wait_task_stopped/continued: remove unneeded p->signal != NULL check
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-sh / io.h
blob1a336cdc75fed1a5a3e9bca2a90178eeb21bca2c
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
4 /*
5 * Convention:
6 * read{b,w,l}/write{b,w,l} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
14 * In addition, we have
15 * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 * which are processor specific.
20 * We follow the Alpha convention here:
21 * __inb expands to an inline function call (which calls via the mv)
22 * _inb is a real function call (note ___raw fns are _ version of __raw)
23 * inb by default expands to _inb, but the machine specific code may
24 * define it to __inb if it chooses.
26 #include <asm/cache.h>
27 #include <asm/system.h>
28 #include <asm/addrspace.h>
29 #include <asm/machvec.h>
30 #include <asm/pgtable.h>
31 #include <asm-generic/iomap.h>
33 #ifdef __KERNEL__
36 * Depending on which platform we are running on, we need different
37 * I/O functions.
39 #define __IO_PREFIX generic
40 #include <asm/io_generic.h>
42 #define maybebadio(port) \
43 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
44 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
47 * Since boards are able to define their own set of I/O routines through
48 * their respective machine vector, we always wrap through the mv.
50 * Also, in the event that a board hasn't provided its own definition for
51 * a given routine, it will be wrapped to generic code at run-time.
54 #define __inb(p) sh_mv.mv_inb((p))
55 #define __inw(p) sh_mv.mv_inw((p))
56 #define __inl(p) sh_mv.mv_inl((p))
57 #define __outb(x,p) sh_mv.mv_outb((x),(p))
58 #define __outw(x,p) sh_mv.mv_outw((x),(p))
59 #define __outl(x,p) sh_mv.mv_outl((x),(p))
61 #define __inb_p(p) sh_mv.mv_inb_p((p))
62 #define __inw_p(p) sh_mv.mv_inw_p((p))
63 #define __inl_p(p) sh_mv.mv_inl_p((p))
64 #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
65 #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
66 #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
68 #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
69 #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
70 #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
71 #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
72 #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
73 #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
75 #define __readb(a) sh_mv.mv_readb((a))
76 #define __readw(a) sh_mv.mv_readw((a))
77 #define __readl(a) sh_mv.mv_readl((a))
78 #define __writeb(v,a) sh_mv.mv_writeb((v),(a))
79 #define __writew(v,a) sh_mv.mv_writew((v),(a))
80 #define __writel(v,a) sh_mv.mv_writel((v),(a))
82 #define inb __inb
83 #define inw __inw
84 #define inl __inl
85 #define outb __outb
86 #define outw __outw
87 #define outl __outl
89 #define inb_p __inb_p
90 #define inw_p __inw_p
91 #define inl_p __inl_p
92 #define outb_p __outb_p
93 #define outw_p __outw_p
94 #define outl_p __outl_p
96 #define insb __insb
97 #define insw __insw
98 #define insl __insl
99 #define outsb __outsb
100 #define outsw __outsw
101 #define outsl __outsl
103 #define __raw_readb(a) __readb((void __iomem *)(a))
104 #define __raw_readw(a) __readw((void __iomem *)(a))
105 #define __raw_readl(a) __readl((void __iomem *)(a))
106 #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
107 #define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
108 #define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
110 void __raw_writesl(unsigned long addr, const void *data, int longlen);
111 void __raw_readsl(unsigned long addr, void *data, int longlen);
114 * The platform header files may define some of these macros to use
115 * the inlined versions where appropriate. These macros may also be
116 * redefined by userlevel programs.
118 #ifdef __readb
119 # define readb(a) ({ unsigned int r_ = __raw_readb(a); mb(); r_; })
120 #endif
121 #ifdef __raw_readw
122 # define readw(a) ({ unsigned int r_ = __raw_readw(a); mb(); r_; })
123 #endif
124 #ifdef __raw_readl
125 # define readl(a) ({ unsigned int r_ = __raw_readl(a); mb(); r_; })
126 #endif
128 #ifdef __raw_writeb
129 # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
130 #endif
131 #ifdef __raw_writew
132 # define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
133 #endif
134 #ifdef __raw_writel
135 # define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
136 #endif
138 #define __BUILD_MEMORY_STRING(bwlq, type) \
140 static inline void writes##bwlq(volatile void __iomem *mem, \
141 const void *addr, unsigned int count) \
143 const volatile type *__addr = addr; \
145 while (count--) { \
146 __raw_write##bwlq(*__addr, mem); \
147 __addr++; \
151 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
152 unsigned int count) \
154 volatile type *__addr = addr; \
156 while (count--) { \
157 *__addr = __raw_read##bwlq(mem); \
158 __addr++; \
162 __BUILD_MEMORY_STRING(b, u8)
163 __BUILD_MEMORY_STRING(w, u16)
164 #define writesl __raw_writesl
165 #define readsl __raw_readsl
167 #define readb_relaxed(a) readb(a)
168 #define readw_relaxed(a) readw(a)
169 #define readl_relaxed(a) readl(a)
171 /* Simple MMIO */
172 #define ioread8(a) readb(a)
173 #define ioread16(a) readw(a)
174 #define ioread16be(a) be16_to_cpu(__raw_readw((a)))
175 #define ioread32(a) readl(a)
176 #define ioread32be(a) be32_to_cpu(__raw_readl((a)))
178 #define iowrite8(v,a) writeb((v),(a))
179 #define iowrite16(v,a) writew((v),(a))
180 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
181 #define iowrite32(v,a) writel((v),(a))
182 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
184 #define ioread8_rep(a,d,c) insb((a),(d),(c))
185 #define ioread16_rep(a,d,c) insw((a),(d),(c))
186 #define ioread32_rep(a,d,c) insl((a),(d),(c))
188 #define iowrite8_rep(a,s,c) outsb((a),(s),(c))
189 #define iowrite16_rep(a,s,c) outsw((a),(s),(c))
190 #define iowrite32_rep(a,s,c) outsl((a),(s),(c))
192 #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
195 * This function provides a method for the generic case where a board-specific
196 * ioport_map simply needs to return the port + some arbitrary port base.
