block: move q->unplug_work initialization
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blobfcbd56dd41fa60e5286d122fda3faefc29bbefca
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
32 #include "blk.h"
34 static int __make_request(struct request_queue *q, struct bio *bio);
37 * For the allocated request tables
39 static struct kmem_cache *request_cachep;
42 * For queue allocation
44 struct kmem_cache *blk_requestq_cachep;
47 * Controlling structure to kblockd
49 static struct workqueue_struct *kblockd_workqueue;
51 static void drive_stat_acct(struct request *rq, int new_io)
53 struct hd_struct *part;
54 int rw = rq_data_dir(rq);
55 int cpu;
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
60 cpu = part_stat_lock();
61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
63 if (!new_io)
64 part_stat_inc(cpu, part, merges[rw]);
65 else {
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
70 part_stat_unlock();
73 void blk_queue_congestion_threshold(struct request_queue *q)
75 int nr;
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
88 /**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
95 * Will return NULL if the request queue cannot be located.
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
99 struct backing_dev_info *ret = NULL;
100 struct request_queue *q = bdev_get_queue(bdev);
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
108 void blk_rq_init(struct request_queue *q, struct request *rq)
110 memset(rq, 0, sizeof(*rq));
112 INIT_LIST_HEAD(&rq->queuelist);
113 INIT_LIST_HEAD(&rq->timeout_list);
114 rq->cpu = -1;
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->cmd = rq->__cmd;
120 rq->tag = -1;
121 rq->ref_count = 1;
123 EXPORT_SYMBOL(blk_rq_init);
125 static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
128 struct request_queue *q = rq->q;
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
136 if (unlikely(nbytes > bio->bi_size)) {
137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
138 __func__, nbytes, bio->bi_size);
139 nbytes = bio->bi_size;
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
148 if (bio->bi_size == 0)
149 bio_endio(bio, error);
150 } else {
153 * Okay, this is the barrier request in progress, just
154 * record the error;
156 if (error && !q->orderr)
157 q->orderr = error;
161 void blk_dump_rq_flags(struct request *rq, char *msg)
163 int bit;
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
178 if (blk_pc_request(rq)) {
179 printk(KERN_INFO " cdb: ");
180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
185 EXPORT_SYMBOL(blk_dump_rq_flags);
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
195 void blk_plug_device(struct request_queue *q)
197 WARN_ON(!irqs_disabled());
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
203 if (blk_queue_stopped(q))
204 return;
206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 EXPORT_SYMBOL(blk_plug_device);
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
221 void blk_plug_device_unlocked(struct request_queue *q)
223 unsigned long flags;
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
229 EXPORT_SYMBOL(blk_plug_device_unlocked);
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
235 int blk_remove_plug(struct request_queue *q)
237 WARN_ON(!irqs_disabled());
239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
240 return 0;
242 del_timer(&q->unplug_timer);
243 return 1;
245 EXPORT_SYMBOL(blk_remove_plug);
248 * remove the plug and let it rip..
250 void __generic_unplug_device(struct request_queue *q)
252 if (unlikely(blk_queue_stopped(q)))
253 return;
255 if (!blk_remove_plug(q))
256 return;
258 q->request_fn(q);
260 EXPORT_SYMBOL(__generic_unplug_device);
263 * generic_unplug_device - fire a request queue
264 * @q: The &struct request_queue in question
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
273 void generic_unplug_device(struct request_queue *q)
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
281 EXPORT_SYMBOL(generic_unplug_device);
283 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
286 struct request_queue *q = bdi->unplug_io_data;
288 blk_unplug(q);
291 void blk_unplug_work(struct work_struct *work)
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
299 q->unplug_fn(q);
302 void blk_unplug_timeout(unsigned long data)
304 struct request_queue *q = (struct request_queue *)data;
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
309 kblockd_schedule_work(q, &q->unplug_work);
312 void blk_unplug(struct request_queue *q)
315 * devices don't necessarily have an ->unplug_fn defined
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
321 q->unplug_fn(q);
324 EXPORT_SYMBOL(blk_unplug);
326 static void blk_invoke_request_fn(struct request_queue *q)
328 if (unlikely(blk_queue_stopped(q)))
329 return;
332 * one level of recursion is ok and is much faster than kicking
333 * the unplug handling
335 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
336 q->request_fn(q);
337 queue_flag_clear(QUEUE_FLAG_REENTER, q);
338 } else {
339 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
340 kblockd_schedule_work(q, &q->unplug_work);
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue(). Queue lock must be held.
353 void blk_start_queue(struct request_queue *q)
355 WARN_ON(!irqs_disabled());
357 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
358 blk_invoke_request_fn(q);
360 EXPORT_SYMBOL(blk_start_queue);
363 * blk_stop_queue - stop a queue
364 * @q: The &struct request_queue in question
366 * Description:
367 * The Linux block layer assumes that a block driver will consume all
368 * entries on the request queue when the request_fn strategy is called.
369 * Often this will not happen, because of hardware limitations (queue
370 * depth settings). If a device driver gets a 'queue full' response,
371 * or if it simply chooses not to queue more I/O at one point, it can
372 * call this function to prevent the request_fn from being called until
373 * the driver has signalled it's ready to go again. This happens by calling
374 * blk_start_queue() to restart queue operations. Queue lock must be held.
376 void blk_stop_queue(struct request_queue *q)
378 blk_remove_plug(q);
379 queue_flag_set(QUEUE_FLAG_STOPPED, q);
381 EXPORT_SYMBOL(blk_stop_queue);
384 * blk_sync_queue - cancel any pending callbacks on a queue
385 * @q: the queue
387 * Description:
388 * The block layer may perform asynchronous callback activity
389 * on a queue, such as calling the unplug function after a timeout.
390 * A block device may call blk_sync_queue to ensure that any
391 * such activity is cancelled, thus allowing it to release resources
392 * that the callbacks might use. The caller must already have made sure
393 * that its ->make_request_fn will not re-add plugging prior to calling
394 * this function.
397 void blk_sync_queue(struct request_queue *q)
399 del_timer_sync(&q->unplug_timer);
400 kblockd_flush_work(&q->unplug_work);
402 EXPORT_SYMBOL(blk_sync_queue);
405 * __blk_run_queue - run a single device queue
406 * @q: The queue to run
408 * Description:
409 * See @blk_run_queue. This variant must be called with the queue lock
410 * held and interrupts disabled.
413 void __blk_run_queue(struct request_queue *q)
415 blk_remove_plug(q);
418 * Only recurse once to avoid overrunning the stack, let the unplug
419 * handling reinvoke the handler shortly if we already got there.
421 if (!elv_queue_empty(q))
422 blk_invoke_request_fn(q);
424 EXPORT_SYMBOL(__blk_run_queue);
427 * blk_run_queue - run a single device queue
428 * @q: The queue to run
430 * Description:
431 * Invoke request handling on this queue, if it has pending work to do.
