Merge branch 'for-chris' of git://git.kernel.org/pub/scm/linux/kernel/git/arne/btrfs...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / volumes.c
blobb8fc2fa91fdf107a578c4349d74a8a95684704e0
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <asm/div64.h>
27 #include "compat.h"
28 #include "ctree.h"
29 #include "extent_map.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "async-thread.h"
36 static int init_first_rw_device(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct btrfs_device *device);
39 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
41 static DEFINE_MUTEX(uuid_mutex);
42 static LIST_HEAD(fs_uuids);
44 static void lock_chunks(struct btrfs_root *root)
46 mutex_lock(&root->fs_info->chunk_mutex);
49 static void unlock_chunks(struct btrfs_root *root)
51 mutex_unlock(&root->fs_info->chunk_mutex);
54 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
56 struct btrfs_device *device;
57 WARN_ON(fs_devices->opened);
58 while (!list_empty(&fs_devices->devices)) {
59 device = list_entry(fs_devices->devices.next,
60 struct btrfs_device, dev_list);
61 list_del(&device->dev_list);
62 kfree(device->name);
63 kfree(device);
65 kfree(fs_devices);
68 int btrfs_cleanup_fs_uuids(void)
70 struct btrfs_fs_devices *fs_devices;
72 while (!list_empty(&fs_uuids)) {
73 fs_devices = list_entry(fs_uuids.next,
74 struct btrfs_fs_devices, list);
75 list_del(&fs_devices->list);
76 free_fs_devices(fs_devices);
78 return 0;
81 static noinline struct btrfs_device *__find_device(struct list_head *head,
82 u64 devid, u8 *uuid)
84 struct btrfs_device *dev;
86 list_for_each_entry(dev, head, dev_list) {
87 if (dev->devid == devid &&
88 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
89 return dev;
92 return NULL;
95 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
97 struct btrfs_fs_devices *fs_devices;
99 list_for_each_entry(fs_devices, &fs_uuids, list) {
100 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
101 return fs_devices;
103 return NULL;
106 static void requeue_list(struct btrfs_pending_bios *pending_bios,
107 struct bio *head, struct bio *tail)
110 struct bio *old_head;
112 old_head = pending_bios->head;
113 pending_bios->head = head;
114 if (pending_bios->tail)
115 tail->bi_next = old_head;
116 else
117 pending_bios->tail = tail;
121 * we try to collect pending bios for a device so we don't get a large
122 * number of procs sending bios down to the same device. This greatly
123 * improves the schedulers ability to collect and merge the bios.
125 * But, it also turns into a long list of bios to process and that is sure
126 * to eventually make the worker thread block. The solution here is to
127 * make some progress and then put this work struct back at the end of
128 * the list if the block device is congested. This way, multiple devices
129 * can make progress from a single worker thread.
131 static noinline int run_scheduled_bios(struct btrfs_device *device)
133 struct bio *pending;
134 struct backing_dev_info *bdi;
135 struct btrfs_fs_info *fs_info;
136 struct btrfs_pending_bios *pending_bios;
137 struct bio *tail;
138 struct bio *cur;
139 int again = 0;
140 unsigned long num_run;
141 unsigned long batch_run = 0;
142 unsigned long limit;
143 unsigned long last_waited = 0;
144 int force_reg = 0;
145 struct blk_plug plug;
148 * this function runs all the bios we've collected for
149 * a particular device. We don't want to wander off to
150 * another device without first sending all of these down.
151 * So, setup a plug here and finish it off before we return
153 blk_start_plug(&plug);
155 bdi = blk_get_backing_dev_info(device->bdev);
156 fs_info = device->dev_root->fs_info;
157 limit = btrfs_async_submit_limit(fs_info);
158 limit = limit * 2 / 3;
160 loop:
161 spin_lock(&device->io_lock);
163 loop_lock:
164 num_run = 0;
166 /* take all the bios off the list at once and process them
167 * later on (without the lock held). But, remember the
168 * tail and other pointers so the bios can be properly reinserted
169 * into the list if we hit congestion
171 if (!force_reg && device->pending_sync_bios.head) {
172 pending_bios = &device->pending_sync_bios;
173 force_reg = 1;
174 } else {
175 pending_bios = &device->pending_bios;
176 force_reg = 0;
179 pending = pending_bios->head;
180 tail = pending_bios->tail;
181 WARN_ON(pending && !tail);
184 * if pending was null this time around, no bios need processing
185 * at all and we can stop. Otherwise it'll loop back up again
186 * and do an additional check so no bios are missed.
188 * device->running_pending is used to synchronize with the
189 * schedule_bio code.
