ASoC: sta32x: preserve coefficient RAM
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / codecs / sta32x.c
blobd5630aff6a0355ab64ca93a89486507b21d537a5
1 /*
2 * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
4 * Copyright: 2011 Raumfeld GmbH
5 * Author: Johannes Stezenbach <js@sig21.net>
7 * based on code from:
8 * Wolfson Microelectronics PLC.
9 * Mark Brown <broonie@opensource.wolfsonmicro.com>
10 * Freescale Semiconductor, Inc.
11 * Timur Tabi <timur@freescale.com>
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
19 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/pm.h>
26 #include <linux/i2c.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
38 #include "sta32x.h"
40 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
41 SNDRV_PCM_RATE_44100 | \
42 SNDRV_PCM_RATE_48000 | \
43 SNDRV_PCM_RATE_88200 | \
44 SNDRV_PCM_RATE_96000 | \
45 SNDRV_PCM_RATE_176400 | \
46 SNDRV_PCM_RATE_192000)
48 #define STA32X_FORMATS \
49 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
50 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
52 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
53 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
54 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
56 /* Power-up register defaults */
57 static const u8 sta32x_regs[STA32X_REGISTER_COUNT] = {
58 0x63, 0x80, 0xc2, 0x40, 0xc2, 0x5c, 0x10, 0xff, 0x60, 0x60,
59 0x60, 0x80, 0x00, 0x00, 0x00, 0x40, 0x80, 0x77, 0x6a, 0x69,
60 0x6a, 0x69, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
61 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d,
62 0xc0, 0xf3, 0x33, 0x00, 0x0c,
65 /* regulator power supply names */
66 static const char *sta32x_supply_names[] = {
67 "Vdda", /* analog supply, 3.3VV */
68 "Vdd3", /* digital supply, 3.3V */
69 "Vcc" /* power amp spply, 10V - 36V */
72 /* codec private data */
73 struct sta32x_priv {
74 struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
75 struct snd_soc_codec *codec;
77 unsigned int mclk;
78 unsigned int format;
80 u32 coef_shadow[STA32X_COEF_COUNT];
83 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
84 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
85 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
87 static const char *sta32x_drc_ac[] = {
88 "Anti-Clipping", "Dynamic Range Compression" };
89 static const char *sta32x_auto_eq_mode[] = {
90 "User", "Preset", "Loudness" };
91 static const char *sta32x_auto_gc_mode[] = {
92 "User", "AC no clipping", "AC limited clipping (10%)",
93 "DRC nighttime listening mode" };
94 static const char *sta32x_auto_xo_mode[] = {
95 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
96 "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
97 static const char *sta32x_preset_eq_mode[] = {
98 "Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
99 "Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
100 "Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
101 "Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
102 "Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
103 "Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
104 static const char *sta32x_limiter_select[] = {
105 "Limiter Disabled", "Limiter #1", "Limiter #2" };
106 static const char *sta32x_limiter_attack_rate[] = {
107 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
108 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
109 "0.0645", "0.0564", "0.0501", "0.0451" };
110 static const char *sta32x_limiter_release_rate[] = {
111 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
112 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
113 "0.0134", "0.0117", "0.0110", "0.0104" };
115 static const unsigned int sta32x_limiter_ac_attack_tlv[] = {
116 TLV_DB_RANGE_HEAD(2),
117 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
118 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
121 static const unsigned int sta32x_limiter_ac_release_tlv[] = {
122 TLV_DB_RANGE_HEAD(5),
123 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
124 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
125 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
126 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
127 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
130 static const unsigned int sta32x_limiter_drc_attack_tlv[] = {
131 TLV_DB_RANGE_HEAD(3),
132 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
133 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
134 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
137 static const unsigned int sta32x_limiter_drc_release_tlv[] = {
138 TLV_DB_RANGE_HEAD(5),