432 * May be used to restart queueing when a request has completed. Also
433 * See @blk_start_queueing.
436 void blk_run_queue(struct request_queue *q)
438 unsigned long flags;
440 spin_lock_irqsave(q->queue_lock, flags);
441 __blk_run_queue(q);
442 spin_unlock_irqrestore(q->queue_lock, flags);
444 EXPORT_SYMBOL(blk_run_queue);
446 void blk_put_queue(struct request_queue *q)
448 kobject_put(&q->kobj);
451 void blk_cleanup_queue(struct request_queue *q)
454 * We know we have process context here, so we can be a little
455 * cautious and ensure that pending block actions on this device
456 * are done before moving on. Going into this function, we should
457 * not have processes doing IO to this device.
459 blk_sync_queue(q);
461 mutex_lock(&q->sysfs_lock);
462 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
463 mutex_unlock(&q->sysfs_lock);
465 if (q->elevator)
466 elevator_exit(q->elevator);
468 blk_put_queue(q);
470 EXPORT_SYMBOL(blk_cleanup_queue);
472 static int blk_init_free_list(struct request_queue *q)
474 struct request_list *rl = &q->rq;
476 rl->count[READ] = rl->count[WRITE] = 0;
477 rl->starved[READ] = rl->starved[WRITE] = 0;
478 rl->elvpriv = 0;
479 init_waitqueue_head(&rl->wait[READ]);
480 init_waitqueue_head(&rl->wait[WRITE]);
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
485 if (!rl->rq_pool)
486 return -ENOMEM;
488 return 0;
491 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
493 return blk_alloc_queue_node(gfp_mask, -1);
495 EXPORT_SYMBOL(blk_alloc_queue);
497 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
499 struct request_queue *q;
500 int err;
502 q = kmem_cache_alloc_node(blk_requestq_cachep,
503 gfp_mask | __GFP_ZERO, node_id);
504 if (!q)
505 return NULL;
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
511 kmem_cache_free(blk_requestq_cachep, q);
512 return NULL;
515 init_timer(&q->unplug_timer);
516 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
517 INIT_LIST_HEAD(&q->timeout_list);
518 INIT_WORK(&q->unplug_work, blk_unplug_work);
520 kobject_init(&q->kobj, &blk_queue_ktype);
522 mutex_init(&q->sysfs_lock);
523 spin_lock_init(&q->__queue_lock);
525 return q;
527 EXPORT_SYMBOL(blk_alloc_queue_node);
530 * blk_init_queue - prepare a request queue for use with a block device
531 * @rfn: The function to be called to process requests that have been
532 * placed on the queue.
533 * @lock: Request queue spin lock
535 * Description:
536 * If a block device wishes to use the standard request handling procedures,
537 * which sorts requests and coalesces adjacent requests, then it must
538 * call blk_init_queue(). The function @rfn will be called when there
539 * are requests on the queue that need to be processed. If the device
540 * supports plugging, then @rfn may not be called immediately when requests
541 * are available on the queue, but may be called at some time later instead.
542 * Plugged queues are generally unplugged when a buffer belonging to one
543 * of the requests on the queue is needed, or due to memory pressure.
545 * @rfn is not required, or even expected, to remove all requests off the
546 * queue, but only as many as it can handle at a time. If it does leave
547 * requests on the queue, it is responsible for arranging that the requests
548 * get dealt with eventually.
550 * The queue spin lock must be held while manipulating the requests on the
551 * request queue; this lock will be taken also from interrupt context, so irq
552 * disabling is needed for it.
554 * Function returns a pointer to the initialized request queue, or %NULL if
555 * it didn't succeed.
557 * Note:
558 * blk_init_queue() must be paired with a blk_cleanup_queue() call
559 * when the block device is deactivated (such as at module unload).
562 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
564 return blk_init_queue_node(rfn, lock, -1);
566 EXPORT_SYMBOL(blk_init_queue);
568 struct request_queue *
569 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
571 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
573 if (!q)
574 return NULL;
576 q->node = node_id;
577 if (blk_init_free_list(q)) {
578 kmem_cache_free(blk_requestq_cachep, q);
579 return NULL;
583 * if caller didn't supply a lock, they get per-queue locking with
584 * our embedded lock
586 if (!lock)
587 lock = &q->__queue_lock;
589 q->request_fn = rfn;
590 q->prep_rq_fn = NULL;
591 q->unplug_fn = generic_unplug_device;
592 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
593 1 << QUEUE_FLAG_STACKABLE);
594 q->queue_lock = lock;
596 blk_queue_segment_boundary(q, 0xffffffff);
598 blk_queue_make_request(q, __make_request);
599 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
601 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
602 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
604 q->sg_reserved_size = INT_MAX;
606 blk_set_cmd_filter_defaults(&q->cmd_filter);
609 * all done
611 if (!elevator_init(q, NULL)) {
612 blk_queue_congestion_threshold(q);
613 return q;
616 blk_put_queue(q);
617 return NULL;
619 EXPORT_SYMBOL(blk_init_queue_node);
621 int blk_get_queue(struct request_queue *q)
623 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
624 kobject_get(&q->kobj);
625 return 0;
628 return 1;
631 static inline void blk_free_request(struct request_queue *q, struct request *rq)
633 if (rq->cmd_flags & REQ_ELVPRIV)
634 elv_put_request(q, rq);
635 mempool_free(rq, q->rq.rq_pool);
638 static struct request *
639 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
641 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
643 if (!rq)
644 return NULL;
646 blk_rq_init(q, rq);
648 rq->cmd_flags = rw | REQ_ALLOCED;
650 if (priv) {
651 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
652 mempool_free(rq, q->rq.rq_pool);
653 return NULL;
655 rq->cmd_flags |= REQ_ELVPRIV;
658 return rq;
662 * ioc_batching returns true if the ioc is a valid batching request and
663 * should be given priority access to a request.
665 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
667 if (!ioc)
668 return 0;
671 * Make sure the process is able to allocate at least 1 request
672 * even if the batch times out, otherwise we could theoretically
673 * lose wakeups.
675 return ioc->nr_batch_requests == q->nr_batching ||
676 (ioc->nr_batch_requests > 0
677 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
681 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
682 * will cause the process to be a "batcher" on all queues in the system. This
683 * is the behaviour we want though - once it gets a wakeup it should be given
684 * a nice run.