191 if (device->pending_sync_bios.head == NULL &&
192 device->pending_bios.head == NULL) {
193 again = 0;
194 device->running_pending = 0;
195 } else {
196 again = 1;
197 device->running_pending = 1;
200 pending_bios->head = NULL;
201 pending_bios->tail = NULL;
203 spin_unlock(&device->io_lock);
205 while (pending) {
207 rmb();
208 /* we want to work on both lists, but do more bios on the
209 * sync list than the regular list
211 if ((num_run > 32 &&
212 pending_bios != &device->pending_sync_bios &&
213 device->pending_sync_bios.head) ||
214 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
215 device->pending_bios.head)) {
216 spin_lock(&device->io_lock);
217 requeue_list(pending_bios, pending, tail);
218 goto loop_lock;
221 cur = pending;
222 pending = pending->bi_next;
223 cur->bi_next = NULL;
224 atomic_dec(&fs_info->nr_async_bios);
226 if (atomic_read(&fs_info->nr_async_bios) < limit &&
227 waitqueue_active(&fs_info->async_submit_wait))
228 wake_up(&fs_info->async_submit_wait);
230 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
232 submit_bio(cur->bi_rw, cur);
233 num_run++;
234 batch_run++;
235 if (need_resched())
236 cond_resched();
239 * we made progress, there is more work to do and the bdi
240 * is now congested. Back off and let other work structs
241 * run instead
243 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
244 fs_info->fs_devices->open_devices > 1) {
245 struct io_context *ioc;
247 ioc = current->io_context;
250 * the main goal here is that we don't want to
251 * block if we're going to be able to submit
252 * more requests without blocking.
254 * This code does two great things, it pokes into
255 * the elevator code from a filesystem _and_
256 * it makes assumptions about how batching works.
258 if (ioc && ioc->nr_batch_requests > 0 &&
259 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
260 (last_waited == 0 ||
261 ioc->last_waited == last_waited)) {
263 * we want to go through our batch of
264 * requests and stop. So, we copy out
265 * the ioc->last_waited time and test
266 * against it before looping
268 last_waited = ioc->last_waited;
269 if (need_resched())
270 cond_resched();
271 continue;
273 spin_lock(&device->io_lock);
274 requeue_list(pending_bios, pending, tail);
275 device->running_pending = 1;
277 spin_unlock(&device->io_lock);
278 btrfs_requeue_work(&device->work);
279 goto done;
283 cond_resched();
284 if (again)
285 goto loop;
287 spin_lock(&device->io_lock);
288 if (device->pending_bios.head || device->pending_sync_bios.head)
289 goto loop_lock;
290 spin_unlock(&device->io_lock);
292 done:
293 blk_finish_plug(&plug);
294 return 0;
297 static void pending_bios_fn(struct btrfs_work *work)
299 struct btrfs_device *device;
301 device = container_of(work, struct btrfs_device, work);
302 run_scheduled_bios(device);
305 static noinline int device_list_add(const char *path,
306 struct btrfs_super_block *disk_super,
307 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
309 struct btrfs_device *device;
310 struct btrfs_fs_devices *fs_devices;
311 u64 found_transid = btrfs_super_generation(disk_super);
312 char *name;
314 fs_devices = find_fsid(disk_super->fsid);
315 if (!fs_devices) {
316 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
317 if (!fs_devices)
318 return -ENOMEM;
319 INIT_LIST_HEAD(&fs_devices->devices);
320 INIT_LIST_HEAD(&fs_devices->alloc_list);
321 list_add(&fs_devices->list, &fs_uuids);
322 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
323 fs_devices->latest_devid = devid;
324 fs_devices->latest_trans = found_transid;
325 mutex_init(&fs_devices->device_list_mutex);
326 device = NULL;
327 } else {
328 device = __find_device(&fs_devices->devices, devid,
329 disk_super->dev_item.uuid);
331 if (!device) {
332 if (fs_devices->opened)
333 return -EBUSY;
335 device = kzalloc(sizeof(*device), GFP_NOFS);
336 if (!device) {
337 /* we can safely leave the fs_devices entry around */
338 return -ENOMEM;
340 device->devid = devid;
341 device->work.func = pending_bios_fn;
342 memcpy(device->uuid, disk_super->dev_item.uuid,
343 BTRFS_UUID_SIZE);
344 spin_lock_init(&device->io_lock);
345 device->name = kstrdup(path, GFP_NOFS);
346 if (!device->name) {
347 kfree(device);
348 return -ENOMEM;
350 INIT_LIST_HEAD(&device->dev_alloc_list);
352 mutex_lock(&fs_devices->device_list_mutex);
