #define mm_alloc_pgd(mm) (0)
390 #define mm_free_pgd(mm)
391 #endif /* CONFIG_MMU */
393 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
395 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
396 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
398 #include <linux/init_task.h>
400 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
402 atomic_set(&mm->mm_users, 1);
403 atomic_set(&mm->mm_count, 1);
404 init_rwsem(&mm->mmap_sem);
405 INIT_LIST_HEAD(&mm->mmlist);
406 mm->flags = (current->mm) ? current->mm->flags
407 : MMF_DUMP_FILTER_DEFAULT;
408 mm->core_state = NULL;
409 mm->nr_ptes = 0;
410 set_mm_counter(mm, file_rss, 0);
411 set_mm_counter(mm, anon_rss, 0);
412 spin_lock_init(&mm->page_table_lock);
413 rwlock_init(&mm->ioctx_list_lock);
414 mm->ioctx_list = NULL;
415 mm->free_area_cache = TASK_UNMAPPED_BASE;
416 mm->cached_hole_size = ~0UL;
417 mm_init_owner(mm, p);
419 if (likely(!mm_alloc_pgd(mm))) {
420 mm->def_flags = 0;
421 mmu_notifier_mm_init(mm);
422 return mm;
425 free_mm(mm);
426 return NULL;
430 * Allocate and initialize an mm_struct.
432 struct mm_struct * mm_alloc(void)
434 struct mm_struct * mm;
436 mm = allocate_mm();
437 if (mm) {
438 memset(mm, 0, sizeof(*mm));
439 mm = mm_init(mm, current);
441 return mm;
445 * Called when the last reference to the mm
446 * is dropped: either by a lazy thread or by
447 * mmput. Free the page directory and the mm.
449 void __mmdrop(struct mm_struct *mm)
451 BUG_ON(mm == &init_mm);
452 mm_free_pgd(mm);
453 destroy_context(mm);
454 mmu_notifier_mm_destroy(mm);
455 free_mm(mm);
457 EXPORT_SYMBOL_GPL(__mmdrop);
460 * Decrement the use count and release all resources for an mm.
462 void mmput(struct mm_struct *mm)
464 might_sleep();
466 if (atomic_dec_and_test(&mm->mm_users)) {
467 exit_aio(mm);
468 exit_mmap(mm);
469 set_mm_exe_file(mm, NULL);
470 if (!list_empty(&mm->mmlist)) {
471 spin_lock(&mmlist_lock);
472 list_del(&mm->mmlist);
473 spin_unlock(&mmlist_lock);
475 put_swap_token(mm);
476 mmdrop(mm);
479 EXPORT_SYMBOL_GPL(mmput);
482 * get_task_mm - acquire a reference to the task's mm
484 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
485 * this kernel workthread has transiently adopted a user mm with use_mm,
486 * to do its AIO) is not set and if so returns a reference to it, after
487 * bumping up the use count. User must release the mm via mmput()
488 * after use. Typically used by /proc and ptrace.
490 struct mm_struct *get_task_mm(struct task_struct *task)
492 struct mm_struct *mm;
494 task_lock(task);
495 mm = task->mm;
496 if (mm) {
497 if (task->flags & PF_KTHREAD)
498 mm = NULL;
499 else
500 atomic_inc(&mm->mm_users);
502 task_unlock(task);
503 return mm;
505 EXPORT_SYMBOL_GPL(get_task_mm);
507 /* Please note the differences between mmput and mm_release.
508 * mmput is called whenever we stop holding onto a mm_struct,
509 * error success whatever.
511 * mm_release is called after a mm_struct has been removed
512 * from the current process.
514 * This difference is important for error handling, when we
515 * only half set up a mm_struct for a new process and need to restore
516 * the old one. Because we mmput the new mm_struct before
517 * restoring the old one. . .
518 * Eric Biederman 10 January 1998
520 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
522 struct completion *vfork_done = tsk->vfork_done;
524 /* Get rid of any cached register state */
525 deactivate_mm(tsk, mm);
527 /* notify parent sleeping on vfork() */
528 if (vfork_done) {
529 tsk->vfork_done = NULL;
530 complete(vfork_done);
534 * If we're exiting normally, clear a user-space tid field if
535 * requested. We leave this alone when dying by signal, to leave
536 * the value intact in a core dump, and to save the unnecessary
537 * trouble otherwise. Userland only wants this done for a sys_exit.
539 if (tsk->clear_child_tid
540 && !(tsk->flags & PF_SIGNALED)
541 && atomic_read(&mm->mm_users) > 1) {
542 u32 __user * tidptr = tsk->clear_child_tid;
543 tsk->clear_child_tid = NULL;
546 * We don't check the error code - if userspace has
547 * not set up a proper pointer then tough luck.
