2 * Xilinx SystemACE device driver
4 * Copyright 2007 Secret Lab Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
12 * The SystemACE chip is designed to configure FPGAs by loading an FPGA
13 * bitstream from a file on a CF card and squirting it into FPGAs connected
14 * to the SystemACE JTAG chain. It also has the advantage of providing an
15 * MPU interface which can be used to control the FPGA configuration process
16 * and to use the attached CF card for general purpose storage.
18 * This driver is a block device driver for the SystemACE.
21 * The driver registers itself as a platform_device driver at module
22 * load time. The platform bus will take care of calling the
23 * ace_probe() method for all SystemACE instances in the system. Any
24 * number of SystemACE instances are supported. ace_probe() calls
25 * ace_setup() which initialized all data structures, reads the CF
26 * id structure and registers the device.
29 * Just about all of the heavy lifting in this driver is performed by
30 * a Finite State Machine (FSM). The driver needs to wait on a number
31 * of events; some raised by interrupts, some which need to be polled
32 * for. Describing all of the behaviour in a FSM seems to be the
33 * easiest way to keep the complexity low and make it easy to
34 * understand what the driver is doing. If the block ops or the
35 * request function need to interact with the hardware, then they
36 * simply need to flag the request and kick of FSM processing.
38 * The FSM itself is atomic-safe code which can be run from any
39 * context. The general process flow is:
40 * 1. obtain the ace->lock spinlock.
41 * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
43 * 3. release the lock.
45 * Individual states do not sleep in any way. If a condition needs to
46 * be waited for then the state much clear the fsm_continue flag and
47 * either schedule the FSM to be run again at a later time, or expect
48 * an interrupt to call the FSM when the desired condition is met.
50 * In normal operation, the FSM is processed at interrupt context
51 * either when the driver's tasklet is scheduled, or when an irq is
52 * raised by the hardware. The tasklet can be scheduled at any time.
53 * The request method in particular schedules the tasklet when a new
54 * request has been indicated by the block layer. Once started, the
55 * FSM proceeds as far as it can processing the request until it
56 * needs on a hardware event. At this point, it must yield execution.
58 * A state has two options when yielding execution:
60 * - Call if need to poll for event.
61 * - clears the fsm_continue flag to exit the processing loop
62 * - reschedules the tasklet to run again as soon as possible
63 * 2. ace_fsm_yieldirq()
64 * - Call if an irq is expected from the HW
65 * - clears the fsm_continue flag to exit the processing loop
66 * - does not reschedule the tasklet so the FSM will not be processed
67 * again until an irq is received.
68 * After calling a yield function, the state must return control back
69 * to the FSM main loop.
71 * Additionally, the driver maintains a kernel timer which can process
72 * the FSM. If the FSM gets stalled, typically due to a missed
73 * interrupt, then the kernel timer will expire and the driver can
74 * continue where it left off.
77 * - Add FPGA configuration control interface.
78 * - Request major number from lanana
83 #include <linux/module.h>
84 #include <linux/ctype.h>
85 #include <linux/init.h>
86 #include <linux/interrupt.h>
87 #include <linux/errno.h>
88 #include <linux/kernel.h>
89 #include <linux/delay.h>
90 #include <linux/slab.h>
91 #include <linux/blkdev.h>
92 #include <linux/smp_lock.h>
93 #include <linux/ata.h>
94 #include <linux/hdreg.h>
95 #include <linux/platform_device.h>
96 #if defined(CONFIG_OF)
97 #include <linux/of_address.h>
98 #include <linux/of_device.h>
99 #include <linux/of_platform.h>
102 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
103 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
104 MODULE_LICENSE("GPL");
106 /* SystemACE register definitions */
107 #define ACE_BUSMODE (0x00)
109 #define ACE_STATUS (0x04)
110 #define ACE_STATUS_CFGLOCK (0x00000001)