353 list_add(&device->dev_list, &fs_devices->devices);
354 mutex_unlock(&fs_devices->device_list_mutex);
356 device->fs_devices = fs_devices;
357 fs_devices->num_devices++;
358 } else if (!device->name || strcmp(device->name, path)) {
359 name = kstrdup(path, GFP_NOFS);
360 if (!name)
361 return -ENOMEM;
362 kfree(device->name);
363 device->name = name;
364 if (device->missing) {
365 fs_devices->missing_devices--;
366 device->missing = 0;
370 if (found_transid > fs_devices->latest_trans) {
371 fs_devices->latest_devid = devid;
372 fs_devices->latest_trans = found_transid;
374 *fs_devices_ret = fs_devices;
375 return 0;
378 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
380 struct btrfs_fs_devices *fs_devices;
381 struct btrfs_device *device;
382 struct btrfs_device *orig_dev;
384 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
385 if (!fs_devices)
386 return ERR_PTR(-ENOMEM);
388 INIT_LIST_HEAD(&fs_devices->devices);
389 INIT_LIST_HEAD(&fs_devices->alloc_list);
390 INIT_LIST_HEAD(&fs_devices->list);
391 mutex_init(&fs_devices->device_list_mutex);
392 fs_devices->latest_devid = orig->latest_devid;
393 fs_devices->latest_trans = orig->latest_trans;
394 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
396 mutex_lock(&orig->device_list_mutex);
397 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
398 device = kzalloc(sizeof(*device), GFP_NOFS);
399 if (!device)
400 goto error;
402 device->name = kstrdup(orig_dev->name, GFP_NOFS);
403 if (!device->name) {
404 kfree(device);
405 goto error;
408 device->devid = orig_dev->devid;
409 device->work.func = pending_bios_fn;
410 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
411 spin_lock_init(&device->io_lock);
412 INIT_LIST_HEAD(&device->dev_list);
413 INIT_LIST_HEAD(&device->dev_alloc_list);
415 list_add(&device->dev_list, &fs_devices->devices);
416 device->fs_devices = fs_devices;
417 fs_devices->num_devices++;
419 mutex_unlock(&orig->device_list_mutex);
420 return fs_devices;
421 error:
422 mutex_unlock(&orig->device_list_mutex);
423 free_fs_devices(fs_devices);
424 return ERR_PTR(-ENOMEM);
427 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
429 struct btrfs_device *device, *next;
431 mutex_lock(&uuid_mutex);
432 again:
433 mutex_lock(&fs_devices->device_list_mutex);
434 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
435 if (device->in_fs_metadata)
436 continue;
438 if (device->bdev) {
439 blkdev_put(device->bdev, device->mode);
440 device->bdev = NULL;
441 fs_devices->open_devices--;
443 if (device->writeable) {
444 list_del_init(&device->dev_alloc_list);
445 device->writeable = 0;
446 fs_devices->rw_devices--;
448 list_del_init(&device->dev_list);
449 fs_devices->num_devices--;
450 kfree(device->name);
451 kfree(device);
453 mutex_unlock(&fs_devices->device_list_mutex);
455 if (fs_devices->seed) {
456 fs_devices = fs_devices->seed;
457 goto again;
460 mutex_unlock(&uuid_mutex);
461 return 0;
464 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
466 struct btrfs_device *device;
468 if (--fs_devices->opened > 0)
469 return 0;
471 list_for_each_entry(device, &fs_devices->devices, dev_list) {
472 if (device->bdev) {
473 blkdev_put(device->bdev, device->mode);
474 fs_devices->open_devices--;
476 if (device->writeable) {
477 list_del_init(&device->dev_alloc_list);
478 fs_devices->rw_devices--;
481 device->bdev = NULL;
482 device->writeable = 0;
483 device->in_fs_metadata = 0;
485 WARN_ON(fs_devices->open_devices);
486 WARN_ON(fs_devices->rw_devices);
487 fs_devices->opened = 0;
488 fs_devices->seeding = 0;
490 return 0;
493 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
495 struct btrfs_fs_devices *seed_devices = NULL;
496 int ret;
498 mutex_lock(&uuid_mutex);
499 ret = __btrfs_close_devices(fs_devices);
500 if (!fs_devices->opened) {
501 seed_devices = fs_devices->seed;
502 fs_devices->seed = NULL;
504 mutex_unlock(&uuid_mutex);
506 while (seed_devices) {
507 fs_devices = seed_devices;
508 seed_devices = fs_devices->seed;
509 __btrfs_close_devices(fs_devices);
510 free_fs_devices(fs_devices);
512 return ret;
515 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
516 fmode_t flags, void *holder)
518 struct block_device *bdev;
519 struct list_head *head = &fs_devices->devices;
520 struct btrfs_device *device;
521 struct block_device *latest_bdev = NULL;
522 struct buffer_head *bh;
523 struct btrfs_super_block *disk_super;