686 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
688 if (!ioc || ioc_batching(q, ioc))
689 return;
691 ioc->nr_batch_requests = q->nr_batching;
692 ioc->last_waited = jiffies;
695 static void __freed_request(struct request_queue *q, int rw)
697 struct request_list *rl = &q->rq;
699 if (rl->count[rw] < queue_congestion_off_threshold(q))
700 blk_clear_queue_congested(q, rw);
702 if (rl->count[rw] + 1 <= q->nr_requests) {
703 if (waitqueue_active(&rl->wait[rw]))
704 wake_up(&rl->wait[rw]);
706 blk_clear_queue_full(q, rw);
711 * A request has just been released. Account for it, update the full and
712 * congestion status, wake up any waiters. Called under q->queue_lock.
714 static void freed_request(struct request_queue *q, int rw, int priv)
716 struct request_list *rl = &q->rq;
718 rl->count[rw]--;
719 if (priv)
720 rl->elvpriv--;
722 __freed_request(q, rw);
724 if (unlikely(rl->starved[rw ^ 1]))
725 __freed_request(q, rw ^ 1);
728 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
730 * Get a free request, queue_lock must be held.
731 * Returns NULL on failure, with queue_lock held.
732 * Returns !NULL on success, with queue_lock *not held*.
734 static struct request *get_request(struct request_queue *q, int rw_flags,
735 struct bio *bio, gfp_t gfp_mask)
737 struct request *rq = NULL;
738 struct request_list *rl = &q->rq;
739 struct io_context *ioc = NULL;
740 const int rw = rw_flags & 0x01;
741 int may_queue, priv;
743 may_queue = elv_may_queue(q, rw_flags);
744 if (may_queue == ELV_MQUEUE_NO)
745 goto rq_starved;
747 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
748 if (rl->count[rw]+1 >= q->nr_requests) {
749 ioc = current_io_context(GFP_ATOMIC, q->node);
751 * The queue will fill after this allocation, so set
752 * it as full, and mark this process as "batching".
753 * This process will be allowed to complete a batch of
754 * requests, others will be blocked.
756 if (!blk_queue_full(q, rw)) {
757 ioc_set_batching(q, ioc);
758 blk_set_queue_full(q, rw);
759 } else {
760 if (may_queue != ELV_MQUEUE_MUST
761 && !ioc_batching(q, ioc)) {
763 * The queue is full and the allocating
764 * process is not a "batcher", and not
765 * exempted by the IO scheduler
767 goto out;
771 blk_set_queue_congested(q, rw);
775 * Only allow batching queuers to allocate up to 50% over the defined
776 * limit of requests, otherwise we could have thousands of requests
777 * allocated with any setting of ->nr_requests
779 if (rl->count[rw] >= (3 * q->nr_requests / 2))
780 goto out;
782 rl->count[rw]++;
783 rl->starved[rw] = 0;
785 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
786 if (priv)
787 rl->elvpriv++;
789 spin_unlock_irq(q->queue_lock);
791 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
792 if (unlikely(!rq)) {
794 * Allocation failed presumably due to memory. Undo anything
795 * we might have messed up.
797 * Allocating task should really be put onto the front of the
798 * wait queue, but this is pretty rare.
800 spin_lock_irq(q->queue_lock);
801 freed_request(q, rw, priv);
804 * in the very unlikely event that allocation failed and no
805 * requests for this direction was pending, mark us starved
806 * so that freeing of a request in the other direction will
807 * notice us. another possible fix would be to split the
808 * rq mempool into READ and WRITE
810 rq_starved:
811 if (unlikely(rl->count[rw] == 0))
812 rl->starved[rw] = 1;
814 goto out;
818 * ioc may be NULL here, and ioc_batching will be false. That's
819 * OK, if the queue is under the request limit then requests need
820 * not count toward the nr_batch_requests limit. There will always
821 * be some limit enforced by BLK_BATCH_TIME.
823 if (ioc_batching(q, ioc))
824 ioc->nr_batch_requests--;
826 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
827 out:
828 return rq;
832 * No available requests for this queue, unplug the device and wait for some
833 * requests to become available.
835 * Called with q->queue_lock held, and returns with it unlocked.
837 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
838 struct bio *bio)
840 const int rw = rw_flags & 0x01;
841 struct request *rq;
843 rq = get_request(q, rw_flags, bio, GFP_NOIO);
844 while (!rq) {
845 DEFINE_WAIT(wait);
846 struct io_context *ioc;
847 struct request_list *rl = &q->rq;
849 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
850 TASK_UNINTERRUPTIBLE);
852 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
854 __generic_unplug_device(q);
855 spin_unlock_irq(q->queue_lock);
856 io_schedule();
859 * After sleeping, we become a "batching" process and
860 * will be able to allocate at least one request, and
861 * up to a big batch of them for a small period time.
862 * See ioc_batching, ioc_set_batching
864 ioc = current_io_context(GFP_NOIO, q->node);
865 ioc_set_batching(q, ioc);
867 spin_lock_irq(q->queue_lock);
868 finish_wait(&rl->wait[rw], &wait);
870 rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 return rq;
876 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
878 struct request *rq;
880 BUG_ON(rw != READ && rw != WRITE);
882 spin_lock_irq(q->queue_lock);
883 if (gfp_mask & __GFP_WAIT) {
884 rq = get_request_wait(q, rw, NULL);
885 } else {
886 rq = get_request(q, rw, NULL, gfp_mask);
887 if (!rq)
888 spin_unlock_irq(q->queue_lock);
890 /* q->queue_lock is unlocked at this point */
892 return rq;
894 EXPORT_SYMBOL(blk_get_request);
897 * blk_start_queueing - initiate dispatch of requests to device
898 * @q: request queue to kick into gear
900 * This is basically a helper to remove the need to know whether a queue
901 * is plugged or not if someone just wants to initiate dispatch of requests
902 * for this queue. Should be used to start queueing on a device outside
903 * of ->request_fn() context. Also see @blk_run_queue.
905 * The queue lock must be held with interrupts disabled.
907 void blk_start_queueing(struct request_queue *q)
909 if (!blk_queue_plugged(q)) {
910 if (unlikely(blk_queue_stopped(q)))
911 return;
912 q->request_fn(q);
913 } else
914 __generic_unplug_device(q);
916 EXPORT_SYMBOL(blk_start_queueing);
919 * blk_requeue_request - put a request back on queue
920 * @q: request queue where request should be inserted
921 * @rq: request to be inserted
923 * Description:
924 * Drivers often keep queueing requests until the hardware cannot accept
925 * more, when that condition happens we need to put the request back
926 * on the queue. Must be called with queue lock held.
928 void blk_requeue_request(struct request_queue *q, struct request *rq)
930 blk_delete_timer(rq);
931 blk_clear_rq_complete(rq);
932 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
934 if (blk_rq_tagged(rq))
935 blk_queue_end_tag(q, rq);
937 elv_requeue_request(q, rq);
939 EXPORT_SYMBOL(blk_requeue_request);
942 * blk_insert_request - insert a special request into a request queue
943 * @q: request queue where request should be inserted
944 * @rq: request to be inserted
945 * @at_head: insert request at head or tail of queue
946 * @data: private data
948 * Description:
949 * Many block devices need to execute commands asynchronously, so they don't
950 * block the whole kernel from preemption during request execution. This is
951 * accomplished normally by inserting aritficial requests tagged as
952 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
953 * be scheduled for actual execution by the request queue.