198 * We use this at board setup time to implicitly set the port base, and
199 * as a result, we can use the generic ioport_map.
201 static inline void __set_io_port_base(unsigned long pbase)
203 extern unsigned long generic_io_base;
205 generic_io_base = pbase;
208 /* We really want to try and get these to memcpy etc */
209 extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
210 extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
211 extern void memset_io(volatile void __iomem *, int, unsigned long);
213 /* SuperH on-chip I/O functions */
214 static inline unsigned char ctrl_inb(unsigned long addr)
216 return *(volatile unsigned char*)addr;
219 static inline unsigned short ctrl_inw(unsigned long addr)
221 return *(volatile unsigned short*)addr;
224 static inline unsigned int ctrl_inl(unsigned long addr)
226 return *(volatile unsigned long*)addr;
229 static inline void ctrl_outb(unsigned char b, unsigned long addr)
231 *(volatile unsigned char*)addr = b;
234 static inline void ctrl_outw(unsigned short b, unsigned long addr)
236 *(volatile unsigned short*)addr = b;
239 static inline void ctrl_outl(unsigned int b, unsigned long addr)
241 *(volatile unsigned long*)addr = b;
244 static inline void ctrl_delay(void)
246 ctrl_inw(P2SEG);
249 #define IO_SPACE_LIMIT 0xffffffff
251 #ifdef CONFIG_MMU
253 * Change virtual addresses to physical addresses and vv.
254 * These are trivial on the 1:1 Linux/SuperH mapping
256 static inline unsigned long virt_to_phys(volatile void *address)
258 return PHYSADDR(address);
261 static inline void *phys_to_virt(unsigned long address)
263 return (void *)P1SEGADDR(address);
265 #else
266 #define phys_to_virt(address) ((void *)(address))
267 #define virt_to_phys(address) ((unsigned long)(address))
268 #endif
271 * readX/writeX() are used to access memory mapped devices. On some
272 * architectures the memory mapped IO stuff needs to be accessed
273 * differently. On the x86 architecture, we just read/write the
274 * memory location directly.
276 * On SH, we traditionally have the whole physical address space mapped
277 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
278 * need to do anything but place the address in the proper segment. This
279 * is true for P1 and P2 addresses, as well as some P3 ones. However,
280 * most of the P3 addresses and newer cores using extended addressing
281 * need to map through page tables, so the ioremap() implementation
282 * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
283 * additional notes on this.
285 * We cheat a bit and always return uncachable areas until we've fixed
286 * the drivers to handle caching properly.
288 #ifdef CONFIG_MMU
289 void __iomem *__ioremap(unsigned long offset, unsigned long size,
290 unsigned long flags);
291 void __iounmap(void __iomem *addr);
292 #else
293 #define __ioremap(offset, size, flags) ((void __iomem *)(offset))
294 #define __iounmap(addr) do { } while (0)
295 #endif /* CONFIG_MMU */
297 static inline void __iomem *
298 __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
300 unsigned long last_addr = offset + size - 1;
303 * For P1 and P2 space this is trivial, as everything is already
304 * mapped. Uncached access for P1 addresses are done through P2.
305 * In the P3 case or for addresses outside of the 29-bit space,
306 * mapping must be done by the PMB or by using page tables.
308 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
309 if (unlikely(flags & _PAGE_CACHABLE))
310 return (void __iomem *)P1SEGADDR(offset);
312 return (void __iomem *)P2SEGADDR(offset);
315 return __ioremap(offset, size, flags);
318 #define ioremap(offset, size) \
319 __ioremap_mode((offset), (size), 0)
320 #define ioremap_nocache(offset, size) \
321 __ioremap_mode((offset), (size), 0)
322 #define ioremap_cache(offset, size) \
323 __ioremap_mode((offset), (size), _PAGE_CACHABLE)
324 #define p3_ioremap(offset, size, flags) \
325 __ioremap((offset), (size), (flags))
326 #define iounmap(addr) \
327 __iounmap((addr))
330 * The caches on some architectures aren't dma-coherent and have need to
331 * handle this in software. There are three types of operations that
332 * can be applied to dma buffers.
334 * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
335 * writing the content of the caches back to memory, if necessary.
336 * The function also invalidates the affected part of the caches as
337 * necessary before DMA transfers from outside to memory.
338 * - dma_cache_inv(start, size) invalidates the affected parts of the
339 * caches. Dirty lines of the caches may be written back or simply
340 * be discarded. This operation is necessary before dma operations
341 * to the memory.
342 * - dma_cache_wback(start, size) writes back any dirty lines but does
343 * not invalidate the cache. This can be used before DMA reads from
344 * memory,
347 #define dma_cache_wback_inv(_start,_size) \
348 __flush_purge_region(_start,_size)
349 #define dma_cache_inv(_start,_size) \
350 __flush_invalidate_region(_start,_size)
351 #define dma_cache_wback(_start,_size) \
352 __flush_wback_region(_start,_size)
355 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
356 * access
358 #define xlate_dev_mem_ptr(p) __va(p)
361 * Convert a virtual cached pointer to an uncached pointer
363 #define xlate_dev_kmem_ptr(p) p
365 #endif /* __KERNEL__ */
367 #endif /* __ASM_SH_IO_H */