thinkpad-acpi: cleanup debug helpers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / cifs / file.c
blob042b122b08752ade1dbbf3f6b3efac8ad1647e35
1 /*
2 * fs/cifs/file.c
4 * vfs operations that deal with files
6 * Copyright (C) International Business Machines Corp., 2002,2007
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
10 * This library is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU Lesser General Public License as published
12 * by the Free Software Foundation; either version 2.1 of the License, or
13 * (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
18 * the GNU Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public License
21 * along with this library; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/fs.h>
25 #include <linux/backing-dev.h>
26 #include <linux/stat.h>
27 #include <linux/fcntl.h>
28 #include <linux/pagemap.h>
29 #include <linux/pagevec.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/delay.h>
33 #include <asm/div64.h>
34 #include "cifsfs.h"
35 #include "cifspdu.h"
36 #include "cifsglob.h"
37 #include "cifsproto.h"
38 #include "cifs_unicode.h"
39 #include "cifs_debug.h"
40 #include "cifs_fs_sb.h"
42 static inline struct cifsFileInfo *cifs_init_private(
43 struct cifsFileInfo *private_data, struct inode *inode,
44 struct file *file, __u16 netfid)
46 memset(private_data, 0, sizeof(struct cifsFileInfo));
47 private_data->netfid = netfid;
48 private_data->pid = current->tgid;
49 init_MUTEX(&private_data->fh_sem);
50 mutex_init(&private_data->lock_mutex);
51 INIT_LIST_HEAD(&private_data->llist);
52 private_data->pfile = file; /* needed for writepage */
53 private_data->pInode = inode;
54 private_data->invalidHandle = false;
55 private_data->closePend = false;
56 /* we have to track num writers to the inode, since writepages
57 does not tell us which handle the write is for so there can
58 be a close (overlapping with write) of the filehandle that
59 cifs_writepages chose to use */
60 atomic_set(&private_data->wrtPending, 0);
62 return private_data;
65 static inline int cifs_convert_flags(unsigned int flags)
67 if ((flags & O_ACCMODE) == O_RDONLY)
68 return GENERIC_READ;
69 else if ((flags & O_ACCMODE) == O_WRONLY)
70 return GENERIC_WRITE;
71 else if ((flags & O_ACCMODE) == O_RDWR) {
72 /* GENERIC_ALL is too much permission to request
73 can cause unnecessary access denied on create */
74 /* return GENERIC_ALL; */
75 return (GENERIC_READ | GENERIC_WRITE);
78 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
79 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
80 FILE_READ_DATA);
85 static inline int cifs_get_disposition(unsigned int flags)
87 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
88 return FILE_CREATE;
89 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
90 return FILE_OVERWRITE_IF;
91 else if ((flags & O_CREAT) == O_CREAT)
92 return FILE_OPEN_IF;
93 else if ((flags & O_TRUNC) == O_TRUNC)
94 return FILE_OVERWRITE;
95 else
96 return FILE_OPEN;
99 /* all arguments to this function must be checked for validity in caller */
100 static inline int cifs_open_inode_helper(struct inode *inode, struct file *file,
101 struct cifsInodeInfo *pCifsInode, struct cifsFileInfo *pCifsFile,
102 struct cifsTconInfo *pTcon, int *oplock, FILE_ALL_INFO *buf,
103 char *full_path, int xid)
105 struct timespec temp;
106 int rc;
108 /* want handles we can use to read with first
109 in the list so we do not have to walk the
110 list to search for one in prepare_write */
111 if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
112 list_add_tail(&pCifsFile->flist,
113 &pCifsInode->openFileList);
114 } else {
115 list_add(&pCifsFile->flist,
116 &pCifsInode->openFileList);
118 write_unlock(&GlobalSMBSeslock);
119 if (pCifsInode->clientCanCacheRead) {
120 /* we have the inode open somewhere else
121 no need to discard cache data */
122 goto client_can_cache;
125 /* BB need same check in cifs_create too? */
126 /* if not oplocked, invalidate inode pages if mtime or file
127 size changed */
128 temp = cifs_NTtimeToUnix(le64_to_cpu(buf->LastWriteTime));
129 if (timespec_equal(&file->f_path.dentry->d_inode->i_mtime, &temp) &&
130 (file->f_path.dentry->d_inode->i_size ==
131 (loff_t)le64_to_cpu(buf->EndOfFile))) {
132 cFYI(1, ("inode unchanged on server"));
133 } else {
134 if (file->f_path.dentry->d_inode->i_mapping) {
135 /* BB no need to lock inode until after invalidate
136 since namei code should already have it locked? */
137 rc = filemap_write_and_wait(file->f_path.dentry->d_inode->i_mapping);
138 if (rc != 0)
139 CIFS_I(file->f_path.dentry->d_inode)->write_behind_rc = rc;
141 cFYI(1, ("invalidating remote inode since open detected it "
142 "changed"));
143 invalidate_remote_inode(file->f_path.dentry->d_inode);
146 client_can_cache:
147 if (pTcon->unix_ext)
148 rc = cifs_get_inode_info_unix(&file->f_path.dentry->d_inode,
149 full_path, inode->i_sb, xid);
150 else
151 rc = cifs_get_inode_info(&file->f_path.dentry->d_inode,
152 full_path, buf, inode->i_sb, xid, NULL);
154 if ((*oplock & 0xF) == OPLOCK_EXCLUSIVE) {
155 pCifsInode->clientCanCacheAll = true;
156 pCifsInode->clientCanCacheRead = true;
157 cFYI(1, ("Exclusive Oplock granted on inode %p",
158 file->f_path.dentry->d_inode));
159 } else if ((*oplock & 0xF) == OPLOCK_READ)
160 pCifsInode->clientCanCacheRead = true;
162 return rc;
165 int cifs_open(struct inode *inode, struct file *file)
167 int rc = -EACCES;
168 int xid, oplock;
169 struct cifs_sb_info *cifs_sb;
170 struct cifsTconInfo *pTcon;
171 struct cifsFileInfo *pCifsFile;
172 struct cifsInodeInfo *pCifsInode;
173 struct list_head *tmp;
174 char *full_path = NULL;
175 int desiredAccess;
176 int disposition;
177 __u16 netfid;
178 FILE_ALL_INFO *buf = NULL;
180 xid = GetXid();
182 cifs_sb = CIFS_SB(inode->i_sb);
183 pTcon = cifs_sb->tcon;
185 if (file->f_flags & O_CREAT) {
186 /* search inode for this file and fill in file->private_data */
187 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
188 read_lock(&GlobalSMBSeslock);
189 list_for_each(tmp, &pCifsInode->openFileList) {
190 pCifsFile = list_entry(tmp, struct cifsFileInfo,
191 flist);
192 if ((pCifsFile->pfile == NULL) &&
193 (pCifsFile->pid == current->tgid)) {
194 /* mode set in cifs_create */
196 /* needed for writepage */
197 pCifsFile->pfile = file;
199 file->private_data = pCifsFile;
200 break;
203 read_unlock(&GlobalSMBSeslock);
204 if (file->private_data != NULL) {
205 rc = 0;
206 FreeXid(xid);
207 return rc;
208 } else {
209 if (file->f_flags & O_EXCL)
210 cERROR(1, ("could not find file instance for "
211 "new file %p", file));
215 full_path = build_path_from_dentry(file->f_path.dentry);
216 if (full_path == NULL) {
217 FreeXid(xid);
218 return -ENOMEM;
221 cFYI(1, ("inode = 0x%p file flags are 0x%x for %s",
222 inode, file->f_flags, full_path));
223 desiredAccess = cifs_convert_flags(file->f_flags);
225 /*********************************************************************
226 * open flag mapping table:
228 * POSIX Flag CIFS Disposition
229 * ---------- ----------------
230 * O_CREAT FILE_OPEN_IF
231 * O_CREAT | O_EXCL FILE_CREATE
232 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
233 * O_TRUNC FILE_OVERWRITE
234 * none of the above FILE_OPEN
236 * Note that there is not a direct match between disposition
237 * FILE_SUPERSEDE (ie create whether or not file exists although
238 * O_CREAT | O_TRUNC is similar but truncates the existing
239 * file rather than creating a new file as FILE_SUPERSEDE does
240 * (which uses the attributes / metadata passed in on open call)
242 *? O_SYNC is a reasonable match to CIFS writethrough flag
243 *? and the read write flags match reasonably. O_LARGEFILE
244 *? is irrelevant because largefile support is always used
245 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
246 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