955 * We have the option of inserting the head or the tail of the queue.
956 * Typically we use the tail for new ioctls and so forth. We use the head
957 * of the queue for things like a QUEUE_FULL message from a device, or a
958 * host that is unable to accept a particular command.
960 void blk_insert_request(struct request_queue *q, struct request *rq,
961 int at_head, void *data)
963 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
964 unsigned long flags;
967 * tell I/O scheduler that this isn't a regular read/write (ie it
968 * must not attempt merges on this) and that it acts as a soft
969 * barrier
971 rq->cmd_type = REQ_TYPE_SPECIAL;
972 rq->cmd_flags |= REQ_SOFTBARRIER;
974 rq->special = data;
976 spin_lock_irqsave(q->queue_lock, flags);
979 * If command is tagged, release the tag
981 if (blk_rq_tagged(rq))
982 blk_queue_end_tag(q, rq);
984 drive_stat_acct(rq, 1);
985 __elv_add_request(q, rq, where, 0);
986 blk_start_queueing(q);
987 spin_unlock_irqrestore(q->queue_lock, flags);
989 EXPORT_SYMBOL(blk_insert_request);
992 * add-request adds a request to the linked list.
993 * queue lock is held and interrupts disabled, as we muck with the
994 * request queue list.
996 static inline void add_request(struct request_queue *q, struct request *req)
998 drive_stat_acct(req, 1);
1001 * elevator indicated where it wants this request to be
1002 * inserted at elevator_merge time
1004 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1007 static void part_round_stats_single(int cpu, struct hd_struct *part,
1008 unsigned long now)
1010 if (now == part->stamp)
1011 return;
1013 if (part->in_flight) {
1014 __part_stat_add(cpu, part, time_in_queue,
1015 part->in_flight * (now - part->stamp));
1016 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1018 part->stamp = now;
1022 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1023 * @cpu: cpu number for stats access
1024 * @part: target partition
1026 * The average IO queue length and utilisation statistics are maintained
1027 * by observing the current state of the queue length and the amount of
1028 * time it has been in this state for.
1030 * Normally, that accounting is done on IO completion, but that can result
1031 * in more than a second's worth of IO being accounted for within any one
1032 * second, leading to >100% utilisation. To deal with that, we call this
1033 * function to do a round-off before returning the results when reading
1034 * /proc/diskstats. This accounts immediately for all queue usage up to
1035 * the current jiffies and restarts the counters again.
1037 void part_round_stats(int cpu, struct hd_struct *part)
1039 unsigned long now = jiffies;
1041 if (part->partno)
1042 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1043 part_round_stats_single(cpu, part, now);
1045 EXPORT_SYMBOL_GPL(part_round_stats);
1048 * queue lock must be held
1050 void __blk_put_request(struct request_queue *q, struct request *req)
1052 if (unlikely(!q))
1053 return;
1054 if (unlikely(--req->ref_count))
1055 return;
1057 elv_completed_request(q, req);
1060 * Request may not have originated from ll_rw_blk. if not,
1061 * it didn't come out of our reserved rq pools
1063 if (req->cmd_flags & REQ_ALLOCED) {
1064 int rw = rq_data_dir(req);
1065 int priv = req->cmd_flags & REQ_ELVPRIV;
1067 BUG_ON(!list_empty(&req->queuelist));
1068 BUG_ON(!hlist_unhashed(&req->hash));
1070 blk_free_request(q, req);
1071 freed_request(q, rw, priv);
1074 EXPORT_SYMBOL_GPL(__blk_put_request);
1076 void blk_put_request(struct request *req)
1078 unsigned long flags;
1079 struct request_queue *q = req->q;
1081 spin_lock_irqsave(q->queue_lock, flags);
1082 __blk_put_request(q, req);
1083 spin_unlock_irqrestore(q->queue_lock, flags);
1085 EXPORT_SYMBOL(blk_put_request);
1087 void init_request_from_bio(struct request *req, struct bio *bio)
1089 req->cpu = bio->bi_comp_cpu;
1090 req->cmd_type = REQ_TYPE_FS;
1093 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1095 if (bio_rw_ahead(bio) || bio_failfast(bio))
1096 req->cmd_flags |= REQ_FAILFAST;
1099 * REQ_BARRIER implies no merging, but lets make it explicit
1101 if (unlikely(bio_discard(bio))) {
1102 req->cmd_flags |= REQ_DISCARD;
1103 if (bio_barrier(bio))
1104 req->cmd_flags |= REQ_SOFTBARRIER;
1105 req->q->prepare_discard_fn(req->q, req);
1106 } else if (unlikely(bio_barrier(bio)))
1107 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1109 if (bio_sync(bio))
1110 req->cmd_flags |= REQ_RW_SYNC;
1111 if (bio_rw_meta(bio))
1112 req->cmd_flags |= REQ_RW_META;
1114 req->errors = 0;
1115 req->hard_sector = req->sector = bio->bi_sector;
1116 req->ioprio = bio_prio(bio);
1117 req->start_time = jiffies;
1118 blk_rq_bio_prep(req->q, req, bio);
1121 static int __make_request(struct request_queue *q, struct bio *bio)
1123 struct request *req;
1124 int el_ret, nr_sectors, barrier, discard, err;
1125 const unsigned short prio = bio_prio(bio);
1126 const int sync = bio_sync(bio);
1127 int rw_flags;
1129 nr_sectors = bio_sectors(bio);
1132 * low level driver can indicate that it wants pages above a
1133 * certain limit bounced to low memory (ie for highmem, or even
1134 * ISA dma in theory)
1136 blk_queue_bounce(q, &bio);
1138 barrier = bio_barrier(bio);
1139 if (unlikely(barrier) && bio_has_data(bio) &&
1140 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1141 err = -EOPNOTSUPP;
1142 goto end_io;
1145 discard = bio_discard(bio);
1146 if (unlikely(discard) && !q->prepare_discard_fn) {
1147 err = -EOPNOTSUPP;
1148 goto end_io;
1151 spin_lock_irq(q->queue_lock);
1153 if (unlikely(barrier) || elv_queue_empty(q))
1154 goto get_rq;
1156 el_ret = elv_merge(q, &req, bio);
1157 switch (el_ret) {
1158 case ELEVATOR_BACK_MERGE:
1159 BUG_ON(!rq_mergeable(req));
1161 if (!ll_back_merge_fn(q, req, bio))
1162 break;
1164 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1166 req->biotail->bi_next = bio;
1167 req->biotail = bio;
1168 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1169 req->ioprio = ioprio_best(req->ioprio, prio);
1170 if (!blk_rq_cpu_valid(req))
1171 req->cpu = bio->bi_comp_cpu;
1172 drive_stat_acct(req, 0);
1173 if (!attempt_back_merge(q, req))
1174 elv_merged_request(q, req, el_ret);
1175 goto out;
1177 case ELEVATOR_FRONT_MERGE:
1178 BUG_ON(!rq_mergeable(req));
1180 if (!ll_front_merge_fn(q, req, bio))
1181 break;
1183 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1185 bio->bi_next = req->bio;
1186 req->bio = bio;
1189 * may not be valid. if the low level driver said
1190 * it didn't need a bounce buffer then it better
1191 * not touch req->buffer either...