111 #define ACE_STATUS_MPULOCK (0x00000002)
112 #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
113 #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
114 #define ACE_STATUS_CFDETECT (0x00000010)
115 #define ACE_STATUS_DATABUFRDY (0x00000020)
116 #define ACE_STATUS_DATABUFMODE (0x00000040)
117 #define ACE_STATUS_CFGDONE (0x00000080)
118 #define ACE_STATUS_RDYFORCFCMD (0x00000100)
119 #define ACE_STATUS_CFGMODEPIN (0x00000200)
120 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
121 #define ACE_STATUS_CFBSY (0x00020000)
122 #define ACE_STATUS_CFRDY (0x00040000)
123 #define ACE_STATUS_CFDWF (0x00080000)
124 #define ACE_STATUS_CFDSC (0x00100000)
125 #define ACE_STATUS_CFDRQ (0x00200000)
126 #define ACE_STATUS_CFCORR (0x00400000)
127 #define ACE_STATUS_CFERR (0x00800000)
129 #define ACE_ERROR (0x08)
130 #define ACE_CFGLBA (0x0c)
131 #define ACE_MPULBA (0x10)
133 #define ACE_SECCNTCMD (0x14)
134 #define ACE_SECCNTCMD_RESET (0x0100)
135 #define ACE_SECCNTCMD_IDENTIFY (0x0200)
136 #define ACE_SECCNTCMD_READ_DATA (0x0300)
137 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
138 #define ACE_SECCNTCMD_ABORT (0x0600)
140 #define ACE_VERSION (0x16)
141 #define ACE_VERSION_REVISION_MASK (0x00FF)
142 #define ACE_VERSION_MINOR_MASK (0x0F00)
143 #define ACE_VERSION_MAJOR_MASK (0xF000)
145 #define ACE_CTRL (0x18)
146 #define ACE_CTRL_FORCELOCKREQ (0x0001)
147 #define ACE_CTRL_LOCKREQ (0x0002)
148 #define ACE_CTRL_FORCECFGADDR (0x0004)
149 #define ACE_CTRL_FORCECFGMODE (0x0008)
150 #define ACE_CTRL_CFGMODE (0x0010)
151 #define ACE_CTRL_CFGSTART (0x0020)
152 #define ACE_CTRL_CFGSEL (0x0040)
153 #define ACE_CTRL_CFGRESET (0x0080)
154 #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
155 #define ACE_CTRL_ERRORIRQ (0x0200)
156 #define ACE_CTRL_CFGDONEIRQ (0x0400)
157 #define ACE_CTRL_RESETIRQ (0x0800)
158 #define ACE_CTRL_CFGPROG (0x1000)
159 #define ACE_CTRL_CFGADDR_MASK (0xe000)
161 #define ACE_FATSTAT (0x1c)
163 #define ACE_NUM_MINORS 16
164 #define ACE_SECTOR_SIZE (512)
165 #define ACE_FIFO_SIZE (32)
166 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
168 #define ACE_BUS_WIDTH_8 0
169 #define ACE_BUS_WIDTH_16 1
174 /* driver state data */
178 struct list_head list
;
180 /* finite state machine data */
181 struct tasklet_struct fsm_tasklet
;
182 uint fsm_task
; /* Current activity (ACE_TASK_*) */
183 uint fsm_state
; /* Current state (ACE_FSM_STATE_*) */
184 uint fsm_continue_flag
; /* cleared to exit FSM mainloop */
186 struct timer_list stall_timer
;
188 /* Transfer state/result, use for both id and block request */
189 struct request
*req
; /* request being processed */
190 void *data_ptr
; /* pointer to I/O buffer */
191 int data_count
; /* number of buffers remaining */
192 int data_result
; /* Result of transfer; 0 := success */
194 int id_req_count
; /* count of id requests */
196 struct completion id_completion
; /* used when id req finishes */
199 /* Details of hardware device */
200 resource_size_t physaddr
;
201 void __iomem
*baseaddr
;
203 int bus_width
; /* 0 := 8 bit; 1 := 16 bit */
204 struct ace_reg_ops
*reg_ops
;
207 /* Block device data structures */
210 struct request_queue
*queue
;
213 /* Inserted CF card parameters */
214 u16 cf_id
[ATA_ID_WORDS
];
217 static int ace_major
;
219 /* ---------------------------------------------------------------------
220 * Low level register access
224 u16(*in
) (struct ace_device
* ace
, int reg
);
225 void (*out
) (struct ace_device
* ace
, int reg
, u16 val
);
226 void (*datain
) (struct ace_device
* ace
);
227 void (*dataout
) (struct ace_device
* ace
);
230 /* 8 Bit bus width */
231 static u16
ace_in_8(struct ace_device
*ace
, int reg
)
233 void __iomem
*r
= ace
->baseaddr
+ reg
;
234 return in_8(r
) | (in_8(r
+ 1) << 8);
237 static void ace_out_8(struct ace_device
*ace
, int reg
, u16 val
)
239 void __iomem
*r
= ace
->baseaddr
+ reg
;
241 out_8(r
+ 1, val
>> 8);
244 static void ace_datain_8(struct ace_device
*ace
)
246 void __iomem
*r
= ace
->baseaddr
+ 0x40;
247 u8
*dst
= ace
->data_ptr
;
248 int i
= ACE_FIFO_SIZE
;
254 static void ace_dataout_8(struct ace_device
*ace
)
256 void __iomem
*r
= ace
->baseaddr
+ 0x40;
257 u8
*src
= ace
->data_ptr