247 *********************************************************************/
249 disposition = cifs_get_disposition(file->f_flags);
251 if (oplockEnabled)
252 oplock = REQ_OPLOCK;
253 else
254 oplock = 0;
256 /* BB pass O_SYNC flag through on file attributes .. BB */
258 /* Also refresh inode by passing in file_info buf returned by SMBOpen
259 and calling get_inode_info with returned buf (at least helps
260 non-Unix server case) */
262 /* BB we can not do this if this is the second open of a file
263 and the first handle has writebehind data, we might be
264 able to simply do a filemap_fdatawrite/filemap_fdatawait first */
265 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
266 if (!buf) {
267 rc = -ENOMEM;
268 goto out;
271 if (cifs_sb->tcon->ses->capabilities & CAP_NT_SMBS)
272 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition,
273 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
274 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
275 & CIFS_MOUNT_MAP_SPECIAL_CHR);
276 else
277 rc = -EIO; /* no NT SMB support fall into legacy open below */
279 if (rc == -EIO) {
280 /* Old server, try legacy style OpenX */
281 rc = SMBLegacyOpen(xid, pTcon, full_path, disposition,
282 desiredAccess, CREATE_NOT_DIR, &netfid, &oplock, buf,
283 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
284 & CIFS_MOUNT_MAP_SPECIAL_CHR);
286 if (rc) {
287 cFYI(1, ("cifs_open returned 0x%x", rc));
288 goto out;
290 file->private_data =
291 kmalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
292 if (file->private_data == NULL) {
293 rc = -ENOMEM;
294 goto out;
296 pCifsFile = cifs_init_private(file->private_data, inode, file, netfid);
297 write_lock(&GlobalSMBSeslock);
298 list_add(&pCifsFile->tlist, &pTcon->openFileList);
300 pCifsInode = CIFS_I(file->f_path.dentry->d_inode);
301 if (pCifsInode) {
302 rc = cifs_open_inode_helper(inode, file, pCifsInode,
303 pCifsFile, pTcon,
304 &oplock, buf, full_path, xid);
305 } else {
306 write_unlock(&GlobalSMBSeslock);
309 if (oplock & CIFS_CREATE_ACTION) {
310 /* time to set mode which we can not set earlier due to
311 problems creating new read-only files */
312 if (pTcon->unix_ext) {
313 struct cifs_unix_set_info_args args = {
314 .mode = inode->i_mode,
315 .uid = NO_CHANGE_64,
316 .gid = NO_CHANGE_64,
317 .ctime = NO_CHANGE_64,
318 .atime = NO_CHANGE_64,
319 .mtime = NO_CHANGE_64,
320 .device = 0,
322 CIFSSMBUnixSetInfo(xid, pTcon, full_path, &args,
323 cifs_sb->local_nls,
324 cifs_sb->mnt_cifs_flags &
325 CIFS_MOUNT_MAP_SPECIAL_CHR);
329 out:
330 kfree(buf);
331 kfree(full_path);
332 FreeXid(xid);
333 return rc;
336 /* Try to reacquire byte range locks that were released when session */
337 /* to server was lost */
338 static int cifs_relock_file(struct cifsFileInfo *cifsFile)
340 int rc = 0;
342 /* BB list all locks open on this file and relock */
344 return rc;
347 static int cifs_reopen_file(struct file *file, bool can_flush)
349 int rc = -EACCES;
350 int xid, oplock;
351 struct cifs_sb_info *cifs_sb;
352 struct cifsTconInfo *pTcon;
353 struct cifsFileInfo *pCifsFile;
354 struct cifsInodeInfo *pCifsInode;
355 struct inode *inode;
356 char *full_path = NULL;
357 int desiredAccess;
358 int disposition = FILE_OPEN;
359 __u16 netfid;
361 if (file->private_data)
362 pCifsFile = (struct cifsFileInfo *)file->private_data;
363 else
364 return -EBADF;
366 xid = GetXid();
367 down(&pCifsFile->fh_sem);
368 if (!pCifsFile->invalidHandle) {
369 up(&pCifsFile->fh_sem);
370 FreeXid(xid);
371 return 0;
374 if (file->f_path.dentry == NULL) {
375 cERROR(1, ("no valid name if dentry freed"));
376 dump_stack();
377 rc = -EBADF;
378 goto reopen_error_exit;
381 inode = file->f_path.dentry->d_inode;
382 if (inode == NULL) {
383 cERROR(1, ("inode not valid"));
384 dump_stack();
385 rc = -EBADF;
386 goto reopen_error_exit;
389 cifs_sb = CIFS_SB(inode->i_sb);
390 pTcon = cifs_sb->tcon;
392 /* can not grab rename sem here because various ops, including
393 those that already have the rename sem can end up causing writepage
394 to get called and if the server was down that means we end up here,
395 and we can never tell if the caller already has the rename_sem */
396 full_path = build_path_from_dentry(file->f_path.dentry);
397 if (full_path == NULL) {
398 rc = -ENOMEM;
399 reopen_error_exit:
400 up(&pCifsFile->fh_sem);
401 FreeXid(xid);
402 return rc;
405 cFYI(1, ("inode = 0x%p file flags 0x%x for %s",
406 inode, file->f_flags, full_path));
407 desiredAccess = cifs_convert_flags(file->f_flags);
409 if (oplockEnabled)
410 oplock = REQ_OPLOCK;
411 else
412 oplock = 0;
414 /* Can not refresh inode by passing in file_info buf to be returned
415 by SMBOpen and then calling get_inode_info with returned buf
416 since file might have write behind data that needs to be flushed
417 and server version of file size can be stale. If we knew for sure
418 that inode was not dirty locally we could do this */
420 rc = CIFSSMBOpen(xid, pTcon, full_path, disposition, desiredAccess,
421 CREATE_NOT_DIR, &netfid, &oplock, NULL,
422 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
423 CIFS_MOUNT_MAP_SPECIAL_CHR);
424 if (rc) {
425 up(&pCifsFile->fh_sem);
426 cFYI(1, ("cifs_open returned 0x%x", rc));
427 cFYI(1, ("oplock: %d", oplock));
428 } else {
429 pCifsFile->netfid = netfid;
430 pCifsFile->invalidHandle = false;
431 up(&pCifsFile->fh_sem);
432 pCifsInode = CIFS_I(inode);
433 if (pCifsInode) {
434 if (can_flush) {
435 rc = filemap_write_and_wait(inode->i_mapping);
436 if (rc != 0)
437 CIFS_I(inode)->write_behind_rc = rc;
438 /* temporarily disable caching while we
439 go to server to get inode info */
440 pCifsInode->clientCanCacheAll = false;
441 pCifsInode->clientCanCacheRead = false;
442 if (pTcon->unix_ext)
443 rc = cifs_get_inode_info_unix(&inode,
444 full_path, inode->i_sb, xid);
445 else
446 rc = cifs_get_inode_info(&inode,
447 full_path, NULL, inode->i_sb,
448 xid, NULL);
449 } /* else we are writing out data to server already
450 and could deadlock if we tried to flush data, and
451 since we do not know if we have data that would
452 invalidate the current end of file on the server
453 we can not go to the server to get the new inod
454 info */
455 if ((oplock & 0xF) == OPLOCK_EXCLUSIVE) {
456 pCifsInode->clientCanCacheAll = true;
457 pCifsInode->clientCanCacheRead = true;
458 cFYI(1, ("Exclusive Oplock granted on inode %p",
459 file->f_path.dentry->d_inode));
460 } else if ((oplock & 0xF) == OPLOCK_READ) {
461 pCifsInode->clientCanCacheRead = true;
462 pCifsInode->clientCanCacheAll = false;
463 } else {
464 pCifsInode->clientCanCacheRead = false;
465 pCifsInode->clientCanCacheAll = false;
467 cifs_relock_file(pCifsFile);
471 kfree(full_path);
472 FreeXid(xid);
473 return rc;
476 int cifs_close(struct inode *inode, struct file *file)
478 int rc = 0;
479 int xid, timeout;
480 struct cifs_sb_info *cifs_sb;
481 struct cifsTconInfo *pTcon;
482 struct cifsFileInfo *pSMBFile =
483 (struct cifsFileInfo *)file->private_data;
485 xid = GetXid();
487 cifs_sb = CIFS_SB(inode->i_sb);
488 pTcon = cifs_sb->tcon;
489 if (pSMBFile) {
490 struct cifsLockInfo *li, *tmp;
492 pSMBFile->closePend = true;
493 if (pTcon) {
494 /* no sense reconnecting to close a file that is
495 already closed */
496 if (!pTcon->need_reconnect) {
497 timeout = 2;
498 while ((atomic_read(&pSMBFile->wrtPending) != 0)
499 && (timeout <= 2048)) {
500 /* Give write a better chance to get to
501 server ahead of the close. We do not
502 want to add a wait_q here as it would
503 increase the memory utilization as
504 the struct would be in each open file,
505 but this should give enough time to
506 clear the socket */
507 cFYI(DBG2,
508 ("close delay, write pending"));
509 msleep(timeout);
510 timeout *= 4;
512 if (atomic_read(&pSMBFile->wrtPending))
513 cERROR(1,
514 ("close with pending writes"));
515 rc = CIFSSMBClose(xid, pTcon,
516 pSMBFile->netfid);
520 /* Delete any outstanding lock records.