524 u64 latest_devid = 0;
525 u64 latest_transid = 0;
526 u64 devid;
527 int seeding = 1;
528 int ret = 0;
530 flags |= FMODE_EXCL;
532 list_for_each_entry(device, head, dev_list) {
533 if (device->bdev)
534 continue;
535 if (!device->name)
536 continue;
538 bdev = blkdev_get_by_path(device->name, flags, holder);
539 if (IS_ERR(bdev)) {
540 printk(KERN_INFO "open %s failed\n", device->name);
541 goto error;
543 set_blocksize(bdev, 4096);
545 bh = btrfs_read_dev_super(bdev);
546 if (!bh) {
547 ret = -EINVAL;
548 goto error_close;
551 disk_super = (struct btrfs_super_block *)bh->b_data;
552 devid = btrfs_stack_device_id(&disk_super->dev_item);
553 if (devid != device->devid)
554 goto error_brelse;
556 if (memcmp(device->uuid, disk_super->dev_item.uuid,
557 BTRFS_UUID_SIZE))
558 goto error_brelse;
560 device->generation = btrfs_super_generation(disk_super);
561 if (!latest_transid || device->generation > latest_transid) {
562 latest_devid = devid;
563 latest_transid = device->generation;
564 latest_bdev = bdev;
567 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
568 device->writeable = 0;
569 } else {
570 device->writeable = !bdev_read_only(bdev);
571 seeding = 0;
574 device->bdev = bdev;
575 device->in_fs_metadata = 0;
576 device->mode = flags;
578 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
579 fs_devices->rotating = 1;
581 fs_devices->open_devices++;
582 if (device->writeable) {
583 fs_devices->rw_devices++;
584 list_add(&device->dev_alloc_list,
585 &fs_devices->alloc_list);
587 continue;
589 error_brelse:
590 brelse(bh);
591 error_close:
592 blkdev_put(bdev, flags);
593 error:
594 continue;
596 if (fs_devices->open_devices == 0) {
597 ret = -EIO;
598 goto out;
600 fs_devices->seeding = seeding;
601 fs_devices->opened = 1;
602 fs_devices->latest_bdev = latest_bdev;
603 fs_devices->latest_devid = latest_devid;
604 fs_devices->latest_trans = latest_transid;
605 fs_devices->total_rw_bytes = 0;
606 out:
607 return ret;
610 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
611 fmode_t flags, void *holder)
613 int ret;
615 mutex_lock(&uuid_mutex);
616 if (fs_devices->opened) {
617 fs_devices->opened++;
618 ret = 0;
619 } else {
620 ret = __btrfs_open_devices(fs_devices, flags, holder);
622 mutex_unlock(&uuid_mutex);
623 return ret;
626 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
627 struct btrfs_fs_devices **fs_devices_ret)
629 struct btrfs_super_block *disk_super;
630 struct block_device *bdev;
631 struct buffer_head *bh;
632 int ret;
633 u64 devid;
634 u64 transid;
636 mutex_lock(&uuid_mutex);
638 flags |= FMODE_EXCL;
639 bdev = blkdev_get_by_path(path, flags, holder);
641 if (IS_ERR(bdev)) {
642 ret = PTR_ERR(bdev);
643 goto error;
646 ret = set_blocksize(bdev, 4096);
647 if (ret)
648 goto error_close;
649 bh = btrfs_read_dev_super(bdev);
650 if (!bh) {
651 ret = -EINVAL;
652 goto error_close;
654 disk_super = (struct btrfs_super_block *)bh->b_data;
655 devid = btrfs_stack_device_id(&disk_super->dev_item);
656 transid = btrfs_super_generation(disk_super);
657 if (disk_super->label[0])
658 printk(KERN_INFO "device label %s ", disk_super->label);
659 else {
660 /* FIXME, make a readl uuid parser */
661 printk(KERN_INFO "device fsid %llx-%llx ",
662 *(unsigned long long *)disk_super->fsid,
663 *(unsigned long long *)(disk_super->fsid + 8));
665 printk(KERN_CONT "devid %llu transid %llu %s\n",
666 (unsigned long long)devid, (unsigned long long)transid, path);
667 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
669 brelse(bh);
670 error_close:
671 blkdev_put(bdev, flags);
672 error:
673 mutex_unlock(&uuid_mutex);
674 return ret;
677 /* helper to account the used device space in the range */
678 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
679 u64 end, u64 *length)
681 struct btrfs_key key;
682 struct btrfs_root *root = device->dev_root;
683 struct btrfs_dev_extent *dev_extent;
684 struct btrfs_path *path;
685 u64 extent_end;
686 int ret;
687 int slot;
688 struct extent_buffer *l;
690 *length = 0;
692 if (start >= device->total_bytes)
693 return 0;
695 path = btrfs_alloc_path();
696 if (!path)
697 return -ENOMEM;
698 path->reada = 2;
700 key.objectid = device->devid;
701 key.offset = start;
702 key.type = BTRFS_DEV_EXTENT_KEY;
704 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
705 if (ret < 0)
706 goto out;
707 if (ret > 0) {