;
258 int i
= ACE_FIFO_SIZE
;
264 static struct ace_reg_ops ace_reg_8_ops
= {
267 .datain
= ace_datain_8
,
268 .dataout
= ace_dataout_8
,
271 /* 16 bit big endian bus attachment */
272 static u16
ace_in_be16(struct ace_device
*ace
, int reg
)
274 return in_be16(ace
->baseaddr
+ reg
);
277 static void ace_out_be16(struct ace_device
*ace
, int reg
, u16 val
)
279 out_be16(ace
->baseaddr
+ reg
, val
);
282 static void ace_datain_be16(struct ace_device
*ace
)
284 int i
= ACE_FIFO_SIZE
/ 2;
285 u16
*dst
= ace
->data_ptr
;
287 *dst
++ = in_le16(ace
->baseaddr
+ 0x40);
291 static void ace_dataout_be16(struct ace_device
*ace
)
293 int i
= ACE_FIFO_SIZE
/ 2;
294 u16
*src
= ace
->data_ptr
;
296 out_le16(ace
->baseaddr
+ 0x40, *src
++);
300 /* 16 bit little endian bus attachment */
301 static u16
ace_in_le16(struct ace_device
*ace
, int reg
)
303 return in_le16(ace
->baseaddr
+ reg
);
306 static void ace_out_le16(struct ace_device
*ace
, int reg
, u16 val
)
308 out_le16(ace
->baseaddr
+ reg
, val
);
311 static void ace_datain_le16(struct ace_device
*ace
)
313 int i
= ACE_FIFO_SIZE
/ 2;
314 u16
*dst
= ace
->data_ptr
;
316 *dst
++ = in_be16(ace
->baseaddr
+ 0x40);
320 static void ace_dataout_le16(struct ace_device
*ace
)
322 int i
= ACE_FIFO_SIZE
/ 2;
323 u16
*src
= ace
->data_ptr
;
325 out_be16(ace
->baseaddr
+ 0x40, *src
++);
329 static struct ace_reg_ops ace_reg_be16_ops
= {
332 .datain
= ace_datain_be16
,
333 .dataout
= ace_dataout_be16
,
336 static struct ace_reg_ops ace_reg_le16_ops
= {
339 .datain
= ace_datain_le16
,
340 .dataout
= ace_dataout_le16
,
343 static inline u16
ace_in(struct ace_device
*ace
, int reg
)
345 return ace
->reg_ops
->in(ace
, reg
);
348 static inline u32
ace_in32(struct ace_device
*ace
, int reg
)
350 return ace_in(ace
, reg
) | (ace_in(ace
, reg
+ 2) << 16);
353 static inline void ace_out(struct ace_device
*ace
, int reg
, u16 val
)
355 ace
->reg_ops
->out(ace
, reg
, val
);
358 static inline void ace_out32(struct ace_device
*ace
, int reg
, u32 val
)
360 ace_out(ace
, reg
, val
);
361 ace_out(ace
, reg
+ 2, val
>> 16);
364 /* ---------------------------------------------------------------------
365 * Debug support functions
369 static void ace_dump_mem(void *base
, int len
)
371 const char *ptr
= base
;
374 for (i
= 0; i
< len
; i
+= 16) {
375 printk(KERN_INFO
"%.8x:", i
);
376 for (j
= 0; j
< 16; j
++) {
379 printk("%.2x", ptr
[i
+ j
]);
382 for (j
= 0; j
< 16; j
++)
383 printk("%c", isprint(ptr
[i
+ j
]) ? ptr
[i
+ j
] : '.');
388 static inline void ace_dump_mem(void *base
, int len
)
393 static void ace_dump_regs(struct ace_device
*ace
)
396 " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
397 " status:%.8x mpu_lba:%.8x busmode:%4x\n"
398 " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
399 ace_in32(ace
, ACE_CTRL
),
400 ace_in(ace
, ACE_SECCNTCMD
),
401 ace_in(ace
, ACE_VERSION
),
402 ace_in32(ace
, ACE_STATUS
),
403 ace_in32(ace
, ACE_MPULBA
),
404 ace_in(ace
, ACE_BUSMODE
),
405 ace_in32(ace
, ACE_ERROR
),
406 ace_in32(ace
, ACE_CFGLBA
), ace_in(ace
, ACE_FATSTAT
));
409 void ace_fix_driveid(u16
*id
)
411 #if defined(__BIG_ENDIAN)
414 /* All half words have wrong byte order; swap the bytes */
415 for (i
= 0; i
< ATA_ID_WORDS
; i
++, id
++)
416 *id
= le16_to_cpu(*id
);
420 /* ---------------------------------------------------------------------
421 * Finite State Machine (FSM) implementation
424 /* FSM tasks; used to direct state transitions */
425 #define ACE_TASK_IDLE 0
426 #define ACE_TASK_IDENTIFY 1
427 #define ACE_TASK_READ 2
428 #define ACE_TASK_WRITE 3
429 #define ACE_FSM_NUM_TASKS 4
431 /* FSM state definitions */
432 #define ACE_FSM_STATE_IDLE 0
433 #define ACE_FSM_STATE_REQ_LOCK 1
434 #define ACE_FSM_STATE_WAIT_LOCK 2
435 #define ACE_FSM_STATE_WAIT_CFREADY 3
436 #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
437 #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
438 #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
439 #define ACE_FSM_STATE_REQ_PREPARE 7
440 #define ACE_FSM_STATE_REQ_TRANSFER 8
441 #define ACE_FSM_STATE_REQ_COMPLETE 9
442 #define ACE_FSM_STATE_ERROR 10
443 #define ACE_FSM_NUM_STATES 11
445 /* Set flag to exit FSM loop and reschedule tasklet */