549 put_user(0, tidptr);
550 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
555 * Allocate a new mm structure and copy contents from the
556 * mm structure of the passed in task structure.
558 struct mm_struct *dup_mm(struct task_struct *tsk)
560 struct mm_struct *mm, *oldmm = current->mm;
561 int err;
563 if (!oldmm)
564 return NULL;
566 mm = allocate_mm();
567 if (!mm)
568 goto fail_nomem;
570 memcpy(mm, oldmm, sizeof(*mm));
572 /* Initializing for Swap token stuff */
573 mm->token_priority = 0;
574 mm->last_interval = 0;
576 if (!mm_init(mm, tsk))
577 goto fail_nomem;
579 if (init_new_context(tsk, mm))
580 goto fail_nocontext;
582 dup_mm_exe_file(oldmm, mm);
584 err = dup_mmap(mm, oldmm);
585 if (err)
586 goto free_pt;
588 mm->hiwater_rss = get_mm_rss(mm);
589 mm->hiwater_vm = mm->total_vm;
591 return mm;
593 free_pt:
594 mmput(mm);
596 fail_nomem:
597 return NULL;
599 fail_nocontext:
601 * If init_new_context() failed, we cannot use mmput() to free the mm
602 * because it calls destroy_context()
604 mm_free_pgd(mm);
605 free_mm(mm);
606 return NULL;
609 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
611 struct mm_struct * mm, *oldmm;
612 int retval;
614 tsk->min_flt = tsk->maj_flt = 0;
615 tsk->nvcsw = tsk->nivcsw = 0;
617 tsk->mm = NULL;
618 tsk->active_mm = NULL;
621 * Are we cloning a kernel thread?
623 * We need to steal a active VM for that..
625 oldmm = current->mm;
626 if (!oldmm)
627 return 0;
629 if (clone_flags & CLONE_VM) {
630 atomic_inc(&oldmm->mm_users);
631 mm = oldmm;
632 goto good_mm;
635 retval = -ENOMEM;
636 mm = dup_mm(tsk);
637 if (!mm)
638 goto fail_nomem;
640 good_mm:
641 /* Initializing for Swap token stuff */
642 mm->token_priority = 0;
643 mm->last_interval = 0;
645 tsk->mm = mm;
646 tsk->active_mm = mm;
647 return 0;
649 fail_nomem:
650 return retval;
653 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
655 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
656 /* We don't need to lock fs - think why ;-) */
657 if (fs) {
658 atomic_set(&fs->count, 1);
659 rwlock_init(&fs->lock);
660 fs->umask = old->umask;
661 read_lock(&old->lock);
662 fs->root = old->root;
663 path_get(&old->root);
664 fs->pwd = old->pwd;
665 path_get(&old->pwd);
666 read_unlock(&old->lock);
668 return fs;
671 struct fs_struct *copy_fs_struct(struct fs_struct *old)
673 return __copy_fs_struct(old);
676 EXPORT_SYMBOL_GPL(copy_fs_struct);
678 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
680 if (clone_flags & CLONE_FS) {
681 atomic_inc(&current->fs->count);
682 return 0;
684 tsk->fs = __copy_fs_struct(current->fs);
685 if (!tsk->fs)
686 return -ENOMEM;
687 return 0;
690 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
692 struct files_struct *oldf, *newf;
693 int error = 0;
696 * A background process may not have any files ...
698 oldf = current->files;
699 if (!oldf)
700 goto out;
702 if (clone_flags & CLONE_FILES) {
703 atomic_inc(&oldf->count);
704 goto out;
707 newf = dup_fd(oldf, &error);
708 if (!newf)
709 goto out;
711 tsk->files = newf;
712 error = 0;
713 out:
714 return error;
717 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
719 #ifdef CONFIG_BLOCK
720 struct io_context *ioc = current->io_context;
722 if (!ioc)
723 return 0;
725 * Share io context with parent, if CLONE_IO is set
727 if (clone_flags & CLONE_IO) {
728 tsk->io_context = ioc_task_link(ioc);
729 if (unlikely(!tsk->io_context))
730 return -ENOMEM;
731 } else if (ioprio_valid(ioc->ioprio)) {
732 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
733 if (unlikely(!tsk->io_context))
734 return -ENOMEM;
736 tsk->io_context->ioprio = ioc->ioprio;
738 #endif
739 return 0;
742 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
744 struct sighand_struct *sig;
746 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
747 atomic_inc(&current->sighand->count);
748 return 0;
750 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
751 rcu_assign_pointer(tsk->sighand, sig);
752 if (!sig)
753 return -ENOMEM;
754 atomic_set(&sig->count, 1);
755 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
756 return 0;
759 void __cleanup_sighand(struct sighand_struct *sighand)
761 if (atomic_dec_and_test(&sighand->count))
762 kmem_cache_free(sighand_cachep, sighand);