139 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
140 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
141 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
142 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
143 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
146 static const struct soc_enum sta32x_drc_ac_enum =
147 SOC_ENUM_SINGLE(STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
148 2, sta32x_drc_ac);
149 static const struct soc_enum sta32x_auto_eq_enum =
150 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
151 3, sta32x_auto_eq_mode);
152 static const struct soc_enum sta32x_auto_gc_enum =
153 SOC_ENUM_SINGLE(STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
154 4, sta32x_auto_gc_mode);
155 static const struct soc_enum sta32x_auto_xo_enum =
156 SOC_ENUM_SINGLE(STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
157 16, sta32x_auto_xo_mode);
158 static const struct soc_enum sta32x_preset_eq_enum =
159 SOC_ENUM_SINGLE(STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
160 32, sta32x_preset_eq_mode);
161 static const struct soc_enum sta32x_limiter_ch1_enum =
162 SOC_ENUM_SINGLE(STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
163 3, sta32x_limiter_select);
164 static const struct soc_enum sta32x_limiter_ch2_enum =
165 SOC_ENUM_SINGLE(STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
166 3, sta32x_limiter_select);
167 static const struct soc_enum sta32x_limiter_ch3_enum =
168 SOC_ENUM_SINGLE(STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
169 3, sta32x_limiter_select);
170 static const struct soc_enum sta32x_limiter1_attack_rate_enum =
171 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxA_SHIFT,
172 16, sta32x_limiter_attack_rate);
173 static const struct soc_enum sta32x_limiter2_attack_rate_enum =
174 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxA_SHIFT,
175 16, sta32x_limiter_attack_rate);
176 static const struct soc_enum sta32x_limiter1_release_rate_enum =
177 SOC_ENUM_SINGLE(STA32X_L1AR, STA32X_LxR_SHIFT,
178 16, sta32x_limiter_release_rate);
179 static const struct soc_enum sta32x_limiter2_release_rate_enum =
180 SOC_ENUM_SINGLE(STA32X_L2AR, STA32X_LxR_SHIFT,
181 16, sta32x_limiter_release_rate);
183 /* byte array controls for setting biquad, mixer, scaling coefficients;
184 * for biquads all five coefficients need to be set in one go,
185 * mixer and pre/postscale coefs can be set individually;
186 * each coef is 24bit, the bytes are ordered in the same way
187 * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
190 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
191 struct snd_ctl_elem_info *uinfo)
193 int numcoef = kcontrol->private_value >> 16;
194 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
195 uinfo->count = 3 * numcoef;
196 return 0;
199 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
200 struct snd_ctl_elem_value *ucontrol)
202 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
203 int numcoef = kcontrol->private_value >> 16;
204 int index = kcontrol->private_value & 0xffff;
205 unsigned int cfud;
206 int i;
208 /* preserve reserved bits in STA32X_CFUD */
209 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
210 /* chip documentation does not say if the bits are self clearing,
211 * so do it explicitly */
212 snd_soc_write(codec, STA32X_CFUD, cfud);
214 snd_soc_write(codec, STA32X_CFADDR2, index);
215 if (numcoef == 1)
216 snd_soc_write(codec, STA32X_CFUD, cfud | 0x04);
217 else if (numcoef == 5)
218 snd_soc_write(codec, STA32X_CFUD, cfud | 0x08);
219 else
220 return -EINVAL;
221 for (i = 0; i < 3 * numcoef; i++)
222 ucontrol->value.bytes.data[i] =
223 snd_soc_read(codec, STA32X_B1CF1 + i);
225 return 0;
228 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
229 struct snd_ctl_elem_value *ucontrol)
231 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
232 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
233 int numcoef = kcontrol->private_value >> 16;
234 int index = kcontrol->private_value & 0xffff;
235 unsigned int cfud;
236 int i;
238 /* preserve reserved bits in STA32X_CFUD */
239 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
240 /* chip documentation does not say if the bits are self clearing,
241 * so do it explicitly */
242 snd_soc_write(codec, STA32X_CFUD, cfud);
244 snd_soc_write(codec, STA32X_CFADDR2, index);
245 for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
246 sta32x->coef_shadow[index + i] =
247 (ucontrol->value.bytes.data[3 * i] << 16)
248 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
249 | (ucontrol->value.bytes.data[3 * i + 2]);