1193 req->buffer = bio_data(bio);
1194 req->current_nr_sectors = bio_cur_sectors(bio);
1195 req->hard_cur_sectors = req->current_nr_sectors;
1196 req->sector = req->hard_sector = bio->bi_sector;
1197 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1198 req->ioprio = ioprio_best(req->ioprio, prio);
1199 if (!blk_rq_cpu_valid(req))
1200 req->cpu = bio->bi_comp_cpu;
1201 drive_stat_acct(req, 0);
1202 if (!attempt_front_merge(q, req))
1203 elv_merged_request(q, req, el_ret);
1204 goto out;
1206 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1207 default:
1211 get_rq:
1213 * This sync check and mask will be re-done in init_request_from_bio(),
1214 * but we need to set it earlier to expose the sync flag to the
1215 * rq allocator and io schedulers.
1217 rw_flags = bio_data_dir(bio);
1218 if (sync)
1219 rw_flags |= REQ_RW_SYNC;
1222 * Grab a free request. This is might sleep but can not fail.
1223 * Returns with the queue unlocked.
1225 req = get_request_wait(q, rw_flags, bio);
1228 * After dropping the lock and possibly sleeping here, our request
1229 * may now be mergeable after it had proven unmergeable (above).
1230 * We don't worry about that case for efficiency. It won't happen
1231 * often, and the elevators are able to handle it.
1233 init_request_from_bio(req, bio);
1235 spin_lock_irq(q->queue_lock);
1236 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1237 bio_flagged(bio, BIO_CPU_AFFINE))
1238 req->cpu = blk_cpu_to_group(smp_processor_id());
1239 if (elv_queue_empty(q))
1240 blk_plug_device(q);
1241 add_request(q, req);
1242 out:
1243 if (sync)
1244 __generic_unplug_device(q);
1245 spin_unlock_irq(q->queue_lock);
1246 return 0;
1248 end_io:
1249 bio_endio(bio, err);
1250 return 0;
1254 * If bio->bi_dev is a partition, remap the location
1256 static inline void blk_partition_remap(struct bio *bio)
1258 struct block_device *bdev = bio->bi_bdev;
1260 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1261 struct hd_struct *p = bdev->bd_part;
1263 bio->bi_sector += p->start_sect;
1264 bio->bi_bdev = bdev->bd_contains;
1266 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1267 bdev->bd_dev, bio->bi_sector,
1268 bio->bi_sector - p->start_sect);
1272 static void handle_bad_sector(struct bio *bio)
1274 char b[BDEVNAME_SIZE];
1276 printk(KERN_INFO "attempt to access beyond end of device\n");
1277 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1278 bdevname(bio->bi_bdev, b),
1279 bio->bi_rw,
1280 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1281 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1283 set_bit(BIO_EOF, &bio->bi_flags);
1286 #ifdef CONFIG_FAIL_MAKE_REQUEST
1288 static DECLARE_FAULT_ATTR(fail_make_request);
1290 static int __init setup_fail_make_request(char *str)
1292 return setup_fault_attr(&fail_make_request, str);
1294 __setup("fail_make_request=", setup_fail_make_request);
1296 static int should_fail_request(struct bio *bio)
1298 struct hd_struct *part = bio->bi_bdev->bd_part;
1300 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1301 return should_fail(&fail_make_request, bio->bi_size);
1303 return 0;
1306 static int __init fail_make_request_debugfs(void)
1308 return init_fault_attr_dentries(&fail_make_request,
1309 "fail_make_request");
1312 late_initcall(fail_make_request_debugfs);
1314 #else /* CONFIG_FAIL_MAKE_REQUEST */
1316 static inline int should_fail_request(struct bio *bio)
1318 return 0;
1321 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1324 * Check whether this bio extends beyond the end of the device.
1326 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1328 sector_t maxsector;
1330 if (!nr_sectors)
1331 return 0;
1333 /* Test device or partition size, when known. */
1334 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1335 if (maxsector) {
1336 sector_t sector = bio->bi_sector;
1338 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1340 * This may well happen - the kernel calls bread()
1341 * without checking the size of the device, e.g., when
1342 * mounting a device.
1344 handle_bad_sector(bio);
1345 return 1;
1349 return 0;
1353 * generic_make_request - hand a buffer to its device driver for I/O
1354 * @bio: The bio describing the location in memory and on the device.
1356 * generic_make_request() is used to make I/O requests of block
1357 * devices. It is passed a &struct bio, which describes the I/O that needs
1358 * to be done.
1360 * generic_make_request() does not return any status. The
1361 * success/failure status of the request, along with notification of
1362 * completion, is delivered asynchronously through the bio->bi_end_io
1363 * function described (one day) else where.
1365 * The caller of generic_make_request must make sure that bi_io_vec
1366 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1367 * set to describe the device address, and the
1368 * bi_end_io and optionally bi_private are set to describe how
1369 * completion notification should be signaled.
1371 * generic_make_request and the drivers it calls may use bi_next if this
1372 * bio happens to be merged with someone else, and may change bi_dev and
1373 * bi_sector for remaps as it sees fit. So the values of these fields
1374 * should NOT be depended on after the call to generic_make_request.
1376 static inline void __generic_make_request(struct bio *bio)
1378 struct request_queue *q;
1379 sector_t old_sector;
1380 int ret, nr_sectors = bio_sectors(bio);
1381 dev_t old_dev;
1382 int err = -EIO;
1384 might_sleep();
1386 if (bio_check_eod(bio, nr_sectors))
1387 goto end_io;
1390 * Resolve the mapping until finished. (drivers are
1391 * still free to implement/resolve their own stacking
1392 * by explicitly returning 0)
1394 * NOTE: we don't repeat the blk_size check for each new device.
1395 * Stacking drivers are expected to know what they are doing.