708 ret = btrfs_previous_item(root, path, key.objectid, key.type);
709 if (ret < 0)
710 goto out;
713 while (1) {
714 l = path->nodes[0];
715 slot = path->slots[0];
716 if (slot >= btrfs_header_nritems(l)) {
717 ret = btrfs_next_leaf(root, path);
718 if (ret == 0)
719 continue;
720 if (ret < 0)
721 goto out;
723 break;
725 btrfs_item_key_to_cpu(l, &key, slot);
727 if (key.objectid < device->devid)
728 goto next;
730 if (key.objectid > device->devid)
731 break;
733 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
734 goto next;
736 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
737 extent_end = key.offset + btrfs_dev_extent_length(l,
738 dev_extent);
739 if (key.offset <= start && extent_end > end) {
740 *length = end - start + 1;
741 break;
742 } else if (key.offset <= start && extent_end > start)
743 *length += extent_end - start;
744 else if (key.offset > start && extent_end <= end)
745 *length += extent_end - key.offset;
746 else if (key.offset > start && key.offset <= end) {
747 *length += end - key.offset + 1;
748 break;
749 } else if (key.offset > end)
750 break;
752 next:
753 path->slots[0]++;
755 ret = 0;
756 out:
757 btrfs_free_path(path);
758 return ret;
762 * find_free_dev_extent - find free space in the specified device
763 * @trans: transaction handler
764 * @device: the device which we search the free space in
765 * @num_bytes: the size of the free space that we need
766 * @start: store the start of the free space.
767 * @len: the size of the free space. that we find, or the size of the max
768 * free space if we don't find suitable free space
770 * this uses a pretty simple search, the expectation is that it is
771 * called very infrequently and that a given device has a small number
772 * of extents
774 * @start is used to store the start of the free space if we find. But if we
775 * don't find suitable free space, it will be used to store the start position
776 * of the max free space.
778 * @len is used to store the size of the free space that we find.
779 * But if we don't find suitable free space, it is used to store the size of
780 * the max free space.
782 int find_free_dev_extent(struct btrfs_trans_handle *trans,
783 struct btrfs_device *device, u64 num_bytes,
784 u64 *start, u64 *len)
786 struct btrfs_key key;
787 struct btrfs_root *root = device->dev_root;
788 struct btrfs_dev_extent *dev_extent;
789 struct btrfs_path *path;
790 u64 hole_size;
791 u64 max_hole_start;
792 u64 max_hole_size;
793 u64 extent_end;
794 u64 search_start;
795 u64 search_end = device->total_bytes;
796 int ret;
797 int slot;
798 struct extent_buffer *l;
800 /* FIXME use last free of some kind */
802 /* we don't want to overwrite the superblock on the drive,
803 * so we make sure to start at an offset of at least 1MB
805 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
807 max_hole_start = search_start;
808 max_hole_size = 0;
810 if (search_start >= search_end) {
811 ret = -ENOSPC;
812 goto error;
815 path = btrfs_alloc_path();
816 if (!path) {
817 ret = -ENOMEM;
818 goto error;
820 path->reada = 2;
822 key.objectid = device->devid;
823 key.offset = search_start;
824 key.type = BTRFS_DEV_EXTENT_KEY;
826 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
827 if (ret < 0)
828 goto out;
829 if (ret > 0) {
830 ret = btrfs_previous_item(root, path, key.objectid, key.type);
831 if (ret < 0)
832 goto out;
835 while (1) {
836 l = path->nodes[0];
837 slot = path->slots[0];
838 if (slot >= btrfs_header_nritems(l)) {
839 ret = btrfs_next_leaf(root, path);
840 if (ret == 0)
841 continue;
842 if (ret < 0)
843 goto out;
845 break;
847 btrfs_item_key_to_cpu(l, &key, slot);
849 if (key.objectid < device->devid)
850 goto next;
852 if (key.objectid > device->devid)
853 break;
855 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
856 goto next;
858 if (key.offset > search_start) {
859 hole_size = key.offset - search_start;
861 if (hole_size > max_hole_size) {
862 max_hole_start = search_start;
863 max_hole_size = hole_size;
867 * If this free space is greater than which we need,
868 * it must be the max free space that we have found
869 * until now, so max_hole_start must point to the start
870 * of this free space and the length of this free space
871 * is stored in max_hole_size. Thus, we return
872 * max_hole_start and max_hole_size and go back to the
873 * caller.