250 for (i = 0; i < 3 * numcoef; i++)
251 snd_soc_write(codec, STA32X_B1CF1 + i,
252 ucontrol->value.bytes.data[i]);
253 if (numcoef == 1)
254 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
255 else if (numcoef == 5)
256 snd_soc_write(codec, STA32X_CFUD, cfud | 0x02);
257 else
258 return -EINVAL;
260 return 0;
263 int sta32x_sync_coef_shadow(struct snd_soc_codec *codec)
265 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
266 unsigned int cfud;
267 int i;
269 /* preserve reserved bits in STA32X_CFUD */
270 cfud = snd_soc_read(codec, STA32X_CFUD) & 0xf0;
272 for (i = 0; i < STA32X_COEF_COUNT; i++) {
273 snd_soc_write(codec, STA32X_CFADDR2, i);
274 snd_soc_write(codec, STA32X_B1CF1,
275 (sta32x->coef_shadow[i] >> 16) & 0xff);
276 snd_soc_write(codec, STA32X_B1CF2,
277 (sta32x->coef_shadow[i] >> 8) & 0xff);
278 snd_soc_write(codec, STA32X_B1CF3,
279 (sta32x->coef_shadow[i]) & 0xff);
280 /* chip documentation does not say if the bits are
281 * self-clearing, so do it explicitly */
282 snd_soc_write(codec, STA32X_CFUD, cfud);
283 snd_soc_write(codec, STA32X_CFUD, cfud | 0x01);
285 return 0;
288 int sta32x_cache_sync(struct snd_soc_codec *codec)
290 unsigned int mute;
291 int rc;
293 if (!codec->cache_sync)
294 return 0;
296 /* mute during register sync */
297 mute = snd_soc_read(codec, STA32X_MMUTE);
298 snd_soc_write(codec, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
299 sta32x_sync_coef_shadow(codec);
300 rc = snd_soc_cache_sync(codec);
301 snd_soc_write(codec, STA32X_MMUTE, mute);
302 return rc;
305 #define SINGLE_COEF(xname, index) \
306 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
307 .info = sta32x_coefficient_info, \
308 .get = sta32x_coefficient_get,\
309 .put = sta32x_coefficient_put, \
310 .private_value = index | (1 << 16) }
312 #define BIQUAD_COEFS(xname, index) \
313 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
314 .info = sta32x_coefficient_info, \
315 .get = sta32x_coefficient_get,\
316 .put = sta32x_coefficient_put, \
317 .private_value = index | (5 << 16) }
319 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
320 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
321 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
322 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
323 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
324 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
325 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
326 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
327 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
328 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
329 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
330 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
331 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
332 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
333 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
334 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
335 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
336 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
337 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
338 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
339 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
340 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
341 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
342 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
343 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
344 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
345 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
346 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
347 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
348 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
349 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
350 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
351 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
352 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
353 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
355 /* depending on mode, the attack/release thresholds have
356 * two different enum definitions; provide both
358 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
359 16, 0, sta32x_limiter_ac_attack_tlv),
360 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
361 16, 0, sta32x_limiter_ac_attack_tlv),
362 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
363 16, 0, sta32x_limiter_ac_release_tlv),
364 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
365 16, 0, sta32x_limiter_ac_release_tlv),