521 We'll lose them when the file is closed anyway. */
522 mutex_lock(&pSMBFile->lock_mutex);
523 list_for_each_entry_safe(li, tmp, &pSMBFile->llist, llist) {
524 list_del(&li->llist);
525 kfree(li);
527 mutex_unlock(&pSMBFile->lock_mutex);
529 write_lock(&GlobalSMBSeslock);
530 list_del(&pSMBFile->flist);
531 list_del(&pSMBFile->tlist);
532 write_unlock(&GlobalSMBSeslock);
533 timeout = 10;
534 /* We waited above to give the SMBWrite a chance to issue
535 on the wire (so we do not get SMBWrite returning EBADF
536 if writepages is racing with close. Note that writepages
537 does not specify a file handle, so it is possible for a file
538 to be opened twice, and the application close the "wrong"
539 file handle - in these cases we delay long enough to allow
540 the SMBWrite to get on the wire before the SMB Close.
541 We allow total wait here over 45 seconds, more than
542 oplock break time, and more than enough to allow any write
543 to complete on the server, or to time out on the client */
544 while ((atomic_read(&pSMBFile->wrtPending) != 0)
545 && (timeout <= 50000)) {
546 cERROR(1, ("writes pending, delay free of handle"));
547 msleep(timeout);
548 timeout *= 8;
550 kfree(file->private_data);
551 file->private_data = NULL;
552 } else
553 rc = -EBADF;
555 read_lock(&GlobalSMBSeslock);
556 if (list_empty(&(CIFS_I(inode)->openFileList))) {
557 cFYI(1, ("closing last open instance for inode %p", inode));
558 /* if the file is not open we do not know if we can cache info
559 on this inode, much less write behind and read ahead */
560 CIFS_I(inode)->clientCanCacheRead = false;
561 CIFS_I(inode)->clientCanCacheAll = false;
563 read_unlock(&GlobalSMBSeslock);
564 if ((rc == 0) && CIFS_I(inode)->write_behind_rc)
565 rc = CIFS_I(inode)->write_behind_rc;
566 FreeXid(xid);
567 return rc;
570 int cifs_closedir(struct inode *inode, struct file *file)
572 int rc = 0;
573 int xid;
574 struct cifsFileInfo *pCFileStruct =
575 (struct cifsFileInfo *)file->private_data;
576 char *ptmp;
578 cFYI(1, ("Closedir inode = 0x%p", inode));
580 xid = GetXid();
582 if (pCFileStruct) {
583 struct cifsTconInfo *pTcon;
584 struct cifs_sb_info *cifs_sb =
585 CIFS_SB(file->f_path.dentry->d_sb);
587 pTcon = cifs_sb->tcon;
589 cFYI(1, ("Freeing private data in close dir"));
590 if (!pCFileStruct->srch_inf.endOfSearch &&
591 !pCFileStruct->invalidHandle) {
592 pCFileStruct->invalidHandle = true;
593 rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
594 cFYI(1, ("Closing uncompleted readdir with rc %d",
595 rc));
596 /* not much we can do if it fails anyway, ignore rc */
597 rc = 0;
599 ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
600 if (ptmp) {
601 cFYI(1, ("closedir free smb buf in srch struct"));
602 pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
603 if (pCFileStruct->srch_inf.smallBuf)
604 cifs_small_buf_release(ptmp);
605 else
606 cifs_buf_release(ptmp);
608 kfree(file->private_data);
609 file->private_data = NULL;
611 /* BB can we lock the filestruct while this is going on? */
612 FreeXid(xid);
613 return rc;
616 static int store_file_lock(struct cifsFileInfo *fid, __u64 len,
617 __u64 offset, __u8 lockType)
619 struct cifsLockInfo *li =
620 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
621 if (li == NULL)
622 return -ENOMEM;
623 li->offset = offset;
624 li->length = len;
625 li->type = lockType;
626 mutex_lock(&fid->lock_mutex);
627 list_add(&li->llist, &fid->llist);
628 mutex_unlock(&fid->lock_mutex);
629 return 0;
632 int cifs_lock(struct file *file, int cmd, struct file_lock *pfLock)
634 int rc, xid;
635 __u32 numLock = 0;
636 __u32 numUnlock = 0;
637 __u64 length;
638 bool wait_flag = false;
639 struct cifs_sb_info *cifs_sb;
640 struct cifsTconInfo *pTcon;
641 __u16 netfid;
642 __u8 lockType = LOCKING_ANDX_LARGE_FILES;
643 bool posix_locking;
645 length = 1 + pfLock->fl_end - pfLock->fl_start;
646 rc = -EACCES;
647 xid = GetXid();
649 cFYI(1, ("Lock parm: 0x%x flockflags: "
650 "0x%x flocktype: 0x%x start: %lld end: %lld",
651 cmd, pfLock->fl_flags, pfLock->fl_type, pfLock->fl_start,
652 pfLock->fl_end));
654 if (pfLock->fl_flags & FL_POSIX)
655 cFYI(1, ("Posix"));
656 if (pfLock->fl_flags & FL_FLOCK)
657 cFYI(1, ("Flock"));
658 if (pfLock->fl_flags & FL_SLEEP) {
659 cFYI(1, ("Blocking lock"));
660 wait_flag = true;
662 if (pfLock->fl_flags & FL_ACCESS)
663 cFYI(1, ("Process suspended by mandatory locking - "
664 "not implemented yet"));
665 if (pfLock->fl_flags & FL_LEASE)
666 cFYI(1, ("Lease on file - not implemented yet"));
667 if (pfLock->fl_flags &
668 (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
669 cFYI(1, ("Unknown lock flags 0x%x", pfLock->fl_flags));
671 if (pfLock->fl_type == F_WRLCK) {
672 cFYI(1, ("F_WRLCK "));
673 numLock = 1;
674 } else if (pfLock->fl_type == F_UNLCK) {
675 cFYI(1, ("F_UNLCK"));
676 numUnlock = 1;
677 /* Check if unlock includes more than
678 one lock range */
679 } else if (pfLock->fl_type == F_RDLCK) {
680 cFYI(1, ("F_RDLCK"));
681 lockType |= LOCKING_ANDX_SHARED_LOCK;
682 numLock = 1;
683 } else if (pfLock->fl_type == F_EXLCK) {
684 cFYI(1, ("F_EXLCK"));
685 numLock = 1;
686 } else if (pfLock->fl_type == F_SHLCK) {
687 cFYI(1, ("F_SHLCK"));
688 lockType |= LOCKING_ANDX_SHARED_LOCK;
689 numLock = 1;
690 } else
691 cFYI(1, ("Unknown type of lock"));
693 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
694 pTcon = cifs_sb->tcon;
696 if (file->private_data == NULL) {
697 FreeXid(xid);
698 return -EBADF;
700 netfid = ((struct cifsFileInfo *)file->private_data)->netfid;
702 posix_locking = (cifs_sb->tcon->ses->capabilities & CAP_UNIX) &&
703 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(cifs_sb->tcon->fsUnixInfo.Capability));
705 /* BB add code here to normalize offset and length to
706 account for negative length which we can not accept over the
707 wire */
708 if (IS_GETLK(cmd)) {
709 if (posix_locking) {
710 int posix_lock_type;
711 if (lockType & LOCKING_ANDX_SHARED_LOCK)
712 posix_lock_type = CIFS_RDLCK;
713 else
714 posix_lock_type = CIFS_WRLCK;
715 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 1 /* get */,
716 length, pfLock,
717 posix_lock_type, wait_flag);
718 FreeXid(xid);
719 return rc;
722 /* BB we could chain these into one lock request BB */
723 rc = CIFSSMBLock(xid, pTcon, netfid, length, pfLock->fl_start,
724 0, 1, lockType, 0 /* wait flag */ );
725 if (rc == 0) {
726 rc = CIFSSMBLock(xid, pTcon, netfid, length,
727 pfLock->fl_start, 1 /* numUnlock */ ,
728 0 /* numLock */ , lockType,
729 0 /* wait flag */ );
730 pfLock->fl_type = F_UNLCK;
731 if (rc != 0)
732 cERROR(1, ("Error unlocking previously locked "
733 "range %d during test of lock", rc));
734 rc = 0;
736 } else {
737 /* if rc == ERR_SHARING_VIOLATION ? */
738 rc = 0; /* do not change lock type to unlock
739 since range in use */
742 FreeXid(xid);
743 return rc;
746 if (!numLock && !numUnlock) {
747 /* if no lock or unlock then nothing
748 to do since we do not know what it is */
749 FreeXid(xid);
750 return -EOPNOTSUPP;