765 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
767 struct signal_struct *sig;
768 int ret;
770 if (clone_flags & CLONE_THREAD) {
771 atomic_inc(&current->signal->count);
772 atomic_inc(&current->signal->live);
773 return 0;
775 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
776 tsk->signal = sig;
777 if (!sig)
778 return -ENOMEM;
780 ret = copy_thread_group_keys(tsk);
781 if (ret < 0) {
782 kmem_cache_free(signal_cachep, sig);
783 return ret;
786 atomic_set(&sig->count, 1);
787 atomic_set(&sig->live, 1);
788 init_waitqueue_head(&sig->wait_chldexit);
789 sig->flags = 0;
790 sig->group_exit_code = 0;
791 sig->group_exit_task = NULL;
792 sig->group_stop_count = 0;
793 sig->curr_target = tsk;
794 init_sigpending(&sig->shared_pending);
795 INIT_LIST_HEAD(&sig->posix_timers);
797 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
798 sig->it_real_incr.tv64 = 0;
799 sig->real_timer.function = it_real_fn;
801 sig->it_virt_expires = cputime_zero;
802 sig->it_virt_incr = cputime_zero;
803 sig->it_prof_expires = cputime_zero;
804 sig->it_prof_incr = cputime_zero;
806 sig->leader = 0; /* session leadership doesn't inherit */
807 sig->tty_old_pgrp = NULL;
809 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
810 sig->gtime = cputime_zero;
811 sig->cgtime = cputime_zero;
812 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
813 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
814 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
815 task_io_accounting_init(&sig->ioac);
816 sig->sum_sched_runtime = 0;
817 INIT_LIST_HEAD(&sig->cpu_timers[0]);
818 INIT_LIST_HEAD(&sig->cpu_timers[1]);
819 INIT_LIST_HEAD(&sig->cpu_timers[2]);
820 taskstats_tgid_init(sig);
822 task_lock(current->group_leader);
823 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
824 task_unlock(current->group_leader);
826 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
828 * New sole thread in the process gets an expiry time
829 * of the whole CPU time limit.
831 tsk->it_prof_expires =
832 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
834 acct_init_pacct(&sig->pacct);
836 tty_audit_fork(sig);
838 return 0;
841 void __cleanup_signal(struct signal_struct *sig)
843 exit_thread_group_keys(sig);
844 kmem_cache_free(signal_cachep, sig);
847 static void cleanup_signal(struct task_struct *tsk)
849 struct signal_struct *sig = tsk->signal;
851 atomic_dec(&sig->live);
853 if (atomic_dec_and_test(&sig->count))
854 __cleanup_signal(sig);
857 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
859 unsigned long new_flags = p->flags;
861 new_flags &= ~PF_SUPERPRIV;
862 new_flags |= PF_FORKNOEXEC;
863 new_flags |= PF_STARTING;
864 p->flags = new_flags;
865 clear_freeze_flag(p);
868 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
870 current->clear_child_tid = tidptr;
872 return task_pid_vnr(current);
875 static void rt_mutex_init_task(struct task_struct *p)
877 spin_lock_init(&p->pi_lock);
878 #ifdef CONFIG_RT_MUTEXES
879 plist_head_init(&p->pi_waiters, &p->pi_lock);
880 p->pi_blocked_on = NULL;
881 #endif
884 #ifdef CONFIG_MM_OWNER
885 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
887 mm->owner = p;
889 #endif /* CONFIG_MM_OWNER */
892 * This creates a new process as a copy of the old one,
893 * but does not actually start it yet.
895 * It copies the registers, and all the appropriate
896 * parts of the process environment (as per the clone
897 * flags). The actual kick-off is left to the caller.
899 static struct task_struct *copy_process(unsigned long clone_flags,
900 unsigned long stack_start,
901 struct pt_regs *regs,
902 unsigned long stack_size,
903 int __user *child_tidptr,
904 struct pid *pid,
905 int trace)
907 int retval;
908 struct task_struct *p;
909 int cgroup_callbacks_done = 0;
911 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
912 return ERR_PTR(-EINVAL);
915 * Thread groups must share signals as well, and detached threads
916 * can only be started up within the thread group.
918 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
919 return ERR_PTR(-EINVAL);
922 * Shared signal handlers imply shared VM. By way of the above,
923 * thread groups also imply shared VM. Blocking this case allows
924 * for various simplifications in other code.