446 static inline void ace_fsm_yield(struct ace_device
*ace
)
448 dev_dbg(ace
->dev
, "ace_fsm_yield()\n");
449 tasklet_schedule(&ace
->fsm_tasklet
);
450 ace
->fsm_continue_flag
= 0;
453 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
454 static inline void ace_fsm_yieldirq(struct ace_device
*ace
)
456 dev_dbg(ace
->dev
, "ace_fsm_yieldirq()\n");
458 if (ace
->irq
== NO_IRQ
)
459 /* No IRQ assigned, so need to poll */
460 tasklet_schedule(&ace
->fsm_tasklet
);
461 ace
->fsm_continue_flag
= 0;
464 /* Get the next read/write request; ending requests that we don't handle */
465 struct request
*ace_get_next_request(struct request_queue
* q
)
469 while ((req
= blk_peek_request(q
)) != NULL
) {
470 if (req
->cmd_type
== REQ_TYPE_FS
)
472 blk_start_request(req
);
473 __blk_end_request_all(req
, -EIO
);
478 static void ace_fsm_dostate(struct ace_device
*ace
)
486 dev_dbg(ace
->dev
, "fsm_state=%i, id_req_count=%i\n",
487 ace
->fsm_state
, ace
->id_req_count
);
490 /* Verify that there is actually a CF in the slot. If not, then
491 * bail out back to the idle state and wake up all the waiters */
492 status
= ace_in32(ace
, ACE_STATUS
);
493 if ((status
& ACE_STATUS_CFDETECT
) == 0) {
494 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
495 ace
->media_change
= 1;
496 set_capacity(ace
->gd
, 0);
497 dev_info(ace
->dev
, "No CF in slot\n");
499 /* Drop all in-flight and pending requests */
501 __blk_end_request_all(ace
->req
, -EIO
);
504 while ((req
= blk_fetch_request(ace
->queue
)) != NULL
)
505 __blk_end_request_all(req
, -EIO
);
507 /* Drop back to IDLE state and notify waiters */
508 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
509 ace
->id_result
= -EIO
;
510 while (ace
->id_req_count
) {
511 complete(&ace
->id_completion
);
516 switch (ace
->fsm_state
) {
517 case ACE_FSM_STATE_IDLE
:
518 /* See if there is anything to do */
519 if (ace
->id_req_count
|| ace_get_next_request(ace
->queue
)) {
521 ace
->fsm_state
= ACE_FSM_STATE_REQ_LOCK
;
522 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
523 if (!timer_pending(&ace
->stall_timer
))
524 add_timer(&ace
->stall_timer
);
527 del_timer(&ace
->stall_timer
);
528 ace
->fsm_continue_flag
= 0;
531 case ACE_FSM_STATE_REQ_LOCK
:
532 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
533 /* Already have the lock, jump to next state */
534 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
538 /* Request the lock */
539 val
= ace_in(ace
, ACE_CTRL
);
540 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_LOCKREQ
);
541 ace
->fsm_state
= ACE_FSM_STATE_WAIT_LOCK
;
544 case ACE_FSM_STATE_WAIT_LOCK
:
545 if (ace_in(ace
, ACE_STATUS
) & ACE_STATUS_MPULOCK
) {
546 /* got the lock; move to next state */
547 ace
->fsm_state
= ACE_FSM_STATE_WAIT_CFREADY
;
551 /* wait a bit for the lock */
555 case ACE_FSM_STATE_WAIT_CFREADY
:
556 status
= ace_in32(ace
, ACE_STATUS
);
557 if (!(status
& ACE_STATUS_RDYFORCFCMD
) ||
558 (status
& ACE_STATUS_CFBSY
)) {
559 /* CF card isn't ready; it needs to be polled */
564 /* Device is ready for command; determine what to do next */
565 if (ace
->id_req_count
)
566 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_PREPARE
;
568 ace
->fsm_state
= ACE_FSM_STATE_REQ_PREPARE
;
571 case ACE_FSM_STATE_IDENTIFY_PREPARE
:
572 /* Send identify command */
573 ace
->fsm_task
= ACE_TASK_IDENTIFY
;
574 ace
->data_ptr
= ace
->cf_id
;
575 ace
->data_count
= ACE_BUF_PER_SECTOR
;
576 ace_out(ace
, ACE_SECCNTCMD
, ACE_SECCNTCMD_IDENTIFY
);
578 /* As per datasheet, put config controller in reset */
579 val
= ace_in(ace
, ACE_CTRL
);
580 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
582 /* irq handler takes over from this point; wait for the
583 * transfer to complete */
584 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_TRANSFER
;
585 ace_fsm_yieldirq(ace
);
588 case ACE_FSM_STATE_IDENTIFY_TRANSFER
:
589 /* Check that the sysace is ready to receive data */
590 status
= ace_in32(ace
, ACE_STATUS
);
591 if (status
& ACE_STATUS_CFBSY
) {
592 dev_dbg(ace
->dev
, "CFBSY set; t=%i iter=%i dc=%i\n",
593 ace
->fsm_task
, ace
->fsm_iter_num
,
598 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