753 if (posix_locking) {
754 int posix_lock_type;
755 if (lockType & LOCKING_ANDX_SHARED_LOCK)
756 posix_lock_type = CIFS_RDLCK;
757 else
758 posix_lock_type = CIFS_WRLCK;
760 if (numUnlock == 1)
761 posix_lock_type = CIFS_UNLCK;
763 rc = CIFSSMBPosixLock(xid, pTcon, netfid, 0 /* set */,
764 length, pfLock,
765 posix_lock_type, wait_flag);
766 } else {
767 struct cifsFileInfo *fid =
768 (struct cifsFileInfo *)file->private_data;
770 if (numLock) {
771 rc = CIFSSMBLock(xid, pTcon, netfid, length,
772 pfLock->fl_start,
773 0, numLock, lockType, wait_flag);
775 if (rc == 0) {
776 /* For Windows locks we must store them. */
777 rc = store_file_lock(fid, length,
778 pfLock->fl_start, lockType);
780 } else if (numUnlock) {
781 /* For each stored lock that this unlock overlaps
782 completely, unlock it. */
783 int stored_rc = 0;
784 struct cifsLockInfo *li, *tmp;
786 rc = 0;
787 mutex_lock(&fid->lock_mutex);
788 list_for_each_entry_safe(li, tmp, &fid->llist, llist) {
789 if (pfLock->fl_start <= li->offset &&
790 (pfLock->fl_start + length) >=
791 (li->offset + li->length)) {
792 stored_rc = CIFSSMBLock(xid, pTcon,
793 netfid,
794 li->length, li->offset,
795 1, 0, li->type, false);
796 if (stored_rc)
797 rc = stored_rc;
799 list_del(&li->llist);
800 kfree(li);
803 mutex_unlock(&fid->lock_mutex);
807 if (pfLock->fl_flags & FL_POSIX)
808 posix_lock_file_wait(file, pfLock);
809 FreeXid(xid);
810 return rc;
813 ssize_t cifs_user_write(struct file *file, const char __user *write_data,
814 size_t write_size, loff_t *poffset)
816 int rc = 0;
817 unsigned int bytes_written = 0;
818 unsigned int total_written;
819 struct cifs_sb_info *cifs_sb;
820 struct cifsTconInfo *pTcon;
821 int xid, long_op;
822 struct cifsFileInfo *open_file;
824 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
826 pTcon = cifs_sb->tcon;
828 /* cFYI(1,
829 (" write %d bytes to offset %lld of %s", write_size,
830 *poffset, file->f_path.dentry->d_name.name)); */
832 if (file->private_data == NULL)
833 return -EBADF;
834 open_file = (struct cifsFileInfo *) file->private_data;
836 rc = generic_write_checks(file, poffset, &write_size, 0);
837 if (rc)
838 return rc;
840 xid = GetXid();
842 if (*poffset > file->f_path.dentry->d_inode->i_size)
843 long_op = CIFS_VLONG_OP; /* writes past EOF take long time */
844 else
845 long_op = CIFS_LONG_OP;
847 for (total_written = 0; write_size > total_written;
848 total_written += bytes_written) {
849 rc = -EAGAIN;
850 while (rc == -EAGAIN) {
851 if (file->private_data == NULL) {
852 /* file has been closed on us */
853 FreeXid(xid);
854 /* if we have gotten here we have written some data
855 and blocked, and the file has been freed on us while
856 we blocked so return what we managed to write */
857 return total_written;
859 if (open_file->closePend) {
860 FreeXid(xid);
861 if (total_written)
862 return total_written;
863 else
864 return -EBADF;
866 if (open_file->invalidHandle) {
867 /* we could deadlock if we called
868 filemap_fdatawait from here so tell
869 reopen_file not to flush data to server
870 now */
871 rc = cifs_reopen_file(file, false);
872 if (rc != 0)
873 break;
876 rc = CIFSSMBWrite(xid, pTcon,
877 open_file->netfid,
878 min_t(const int, cifs_sb->wsize,
879 write_size - total_written),
880 *poffset, &bytes_written,
881 NULL, write_data + total_written, long_op);
883 if (rc || (bytes_written == 0)) {
884 if (total_written)
885 break;
886 else {
887 FreeXid(xid);
888 return rc;
890 } else
891 *poffset += bytes_written;
892 long_op = CIFS_STD_OP; /* subsequent writes fast -
893 15 seconds is plenty */
896 cifs_stats_bytes_written(pTcon, total_written);
898 /* since the write may have blocked check these pointers again */
899 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
900 struct inode *inode = file->f_path.dentry->d_inode;
901 /* Do not update local mtime - server will set its actual value on write
902 * inode->i_ctime = inode->i_mtime =
903 * current_fs_time(inode->i_sb);*/
904 if (total_written > 0) {
905 spin_lock(&inode->i_lock);
906 if (*poffset > file->f_path.dentry->d_inode->i_size)
907 i_size_write(file->f_path.dentry->d_inode,
908 *poffset);
909 spin_unlock(&inode->i_lock);
911 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
913 FreeXid(xid);
914 return total_written;
917 static ssize_t cifs_write(struct file *file, const char *write_data,
918 size_t write_size, loff_t *poffset)
920 int rc = 0;
921 unsigned int bytes_written = 0;
922 unsigned int total_written;
923 struct cifs_sb_info *cifs_sb;
924 struct cifsTconInfo *pTcon;
925 int xid, long_op;
926 struct cifsFileInfo *open_file;
928 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
930 pTcon = cifs_sb->tcon;
932 cFYI(1, ("write %zd bytes to offset %lld of %s", write_size,
933 *poffset, file->f_path.dentry->d_name.name));
935 if (file->private_data == NULL)
936 return -EBADF;
937 open_file = (struct cifsFileInfo *)file->private_data;
939 xid = GetXid();
941 if (*poffset > file->f_path.dentry->d_inode->i_size)
942 long_op = CIFS_VLONG_OP; /* writes past EOF can be slow */
943 else
944 long_op = CIFS_LONG_OP;
946 for (total_written = 0; write_size > total_written;
947 total_written += bytes_written) {
948 rc = -EAGAIN;
949 while (rc == -EAGAIN) {
950 if (file->private_data == NULL) {
951 /* file has been closed on us */
952 FreeXid(xid);
953 /* if we have gotten here we have written some data
954 and blocked, and the file has been freed on us
955 while we blocked so return what we managed to
956 write */
957 return total_written;
959 if (open_file->closePend) {
960 FreeXid(xid);
961 if (total_written)
962 return total_written;
963 else
964 return -EBADF;
966 if (open_file->invalidHandle) {
967 /* we could deadlock if we called
968 filemap_fdatawait from here so tell
969 reopen_file not to flush data to
970 server now */
971 rc = cifs_reopen_file(file, false);
972 if (rc != 0)
973 break;
975 if (experimEnabled || (pTcon->ses->server &&
976 ((pTcon->ses->server->secMode &
977 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
978 == 0))) {
979 struct kvec iov[2];
980 unsigned int len;
982 len = min((size_t)cifs_sb->wsize,
983 write_size - total_written);
984 /* iov[0] is reserved for smb header */
985 iov[1].iov_base = (char *)write_data +
986 total_written;
987 iov[1].iov_len = len;
988 rc = CIFSSMBWrite2(xid, pTcon,
989 open_file->netfid, len,
990 *poffset, &bytes_written,
991 iov, 1, long_op);
992 } else
993 rc = CIFSSMBWrite(xid, pTcon,
994 open_file->netfid,
995 min_t(const int, cifs_sb->wsize,
996 write_size - total_written),
997 *poffset, &bytes_written,
998 write_data + total_written,
999 NULL, long_op);
1001 if (rc || (bytes_written == 0)) {
1002 if (total_written)
1003 break;
1004 else {
1005 FreeXid(xid);
1006 return rc;
1008 } else
1009 *poffset += bytes_written;
1010 long_op = CIFS_STD_OP; /* subsequent writes fast -
1011 15 seconds is plenty */
1014 cifs_stats_bytes_written(pTcon, total_written);
1016 /* since the write may have blocked check these pointers again */