1397 old_sector = -1;
1398 old_dev = 0;
1399 do {
1400 char b[BDEVNAME_SIZE];
1402 q = bdev_get_queue(bio->bi_bdev);
1403 if (!q) {
1404 printk(KERN_ERR
1405 "generic_make_request: Trying to access "
1406 "nonexistent block-device %s (%Lu)\n",
1407 bdevname(bio->bi_bdev, b),
1408 (long long) bio->bi_sector);
1409 end_io:
1410 bio_endio(bio, err);
1411 break;
1414 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1415 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1416 bdevname(bio->bi_bdev, b),
1417 bio_sectors(bio),
1418 q->max_hw_sectors);
1419 goto end_io;
1422 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1423 goto end_io;
1425 if (should_fail_request(bio))
1426 goto end_io;
1429 * If this device has partitions, remap block n
1430 * of partition p to block n+start(p) of the disk.
1432 blk_partition_remap(bio);
1434 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1435 goto end_io;
1437 if (old_sector != -1)
1438 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1439 old_sector);
1441 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1443 old_sector = bio->bi_sector;
1444 old_dev = bio->bi_bdev->bd_dev;
1446 if (bio_check_eod(bio, nr_sectors))
1447 goto end_io;
1448 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1449 (bio_discard(bio) && !q->prepare_discard_fn)) {
1450 err = -EOPNOTSUPP;
1451 goto end_io;
1454 ret = q->make_request_fn(q, bio);
1455 } while (ret);
1459 * We only want one ->make_request_fn to be active at a time,
1460 * else stack usage with stacked devices could be a problem.
1461 * So use current->bio_{list,tail} to keep a list of requests
1462 * submited by a make_request_fn function.
1463 * current->bio_tail is also used as a flag to say if
1464 * generic_make_request is currently active in this task or not.
1465 * If it is NULL, then no make_request is active. If it is non-NULL,
1466 * then a make_request is active, and new requests should be added
1467 * at the tail
1469 void generic_make_request(struct bio *bio)
1471 if (current->bio_tail) {
1472 /* make_request is active */
1473 *(current->bio_tail) = bio;
1474 bio->bi_next = NULL;
1475 current->bio_tail = &bio->bi_next;
1476 return;
1478 /* following loop may be a bit non-obvious, and so deserves some
1479 * explanation.
1480 * Before entering the loop, bio->bi_next is NULL (as all callers
1481 * ensure that) so we have a list with a single bio.
1482 * We pretend that we have just taken it off a longer list, so
1483 * we assign bio_list to the next (which is NULL) and bio_tail
1484 * to &bio_list, thus initialising the bio_list of new bios to be
1485 * added. __generic_make_request may indeed add some more bios
1486 * through a recursive call to generic_make_request. If it
1487 * did, we find a non-NULL value in bio_list and re-enter the loop
1488 * from the top. In this case we really did just take the bio
1489 * of the top of the list (no pretending) and so fixup bio_list and
1490 * bio_tail or bi_next, and call into __generic_make_request again.
1492 * The loop was structured like this to make only one call to
1493 * __generic_make_request (which is important as it is large and
1494 * inlined) and to keep the structure simple.
1496 BUG_ON(bio->bi_next);
1497 do {
1498 current->bio_list = bio->bi_next;
1499 if (bio->bi_next == NULL)
1500 current->bio_tail = &current->bio_list;
1501 else
1502 bio->bi_next = NULL;
1503 __generic_make_request(bio);
1504 bio = current->bio_list;
1505 } while (bio);
1506 current->bio_tail = NULL; /* deactivate */
1508 EXPORT_SYMBOL(generic_make_request);
1511 * submit_bio - submit a bio to the block device layer for I/O
1512 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1513 * @bio: The &struct bio which describes the I/O
1515 * submit_bio() is very similar in purpose to generic_make_request(), and
1516 * uses that function to do most of the work. Both are fairly rough
1517 * interfaces; @bio must be presetup and ready for I/O.
1520 void submit_bio(int rw, struct bio *bio)
1522 int count = bio_sectors(bio);
1524 bio->bi_rw |= rw;
1527 * If it's a regular read/write or a barrier with data attached,
1528 * go through the normal accounting stuff before submission.
1530 if (bio_has_data(bio)) {
1531 if (rw & WRITE) {
1532 count_vm_events(PGPGOUT, count);
1533 } else {
1534 task_io_account_read(bio->bi_size);
1535 count_vm_events(PGPGIN, count);
1538 if (unlikely(block_dump)) {
1539 char b[BDEVNAME_SIZE];
1540 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1541 current->comm, task_pid_nr(current),
1542 (rw & WRITE) ? "WRITE" : "READ",
1543 (unsigned long long)bio->bi_sector,
1544 bdevname(bio->bi_bdev, b));
1548 generic_make_request(bio);
1550 EXPORT_SYMBOL(submit_bio);
1553 * blk_rq_check_limits - Helper function to check a request for the queue limit
1554 * @q: the queue
1555 * @rq: the request being checked
1557 * Description:
1558 * @rq may have been made based on weaker limitations of upper-level queues
1559 * in request stacking drivers, and it may violate the limitation of @q.
1560 * Since the block layer and the underlying device driver trust @rq
1561 * after it is inserted to @q, it should be checked against @q before
1562 * the insertion using this generic function.
1564 * This function should also be useful for request stacking drivers
1565 * in some cases below, so export this fuction.
1566 * Request stacking drivers like request-based dm may change the queue
1567 * limits while requests are in the queue (e.g. dm's table swapping).
1568 * Such request stacking drivers should check those requests agaist
1569 * the new queue limits again when they dispatch those requests,
1570 * although such checkings are also done against the old queue limits
1571 * when submitting requests.
1573 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1575 if (rq->nr_sectors > q->max_sectors ||
1576 rq->data_len > q->max_hw_sectors << 9) {
1577 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1578 return -EIO;
1582 * queue's settings related to segment counting like q->bounce_pfn
1583 * may differ from that of other stacking queues.
1584 * Recalculate it to check the request correctly on this queue's
1585 * limitation.
1587 blk_recalc_rq_segments(rq);
1588 if (rq->nr_phys_segments > q->max_phys_segments ||
1589 rq->nr_phys_segments > q->max_hw_segments) {
1590 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1591 return -EIO;
1594 return 0;
1596 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1599 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1600 * @q: the queue to submit the request
1601 * @rq: the request being queued
1603 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1605 unsigned long flags;
1607 if (blk_rq_check_limits(q, rq))
1608 return -EIO;
1610 #ifdef CONFIG_FAIL_MAKE_REQUEST
1611 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1612 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1613 return -EIO;
1614 #endif
1616 spin_lock_irqsave(q->queue_lock, flags);
1619 * Submitting request must be dequeued before calling this function
1620 * because it will be linked to another request_queue
1622 BUG_ON(blk_queued_rq(rq));
1624 drive_stat_acct(rq, 1);
1625 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1627 spin_unlock_irqrestore(q->queue_lock, flags);
1629 return 0;
1631 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1634 * __end_that_request_first - end I/O on a request
1635 * @req: the request being processed
1636 * @error: %0 for success, < %0 for error
1637 * @nr_bytes: number of bytes to complete
1639 * Description:
1640 * Ends I/O on a number of bytes attached to @req, and sets it up
1641 * for the next range of segments (if any) in the cluster.