926 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
927 return ERR_PTR(-EINVAL);
929 retval = security_task_create(clone_flags);
930 if (retval)
931 goto fork_out;
933 retval = -ENOMEM;
934 p = dup_task_struct(current);
935 if (!p)
936 goto fork_out;
938 rt_mutex_init_task(p);
940 #ifdef CONFIG_PROVE_LOCKING
941 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
942 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
943 #endif
944 retval = -EAGAIN;
945 if (atomic_read(&p->user->processes) >=
946 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
947 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
948 p->user != current->nsproxy->user_ns->root_user)
949 goto bad_fork_free;
952 atomic_inc(&p->user->__count);
953 atomic_inc(&p->user->processes);
954 get_group_info(p->group_info);
957 * If multiple threads are within copy_process(), then this check
958 * triggers too late. This doesn't hurt, the check is only there
959 * to stop root fork bombs.
961 if (nr_threads >= max_threads)
962 goto bad_fork_cleanup_count;
964 if (!try_module_get(task_thread_info(p)->exec_domain->module))
965 goto bad_fork_cleanup_count;
967 if (p->binfmt && !try_module_get(p->binfmt->module))
968 goto bad_fork_cleanup_put_domain;
970 p->did_exec = 0;
971 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
972 copy_flags(clone_flags, p);
973 INIT_LIST_HEAD(&p->children);
974 INIT_LIST_HEAD(&p->sibling);
975 #ifdef CONFIG_PREEMPT_RCU
976 p->rcu_read_lock_nesting = 0;
977 p->rcu_flipctr_idx = 0;
978 #endif /* #ifdef CONFIG_PREEMPT_RCU */
979 p->vfork_done = NULL;
980 spin_lock_init(&p->alloc_lock);
982 clear_tsk_thread_flag(p, TIF_SIGPENDING);
983 init_sigpending(&p->pending);
985 p->utime = cputime_zero;
986 p->stime = cputime_zero;
987 p->gtime = cputime_zero;
988 p->utimescaled = cputime_zero;
989 p->stimescaled = cputime_zero;
990 p->prev_utime = cputime_zero;
991 p->prev_stime = cputime_zero;
993 #ifdef CONFIG_DETECT_SOFTLOCKUP
994 p->last_switch_count = 0;
995 p->last_switch_timestamp = 0;
996 #endif
998 task_io_accounting_init(&p->ioac);
999 acct_clear_integrals(p);
1001 p->it_virt_expires = cputime_zero;
1002 p->it_prof_expires = cputime_zero;
1003 p->it_sched_expires = 0;
1004 INIT_LIST_HEAD(&p->cpu_timers[0]);
1005 INIT_LIST_HEAD(&p->cpu_timers[1]);
1006 INIT_LIST_HEAD(&p->cpu_timers[2]);
1008 p->lock_depth = -1; /* -1 = no lock */
1009 do_posix_clock_monotonic_gettime(&p->start_time);
1010 p->real_start_time = p->start_time;
1011 monotonic_to_bootbased(&p->real_start_time);
1012 #ifdef CONFIG_SECURITY
1013 p->security = NULL;
1014 #endif
1015 p->cap_bset = current->cap_bset;
1016 p->io_context = NULL;
1017 p->audit_context = NULL;
1018 cgroup_fork(p);
1019 #ifdef CONFIG_NUMA
1020 p->mempolicy = mpol_dup(p->mempolicy);
1021 if (IS_ERR(p->mempolicy)) {
1022 retval = PTR_ERR(p->mempolicy);
1023 p->mempolicy = NULL;
1024 goto bad_fork_cleanup_cgroup;
1026 mpol_fix_fork_child_flag(p);
1027 #endif
1028 #ifdef CONFIG_TRACE_IRQFLAGS
1029 p->irq_events = 0;
1030 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1031 p->hardirqs_enabled = 1;
1032 #else
1033 p->hardirqs_enabled = 0;
1034 #endif
1035 p->hardirq_enable_ip = 0;
1036 p->hardirq_enable_event = 0;
1037 p->hardirq_disable_ip = _THIS_IP_;
1038 p->hardirq_disable_event = 0;
1039 p->softirqs_enabled = 1;
1040 p->softirq_enable_ip = _THIS_IP_;
1041 p->softirq_enable_event = 0;
1042 p->softirq_disable_ip = 0;
1043 p->softirq_disable_event = 0;
1044 p->hardirq_context = 0;
1045 p->softirq_context = 0;
1046 #endif
1047 #ifdef CONFIG_LOCKDEP
1048 p->lockdep_depth = 0; /* no locks held yet */
1049 p->curr_chain_key = 0;
1050 p->lockdep_recursion = 0;
1051 #endif
1053 #ifdef CONFIG_DEBUG_MUTEXES
1054 p->blocked_on = NULL; /* not blocked yet */
1055 #endif
1057 /* Perform scheduler related setup. Assign this task to a CPU. */
1058 sched_fork(p, clone_flags);
1060 if ((retval = security_task_alloc(p)))
1061 goto bad_fork_cleanup_policy;
1062 if ((retval = audit_alloc(p)))
1063 goto bad_fork_cleanup_security;
1064 /* copy all the process information */
1065 if ((retval = copy_semundo(clone_flags, p)))