875 if (hole_size >= num_bytes) {
876 ret = 0;
877 goto out;
881 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
882 extent_end = key.offset + btrfs_dev_extent_length(l,
883 dev_extent);
884 if (extent_end > search_start)
885 search_start = extent_end;
886 next:
887 path->slots[0]++;
888 cond_resched();
891 hole_size = search_end- search_start;
892 if (hole_size > max_hole_size) {
893 max_hole_start = search_start;
894 max_hole_size = hole_size;
897 /* See above. */
898 if (hole_size < num_bytes)
899 ret = -ENOSPC;
900 else
901 ret = 0;
903 out:
904 btrfs_free_path(path);
905 error:
906 *start = max_hole_start;
907 if (len)
908 *len = max_hole_size;
909 return ret;
912 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
913 struct btrfs_device *device,
914 u64 start)
916 int ret;
917 struct btrfs_path *path;
918 struct btrfs_root *root = device->dev_root;
919 struct btrfs_key key;
920 struct btrfs_key found_key;
921 struct extent_buffer *leaf = NULL;
922 struct btrfs_dev_extent *extent = NULL;
924 path = btrfs_alloc_path();
925 if (!path)
926 return -ENOMEM;
928 key.objectid = device->devid;
929 key.offset = start;
930 key.type = BTRFS_DEV_EXTENT_KEY;
932 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
933 if (ret > 0) {
934 ret = btrfs_previous_item(root, path, key.objectid,
935 BTRFS_DEV_EXTENT_KEY);
936 BUG_ON(ret);
937 leaf = path->nodes[0];
938 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
939 extent = btrfs_item_ptr(leaf, path->slots[0],
940 struct btrfs_dev_extent);
941 BUG_ON(found_key.offset > start || found_key.offset +
942 btrfs_dev_extent_length(leaf, extent) < start);
943 ret = 0;
944 } else if (ret == 0) {
945 leaf = path->nodes[0];
946 extent = btrfs_item_ptr(leaf, path->slots[0],
947 struct btrfs_dev_extent);
949 BUG_ON(ret);
951 if (device->bytes_used > 0)
952 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
953 ret = btrfs_del_item(trans, root, path);
954 BUG_ON(ret);
956 btrfs_free_path(path);
957 return ret;
960 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
961 struct btrfs_device *device,
962 u64 chunk_tree, u64 chunk_objectid,
963 u64 chunk_offset, u64 start, u64 num_bytes)
965 int ret;
966 struct btrfs_path *path;
967 struct btrfs_root *root = device->dev_root;
968 struct btrfs_dev_extent *extent;
969 struct extent_buffer *leaf;
970 struct btrfs_key key;
972 WARN_ON(!device->in_fs_metadata);
973 path = btrfs_alloc_path();
974 if (!path)
975 return -ENOMEM;
977 key.objectid = device->devid;
978 key.offset = start;
979 key.type = BTRFS_DEV_EXTENT_KEY;
980 ret = btrfs_insert_empty_item(trans, root, path, &key,
981 sizeof(*extent));
982 BUG_ON(ret);
984 leaf = path->nodes[0];
985 extent = btrfs_item_ptr(leaf, path->slots[0],
986 struct btrfs_dev_extent);
987 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
988 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
989 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
991 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
992 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
993 BTRFS_UUID_SIZE);
995 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
996 btrfs_mark_buffer_dirty(leaf);
997 btrfs_free_path(path);
998 return ret;
1001 static noinline int find_next_chunk(struct btrfs_root *root,
1002 u64 objectid, u64 *offset)
1004 struct btrfs_path *path;
1005 int ret;
1006 struct btrfs_key key;
1007 struct btrfs_chunk *chunk;
1008 struct btrfs_key found_key;
1010 path = btrfs_alloc_path();
1011 BUG_ON(!path);
1013 key.objectid = objectid;
1014 key.offset = (u64)-1;
1015 key.type = BTRFS_CHUNK_ITEM_KEY;
1017 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1018 if (ret < 0)
1019 goto error;
1021 BUG_ON(ret == 0);
1023 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1024 if (ret) {
1025 *offset = 0;
1026 } else {
1027 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1028 path->slots[0]);
1029 if (found_key.objectid != objectid)
1030 *offset = 0;
1031 else {
1032 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1033 struct btrfs_chunk);
1034 *offset = found_key.offset +
1035 btrfs_chunk_length(path->nodes[0], chunk);
1038 ret = 0;
1039 error:
1040 btrfs_free_path(path);
1041 return ret;
1044 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1046 int ret;
1047 struct btrfs_key key;
1048 struct btrfs_key found_key;
1049 struct btrfs_path *path;
1051 root = root->fs_info->chunk_root;
1053 path = btrfs_alloc_path();
1054 if (!path)
1055 return -ENOMEM;
1057 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1058 key.type = BTRFS_DEV_ITEM_KEY;
1059 key.offset = (u64)-1;
1061 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1062 if (ret < 0)
1063 goto error;
1065 BUG_ON(ret == 0);