366 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
367 16, 0, sta32x_limiter_drc_attack_tlv),
368 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
369 16, 0, sta32x_limiter_drc_attack_tlv),
370 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
371 16, 0, sta32x_limiter_drc_release_tlv),
372 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
373 16, 0, sta32x_limiter_drc_release_tlv),
375 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
376 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
377 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
378 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
379 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
380 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
381 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
382 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
383 BIQUAD_COEFS("High-pass", 40),
384 BIQUAD_COEFS("Low-pass", 45),
385 SINGLE_COEF("Ch1 - Prescale", 50),
386 SINGLE_COEF("Ch2 - Prescale", 51),
387 SINGLE_COEF("Ch1 - Postscale", 52),
388 SINGLE_COEF("Ch2 - Postscale", 53),
389 SINGLE_COEF("Ch3 - Postscale", 54),
390 SINGLE_COEF("Thermal warning - Postscale", 55),
391 SINGLE_COEF("Ch1 - Mix 1", 56),
392 SINGLE_COEF("Ch1 - Mix 2", 57),
393 SINGLE_COEF("Ch2 - Mix 1", 58),
394 SINGLE_COEF("Ch2 - Mix 2", 59),
395 SINGLE_COEF("Ch3 - Mix 1", 60),
396 SINGLE_COEF("Ch3 - Mix 2", 61),
399 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
400 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
401 SND_SOC_DAPM_OUTPUT("LEFT"),
402 SND_SOC_DAPM_OUTPUT("RIGHT"),
403 SND_SOC_DAPM_OUTPUT("SUB"),
406 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
407 { "LEFT", NULL, "DAC" },
408 { "RIGHT", NULL, "DAC" },
409 { "SUB", NULL, "DAC" },
412 /* MCLK interpolation ratio per fs */
413 static struct {
414 int fs;
415 int ir;
416 } interpolation_ratios[] = {
417 { 32000, 0 },
418 { 44100, 0 },
419 { 48000, 0 },
420 { 88200, 1 },
421 { 96000, 1 },
422 { 176400, 2 },
423 { 192000, 2 },
426 /* MCLK to fs clock ratios */
427 static struct {
428 int ratio;
429 int mcs;
430 } mclk_ratios[3][7] = {
431 { { 768, 0 }, { 512, 1 }, { 384, 2 }, { 256, 3 },
432 { 128, 4 }, { 576, 5 }, { 0, 0 } },
433 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
434 { { 384, 2 }, { 256, 3 }, { 192, 4 }, { 128, 5 }, {64, 0 }, { 0, 0 } },
439 * sta32x_set_dai_sysclk - configure MCLK
440 * @codec_dai: the codec DAI
441 * @clk_id: the clock ID (ignored)
442 * @freq: the MCLK input frequency
443 * @dir: the clock direction (ignored)
445 * The value of MCLK is used to determine which sample rates are supported
446 * by the STA32X, based on the mclk_ratios table.
448 * This function must be called by the machine driver's 'startup' function,
449 * otherwise the list of supported sample rates will not be available in
450 * time for ALSA.
452 * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
453 * theoretically possible sample rates to be enabled. Call it again with a
454 * proper value set one the external clock is set (most probably you would do
455 * that from a machine's driver 'hw_param' hook.
457 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
458 int clk_id, unsigned int freq, int dir)
460 struct snd_soc_codec *codec = codec_dai->codec;
461 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
462 int i, j, ir, fs;
463 unsigned int rates = 0;
464 unsigned int rate_min = -1;
465 unsigned int rate_max = 0;
467 pr_debug("mclk=%u\n", freq);
468 sta32x->mclk = freq;
470 if (sta32x->mclk) {
471 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
472 ir = interpolation_ratios[i].ir;
473 fs = interpolation_ratios[i].fs;
474 for (j = 0; mclk_ratios[ir][j].ratio; j++) {
475 if (mclk_ratios[ir][j].ratio * fs == freq) {
476 rates |= snd_pcm_rate_to_rate_bit(fs);
477 if (fs < rate_min)
478 rate_min = fs;
479 if (fs > rate_max)
480 rate_max = fs;
484 /* FIXME: soc should support a rate list */
485 rates &= ~SNDRV_PCM_RATE_KNOT;
487 if (!rates) {
488 dev_err(codec->dev, "could not find a valid sample rate\n");
489 return -EINVAL;
491 } else {
492 /* enable all possible rates */
493 rates = STA32X_RATES;
494 rate_min = 32000;
495 rate_max = 192000;
498 codec_dai->driver->playback.rates = rates;
499 codec_dai->driver->playback.rate_min = rate_min;
500 codec_dai->driver->playback.rate_max = rate_max;
501 return 0;
505 * sta32x_set_dai_fmt - configure the codec for the selected audio format
506 * @codec_dai: the codec DAI
507 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
509 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
510 * codec accordingly.