1066 goto bad_fork_cleanup_audit;
1067 if ((retval = copy_files(clone_flags, p)))
1068 goto bad_fork_cleanup_semundo;
1069 if ((retval = copy_fs(clone_flags, p)))
1070 goto bad_fork_cleanup_files;
1071 if ((retval = copy_sighand(clone_flags, p)))
1072 goto bad_fork_cleanup_fs;
1073 if ((retval = copy_signal(clone_flags, p)))
1074 goto bad_fork_cleanup_sighand;
1075 if ((retval = copy_mm(clone_flags, p)))
1076 goto bad_fork_cleanup_signal;
1077 if ((retval = copy_keys(clone_flags, p)))
1078 goto bad_fork_cleanup_mm;
1079 if ((retval = copy_namespaces(clone_flags, p)))
1080 goto bad_fork_cleanup_keys;
1081 if ((retval = copy_io(clone_flags, p)))
1082 goto bad_fork_cleanup_namespaces;
1083 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1084 if (retval)
1085 goto bad_fork_cleanup_io;
1087 if (pid != &init_struct_pid) {
1088 retval = -ENOMEM;
1089 pid = alloc_pid(task_active_pid_ns(p));
1090 if (!pid)
1091 goto bad_fork_cleanup_io;
1093 if (clone_flags & CLONE_NEWPID) {
1094 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1095 if (retval < 0)
1096 goto bad_fork_free_pid;
1100 p->pid = pid_nr(pid);
1101 p->tgid = p->pid;
1102 if (clone_flags & CLONE_THREAD)
1103 p->tgid = current->tgid;
1105 if (current->nsproxy != p->nsproxy) {
1106 retval = ns_cgroup_clone(p, pid);
1107 if (retval)
1108 goto bad_fork_free_pid;
1111 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1113 * Clear TID on mm_release()?
1115 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1116 #ifdef CONFIG_FUTEX
1117 p->robust_list = NULL;
1118 #ifdef CONFIG_COMPAT
1119 p->compat_robust_list = NULL;
1120 #endif
1121 INIT_LIST_HEAD(&p->pi_state_list);
1122 p->pi_state_cache = NULL;
1123 #endif
1125 * sigaltstack should be cleared when sharing the same VM
1127 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1128 p->sas_ss_sp = p->sas_ss_size = 0;
1131 * Syscall tracing should be turned off in the child regardless
1132 * of CLONE_PTRACE.
1134 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1135 #ifdef TIF_SYSCALL_EMU
1136 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1137 #endif
1138 clear_all_latency_tracing(p);
1140 /* ok, now we should be set up.. */
1141 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1142 p->pdeath_signal = 0;
1143 p->exit_state = 0;
1146 * Ok, make it visible to the rest of the system.
1147 * We dont wake it up yet.
1149 p->group_leader = p;
1150 INIT_LIST_HEAD(&p->thread_group);
1152 /* Now that the task is set up, run cgroup callbacks if
1153 * necessary. We need to run them before the task is visible
1154 * on the tasklist. */
1155 cgroup_fork_callbacks(p);
1156 cgroup_callbacks_done = 1;
1158 /* Need tasklist lock for parent etc handling! */
1159 write_lock_irq(&tasklist_lock);
1162 * The task hasn't been attached yet, so its cpus_allowed mask will
1163 * not be changed, nor will its assigned CPU.
1165 * The cpus_allowed mask of the parent may have changed after it was
1166 * copied first time - so re-copy it here, then check the child's CPU
1167 * to ensure it is on a valid CPU (and if not, just force it back to
1168 * parent's CPU). This avoids alot of nasty races.
1170 p->cpus_allowed = current->cpus_allowed;
1171 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1172 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1173 !cpu_online(task_cpu(p))))
1174 set_task_cpu(p, smp_processor_id());
1176 /* CLONE_PARENT re-uses the old parent */
1177 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1178 p->real_parent = current->real_parent;
1179 p->parent_exec_id = current->parent_exec_id;
1180 } else {
1181 p->real_parent = current;
1182 p->parent_exec_id = current->self_exec_id;
1185 spin_lock(&current->sighand->siglock);
1188 * Process group and session signals need to be delivered to just the
1189 * parent before the fork or both the parent and the child after the
1190 * fork. Restart if a signal comes in before we add the new process to
1191 * it's process group.
1192 * A fatal signal pending means that current will exit, so the new
1193 * thread can't slip out of an OOM kill (or normal SIGKILL).