1017 if ((file->f_path.dentry) && (file->f_path.dentry->d_inode)) {
1018 /*BB We could make this contingent on superblock ATIME flag too */
1019 /* file->f_path.dentry->d_inode->i_ctime =
1020 file->f_path.dentry->d_inode->i_mtime = CURRENT_TIME;*/
1021 if (total_written > 0) {
1022 spin_lock(&file->f_path.dentry->d_inode->i_lock);
1023 if (*poffset > file->f_path.dentry->d_inode->i_size)
1024 i_size_write(file->f_path.dentry->d_inode,
1025 *poffset);
1026 spin_unlock(&file->f_path.dentry->d_inode->i_lock);
1028 mark_inode_dirty_sync(file->f_path.dentry->d_inode);
1030 FreeXid(xid);
1031 return total_written;
1034 #ifdef CONFIG_CIFS_EXPERIMENTAL
1035 struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode)
1037 struct cifsFileInfo *open_file = NULL;
1039 read_lock(&GlobalSMBSeslock);
1040 /* we could simply get the first_list_entry since write-only entries
1041 are always at the end of the list but since the first entry might
1042 have a close pending, we go through the whole list */
1043 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1044 if (open_file->closePend)
1045 continue;
1046 if (open_file->pfile && ((open_file->pfile->f_flags & O_RDWR) ||
1047 (open_file->pfile->f_flags & O_RDONLY))) {
1048 if (!open_file->invalidHandle) {
1049 /* found a good file */
1050 /* lock it so it will not be closed on us */
1051 atomic_inc(&open_file->wrtPending);
1052 read_unlock(&GlobalSMBSeslock);
1053 return open_file;
1054 } /* else might as well continue, and look for
1055 another, or simply have the caller reopen it
1056 again rather than trying to fix this handle */
1057 } else /* write only file */
1058 break; /* write only files are last so must be done */
1060 read_unlock(&GlobalSMBSeslock);
1061 return NULL;
1063 #endif
1065 struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode)
1067 struct cifsFileInfo *open_file;
1068 int rc;
1070 /* Having a null inode here (because mapping->host was set to zero by
1071 the VFS or MM) should not happen but we had reports of on oops (due to
1072 it being zero) during stress testcases so we need to check for it */
1074 if (cifs_inode == NULL) {
1075 cERROR(1, ("Null inode passed to cifs_writeable_file"));
1076 dump_stack();
1077 return NULL;
1080 read_lock(&GlobalSMBSeslock);
1081 refind_writable:
1082 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1083 if (open_file->closePend)
1084 continue;
1085 if (open_file->pfile &&
1086 ((open_file->pfile->f_flags & O_RDWR) ||
1087 (open_file->pfile->f_flags & O_WRONLY))) {
1088 atomic_inc(&open_file->wrtPending);
1090 if (!open_file->invalidHandle) {
1091 /* found a good writable file */
1092 read_unlock(&GlobalSMBSeslock);
1093 return open_file;
1096 read_unlock(&GlobalSMBSeslock);
1097 /* Had to unlock since following call can block */
1098 rc = cifs_reopen_file(open_file->pfile, false);
1099 if (!rc) {
1100 if (!open_file->closePend)
1101 return open_file;
1102 else { /* start over in case this was deleted */
1103 /* since the list could be modified */
1104 read_lock(&GlobalSMBSeslock);
1105 atomic_dec(&open_file->wrtPending);
1106 goto refind_writable;
1110 /* if it fails, try another handle if possible -
1111 (we can not do this if closePending since
1112 loop could be modified - in which case we
1113 have to start at the beginning of the list
1114 again. Note that it would be bad
1115 to hold up writepages here (rather than
1116 in caller) with continuous retries */
1117 cFYI(1, ("wp failed on reopen file"));
1118 read_lock(&GlobalSMBSeslock);
1119 /* can not use this handle, no write
1120 pending on this one after all */
1121 atomic_dec(&open_file->wrtPending);
1123 if (open_file->closePend) /* list could have changed */
1124 goto refind_writable;
1125 /* else we simply continue to the next entry. Thus
1126 we do not loop on reopen errors. If we
1127 can not reopen the file, for example if we
1128 reconnected to a server with another client
1129 racing to delete or lock the file we would not
1130 make progress if we restarted before the beginning
1131 of the loop here. */
1134 read_unlock(&GlobalSMBSeslock);
1135 return NULL;
1138 static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1140 struct address_space *mapping = page->mapping;
1141 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1142 char *write_data;
1143 int rc = -EFAULT;
1144 int bytes_written = 0;
1145 struct cifs_sb_info *cifs_sb;
1146 struct cifsTconInfo *pTcon;
1147 struct inode *inode;
1148 struct cifsFileInfo *open_file;
1150 if (!mapping || !mapping->host)
1151 return -EFAULT;
1153 inode = page->mapping->host;
1154 cifs_sb = CIFS_SB(inode->i_sb);
1155 pTcon = cifs_sb->tcon;
1157 offset += (loff_t)from;
1158 write_data = kmap(page);
1159 write_data += from;
1161 if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1162 kunmap(page);
1163 return -EIO;
1166 /* racing with truncate? */
1167 if (offset > mapping->host->i_size) {
1168 kunmap(page);
1169 return 0; /* don't care */
1172 /* check to make sure that we are not extending the file */
1173 if (mapping->host->i_size - offset < (loff_t)to)
1174 to = (unsigned)(mapping->host->i_size - offset);
1176 open_file = find_writable_file(CIFS_I(mapping->host));
1177 if (open_file) {
1178 bytes_written = cifs_write(open_file->pfile, write_data,
1179 to-from, &offset);
1180 atomic_dec(&open_file->wrtPending);
1181 /* Does mm or vfs already set times? */
1182 inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1183 if ((bytes_written > 0) && (offset))
1184 rc = 0;
1185 else if (bytes_written < 0)
1186 rc = bytes_written;
1187 } else {
1188 cFYI(1, ("No writeable filehandles for inode"));
1189 rc = -EIO;
1192 kunmap(page);
1193 return rc;
1196 static int cifs_writepages(struct address_space *mapping,
1197 struct writeback_control *wbc)
1199 struct backing_dev_info *bdi = mapping->backing_dev_info;
1200 unsigned int bytes_to_write;
1201 unsigned int bytes_written;
1202 struct cifs_sb_info *cifs_sb;
1203 int done = 0;
1204 pgoff_t end;
1205 pgoff_t index;
1206 int range_whole = 0;
1207 struct kvec *iov;
1208 int len;
1209 int n_iov = 0;
1210 pgoff_t next;
1211 int nr_pages;
1212 __u64 offset = 0;
1213 struct cifsFileInfo *open_file;
1214 struct page *page;
1215 struct pagevec pvec;
1216 int rc = 0;
1217 int scanned = 0;
1218 int xid;
1220 cifs_sb = CIFS_SB(mapping->host->i_sb);
1223 * If wsize is smaller that the page cache size, default to writing
1224 * one page at a time via cifs_writepage
1226 if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1227 return generic_writepages(mapping, wbc);
1229 if ((cifs_sb->tcon->ses) && (cifs_sb->tcon->ses->server))
1230 if (cifs_sb->tcon->ses->server->secMode &
1231 (SECMODE_SIGN_REQUIRED | SECMODE_SIGN_ENABLED))
1232 if (!experimEnabled)
1233 return generic_writepages(mapping, wbc);
1235 iov = kmalloc(32 * sizeof(struct kvec), GFP_KERNEL);
1236 if (iov == NULL)
1237 return generic_writepages(mapping, wbc);
1241 * BB: Is this meaningful for a non-block-device file system?