512 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
513 unsigned int fmt)
515 struct snd_soc_codec *codec = codec_dai->codec;
516 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
517 u8 confb = snd_soc_read(codec, STA32X_CONFB);
519 pr_debug("\n");
520 confb &= ~(STA32X_CONFB_C1IM | STA32X_CONFB_C2IM);
522 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
523 case SND_SOC_DAIFMT_CBS_CFS:
524 break;
525 default:
526 return -EINVAL;
529 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
530 case SND_SOC_DAIFMT_I2S:
531 case SND_SOC_DAIFMT_RIGHT_J:
532 case SND_SOC_DAIFMT_LEFT_J:
533 sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
534 break;
535 default:
536 return -EINVAL;
539 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
540 case SND_SOC_DAIFMT_NB_NF:
541 confb |= STA32X_CONFB_C2IM;
542 break;
543 case SND_SOC_DAIFMT_NB_IF:
544 confb |= STA32X_CONFB_C1IM;
545 break;
546 default:
547 return -EINVAL;
550 snd_soc_write(codec, STA32X_CONFB, confb);
551 return 0;
555 * sta32x_hw_params - program the STA32X with the given hardware parameters.
556 * @substream: the audio stream
557 * @params: the hardware parameters to set
558 * @dai: the SOC DAI (ignored)
560 * This function programs the hardware with the values provided.
561 * Specifically, the sample rate and the data format.
563 static int sta32x_hw_params(struct snd_pcm_substream *substream,
564 struct snd_pcm_hw_params *params,
565 struct snd_soc_dai *dai)
567 struct snd_soc_pcm_runtime *rtd = substream->private_data;
568 struct snd_soc_codec *codec = rtd->codec;
569 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
570 unsigned int rate;
571 int i, mcs = -1, ir = -1;
572 u8 confa, confb;
574 rate = params_rate(params);
575 pr_debug("rate: %u\n", rate);
576 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++)
577 if (interpolation_ratios[i].fs == rate)
578 ir = interpolation_ratios[i].ir;
579 if (ir < 0)
580 return -EINVAL;
581 for (i = 0; mclk_ratios[ir][i].ratio; i++)
582 if (mclk_ratios[ir][i].ratio * rate == sta32x->mclk)
583 mcs = mclk_ratios[ir][i].mcs;
584 if (mcs < 0)
585 return -EINVAL;
587 confa = snd_soc_read(codec, STA32X_CONFA);
588 confa &= ~(STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK);
589 confa |= (ir << STA32X_CONFA_IR_SHIFT) | (mcs << STA32X_CONFA_MCS_SHIFT);
591 confb = snd_soc_read(codec, STA32X_CONFB);
592 confb &= ~(STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB);
593 switch (params_format(params)) {
594 case SNDRV_PCM_FORMAT_S24_LE:
595 case SNDRV_PCM_FORMAT_S24_BE:
596 case SNDRV_PCM_FORMAT_S24_3LE:
597 case SNDRV_PCM_FORMAT_S24_3BE:
598 pr_debug("24bit\n");
599 /* fall through */
600 case SNDRV_PCM_FORMAT_S32_LE:
601 case SNDRV_PCM_FORMAT_S32_BE:
602 pr_debug("24bit or 32bit\n");
603 switch (sta32x->format) {
604 case SND_SOC_DAIFMT_I2S:
605 confb |= 0x0;
606 break;
607 case SND_SOC_DAIFMT_LEFT_J:
608 confb |= 0x1;
609 break;
610 case SND_SOC_DAIFMT_RIGHT_J:
611 confb |= 0x2;
612 break;
615 break;
616 case SNDRV_PCM_FORMAT_S20_3LE:
617 case SNDRV_PCM_FORMAT_S20_3BE:
618 pr_debug("20bit\n");
619 switch (sta32x->format) {
620 case SND_SOC_DAIFMT_I2S:
621 confb |= 0x4;
622 break;
623 case SND_SOC_DAIFMT_LEFT_J:
624 confb |= 0x5;
625 break;
626 case SND_SOC_DAIFMT_RIGHT_J:
627 confb |= 0x6;
628 break;
631 break;
632 case SNDRV_PCM_FORMAT_S18_3LE:
633 case SNDRV_PCM_FORMAT_S18_3BE:
634 pr_debug("18bit\n");
635 switch (sta32x->format) {
636 case SND_SOC_DAIFMT_I2S:
637 confb |= 0x8;
638 break;
639 case SND_SOC_DAIFMT_LEFT_J:
640 confb |= 0x9;
641 break;
642 case SND_SOC_DAIFMT_RIGHT_J:
643 confb |= 0xa;
644 break;
647 break;
648 case SNDRV_PCM_FORMAT_S16_LE:
649 case SNDRV_PCM_FORMAT_S16_BE:
650 pr_debug("16bit\n");
651 switch (sta32x->format) {
652 case SND_SOC_DAIFMT_I2S:
653 confb |= 0x0;
654 break;
655 case SND_SOC_DAIFMT_LEFT_J:
656 confb |= 0xd;
657 break;
658 case SND_SOC_DAIFMT_RIGHT_J:
659 confb |= 0xe;
660 break;
663 break;
664 default:
665 return -EINVAL;
668 snd_soc_write(codec, STA32X_CONFA, confa);
669 snd_soc_write(codec, STA32X_CONFB, confb);
670 return 0;
674 * sta32x_set_bias_level - DAPM callback
675 * @codec: the codec device
676 * @level: DAPM power level
678 * This is called by ALSA to put the codec into low power mode
679 * or to wake it up. If the codec is powered off completely
680 * all registers must be restored after power on.
682 static int sta32x_set_bias_level(struct snd_soc_codec *codec,
683 enum snd_soc_bias_level level)
685 int ret;
686 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
688 pr_debug("level = %d\n", level);
689 switch (level) {
690 case SND_SOC_BIAS_ON:
691 break;
693 case SND_SOC_BIAS_PREPARE:
694 /* Full power on */
695 snd_soc_update_bits(codec, STA32X_CONFF,
696 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
697 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
698 break;
700 case SND_SOC_BIAS_STANDBY:
701 if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
702 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
703 sta32x->supplies);
704 if (ret != 0) {
705 dev_err(codec->dev,
706 "Failed to enable supplies: %d\n", ret);
707 return ret;
710 sta32x_cache_sync(codec);
713 /* Power up to mute */
714 /* FIXME */
715 snd_soc_update_bits(codec, STA32X_CONFF,
716 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
717 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
719 break;
721 case SND_SOC_BIAS_OFF:
722 /* The chip runs through the power down sequence for us. */
723 snd_soc_update_bits(codec, STA32X_CONFF,
724 STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
725 STA32X_CONFF_PWDN);
726 msleep(300);
728 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
729 sta32x->supplies);
730 break;
732 codec->dapm.bias_level = level;
733 return 0;
736 static struct snd_soc_dai_ops sta32x_dai_ops = {
737 .hw_params = sta32x_hw_params,
738 .set_sysclk = sta32x_set_dai_sysclk,
739 .set_fmt = sta32x_set_dai_fmt,
742 static struct snd_soc_dai_driver sta32x_dai = {
743 .name = "STA32X",
744 .playback = {
745 .stream_name = "Playback",
746 .channels_min = 2,
747 .channels_max = 2,
748 .rates = STA32X_RATES,
749 .formats = STA32X_FORMATS,
751 .ops = &sta32x_dai_ops,
754 #ifdef CONFIG_PM
755 static int sta32x_suspend(struct snd_soc_codec *codec, pm_message_t state)