1643 * Return:
1644 * %0 - we are done with this request, call end_that_request_last()
1645 * %1 - still buffers pending for this request
1647 static int __end_that_request_first(struct request *req, int error,
1648 int nr_bytes)
1650 int total_bytes, bio_nbytes, next_idx = 0;
1651 struct bio *bio;
1653 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1656 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1657 * sense key with us all the way through
1659 if (!blk_pc_request(req))
1660 req->errors = 0;
1662 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1663 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1664 req->rq_disk ? req->rq_disk->disk_name : "?",
1665 (unsigned long long)req->sector);
1668 if (blk_fs_request(req) && req->rq_disk) {
1669 const int rw = rq_data_dir(req);
1670 struct hd_struct *part;
1671 int cpu;
1673 cpu = part_stat_lock();
1674 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1675 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1676 part_stat_unlock();
1679 total_bytes = bio_nbytes = 0;
1680 while ((bio = req->bio) != NULL) {
1681 int nbytes;
1684 * For an empty barrier request, the low level driver must
1685 * store a potential error location in ->sector. We pass
1686 * that back up in ->bi_sector.
1688 if (blk_empty_barrier(req))
1689 bio->bi_sector = req->sector;
1691 if (nr_bytes >= bio->bi_size) {
1692 req->bio = bio->bi_next;
1693 nbytes = bio->bi_size;
1694 req_bio_endio(req, bio, nbytes, error);
1695 next_idx = 0;
1696 bio_nbytes = 0;
1697 } else {
1698 int idx = bio->bi_idx + next_idx;
1700 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1701 blk_dump_rq_flags(req, "__end_that");
1702 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1703 __func__, bio->bi_idx, bio->bi_vcnt);
1704 break;
1707 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1708 BIO_BUG_ON(nbytes > bio->bi_size);
1711 * not a complete bvec done
1713 if (unlikely(nbytes > nr_bytes)) {
1714 bio_nbytes += nr_bytes;
1715 total_bytes += nr_bytes;
1716 break;
1720 * advance to the next vector
1722 next_idx++;
1723 bio_nbytes += nbytes;
1726 total_bytes += nbytes;
1727 nr_bytes -= nbytes;
1729 bio = req->bio;
1730 if (bio) {
1732 * end more in this run, or just return 'not-done'
1734 if (unlikely(nr_bytes <= 0))
1735 break;
1740 * completely done
1742 if (!req->bio)
1743 return 0;
1746 * if the request wasn't completed, update state
1748 if (bio_nbytes) {
1749 req_bio_endio(req, bio, bio_nbytes, error);
1750 bio->bi_idx += next_idx;
1751 bio_iovec(bio)->bv_offset += nr_bytes;
1752 bio_iovec(bio)->bv_len -= nr_bytes;
1755 blk_recalc_rq_sectors(req, total_bytes >> 9);
1756 blk_recalc_rq_segments(req);
1757 return 1;
1761 * queue lock must be held
1763 static void end_that_request_last(struct request *req, int error)
1765 struct gendisk *disk = req->rq_disk;
1767 blk_delete_timer(req);
1769 if (blk_rq_tagged(req))
1770 blk_queue_end_tag(req->q, req);
1772 if (blk_queued_rq(req))
1773 blkdev_dequeue_request(req);
1775 if (unlikely(laptop_mode) && blk_fs_request(req))
1776 laptop_io_completion();
1779 * Account IO completion. bar_rq isn't accounted as a normal
1780 * IO on queueing nor completion. Accounting the containing
1781 * request is enough.
1783 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1784 unsigned long duration = jiffies - req->start_time;
1785 const int rw = rq_data_dir(req);
1786 struct hd_struct *part;
1787 int cpu;
1789 cpu = part_stat_lock();
1790 part = disk_map_sector_rcu(disk, req->sector);
1792 part_stat_inc(cpu, part, ios[rw]);
1793 part_stat_add(cpu, part, ticks[rw], duration);
1794 part_round_stats(cpu, part);
1795 part_dec_in_flight(part);
1797 part_stat_unlock();
1800 if (req->end_io)
1801 req->end_io(req, error);
1802 else {
1803 if (blk_bidi_rq(req))
1804 __blk_put_request(req->next_rq->q, req->next_rq);
1806 __blk_put_request(req->q, req);
1811 * blk_rq_bytes - Returns bytes left to complete in the entire request
1812 * @rq: the request being processed
1814 unsigned int blk_rq_bytes(struct request *rq)
1816 if (blk_fs_request(rq))
1817 return rq->hard_nr_sectors << 9;
1819 return rq->data_len;
1821 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1824 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1825 * @rq: the request being processed
1827 unsigned int blk_rq_cur_bytes(struct request *rq)
1829 if (blk_fs_request(rq))
1830 return rq->current_nr_sectors << 9;
1832 if (rq->bio)
1833 return rq->bio->bi_size;
1835 return rq->data_len;
1837 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1840 * end_request - end I/O on the current segment of the request
1841 * @req: the request being processed
1842 * @uptodate: error value or %0/%1 uptodate flag
1844 * Description:
1845 * Ends I/O on the current segment of a request. If that is the only
1846 * remaining segment, the request is also completed and freed.
1848 * This is a remnant of how older block drivers handled I/O completions.
1849 * Modern drivers typically end I/O on the full request in one go, unless
1850 * they have a residual value to account for. For that case this function
1851 * isn't really useful, unless the residual just happens to be the
1852 * full current segment. In other words, don't use this function in new
1853 * code. Use blk_end_request() or __blk_end_request() to end a request.
1855 void end_request(struct request *req, int uptodate)
1857 int error = 0;
1859 if (uptodate <= 0)
1860 error = uptodate ? uptodate : -EIO;
1862 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1864 EXPORT_SYMBOL(end_request);
1866 static int end_that_request_data(struct request *rq, int error,
1867 unsigned int nr_bytes, unsigned int bidi_bytes)
1869 if (rq->bio) {
1870 if (__end_that_request_first(rq, error, nr_bytes))
1871 return 1;
1873 /* Bidi request must be completed as a whole */
1874 if (blk_bidi_rq(rq) &&
1875 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1876 return 1;
1879 return 0;
1883 * blk_end_io - Generic end_io function to complete a request.
1884 * @rq: the request being processed
1885 * @error: %0 for success, < %0 for error
1886 * @nr_bytes: number of bytes to complete @rq
1887 * @bidi_bytes: number of bytes to complete @rq->next_rq
1888 * @drv_callback: function called between completion of bios in the request
1889 * and completion of the request.