603 /* Transfer the next buffer */
604 ace
->reg_ops
->datain(ace
);
607 /* If there are still buffers to be transfers; jump out here */
608 if (ace
->data_count
!= 0) {
609 ace_fsm_yieldirq(ace
);
613 /* transfer finished; kick state machine */
614 dev_dbg(ace
->dev
, "identify finished\n");
615 ace
->fsm_state
= ACE_FSM_STATE_IDENTIFY_COMPLETE
;
618 case ACE_FSM_STATE_IDENTIFY_COMPLETE
:
619 ace_fix_driveid(ace
->cf_id
);
620 ace_dump_mem(ace
->cf_id
, 512); /* Debug: Dump out disk ID */
622 if (ace
->data_result
) {
623 /* Error occured, disable the disk */
624 ace
->media_change
= 1;
625 set_capacity(ace
->gd
, 0);
626 dev_err(ace
->dev
, "error fetching CF id (%i)\n",
629 ace
->media_change
= 0;
631 /* Record disk parameters */
632 set_capacity(ace
->gd
,
633 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
634 dev_info(ace
->dev
, "capacity: %i sectors\n",
635 ata_id_u32(ace
->cf_id
, ATA_ID_LBA_CAPACITY
));
638 /* We're done, drop to IDLE state and notify waiters */
639 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
640 ace
->id_result
= ace
->data_result
;
641 while (ace
->id_req_count
) {
642 complete(&ace
->id_completion
);
647 case ACE_FSM_STATE_REQ_PREPARE
:
648 req
= ace_get_next_request(ace
->queue
);
650 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
653 blk_start_request(req
);
655 /* Okay, it's a data request, set it up for transfer */
657 "request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
658 (unsigned long long)blk_rq_pos(req
),
659 blk_rq_sectors(req
), blk_rq_cur_sectors(req
),
663 ace
->data_ptr
= req
->buffer
;
664 ace
->data_count
= blk_rq_cur_sectors(req
) * ACE_BUF_PER_SECTOR
;
665 ace_out32(ace
, ACE_MPULBA
, blk_rq_pos(req
) & 0x0FFFFFFF);
667 count
= blk_rq_sectors(req
);
668 if (rq_data_dir(req
)) {
669 /* Kick off write request */
670 dev_dbg(ace
->dev
, "write data\n");
671 ace
->fsm_task
= ACE_TASK_WRITE
;
672 ace_out(ace
, ACE_SECCNTCMD
,
673 count
| ACE_SECCNTCMD_WRITE_DATA
);
675 /* Kick off read request */
676 dev_dbg(ace
->dev
, "read data\n");
677 ace
->fsm_task
= ACE_TASK_READ
;
678 ace_out(ace
, ACE_SECCNTCMD
,
679 count
| ACE_SECCNTCMD_READ_DATA
);
682 /* As per datasheet, put config controller in reset */
683 val
= ace_in(ace
, ACE_CTRL
);
684 ace_out(ace
, ACE_CTRL
, val
| ACE_CTRL_CFGRESET
);
686 /* Move to the transfer state. The systemace will raise
687 * an interrupt once there is something to do
689 ace
->fsm_state
= ACE_FSM_STATE_REQ_TRANSFER
;
690 if (ace
->fsm_task
== ACE_TASK_READ
)
691 ace_fsm_yieldirq(ace
); /* wait for data ready */
694 case ACE_FSM_STATE_REQ_TRANSFER
:
695 /* Check that the sysace is ready to receive data */
696 status
= ace_in32(ace
, ACE_STATUS
);
697 if (status
& ACE_STATUS_CFBSY
) {
699 "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
700 ace
->fsm_task
, ace
->fsm_iter_num
,
701 blk_rq_cur_sectors(ace
->req
) * 16,
702 ace
->data_count
, ace
->in_irq
);
703 ace_fsm_yield(ace
); /* need to poll CFBSY bit */
706 if (!(status
& ACE_STATUS_DATABUFRDY
)) {
708 "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
709 ace
->fsm_task
, ace
->fsm_iter_num
,
710 blk_rq_cur_sectors(ace
->req
) * 16,
711 ace
->data_count
, ace
->in_irq
);
712 ace_fsm_yieldirq(ace
);
716 /* Transfer the next buffer */
717 if (ace
->fsm_task
== ACE_TASK_WRITE
)
718 ace
->reg_ops
->dataout(ace
);
720 ace
->reg_ops
->datain(ace
);
723 /* If there are still buffers to be transfers; jump out here */
724 if (ace
->data_count
!= 0) {
725 ace_fsm_yieldirq(ace
);
729 /* bio finished; is there another one? */
730 if (__blk_end_request_cur(ace
->req
, 0)) {
731 /* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
732 * blk_rq_sectors(ace->req),
733 * blk_rq_cur_sectors(ace->req));
735 ace
->data_ptr
= ace
->req
->buffer
;
736 ace
->data_count
= blk_rq_cur_sectors(ace
->req
) * 16;
737 ace_fsm_yieldirq(ace
);
741 ace
->fsm_state
= ACE_FSM_STATE_REQ_COMPLETE
;
744 case ACE_FSM_STATE_REQ_COMPLETE
:
747 /* Finished request; go to idle state */
748 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
752 ace
->fsm_state
= ACE_FSM_STATE_IDLE
;
757 static void ace_fsm_tasklet(unsigned long data
)
759 struct ace_device
*ace
= (void *)data
;