1195 recalc_sigpending();
1196 if (signal_pending(current)) {
1197 spin_unlock(&current->sighand->siglock);
1198 write_unlock_irq(&tasklist_lock);
1199 retval = -ERESTARTNOINTR;
1200 goto bad_fork_free_pid;
1203 if (clone_flags & CLONE_THREAD) {
1204 p->group_leader = current->group_leader;
1205 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1207 if (!cputime_eq(current->signal->it_virt_expires,
1208 cputime_zero) ||
1209 !cputime_eq(current->signal->it_prof_expires,
1210 cputime_zero) ||
1211 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1212 !list_empty(&current->signal->cpu_timers[0]) ||
1213 !list_empty(&current->signal->cpu_timers[1]) ||
1214 !list_empty(&current->signal->cpu_timers[2])) {
1216 * Have child wake up on its first tick to check
1217 * for process CPU timers.
1219 p->it_prof_expires = jiffies_to_cputime(1);
1223 if (likely(p->pid)) {
1224 list_add_tail(&p->sibling, &p->real_parent->children);
1225 tracehook_finish_clone(p, clone_flags, trace);
1227 if (thread_group_leader(p)) {
1228 if (clone_flags & CLONE_NEWPID)
1229 p->nsproxy->pid_ns->child_reaper = p;
1231 p->signal->leader_pid = pid;
1232 p->signal->tty = current->signal->tty;
1233 set_task_pgrp(p, task_pgrp_nr(current));
1234 set_task_session(p, task_session_nr(current));
1235 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1236 attach_pid(p, PIDTYPE_SID, task_session(current));
1237 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1238 __get_cpu_var(process_counts)++;
1240 attach_pid(p, PIDTYPE_PID, pid);
1241 nr_threads++;
1244 total_forks++;
1245 spin_unlock(&current->sighand->siglock);
1246 write_unlock_irq(&tasklist_lock);
1247 proc_fork_connector(p);
1248 cgroup_post_fork(p);
1249 return p;
1251 bad_fork_free_pid:
1252 if (pid != &init_struct_pid)
1253 free_pid(pid);
1254 bad_fork_cleanup_io:
1255 put_io_context(p->io_context);
1256 bad_fork_cleanup_namespaces:
1257 exit_task_namespaces(p);
1258 bad_fork_cleanup_keys:
1259 exit_keys(p);
1260 bad_fork_cleanup_mm:
1261 if (p->mm)
1262 mmput(p->mm);
1263 bad_fork_cleanup_signal:
1264 cleanup_signal(p);
1265 bad_fork_cleanup_sighand:
1266 __cleanup_sighand(p->sighand);
1267 bad_fork_cleanup_fs:
1268 exit_fs(p); /* blocking */
1269 bad_fork_cleanup_files:
1270 exit_files(p); /* blocking */
1271 bad_fork_cleanup_semundo:
1272 exit_sem(p);
1273 bad_fork_cleanup_audit:
1274 audit_free(p);
1275 bad_fork_cleanup_security:
1276 security_task_free(p);
1277 bad_fork_cleanup_policy:
1278 #ifdef CONFIG_NUMA
1279 mpol_put(p->mempolicy);
1280 bad_fork_cleanup_cgroup:
1281 #endif
1282 cgroup_exit(p, cgroup_callbacks_done);
1283 delayacct_tsk_free(p);
1284 if (p->binfmt)
1285 module_put(p->binfmt->module);
1286 bad_fork_cleanup_put_domain:
1287 module_put(task_thread_info(p)->exec_domain->module);
1288 bad_fork_cleanup_count:
1289 put_group_info(p->group_info);
1290 atomic_dec(&p->user->processes);
1291 free_uid(p->user);
1292 bad_fork_free:
1293 free_task(p);
1294 fork_out:
1295 return ERR_PTR(retval);
1298 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1300 memset(regs, 0, sizeof(struct pt_regs));
1301 return regs;
1304 struct task_struct * __cpuinit fork_idle(int cpu)
1306 struct task_struct *task;
1307 struct pt_regs regs;
1309 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1310 &init_struct_pid, 0);
1311 if (!IS_ERR(task))
1312 init_idle(task, cpu);
1314 return task;
1318 * Ok, this is the main fork-routine.
1320 * It copies the process, and if successful kick-starts
1321 * it and waits for it to finish using the VM if required.
1323 long do_fork(unsigned long clone_flags,
1324 unsigned long stack_start,
1325 struct pt_regs *regs,
1326 unsigned long stack_size,
1327 int __user *parent_tidptr,
1328 int __user *child_tidptr)
1330 struct task_struct *p;
1331 int trace = 0;
1332 long nr;
1335 * We hope to recycle these flags after 2.6.26
1337 if (unlikely(clone_flags & CLONE_STOPPED)) {
1338 static int __read_mostly count = 100;
1340 if (count > 0 && printk_ratelimit()) {
1341 char comm[TASK_COMM_LEN];
1343 count--;
1344 printk(KERN_INFO "fork(): process `%s' used deprecated "
1345 "clone flags 0x%lx\n",
1346 get_task_comm(comm, current),
1347 clone_flags & CLONE_STOPPED);
1352 * When called from kernel_thread, don't do user tracing stuff.