1067 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1068 BTRFS_DEV_ITEM_KEY);
1069 if (ret) {
1070 *objectid = 1;
1071 } else {
1072 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1073 path->slots[0]);
1074 *objectid = found_key.offset + 1;
1076 ret = 0;
1077 error:
1078 btrfs_free_path(path);
1079 return ret;
1083 * the device information is stored in the chunk root
1084 * the btrfs_device struct should be fully filled in
1086 int btrfs_add_device(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_device *device)
1090 int ret;
1091 struct btrfs_path *path;
1092 struct btrfs_dev_item *dev_item;
1093 struct extent_buffer *leaf;
1094 struct btrfs_key key;
1095 unsigned long ptr;
1097 root = root->fs_info->chunk_root;
1099 path = btrfs_alloc_path();
1100 if (!path)
1101 return -ENOMEM;
1103 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1104 key.type = BTRFS_DEV_ITEM_KEY;
1105 key.offset = device->devid;
1107 ret = btrfs_insert_empty_item(trans, root, path, &key,
1108 sizeof(*dev_item));
1109 if (ret)
1110 goto out;
1112 leaf = path->nodes[0];
1113 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1115 btrfs_set_device_id(leaf, dev_item, device->devid);
1116 btrfs_set_device_generation(leaf, dev_item, 0);
1117 btrfs_set_device_type(leaf, dev_item, device->type);
1118 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1119 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1120 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1121 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1122 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1123 btrfs_set_device_group(leaf, dev_item, 0);
1124 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1125 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1126 btrfs_set_device_start_offset(leaf, dev_item, 0);
1128 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1129 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1130 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1131 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1132 btrfs_mark_buffer_dirty(leaf);
1134 ret = 0;
1135 out:
1136 btrfs_free_path(path);
1137 return ret;
1140 static int btrfs_rm_dev_item(struct btrfs_root *root,
1141 struct btrfs_device *device)
1143 int ret;
1144 struct btrfs_path *path;
1145 struct btrfs_key key;
1146 struct btrfs_trans_handle *trans;
1148 root = root->fs_info->chunk_root;
1150 path = btrfs_alloc_path();
1151 if (!path)
1152 return -ENOMEM;
1154 trans = btrfs_start_transaction(root, 0);
1155 if (IS_ERR(trans)) {
1156 btrfs_free_path(path);
1157 return PTR_ERR(trans);
1159 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1160 key.type = BTRFS_DEV_ITEM_KEY;
1161 key.offset = device->devid;
1162 lock_chunks(root);
1164 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1165 if (ret < 0)
1166 goto out;
1168 if (ret > 0) {
1169 ret = -ENOENT;
1170 goto out;
1173 ret = btrfs_del_item(trans, root, path);
1174 if (ret)
1175 goto out;
1176 out:
1177 btrfs_free_path(path);
1178 unlock_chunks(root);
1179 btrfs_commit_transaction(trans, root);
1180 return ret;
1183 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1185 struct btrfs_device *device;
1186 struct btrfs_device *next_device;
1187 struct block_device *bdev;
1188 struct buffer_head *bh = NULL;
1189 struct btrfs_super_block *disk_super;
1190 u64 all_avail;
1191 u64 devid;
1192 u64 num_devices;
1193 u8 *dev_uuid;
1194 int ret = 0;
1196 mutex_lock(&uuid_mutex);
1197 mutex_lock(&root->fs_info->volume_mutex);
1199 all_avail = root->fs_info->avail_data_alloc_bits |
1200 root->fs_info->avail_system_alloc_bits |
1201 root->fs_info->avail_metadata_alloc_bits;
1203 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1204 root->fs_info->fs_devices->num_devices <= 4) {
1205 printk(KERN_ERR "btrfs: unable to go below four devices "
1206 "on raid10\n");
1207 ret = -EINVAL;
1208 goto out;
1211 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1212 root->fs_info->fs_devices->num_devices <= 2) {
1213 printk(KERN_ERR "btrfs: unable to go below two "
1214 "devices on raid1\n");
1215 ret = -EINVAL;
1216 goto out;
1219 if (strcmp(device_path, "missing") == 0) {
1220 struct list_head *devices;
1221 struct btrfs_device *tmp;
1223 device = NULL;
1224 devices = &root->fs_info->fs_devices->devices;
1225 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1226 list_for_each_entry(tmp, devices, dev_list) {
1227 if (tmp->in_fs_metadata && !tmp->bdev) {
1228 device = tmp;
1229 break;
1232 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1233 bdev = NULL;
1234 bh = NULL;
1235 disk_super = NULL;
1236 if (!device) {
1237 printk(KERN_ERR "btrfs: no missing devices found to "
1238 "remove\n");
1239 goto out;
1241 } else {