762 spin_lock_irqsave(&ace
->lock
, flags
);
764 /* Loop over state machine until told to stop */
765 ace
->fsm_continue_flag
= 1;
766 while (ace
->fsm_continue_flag
)
767 ace_fsm_dostate(ace
);
769 spin_unlock_irqrestore(&ace
->lock
, flags
);
772 static void ace_stall_timer(unsigned long data
)
774 struct ace_device
*ace
= (void *)data
;
778 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
779 ace
->fsm_state
, ace
->fsm_task
, ace
->fsm_iter_num
,
781 spin_lock_irqsave(&ace
->lock
, flags
);
783 /* Rearm the stall timer *before* entering FSM (which may then
784 * delete the timer) */
785 mod_timer(&ace
->stall_timer
, jiffies
+ HZ
);
787 /* Loop over state machine until told to stop */
788 ace
->fsm_continue_flag
= 1;
789 while (ace
->fsm_continue_flag
)
790 ace_fsm_dostate(ace
);
792 spin_unlock_irqrestore(&ace
->lock
, flags
);
795 /* ---------------------------------------------------------------------
796 * Interrupt handling routines
798 static int ace_interrupt_checkstate(struct ace_device
*ace
)
800 u32 sreg
= ace_in32(ace
, ACE_STATUS
);
801 u16 creg
= ace_in(ace
, ACE_CTRL
);
803 /* Check for error occurance */
804 if ((sreg
& (ACE_STATUS_CFGERROR
| ACE_STATUS_CFCERROR
)) &&
805 (creg
& ACE_CTRL_ERRORIRQ
)) {
806 dev_err(ace
->dev
, "transfer failure\n");
814 static irqreturn_t
ace_interrupt(int irq
, void *dev_id
)
817 struct ace_device
*ace
= dev_id
;
819 /* be safe and get the lock */
820 spin_lock(&ace
->lock
);
823 /* clear the interrupt */
824 creg
= ace_in(ace
, ACE_CTRL
);
825 ace_out(ace
, ACE_CTRL
, creg
| ACE_CTRL_RESETIRQ
);
826 ace_out(ace
, ACE_CTRL
, creg
);
828 /* check for IO failures */
829 if (ace_interrupt_checkstate(ace
))
830 ace
->data_result
= -EIO
;
832 if (ace
->fsm_task
== 0) {
834 "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
835 ace_in32(ace
, ACE_STATUS
), ace_in32(ace
, ACE_CTRL
),
836 ace_in(ace
, ACE_SECCNTCMD
));
837 dev_err(ace
->dev
, "fsm_task=%i fsm_state=%i data_count=%i\n",
838 ace
->fsm_task
, ace
->fsm_state
, ace
->data_count
);
841 /* Loop over state machine until told to stop */
842 ace
->fsm_continue_flag
= 1;
843 while (ace
->fsm_continue_flag
)
844 ace_fsm_dostate(ace
);
846 /* done with interrupt; drop the lock */
848 spin_unlock(&ace
->lock
);
853 /* ---------------------------------------------------------------------
856 static void ace_request(struct request_queue
* q
)
859 struct ace_device
*ace
;
861 req
= ace_get_next_request(q
);
864 ace
= req
->rq_disk
->private_data
;
865 tasklet_schedule(&ace
->fsm_tasklet
);
869 static int ace_media_changed(struct gendisk
*gd
)
871 struct ace_device
*ace
= gd
->private_data
;
872 dev_dbg(ace
->dev
, "ace_media_changed(): %i\n", ace
->media_change
);
874 return ace
->media_change
;
877 static int ace_revalidate_disk(struct gendisk
*gd
)
879 struct ace_device
*ace
= gd
->private_data
;
882 dev_dbg(ace
->dev
, "ace_revalidate_disk()\n");
884 if (ace
->media_change
) {
885 dev_dbg(ace
->dev
, "requesting cf id and scheduling tasklet\n");
887 spin_lock_irqsave(&ace
->lock
, flags
);
889 spin_unlock_irqrestore(&ace
->lock
, flags
);
891 tasklet_schedule(&ace
->fsm_tasklet
);
892 wait_for_completion(&ace
->id_completion
);
895 dev_dbg(ace
->dev
, "revalidate complete\n");
896 return ace
->id_result
;
899 static int ace_open(struct block_device
*bdev
, fmode_t mode
)
901 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
904 dev_dbg(ace
->dev
, "ace_open() users=%i\n", ace
->users
+ 1);
907 spin_lock_irqsave(&ace
->lock
, flags
);
909 spin_unlock_irqrestore(&ace
->lock
, flags
);
911 check_disk_change(bdev
);
917 static int ace_release(struct gendisk
*disk
, fmode_t mode
)
919 struct ace_device
*ace
= disk
->private_data
;
923 dev_dbg(ace
->dev
, "ace_release() users=%i\n", ace
->users
- 1);
926 spin_lock_irqsave(&ace
->lock
, flags
);
928 if (ace
->users
== 0) {
929 val
= ace_in(ace
, ACE_CTRL
);
930 ace_out(ace
, ACE_CTRL
, val
& ~ACE_CTRL_LOCKREQ
);
932 spin_unlock_irqrestore(&ace
->lock
, flags
);
937 static int ace_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
939 struct ace_device
*ace
= bdev
->bd_disk
->private_data
;
940 u16
*cf_id
= ace
->cf_id
;
942 dev_dbg(ace
->dev
, "ace_getgeo()\n");