1242 * If it is, we should test it again after we do I/O
1244 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1245 wbc->encountered_congestion = 1;
1246 kfree(iov);
1247 return 0;
1250 xid = GetXid();
1252 pagevec_init(&pvec, 0);
1253 if (wbc->range_cyclic) {
1254 index = mapping->writeback_index; /* Start from prev offset */
1255 end = -1;
1256 } else {
1257 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1258 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1259 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1260 range_whole = 1;
1261 scanned = 1;
1263 retry:
1264 while (!done && (index <= end) &&
1265 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1266 PAGECACHE_TAG_DIRTY,
1267 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1))) {
1268 int first;
1269 unsigned int i;
1271 first = -1;
1272 next = 0;
1273 n_iov = 0;
1274 bytes_to_write = 0;
1276 for (i = 0; i < nr_pages; i++) {
1277 page = pvec.pages[i];
1279 * At this point we hold neither mapping->tree_lock nor
1280 * lock on the page itself: the page may be truncated or
1281 * invalidated (changing page->mapping to NULL), or even
1282 * swizzled back from swapper_space to tmpfs file
1283 * mapping
1286 if (first < 0)
1287 lock_page(page);
1288 else if (!trylock_page(page))
1289 break;
1291 if (unlikely(page->mapping != mapping)) {
1292 unlock_page(page);
1293 break;
1296 if (!wbc->range_cyclic && page->index > end) {
1297 done = 1;
1298 unlock_page(page);
1299 break;
1302 if (next && (page->index != next)) {
1303 /* Not next consecutive page */
1304 unlock_page(page);
1305 break;
1308 if (wbc->sync_mode != WB_SYNC_NONE)
1309 wait_on_page_writeback(page);
1311 if (PageWriteback(page) ||
1312 !clear_page_dirty_for_io(page)) {
1313 unlock_page(page);
1314 break;
1318 * This actually clears the dirty bit in the radix tree.
1319 * See cifs_writepage() for more commentary.
1321 set_page_writeback(page);
1323 if (page_offset(page) >= mapping->host->i_size) {
1324 done = 1;
1325 unlock_page(page);
1326 end_page_writeback(page);
1327 break;
1331 * BB can we get rid of this? pages are held by pvec
1333 page_cache_get(page);
1335 len = min(mapping->host->i_size - page_offset(page),
1336 (loff_t)PAGE_CACHE_SIZE);
1338 /* reserve iov[0] for the smb header */
1339 n_iov++;
1340 iov[n_iov].iov_base = kmap(page);
1341 iov[n_iov].iov_len = len;
1342 bytes_to_write += len;
1344 if (first < 0) {
1345 first = i;
1346 offset = page_offset(page);
1348 next = page->index + 1;
1349 if (bytes_to_write + PAGE_CACHE_SIZE > cifs_sb->wsize)
1350 break;
1352 if (n_iov) {
1353 /* Search for a writable handle every time we call
1354 * CIFSSMBWrite2. We can't rely on the last handle
1355 * we used to still be valid
1357 open_file = find_writable_file(CIFS_I(mapping->host));
1358 if (!open_file) {
1359 cERROR(1, ("No writable handles for inode"));
1360 rc = -EBADF;
1361 } else {
1362 rc = CIFSSMBWrite2(xid, cifs_sb->tcon,
1363 open_file->netfid,
1364 bytes_to_write, offset,
1365 &bytes_written, iov, n_iov,
1366 CIFS_LONG_OP);
1367 atomic_dec(&open_file->wrtPending);
1368 if (rc || bytes_written < bytes_to_write) {
1369 cERROR(1, ("Write2 ret %d, wrote %d",
1370 rc, bytes_written));
1371 /* BB what if continued retry is
1372 requested via mount flags? */
1373 if (rc == -ENOSPC)
1374 set_bit(AS_ENOSPC, &mapping->flags);
1375 else
1376 set_bit(AS_EIO, &mapping->flags);
1377 } else {
1378 cifs_stats_bytes_written(cifs_sb->tcon,
1379 bytes_written);
1382 for (i = 0; i < n_iov; i++) {
1383 page = pvec.pages[first + i];
1384 /* Should we also set page error on
1385 success rc but too little data written? */
1386 /* BB investigate retry logic on temporary
1387 server crash cases and how recovery works
1388 when page marked as error */
1389 if (rc)
1390 SetPageError(page);
1391 kunmap(page);
1392 unlock_page(page);
1393 end_page_writeback(page);
1394 page_cache_release(page);
1396 if ((wbc->nr_to_write -= n_iov) <= 0)
1397 done = 1;
1398 index = next;
1399 } else
1400 /* Need to re-find the pages we skipped */
1401 index = pvec.pages[0]->index + 1;
1403 pagevec_release(&pvec);
1405 if (!scanned && !done) {
1407 * We hit the last page and there is more work to be done: wrap
1408 * back to the start of the file
1410 scanned = 1;
1411 index = 0;
1412 goto retry;
1414 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1415 mapping->writeback_index = index;
1417 FreeXid(xid);
1418 kfree(iov);
1419 return rc;
1422 static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1424 int rc = -EFAULT;
1425 int xid;
1427 xid = GetXid();
1428 /* BB add check for wbc flags */
1429 page_cache_get(page);
1430 if (!PageUptodate(page))
1431 cFYI(1, ("ppw - page not up to date"));
1434 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1436 * A writepage() implementation always needs to do either this,
1437 * or re-dirty the page with "redirty_page_for_writepage()" in
1438 * the case of a failure.
1440 * Just unlocking the page will cause the radix tree tag-bits
1441 * to fail to update with the state of the page correctly.
1443 set_page_writeback(page);
1444 rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1445 SetPageUptodate(page); /* BB add check for error and Clearuptodate? */
1446 unlock_page(page);
1447 end_page_writeback(page);
1448 page_cache_release(page);
1449 FreeXid(xid);
1450 return rc;
1453 static int cifs_commit_write(struct file *file, struct page *page,
1454 unsigned offset, unsigned to)
1456 int xid;
1457 int rc = 0;
1458 struct inode *inode = page->mapping->host;
1459 loff_t position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1460 char *page_data;
1462 xid = GetXid();
1463 cFYI(1, ("commit write for page %p up to position %lld for %d",
1464 page, position, to));
1465 spin_lock(&inode->i_lock);
1466 if (position > inode->i_size)
1467 i_size_write(inode, position);
1469 spin_unlock(&inode->i_lock);
1470 if (!PageUptodate(page)) {
1471 position = ((loff_t)page->index << PAGE_CACHE_SHIFT) + offset;
1472 /* can not rely on (or let) writepage write this data */
1473 if (to < offset) {
1474 cFYI(1, ("Illegal offsets, can not copy from %d to %d",
1475 offset, to));
1476 FreeXid(xid);
1477 return rc;
1479 /* this is probably better than directly calling
1480 partialpage_write since in this function the file handle is
1481 known which we might as well leverage */
1482 /* BB check if anything else missing out of ppw
1483 such as updating last write time */
1484 page_data = kmap(page);
1485 rc = cifs_write(file, page_data + offset, to-offset,
1486 &position);
1487 if (rc > 0)
1488 rc = 0;
1489 /* else if (rc < 0) should we set writebehind rc? */
1490 kunmap(page);
1491 } else {
1492 set_page_dirty(page);
1495 FreeXid(xid);
1496 return rc;
1499 int cifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1501 int xid;
1502 int rc = 0;
1503 struct inode *inode = file->f_path.dentry->d_inode;
1505 xid = GetXid();
1507 cFYI(1, ("Sync file - name: %s datasync: 0x%x",
1508 dentry->d_name.name, datasync));
1510 rc = filemap_write_and_wait(inode->i_mapping);
1511 if (rc == 0) {
1512 rc = CIFS_I(inode)->write_behind_rc;
1513 CIFS_I(inode)->write_behind_rc = 0;
1515 FreeXid(xid);
1516 return rc;
1519 /* static void cifs_sync_page(struct page *page)
1521 struct address_space *mapping;
1522 struct inode *inode;
1523 unsigned long index = page->index;
1524 unsigned int rpages = 0;
1525 int rc = 0;
1527 cFYI(1, ("sync page %p",page));
1528 mapping = page->mapping;
1529 if (!mapping)
1530 return 0;
1531 inode = mapping->host;
1532 if (!inode)
1533 return; */
1535 /* fill in rpages then
1536 result = cifs_pagein_inode(inode, index, rpages); */ /* BB finish */
1538 /* cFYI(1, ("rpages is %d for sync page of Index %ld", rpages, index));
1540 #if 0
1541 if (rc < 0)
1542 return rc;
1543 return 0;
1544 #endif
1545 } */
1548 * As file closes, flush all cached write data for this inode checking
1549 * for write behind errors.