757 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
758 return 0;
761 static int sta32x_resume(struct snd_soc_codec *codec)
763 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
764 return 0;
766 #else
767 #define sta32x_suspend NULL
768 #define sta32x_resume NULL
769 #endif
771 static int sta32x_probe(struct snd_soc_codec *codec)
773 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
774 int i, ret = 0;
776 sta32x->codec = codec;
778 /* regulators */
779 for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
780 sta32x->supplies[i].supply = sta32x_supply_names[i];
782 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sta32x->supplies),
783 sta32x->supplies);
784 if (ret != 0) {
785 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
786 goto err;
789 ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
790 sta32x->supplies);
791 if (ret != 0) {
792 dev_err(codec->dev, "Failed to enable supplies: %d\n", ret);
793 goto err_get;
796 /* Tell ASoC what kind of I/O to use to read the registers. ASoC will
797 * then do the I2C transactions itself.
799 ret = snd_soc_codec_set_cache_io(codec, 8, 8, SND_SOC_I2C);
800 if (ret < 0) {
801 dev_err(codec->dev, "failed to set cache I/O (ret=%i)\n", ret);
802 return ret;
805 /* read reg reset values into cache */
806 for (i = 0; i < STA32X_REGISTER_COUNT; i++)
807 snd_soc_cache_write(codec, i, sta32x_regs[i]);
809 /* preserve reset values of reserved register bits */
810 snd_soc_cache_write(codec, STA32X_CONFC,
811 codec->hw_read(codec, STA32X_CONFC));
812 snd_soc_cache_write(codec, STA32X_CONFE,
813 codec->hw_read(codec, STA32X_CONFE));
814 snd_soc_cache_write(codec, STA32X_CONFF,
815 codec->hw_read(codec, STA32X_CONFF));
816 snd_soc_cache_write(codec, STA32X_MMUTE,
817 codec->hw_read(codec, STA32X_MMUTE));
818 snd_soc_cache_write(codec, STA32X_AUTO1,
819 codec->hw_read(codec, STA32X_AUTO1));
820 snd_soc_cache_write(codec, STA32X_AUTO3,
821 codec->hw_read(codec, STA32X_AUTO3));
822 snd_soc_cache_write(codec, STA32X_C3CFG,
823 codec->hw_read(codec, STA32X_C3CFG));
825 /* FIXME enable thermal warning adjustment and recovery */
826 snd_soc_update_bits(codec, STA32X_CONFA,
827 STA32X_CONFA_TWAB | STA32X_CONFA_TWRB, 0);
829 /* FIXME select 2.1 mode */
830 snd_soc_update_bits(codec, STA32X_CONFF,
831 STA32X_CONFF_OCFG_MASK,
832 1 << STA32X_CONFF_OCFG_SHIFT);
834 /* FIXME channel to output mapping */
835 snd_soc_update_bits(codec, STA32X_C1CFG,
836 STA32X_CxCFG_OM_MASK,
837 0 << STA32X_CxCFG_OM_SHIFT);
838 snd_soc_update_bits(codec, STA32X_C2CFG,
839 STA32X_CxCFG_OM_MASK,
840 1 << STA32X_CxCFG_OM_SHIFT);
841 snd_soc_update_bits(codec, STA32X_C3CFG,
842 STA32X_CxCFG_OM_MASK,
843 2 << STA32X_CxCFG_OM_SHIFT);
845 /* initialize coefficient shadow RAM with reset values */
846 for (i = 4; i <= 49; i += 5)
847 sta32x->coef_shadow[i] = 0x400000;
848 for (i = 50; i <= 54; i++)
849 sta32x->coef_shadow[i] = 0x7fffff;
850 sta32x->coef_shadow[55] = 0x5a9df7;
851 sta32x->coef_shadow[56] = 0x7fffff;
852 sta32x->coef_shadow[59] = 0x7fffff;
853 sta32x->coef_shadow[60] = 0x400000;
854 sta32x->coef_shadow[61] = 0x400000;