944 geo
->heads
= cf_id
[ATA_ID_HEADS
];
945 geo
->sectors
= cf_id
[ATA_ID_SECTORS
];
946 geo
->cylinders
= cf_id
[ATA_ID_CYLS
];
951 static const struct block_device_operations ace_fops
= {
952 .owner
= THIS_MODULE
,
954 .release
= ace_release
,
955 .media_changed
= ace_media_changed
,
956 .revalidate_disk
= ace_revalidate_disk
,
957 .getgeo
= ace_getgeo
,
960 /* --------------------------------------------------------------------
961 * SystemACE device setup/teardown code
963 static int __devinit
ace_setup(struct ace_device
*ace
)
969 dev_dbg(ace
->dev
, "ace_setup(ace=0x%p)\n", ace
);
970 dev_dbg(ace
->dev
, "physaddr=0x%llx irq=%i\n",
971 (unsigned long long)ace
->physaddr
, ace
->irq
);
973 spin_lock_init(&ace
->lock
);
974 init_completion(&ace
->id_completion
);
979 ace
->baseaddr
= ioremap(ace
->physaddr
, 0x80);
984 * Initialize the state machine tasklet and stall timer
986 tasklet_init(&ace
->fsm_tasklet
, ace_fsm_tasklet
, (unsigned long)ace
);
987 setup_timer(&ace
->stall_timer
, ace_stall_timer
, (unsigned long)ace
);
990 * Initialize the request queue
992 ace
->queue
= blk_init_queue(ace_request
, &ace
->lock
);
993 if (ace
->queue
== NULL
)
995 blk_queue_logical_block_size(ace
->queue
, 512);
998 * Allocate and initialize GD structure
1000 ace
->gd
= alloc_disk(ACE_NUM_MINORS
);
1002 goto err_alloc_disk
;
1004 ace
->gd
->major
= ace_major
;
1005 ace
->gd
->first_minor
= ace
->id
* ACE_NUM_MINORS
;
1006 ace
->gd
->fops
= &ace_fops
;
1007 ace
->gd
->queue
= ace
->queue
;
1008 ace
->gd
->private_data
= ace
;
1009 snprintf(ace
->gd
->disk_name
, 32, "xs%c", ace
->id
+ 'a');
1012 if (ace
->bus_width
== ACE_BUS_WIDTH_16
) {
1013 /* 0x0101 should work regardless of endianess */
1014 ace_out_le16(ace
, ACE_BUSMODE
, 0x0101);
1016 /* read it back to determine endianess */
1017 if (ace_in_le16(ace
, ACE_BUSMODE
) == 0x0001)
1018 ace
->reg_ops
= &ace_reg_le16_ops
;
1020 ace
->reg_ops
= &ace_reg_be16_ops
;
1022 ace_out_8(ace
, ACE_BUSMODE
, 0x00);
1023 ace
->reg_ops
= &ace_reg_8_ops
;
1026 /* Make sure version register is sane */
1027 version
= ace_in(ace
, ACE_VERSION
);
1028 if ((version
== 0) || (version
== 0xFFFF))
1031 /* Put sysace in a sane state by clearing most control reg bits */
1032 ace_out(ace
, ACE_CTRL
, ACE_CTRL_FORCECFGMODE
|
1033 ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
);
1035 /* Now we can hook up the irq handler */
1036 if (ace
->irq
!= NO_IRQ
) {
1037 rc
= request_irq(ace
->irq
, ace_interrupt
, 0, "systemace", ace
);
1039 /* Failure - fall back to polled mode */
1040 dev_err(ace
->dev
, "request_irq failed\n");
1045 /* Enable interrupts */
1046 val
= ace_in(ace
, ACE_CTRL
);
1047 val
|= ACE_CTRL_DATABUFRDYIRQ
| ACE_CTRL_ERRORIRQ
;
1048 ace_out(ace
, ACE_CTRL
, val
);
1050 /* Print the identification */
1051 dev_info(ace
->dev
, "Xilinx SystemACE revision %i.%i.%i\n",
1052 (version
>> 12) & 0xf, (version
>> 8) & 0x0f, version
& 0xff);
1053 dev_dbg(ace
->dev
, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1054 (unsigned long long) ace
->physaddr
, ace
->baseaddr
, ace
->irq
);
1056 ace
->media_change
= 1;
1057 ace_revalidate_disk(ace
->gd
);
1059 /* Make the sysace device 'live' */
1067 blk_cleanup_queue(ace
->queue
);
1069 iounmap(ace
->baseaddr
);
1071 dev_info(ace
->dev
, "xsysace: error initializing device at 0x%llx\n",
1072 (unsigned long long) ace
->physaddr
);
1076 static void __devexit
ace_teardown(struct ace_device
*ace
)
1079 del_gendisk(ace
->gd
);
1084 blk_cleanup_queue(ace
->queue
);
1086 tasklet_kill(&ace
->fsm_tasklet
);
1088 if (ace
->irq
!= NO_IRQ
)
1089 free_irq(ace
->irq
, ace
);
1091 iounmap(ace
->baseaddr
);
1094 static int __devinit
1095 ace_alloc(struct device
*dev
, int id
, resource_size_t physaddr
,
1096 int irq
, int bus_width
)
1098 struct ace_device
*ace
;
1100 dev_dbg(dev
, "ace_alloc(%p)\n", dev
);
1107 /* Allocate and initialize the ace device structure */
1108 ace
= kzalloc(sizeof(struct ace_device
), GFP_KERNEL
);
1116 ace
->physaddr
= physaddr
;
1118 ace
->bus_width
= bus_width
;
1120 /* Call the setup code */
1121 rc
= ace_setup(ace
);
1125 dev_set_drvdata(dev
, ace
);
1129 dev_set_drvdata(dev
, NULL
);
1133 dev_err(dev