1354 if (likely(user_mode(regs)))
1355 trace = tracehook_prepare_clone(clone_flags);
1357 p = copy_process(clone_flags, stack_start, regs, stack_size,
1358 child_tidptr, NULL, trace);
1360 * Do this prior waking up the new thread - the thread pointer
1361 * might get invalid after that point, if the thread exits quickly.
1363 if (!IS_ERR(p)) {
1364 struct completion vfork;
1366 nr = task_pid_vnr(p);
1368 if (clone_flags & CLONE_PARENT_SETTID)
1369 put_user(nr, parent_tidptr);
1371 if (clone_flags & CLONE_VFORK) {
1372 p->vfork_done = &vfork;
1373 init_completion(&vfork);
1376 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1379 * We set PF_STARTING at creation in case tracing wants to
1380 * use this to distinguish a fully live task from one that
1381 * hasn't gotten to tracehook_report_clone() yet. Now we
1382 * clear it and set the child going.
1384 p->flags &= ~PF_STARTING;
1386 if (unlikely(clone_flags & CLONE_STOPPED)) {
1388 * We'll start up with an immediate SIGSTOP.
1390 sigaddset(&p->pending.signal, SIGSTOP);
1391 set_tsk_thread_flag(p, TIF_SIGPENDING);
1392 __set_task_state(p, TASK_STOPPED);
1393 } else {
1394 wake_up_new_task(p, clone_flags);
1397 tracehook_report_clone_complete(trace, regs,
1398 clone_flags, nr, p);
1400 if (clone_flags & CLONE_VFORK) {
1401 freezer_do_not_count();
1402 wait_for_completion(&vfork);
1403 freezer_count();
1404 tracehook_report_vfork_done(p, nr);
1406 } else {
1407 nr = PTR_ERR(p);
1409 return nr;
1412 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1413 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1414 #endif
1416 static void sighand_ctor(void *data)
1418 struct sighand_struct *sighand = data;
1420 spin_lock_init(&sighand->siglock);
1421 init_waitqueue_head(&sighand->signalfd_wqh);
1424 void __init proc_caches_init(void)
1426 sighand_cachep = kmem_cache_create("sighand_cache",
1427 sizeof(struct sighand_struct), 0,
1428 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1429 sighand_ctor);
1430 signal_cachep = kmem_cache_create("signal_cache",
1431 sizeof(struct signal_struct), 0,
1432 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1433 files_cachep = kmem_cache_create("files_cache",
1434 sizeof(struct files_struct), 0,
1435 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1436 fs_cachep = kmem_cache_create("fs_cache",
1437 sizeof(struct fs_struct), 0,
1438 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1439 vm_area_cachep = kmem_cache_create("vm_area_struct",
1440 sizeof(struct vm_area_struct), 0,
1441 SLAB_PANIC, NULL);
1442 mm_cachep = kmem_cache_create("mm_struct",
1443 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1444 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1448 * Check constraints on flags passed to the unshare system call and
1449 * force unsharing of additional process context as appropriate.
1451 static void check_unshare_flags(unsigned long *flags_ptr)
1454 * If unsharing a thread from a thread group, must also
1455 * unshare vm.
1457 if (*flags_ptr & CLONE_THREAD)
1458 *flags_ptr |= CLONE_VM;
1461 * If unsharing vm, must also unshare signal handlers.
1463 if (*flags_ptr & CLONE_VM)
1464 *flags_ptr |= CLONE_SIGHAND;
1467 * If unsharing signal handlers and the task was created
1468 * using CLONE_THREAD, then must unshare the thread
1470 if ((*flags_ptr & CLONE_SIGHAND) &&
1471 (atomic_read(&current->signal->count) > 1))
1472 *flags_ptr |= CLONE_THREAD;
1475 * If unsharing namespace, must also unshare filesystem information.