856 sta32x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
857 /* Bias level configuration will have done an extra enable */
858 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
860 return 0;
862 err_get:
863 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
864 err:
865 return ret;
868 static int sta32x_remove(struct snd_soc_codec *codec)
870 struct sta32x_priv *sta32x = snd_soc_codec_get_drvdata(codec);
872 regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
873 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
875 return 0;
878 static int sta32x_reg_is_volatile(struct snd_soc_codec *codec,
879 unsigned int reg)
881 switch (reg) {
882 case STA32X_CONFA ... STA32X_L2ATRT:
883 case STA32X_MPCC1 ... STA32X_FDRC2:
884 return 0;
886 return 1;
889 static const struct snd_soc_codec_driver sta32x_codec = {
890 .probe = sta32x_probe,
891 .remove = sta32x_remove,
892 .suspend = sta32x_suspend,
893 .resume = sta32x_resume,
894 .reg_cache_size = STA32X_REGISTER_COUNT,
895 .reg_word_size = sizeof(u8),
896 .volatile_register = sta32x_reg_is_volatile,
897 .set_bias_level = sta32x_set_bias_level,
898 .controls = sta32x_snd_controls,
899 .num_controls = ARRAY_SIZE(sta32x_snd_controls),
900 .dapm_widgets = sta32x_dapm_widgets,
901 .num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
902 .dapm_routes = sta32x_dapm_routes,
903 .num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
906 static __devinit int sta32x_i2c_probe(struct i2c_client *i2c,
907 const struct i2c_device_id *id)
909 struct sta32x_priv *sta32x;
910 int ret;
912 sta32x = kzalloc(sizeof(struct sta32x_priv), GFP_KERNEL);
913 if (!sta32x)
914 return -ENOMEM;
916 i2c_set_clientdata(i2c, sta32x);
918 ret = snd_soc_register_codec(&i2c->dev, &sta32x_codec, &sta32x_dai, 1);
919 if (ret != 0) {
920 dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
921 kfree(sta32x);
922 return ret;
925 return 0;
928 static __devexit int sta32x_i2c_remove(struct i2c_client *client)
930 struct sta32x_priv *sta32x = i2c_get_clientdata(client);
931 struct snd_soc_codec *codec = sta32x->codec;
933 if (codec)
934 sta32x_set_bias_level(codec, SND_SOC_BIAS_OFF);
936 regulator_bulk_free(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
938 if (codec) {
939 snd_soc_unregister_codec(&client->dev);
940 snd_soc_codec_set_drvdata(codec, NULL);
943 kfree(sta32x);
944 return 0;
947 static const struct i2c_device_id sta32x_i2c_id[] = {
948 { "sta326", 0 },
949 { "sta328", 0 },
950 { "sta329", 0 },
953 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
955 static struct i2c_driver sta32x_i2c_driver = {
956 .driver = {
957 .name = "sta32x",
958 .owner = THIS_MODULE,
960 .probe = sta32x_i2c_probe,
961 .remove = __devexit_p(sta32x_i2c_remove),
962 .id_table = sta32x_i2c_id,
965 static int __init sta32x_init(void)
967 return i2c_add_driver(&sta32x_i2c_driver);
969 module_init(sta32x_init);
971 static void __exit sta32x_exit(void)
973 i2c_del_driver(&sta32x_i2c_driver);
975 module_exit(sta32x_exit);
977 MODULE_DESCRIPTION("ASoC STA32X driver");
978 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
979 MODULE_LICENSE("GPL");