, "could not initialize device, err=%i\n", rc
);
1137 static void __devexit
ace_free(struct device
*dev
)
1139 struct ace_device
*ace
= dev_get_drvdata(dev
);
1140 dev_dbg(dev
, "ace_free(%p)\n", dev
);
1144 dev_set_drvdata(dev
, NULL
);
1149 /* ---------------------------------------------------------------------
1150 * Platform Bus Support
1153 static int __devinit
ace_probe(struct platform_device
*dev
)
1155 resource_size_t physaddr
= 0;
1156 int bus_width
= ACE_BUS_WIDTH_16
; /* FIXME: should not be hard coded */
1161 dev_dbg(&dev
->dev
, "ace_probe(%p)\n", dev
);
1163 for (i
= 0; i
< dev
->num_resources
; i
++) {
1164 if (dev
->resource
[i
].flags
& IORESOURCE_MEM
)
1165 physaddr
= dev
->resource
[i
].start
;
1166 if (dev
->resource
[i
].flags
& IORESOURCE_IRQ
)
1167 irq
= dev
->resource
[i
].start
;
1170 /* Call the bus-independant setup code */
1171 return ace_alloc(&dev
->dev
, id
, physaddr
, irq
, bus_width
);
1175 * Platform bus remove() method
1177 static int __devexit
ace_remove(struct platform_device
*dev
)
1179 ace_free(&dev
->dev
);
1183 static struct platform_driver ace_platform_driver
= {
1185 .remove
= __devexit_p(ace_remove
),
1187 .owner
= THIS_MODULE
,
1192 /* ---------------------------------------------------------------------
1193 * OF_Platform Bus Support
1196 #if defined(CONFIG_OF)
1197 static int __devinit
1198 ace_of_probe(struct platform_device
*op
, const struct of_device_id
*match
)
1200 struct resource res
;
1201 resource_size_t physaddr
;
1203 int irq
, bus_width
, rc
;
1205 dev_dbg(&op
->dev
, "ace_of_probe(%p, %p)\n", op
, match
);
1208 id
= of_get_property(op
->dev
.of_node
, "port-number", NULL
);
1211 rc
= of_address_to_resource(op
->dev
.of_node
, 0, &res
);
1213 dev_err(&op
->dev
, "invalid address\n");
1216 physaddr
= res
.start
;
1219 irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1222 bus_width
= ACE_BUS_WIDTH_16
;
1223 if (of_find_property(op
->dev
.of_node
, "8-bit", NULL
))
1224 bus_width
= ACE_BUS_WIDTH_8
;
1226 /* Call the bus-independant setup code */
1227 return ace_alloc(&op
->dev
, id
? *id
: 0, physaddr
, irq
, bus_width
);
1230 static int __devexit
ace_of_remove(struct platform_device
*op
)
1236 /* Match table for of_platform binding */
1237 static const struct of_device_id ace_of_match
[] __devinitconst
= {
1238 { .compatible
= "xlnx,opb-sysace-1.00.b", },
1239 { .compatible
= "xlnx,opb-sysace-1.00.c", },
1240 { .compatible
= "xlnx,xps-sysace-1.00.a", },
1241 { .compatible
= "xlnx,sysace", },
1244 MODULE_DEVICE_TABLE(of
, ace_of_match
);
1246 static struct of_platform_driver ace_of_driver
= {
1247 .probe
= ace_of_probe
,
1248 .remove
= __devexit_p(ace_of_remove
),
1251 .owner
= THIS_MODULE
,
1252 .of_match_table
= ace_of_match
,
1256 /* Registration helpers to keep the number of #ifdefs to a minimum */
1257 static inline int __init
ace_of_register(void)
1259 pr_debug("xsysace: registering OF binding\n");
1260 return of_register_platform_driver(&ace_of_driver
);
1263 static inline void __exit
ace_of_unregister(void)
1265 of_unregister_platform_driver(&ace_of_driver
);
1267 #else /* CONFIG_OF */
1268 /* CONFIG_OF not enabled; do nothing helpers */
1269 static inline int __init
ace_of_register(void) { return 0; }
1270 static inline void __exit
ace_of_unregister(void) { }
1271 #endif /* CONFIG_OF */
1273 /* ---------------------------------------------------------------------
1274 * Module init/exit routines
1276 static int __init
ace_init(void)
1280 ace_major
= register_blkdev(ace_major
, "xsysace");
1281 if (ace_major
<= 0) {
1286 rc
= ace_of_register();
1290 pr_debug("xsysace: registering platform binding\n");
1291 rc
= platform_driver_register(&ace_platform_driver
);
1295 pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major
);
1299 ace_of_unregister();
1301 unregister_blkdev(ace_major
, "xsysace");
1303 printk(KERN_ERR
"xsysace: registration failed; err=%i\n", rc
);
1307 static void __exit
ace_exit(void)
1309 pr_debug("Unregistering Xilinx SystemACE driver\n");
1310 platform_driver_unregister(&ace_platform_driver
);
1311 ace_of_unregister();
1312 unregister_blkdev(ace_major
, "xsysace");
1315 module_init(ace_init
);
1316 module_exit(ace_exit
);