1890 * If the callback returns non %0, this helper returns without
1891 * completion of the request.
1893 * Description:
1894 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1895 * If @rq has leftover, sets it up for the next range of segments.
1897 * Return:
1898 * %0 - we are done with this request
1899 * %1 - this request is not freed yet, it still has pending buffers.
1901 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1902 unsigned int bidi_bytes,
1903 int (drv_callback)(struct request *))
1905 struct request_queue *q = rq->q;
1906 unsigned long flags = 0UL;
1908 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1909 return 1;
1911 /* Special feature for tricky drivers */
1912 if (drv_callback && drv_callback(rq))
1913 return 1;
1915 add_disk_randomness(rq->rq_disk);
1917 spin_lock_irqsave(q->queue_lock, flags);
1918 end_that_request_last(rq, error);
1919 spin_unlock_irqrestore(q->queue_lock, flags);
1921 return 0;
1925 * blk_end_request - Helper function for drivers to complete the request.
1926 * @rq: the request being processed
1927 * @error: %0 for success, < %0 for error
1928 * @nr_bytes: number of bytes to complete
1930 * Description:
1931 * Ends I/O on a number of bytes attached to @rq.
1932 * If @rq has leftover, sets it up for the next range of segments.
1934 * Return:
1935 * %0 - we are done with this request
1936 * %1 - still buffers pending for this request
1938 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1940 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1942 EXPORT_SYMBOL_GPL(blk_end_request);
1945 * __blk_end_request - Helper function for drivers to complete the request.
1946 * @rq: the request being processed
1947 * @error: %0 for success, < %0 for error
1948 * @nr_bytes: number of bytes to complete
1950 * Description:
1951 * Must be called with queue lock held unlike blk_end_request().
1953 * Return:
1954 * %0 - we are done with this request
1955 * %1 - still buffers pending for this request
1957 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1959 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1960 return 1;
1962 add_disk_randomness(rq->rq_disk);
1964 end_that_request_last(rq, error);
1966 return 0;
1968 EXPORT_SYMBOL_GPL(__blk_end_request);
1971 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1972 * @rq: the bidi request being processed
1973 * @error: %0 for success, < %0 for error
1974 * @nr_bytes: number of bytes to complete @rq
1975 * @bidi_bytes: number of bytes to complete @rq->next_rq
1977 * Description:
1978 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1980 * Return:
1981 * %0 - we are done with this request
1982 * %1 - still buffers pending for this request
1984 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1985 unsigned int bidi_bytes)
1987 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1989 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1992 * blk_update_request - Special helper function for request stacking drivers
1993 * @rq: the request being processed
1994 * @error: %0 for success, < %0 for error
1995 * @nr_bytes: number of bytes to complete @rq
1997 * Description:
1998 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
1999 * the request structure even if @rq doesn't have leftover.
2000 * If @rq has leftover, sets it up for the next range of segments.
2002 * This special helper function is only for request stacking drivers
2003 * (e.g. request-based dm) so that they can handle partial completion.
2004 * Actual device drivers should use blk_end_request instead.
2006 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2008 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2010 * These members are not updated in end_that_request_data()
2011 * when all bios are completed.
2012 * Update them so that the request stacking driver can find
2013 * how many bytes remain in the request later.
2015 rq->nr_sectors = rq->hard_nr_sectors = 0;
2016 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2019 EXPORT_SYMBOL_GPL(blk_update_request);
2022 * blk_end_request_callback - Special helper function for tricky drivers
2023 * @rq: the request being processed
2024 * @error: %0 for success, < %0 for error
2025 * @nr_bytes: number of bytes to complete
2026 * @drv_callback: function called between completion of bios in the request
2027 * and completion of the request.
2028 * If the callback returns non %0, this helper returns without
2029 * completion of the request.
2031 * Description:
2032 * Ends I/O on a number of bytes attached to @rq.
2033 * If @rq has leftover, sets it up for the next range of segments.
2035 * This special helper function is used only for existing tricky drivers.
2036 * (e.g. cdrom_newpc_intr() of ide-cd)
2037 * This interface will be removed when such drivers are rewritten.
2038 * Don't use this interface in other places anymore.
2040 * Return:
2041 * %0 - we are done with this request
2042 * %1 - this request is not freed yet.
2043 * this request still has pending buffers or
2044 * the driver doesn't want to finish this request yet.
2046 int blk_end_request_callback(struct request *rq, int error,
2047 unsigned int nr_bytes,
2048 int (drv_callback)(struct request *))
2050 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2052 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2054 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2055 struct bio *bio)
2057 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2058 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2059 rq->cmd_flags |= (bio->bi_rw & 3);
2061 if (bio_has_data(bio)) {
2062 rq->nr_phys_segments = bio_phys_segments(q, bio);
2063 rq->buffer = bio_data(bio);
2065 rq->current_nr_sectors = bio_cur_sectors(bio);
2066 rq->hard_cur_sectors = rq->current_nr_sectors;
2067 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2068 rq->data_len = bio->bi_size;
2070 rq->bio = rq->biotail = bio;
2072 if (bio->bi_bdev)
2073 rq->rq_disk = bio->bi_bdev->bd_disk;
2077 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2078 * @q : the queue of the device being checked
2080 * Description:
2081 * Check if underlying low-level drivers of a device are busy.
2082 * If the drivers want to export their busy state, they must set own
2083 * exporting function using blk_queue_lld_busy() first.
2085 * Basically, this function is used only by request stacking drivers
2086 * to stop dispatching requests to underlying devices when underlying
2087 * devices are busy. This behavior helps more I/O merging on the queue
2088 * of the request stacking driver and prevents I/O throughput regression
2089 * on burst I/O load.
2091 * Return:
2092 * 0 - Not busy (The request stacking driver should dispatch request)
2093 * 1 - Busy (The request stacking driver should stop dispatching request)
2095 int blk_lld_busy(struct request_queue *q)
2097 if (q->lld_busy_fn)
2098 return q->lld_busy_fn(q);
2100 return 0;
2102 EXPORT_SYMBOL_GPL(blk_lld_busy);
2104 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2106 return queue_work(kblockd_workqueue, work);
2108 EXPORT_SYMBOL(kblockd_schedule_work);
2110 void kblockd_flush_work(struct work_struct *work)
2112 cancel_work_sync(work);
2114 EXPORT_SYMBOL(kblockd_flush_work);
2116 int __init blk_dev_init(void)
2118 kblockd_workqueue = create_workqueue("kblockd");
2119 if (!kblockd_workqueue)
2120 panic("Failed to create kblockd\n");
2122 request_cachep = kmem_cache_create("blkdev_requests",
2123 sizeof(struct request), 0, SLAB_PANIC, NULL);
2125 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2126 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2128 return 0;