1551 int cifs_flush(struct file *file, fl_owner_t id)
1553 struct inode *inode = file->f_path.dentry->d_inode;
1554 int rc = 0;
1556 /* Rather than do the steps manually:
1557 lock the inode for writing
1558 loop through pages looking for write behind data (dirty pages)
1559 coalesce into contiguous 16K (or smaller) chunks to write to server
1560 send to server (prefer in parallel)
1561 deal with writebehind errors
1562 unlock inode for writing
1563 filemapfdatawrite appears easier for the time being */
1565 rc = filemap_fdatawrite(inode->i_mapping);
1566 /* reset wb rc if we were able to write out dirty pages */
1567 if (!rc) {
1568 rc = CIFS_I(inode)->write_behind_rc;
1569 CIFS_I(inode)->write_behind_rc = 0;
1572 cFYI(1, ("Flush inode %p file %p rc %d", inode, file, rc));
1574 return rc;
1577 ssize_t cifs_user_read(struct file *file, char __user *read_data,
1578 size_t read_size, loff_t *poffset)
1580 int rc = -EACCES;
1581 unsigned int bytes_read = 0;
1582 unsigned int total_read = 0;
1583 unsigned int current_read_size;
1584 struct cifs_sb_info *cifs_sb;
1585 struct cifsTconInfo *pTcon;
1586 int xid;
1587 struct cifsFileInfo *open_file;
1588 char *smb_read_data;
1589 char __user *current_offset;
1590 struct smb_com_read_rsp *pSMBr;
1592 xid = GetXid();
1593 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1594 pTcon = cifs_sb->tcon;
1596 if (file->private_data == NULL) {
1597 FreeXid(xid);
1598 return -EBADF;
1600 open_file = (struct cifsFileInfo *)file->private_data;
1602 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1603 cFYI(1, ("attempting read on write only file instance"));
1605 for (total_read = 0, current_offset = read_data;
1606 read_size > total_read;
1607 total_read += bytes_read, current_offset += bytes_read) {
1608 current_read_size = min_t(const int, read_size - total_read,
1609 cifs_sb->rsize);
1610 rc = -EAGAIN;
1611 smb_read_data = NULL;
1612 while (rc == -EAGAIN) {
1613 int buf_type = CIFS_NO_BUFFER;
1614 if ((open_file->invalidHandle) &&
1615 (!open_file->closePend)) {
1616 rc = cifs_reopen_file(file, true);
1617 if (rc != 0)
1618 break;
1620 rc = CIFSSMBRead(xid, pTcon,
1621 open_file->netfid,
1622 current_read_size, *poffset,
1623 &bytes_read, &smb_read_data,
1624 &buf_type);
1625 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1626 if (smb_read_data) {
1627 if (copy_to_user(current_offset,
1628 smb_read_data +
1629 4 /* RFC1001 length field */ +
1630 le16_to_cpu(pSMBr->DataOffset),
1631 bytes_read))
1632 rc = -EFAULT;
1634 if (buf_type == CIFS_SMALL_BUFFER)
1635 cifs_small_buf_release(smb_read_data);
1636 else if (buf_type == CIFS_LARGE_BUFFER)
1637 cifs_buf_release(smb_read_data);
1638 smb_read_data = NULL;
1641 if (rc || (bytes_read == 0)) {
1642 if (total_read) {
1643 break;
1644 } else {
1645 FreeXid(xid);
1646 return rc;
1648 } else {
1649 cifs_stats_bytes_read(pTcon, bytes_read);
1650 *poffset += bytes_read;
1653 FreeXid(xid);
1654 return total_read;
1658 static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
1659 loff_t *poffset)
1661 int rc = -EACCES;
1662 unsigned int bytes_read = 0;
1663 unsigned int total_read;
1664 unsigned int current_read_size;
1665 struct cifs_sb_info *cifs_sb;
1666 struct cifsTconInfo *pTcon;
1667 int xid;
1668 char *current_offset;
1669 struct cifsFileInfo *open_file;
1670 int buf_type = CIFS_NO_BUFFER;
1672 xid = GetXid();
1673 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1674 pTcon = cifs_sb->tcon;
1676 if (file->private_data == NULL) {
1677 FreeXid(xid);
1678 return -EBADF;
1680 open_file = (struct cifsFileInfo *)file->private_data;
1682 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
1683 cFYI(1, ("attempting read on write only file instance"));
1685 for (total_read = 0, current_offset = read_data;
1686 read_size > total_read;
1687 total_read += bytes_read, current_offset += bytes_read) {
1688 current_read_size = min_t(const int, read_size - total_read,
1689 cifs_sb->rsize);
1690 /* For windows me and 9x we do not want to request more
1691 than it negotiated since it will refuse the read then */
1692 if ((pTcon->ses) &&
1693 !(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
1694 current_read_size = min_t(const int, current_read_size,
1695 pTcon->ses->server->maxBuf - 128);
1697 rc = -EAGAIN;
1698 while (rc == -EAGAIN) {
1699 if ((open_file->invalidHandle) &&
1700 (!open_file->closePend)) {
1701 rc = cifs_reopen_file(file, true);
1702 if (rc != 0)
1703 break;
1705 rc = CIFSSMBRead(xid, pTcon,
1706 open_file->netfid,
1707 current_read_size, *poffset,
1708 &bytes_read, &current_offset,
1709 &buf_type);
1711 if (rc || (bytes_read == 0)) {
1712 if (total_read) {
1713 break;
1714 } else {
1715 FreeXid(xid);
1716 return rc;
1718 } else {
1719 cifs_stats_bytes_read(pTcon, total_read);
1720 *poffset += bytes_read;
1723 FreeXid(xid);
1724 return total_read;
1727 int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1729 struct dentry *dentry = file->f_path.dentry;
1730 int rc, xid;
1732 xid = GetXid();
1733 rc = cifs_revalidate(dentry);
1734 if (rc) {
1735 cFYI(1, ("Validation prior to mmap failed, error=%d", rc));
1736 FreeXid(xid);
1737 return rc;
1739 rc = generic_file_mmap(file, vma);
1740 FreeXid(xid);
1741 return rc;
1745 static void cifs_copy_cache_pages(struct address_space *mapping,
1746 struct list_head *pages, int bytes_read, char *data,
1747 struct pagevec *plru_pvec)
1749 struct page *page;
1750 char *target;
1752 while (bytes_read > 0) {
1753 if (list_empty(pages))
1754 break;
1756 page = list_entry(pages->prev, struct page, lru);
1757 list_del(&page->lru);
1759 if (add_to_page_cache(page, mapping, page->index,
1760 GFP_KERNEL)) {
1761 page_cache_release(page);
1762 cFYI(1, ("Add page cache failed"));
1763 data += PAGE_CACHE_SIZE;
1764 bytes_read -= PAGE_CACHE_SIZE;
1765 continue;
1768 target = kmap_atomic(page, KM_USER0);
1770 if (PAGE_CACHE_SIZE > bytes_read) {
1771 memcpy(target, data, bytes_read);
1772 /* zero the tail end of this partial page */
1773 memset(target + bytes_read, 0,
1774 PAGE_CACHE_SIZE - bytes_read);
1775 bytes_read = 0;
1776 } else {
1777 memcpy(target, data, PAGE_CACHE_SIZE);
1778 bytes_read -= PAGE_CACHE_SIZE;
1780 kunmap_atomic(target, KM_USER0);
1782 flush_dcache_page(page);
1783 SetPageUptodate(page);
1784 unlock_page(page);
1785 if (!pagevec_add(plru_pvec, page))
1786 __pagevec_lru_add(plru_pvec);
1787 data += PAGE_CACHE_SIZE;
1789 return;
1792 static int cifs_readpages(struct file *file, struct address_space *mapping,
1793 struct list_head *page_list, unsigned num_pages)
1795 int rc = -EACCES;
1796 int xid;
1797 loff_t offset;
1798 struct page *page;
1799 struct cifs_sb_info *cifs_sb;
1800 struct cifsTconInfo *pTcon;
1801 unsigned int bytes_read = 0;
1802 unsigned int read_size, i;
1803 char *smb_read_data = NULL;
1804 struct smb_com_read_rsp *pSMBr;
1805 struct pagevec lru_pvec;
1806 struct cifsFileInfo *open_file;
1807 int buf_type = CIFS_NO_BUFFER;
1809 xid = GetXid();
1810 if (file->private_data == NULL) {
1811 FreeXid(xid);
1812 return -EBADF;
1814 open_file = (struct cifsFileInfo *)file->private_data;
1815 cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1816 pTcon = cifs_sb->tcon;
1818 pagevec_init(&lru_pvec, 0);
1819 cFYI(DBG2, ("rpages: num pages %d", num_pages));
1820 for (i = 0; i < num_pages; ) {
1821 unsigned contig_pages;
1822 struct page *tmp_page;
1823 unsigned long expected_index;
1825 if (list_empty(page_list))
1826 break;
1828 page = list_entry(page_list->prev, struct page, lru);
1829 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1831 /* count adjacent pages that we will read into */
1832 contig_pages = 0;
1833 expected_index =
1834 list_entry(page_list->prev, struct page, lru)->index;
1835 list_for_each_entry_reverse(tmp_page, page_list, lru) {
1836 if (tmp_page->index == expected_index) {
1837 contig_pages++;
1838 expected_index++;
1839 } else
1840 break;
1842 if (contig_pages + i > num_pages)
1843 contig_pages = num_pages - i;
1845 /* for reads over a certain size could initiate async
1846 read ahead */
1848 read_size = contig_pages * PAGE_CACHE_SIZE;
1849 /* Read size needs to be in multiples of one page */
1850 read_size = min_t(const unsigned int, read_size,
1851 cifs_sb->rsize & PAGE_CACHE_MASK);
1852 cFYI(DBG2, ("rpages: read size 0x%x contiguous pages %d",
1853 read_size, contig_pages));
1854 rc = -EAGAIN;
1855 while (rc == -EAGAIN) {
1856 if ((open_file->invalidHandle) &&
1857 (!open_file->closePend)) {
1858 rc = cifs_reopen_file(file, true);
1859 if (rc != 0)
1860 break;
1863 rc = CIFSSMBRead(xid, pTcon,
1864 open_file->netfid,
1865 read_size, offset,
1866 &bytes_read, &smb_read_data,
1867 &buf_type);
1868 /* BB more RC checks ? */
1869 if (rc == -EAGAIN) {
1870 if (smb_read_data) {
1871 if (buf_type == CIFS_SMALL_BUFFER)
1872 cifs_small_buf_release(smb_read_data);
1873 else if (buf_type == CIFS_LARGE_BUFFER)
1874 cifs_buf_release(smb_read_data);
1875 smb_read_data = NULL;
1879 if ((rc < 0) || (smb_read_data == NULL)) {
1880 cFYI(1, ("Read error in readpages: %d", rc));
1881 break;
1882 } else if (bytes_read > 0) {
1883 task_io_account_read(bytes_read);
1884 pSMBr = (struct smb_com_read_rsp *)smb_read_data;
1885 cifs_copy_cache_pages(mapping, page_list, bytes_read,
1886 smb_read_data + 4 /* RFC1001 hdr */ +
1887 le16_to_cpu(pSMBr->DataOffset), &lru_pvec);
1889 i += bytes_read >> PAGE_CACHE_SHIFT;
1890 cifs_stats_bytes_read(pTcon, bytes_read);
1891 if ((bytes_read & PAGE_CACHE_MASK) != bytes_read) {
1892 i++; /* account for partial page */
1894 /* server copy of file can have smaller size
1895 than client */
1896 /* BB do we need to verify this common case ?