1477 if (*flags_ptr & CLONE_NEWNS)
1478 *flags_ptr |= CLONE_FS;
1482 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1484 static int unshare_thread(unsigned long unshare_flags)
1486 if (unshare_flags & CLONE_THREAD)
1487 return -EINVAL;
1489 return 0;
1493 * Unshare the filesystem structure if it is being shared
1495 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1497 struct fs_struct *fs = current->fs;
1499 if ((unshare_flags & CLONE_FS) &&
1500 (fs && atomic_read(&fs->count) > 1)) {
1501 *new_fsp = __copy_fs_struct(current->fs);
1502 if (!*new_fsp)
1503 return -ENOMEM;
1506 return 0;
1510 * Unsharing of sighand is not supported yet
1512 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1514 struct sighand_struct *sigh = current->sighand;
1516 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1517 return -EINVAL;
1518 else
1519 return 0;
1523 * Unshare vm if it is being shared
1525 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1527 struct mm_struct *mm = current->mm;
1529 if ((unshare_flags & CLONE_VM) &&
1530 (mm && atomic_read(&mm->mm_users) > 1)) {
1531 return -EINVAL;
1534 return 0;
1538 * Unshare file descriptor table if it is being shared
1540 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1542 struct files_struct *fd = current->files;
1543 int error = 0;
1545 if ((unshare_flags & CLONE_FILES) &&
1546 (fd && atomic_read(&fd->count) > 1)) {
1547 *new_fdp = dup_fd(fd, &error);
1548 if (!*new_fdp)
1549 return error;
1552 return 0;
1556 * unshare allows a process to 'unshare' part of the process
1557 * context which was originally shared using clone. copy_*
1558 * functions used by do_fork() cannot be used here directly
1559 * because they modify an inactive task_struct that is being
1560 * constructed. Here we are modifying the current, active,
1561 * task_struct.
1563 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1565 int err = 0;
1566 struct fs_struct *fs, *new_fs = NULL;
1567 struct sighand_struct *new_sigh = NULL;
1568 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1569 struct files_struct *fd, *new_fd = NULL;
1570 struct nsproxy *new_nsproxy = NULL;
1571 int do_sysvsem = 0;
1573 check_unshare_flags(&unshare_flags);
1575 /* Return -EINVAL for all unsupported flags */
1576 err = -EINVAL;
1577 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1578 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1579 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1580 CLONE_NEWNET))
1581 goto bad_unshare_out;
1584 * CLONE_NEWIPC must also detach from the undolist: after switching
1585 * to a new ipc namespace, the semaphore arrays from the old
1586 * namespace are unreachable.
1588 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1589 do_sysvsem = 1;
1590 if ((err = unshare_thread(unshare_flags)))
1591 goto bad_unshare_out;
1592 if ((err = unshare_fs(unshare_flags, &new_fs)))
1593 goto bad_unshare_cleanup_thread;
1594 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1595 goto bad_unshare_cleanup_fs;
1596 if ((err = unshare_vm(unshare_flags, &new_mm)))
1597 goto bad_unshare_cleanup_sigh;
1598 if ((err = unshare_fd(unshare_flags, &new_fd)))
1599 goto bad_unshare_cleanup_vm;
1600 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1601 new_fs)))
1602 goto bad_unshare_cleanup_fd;
1604 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1605 if (do_sysvsem) {
1607 * CLONE_SYSVSEM is equivalent to sys_exit().
1609 exit_sem(current);
1612 if (new_nsproxy) {
1613 switch_task_namespaces(current, new_nsproxy);
1614 new_nsproxy = NULL;
1617 task_lock(current);
1619 if (new_fs) {
1620 fs = current->fs;
1621 current->fs = new_fs;
1622 new_fs = fs;
1625 if (new_mm) {
1626 mm = current->mm;
1627 active_mm = current->active_mm;
1628 current->mm = new_mm;
1629 current->active_mm = new_mm;
1630 activate_mm(active_mm, new_mm);
1631 new_mm = mm;
1634 if (new_fd) {
1635 fd = current->files;
1636 current->files = new_fd;
1637 new_fd = fd;
1640 task_unlock(current);
1643 if (new_nsproxy)
1644 put_nsproxy(new_nsproxy);
1646 bad_unshare_cleanup_fd:
1647 if (new_fd)
1648 put_files_struct(new_fd);
1650 bad_unshare_cleanup_vm:
1651 if (new_mm)
1652 mmput(new_mm);
1654 bad_unshare_cleanup_sigh:
1655 if (new_sigh)
1656 if (atomic_dec_and_test(&new_sigh->count))
1657 kmem_cache_free(sighand_cachep, new_sigh);
1659 bad_unshare_cleanup_fs:
1660 if (new_fs)
1661 put_fs_struct(new_fs);
1663 bad_unshare_cleanup_thread:
1664 bad_unshare_out:
1665 return err;
1669 * Helper to unshare the files of the current task.
1670 * We don't want to expose copy_files internals to
1671 * the exec layer of the kernel.
1674 int unshare_files(struct files_struct **displaced)
1676 struct task_struct *task = current;
1677 struct files_struct *copy = NULL;
1678 int error;
1680 error = unshare_fd(CLONE_FILES, &copy);
1681 if (error || !copy) {
1682 *displaced = NULL;
1683 return error;
1685 *displaced = task->files;
1686 task_lock(task);
1687 task->files = copy;
1688 task_unlock(task);
1689 return 0;