1897 this case is ok - if we are at server EOF
1898 we will hit it on next read */
1900 /* break; */
1902 } else {
1903 cFYI(1, ("No bytes read (%d) at offset %lld . "
1904 "Cleaning remaining pages from readahead list",
1905 bytes_read, offset));
1906 /* BB turn off caching and do new lookup on
1907 file size at server? */
1908 break;
1910 if (smb_read_data) {
1911 if (buf_type == CIFS_SMALL_BUFFER)
1912 cifs_small_buf_release(smb_read_data);
1913 else if (buf_type == CIFS_LARGE_BUFFER)
1914 cifs_buf_release(smb_read_data);
1915 smb_read_data = NULL;
1917 bytes_read = 0;
1920 pagevec_lru_add(&lru_pvec);
1922 /* need to free smb_read_data buf before exit */
1923 if (smb_read_data) {
1924 if (buf_type == CIFS_SMALL_BUFFER)
1925 cifs_small_buf_release(smb_read_data);
1926 else if (buf_type == CIFS_LARGE_BUFFER)
1927 cifs_buf_release(smb_read_data);
1928 smb_read_data = NULL;
1931 FreeXid(xid);
1932 return rc;
1935 static int cifs_readpage_worker(struct file *file, struct page *page,
1936 loff_t *poffset)
1938 char *read_data;
1939 int rc;
1941 page_cache_get(page);
1942 read_data = kmap(page);
1943 /* for reads over a certain size could initiate async read ahead */
1945 rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
1947 if (rc < 0)
1948 goto io_error;
1949 else
1950 cFYI(1, ("Bytes read %d", rc));
1952 file->f_path.dentry->d_inode->i_atime =
1953 current_fs_time(file->f_path.dentry->d_inode->i_sb);
1955 if (PAGE_CACHE_SIZE > rc)
1956 memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
1958 flush_dcache_page(page);
1959 SetPageUptodate(page);
1960 rc = 0;
1962 io_error:
1963 kunmap(page);
1964 page_cache_release(page);
1965 return rc;
1968 static int cifs_readpage(struct file *file, struct page *page)
1970 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1971 int rc = -EACCES;
1972 int xid;
1974 xid = GetXid();
1976 if (file->private_data == NULL) {
1977 FreeXid(xid);
1978 return -EBADF;
1981 cFYI(1, ("readpage %p at offset %d 0x%x\n",
1982 page, (int)offset, (int)offset));
1984 rc = cifs_readpage_worker(file, page, &offset);
1986 unlock_page(page);
1988 FreeXid(xid);
1989 return rc;
1992 static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
1994 struct cifsFileInfo *open_file;
1996 read_lock(&GlobalSMBSeslock);
1997 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1998 if (open_file->closePend)
1999 continue;
2000 if (open_file->pfile &&
2001 ((open_file->pfile->f_flags & O_RDWR) ||
2002 (open_file->pfile->f_flags & O_WRONLY))) {
2003 read_unlock(&GlobalSMBSeslock);
2004 return 1;
2007 read_unlock(&GlobalSMBSeslock);
2008 return 0;
2011 /* We do not want to update the file size from server for inodes
2012 open for write - to avoid races with writepage extending
2013 the file - in the future we could consider allowing
2014 refreshing the inode only on increases in the file size
2015 but this is tricky to do without racing with writebehind
2016 page caching in the current Linux kernel design */
2017 bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
2019 if (!cifsInode)
2020 return true;
2022 if (is_inode_writable(cifsInode)) {
2023 /* This inode is open for write at least once */
2024 struct cifs_sb_info *cifs_sb;
2026 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
2027 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
2028 /* since no page cache to corrupt on directio
2029 we can change size safely */
2030 return true;
2033 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
2034 return true;
2036 return false;
2037 } else
2038 return true;
2041 static int cifs_prepare_write(struct file *file, struct page *page,
2042 unsigned from, unsigned to)
2044 int rc = 0;
2045 loff_t i_size;
2046 loff_t offset;
2048 cFYI(1, ("prepare write for page %p from %d to %d", page, from, to));
2049 if (PageUptodate(page))
2050 return 0;
2052 /* If we are writing a full page it will be up to date,
2053 no need to read from the server */
2054 if ((to == PAGE_CACHE_SIZE) && (from == 0)) {
2055 SetPageUptodate(page);
2056 return 0;
2059 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
2060 i_size = i_size_read(page->mapping->host);
2062 if ((offset >= i_size) ||
2063 ((from == 0) && (offset + to) >= i_size)) {
2065 * We don't need to read data beyond the end of the file.
2066 * zero it, and set the page uptodate
2068 simple_prepare_write(file, page, from, to);
2069 SetPageUptodate(page);
2070 } else if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
2071 /* might as well read a page, it is fast enough */
2072 rc = cifs_readpage_worker(file, page, &offset);
2073 } else {
2074 /* we could try using another file handle if there is one -
2075 but how would we lock it to prevent close of that handle
2076 racing with this read? In any case
2077 this will be written out by commit_write so is fine */
2080 /* we do not need to pass errors back
2081 e.g. if we do not have read access to the file
2082 because cifs_commit_write will do the right thing. -- shaggy */
2084 return 0;
2087 const struct address_space_operations cifs_addr_ops = {
2088 .readpage = cifs_readpage,
2089 .readpages = cifs_readpages,
2090 .writepage = cifs_writepage,
2091 .writepages = cifs_writepages,
2092 .prepare_write = cifs_prepare_write,
2093 .commit_write = cifs_commit_write,
2094 .set_page_dirty = __set_page_dirty_nobuffers,
2095 /* .sync_page = cifs_sync_page, */
2096 /* .direct_IO = */
2100 * cifs_readpages requires the server to support a buffer large enough to
2101 * contain the header plus one complete page of data. Otherwise, we need
2102 * to leave cifs_readpages out of the address space operations.
2104 const struct address_space_operations cifs_addr_ops_smallbuf = {
2105 .readpage = cifs_readpage,
2106 .writepage = cifs_writepage,
2107 .writepages = cifs_writepages,
2108 .prepare_write = cifs_prepare_write,
2109 .commit_write = cifs_commit_write,
2110 .set_page_dirty = __set_page_dirty_nobuffers,
2111 /* .sync_page = cifs_sync_page, */
2112 /* .direct_IO = */