1242 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1243 root->fs_info->bdev_holder);
1244 if (IS_ERR(bdev)) {
1245 ret = PTR_ERR(bdev);
1246 goto out;
1249 set_blocksize(bdev, 4096);
1250 bh = btrfs_read_dev_super(bdev);
1251 if (!bh) {
1252 ret = -EINVAL;
1253 goto error_close;
1255 disk_super = (struct btrfs_super_block *)bh->b_data;
1256 devid = btrfs_stack_device_id(&disk_super->dev_item);
1257 dev_uuid = disk_super->dev_item.uuid;
1258 device = btrfs_find_device(root, devid, dev_uuid,
1259 disk_super->fsid);
1260 if (!device) {
1261 ret = -ENOENT;
1262 goto error_brelse;
1266 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1267 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1268 "device\n");
1269 ret = -EINVAL;
1270 goto error_brelse;
1273 if (device->writeable) {
1274 list_del_init(&device->dev_alloc_list);
1275 root->fs_info->fs_devices->rw_devices--;
1278 ret = btrfs_shrink_device(device, 0);
1279 if (ret)
1280 goto error_undo;
1282 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1283 if (ret)
1284 goto error_undo;
1286 device->in_fs_metadata = 0;
1287 btrfs_scrub_cancel_dev(root, device);
1290 * the device list mutex makes sure that we don't change
1291 * the device list while someone else is writing out all
1292 * the device supers.
1294 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1295 list_del_init(&device->dev_list);
1296 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1298 device->fs_devices->num_devices--;
1300 if (device->missing)
1301 root->fs_info->fs_devices->missing_devices--;
1303 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1304 struct btrfs_device, dev_list);
1305 if (device->bdev == root->fs_info->sb->s_bdev)
1306 root->fs_info->sb->s_bdev = next_device->bdev;
1307 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1308 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1310 if (device->bdev) {
1311 blkdev_put(device->bdev, device->mode);
1312 device->bdev = NULL;
1313 device->fs_devices->open_devices--;
1316 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1317 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1319 if (device->fs_devices->open_devices == 0) {
1320 struct btrfs_fs_devices *fs_devices;
1321 fs_devices = root->fs_info->fs_devices;
1322 while (fs_devices) {
1323 if (fs_devices->seed == device->fs_devices)
1324 break;
1325 fs_devices = fs_devices->seed;
1327 fs_devices->seed = device->fs_devices->seed;
1328 device->fs_devices->seed = NULL;
1329 __btrfs_close_devices(device->fs_devices);
1330 free_fs_devices(device->fs_devices);
1334 * at this point, the device is zero sized. We want to
1335 * remove it from the devices list and zero out the old super
1337 if (device->writeable) {
1338 /* make sure this device isn't detected as part of
1339 * the FS anymore
1341 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1342 set_buffer_dirty(bh);
1343 sync_dirty_buffer(bh);
1346 kfree(device->name);
1347 kfree(device);
1348 ret = 0;
1350 error_brelse:
1351 brelse(bh);
1352 error_close:
1353 if (bdev)
1354 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1355 out:
1356 mutex_unlock(&root->fs_info->volume_mutex);
1357 mutex_unlock(&uuid_mutex);
1358 return ret;
1359 error_undo:
1360 if (device->writeable) {
1361 list_add(&device->dev_alloc_list,
1362 &root->fs_info->fs_devices->alloc_list);
1363 root->fs_info->fs_devices->rw_devices++;
1365 goto error_brelse;
1369 * does all the dirty work required for changing file system's UUID.
1371 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *root)
1374 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1375 struct btrfs_fs_devices *old_devices;
1376 struct btrfs_fs_devices *seed_devices;
1377 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1378 struct btrfs_device *device;
1379 u64 super_flags;
1381 BUG_ON(!mutex_is_locked(&uuid_mutex));
1382 if (!fs_devices->seeding)
1383 return -EINVAL;
1385 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1386 if (!seed_devices)
1387 return -ENOMEM;
1389 old_devices = clone_fs_devices(fs_devices);
1390 if (IS_ERR(old_devices)) {
1391 kfree(seed_devices);
1392 return PTR_ERR(old_devices);
1395 list_add(&old_devices->list, &fs_uuids);
1397 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1398 seed_devices->opened = 1;
1399 INIT_LIST_HEAD(&seed_devices->devices);
1400 INIT_LIST_HEAD(&seed_devices->alloc_list);
1401 mutex_init(&seed_devices->device_list_mutex);
1402 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1403 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1404 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1405 device->fs_devices = seed_devices;
1408 fs_devices->seeding = 0;
1409 fs_devices->num_devices = 0;
1410 fs_devices->open_devices = 0;
1411 fs_devices->seed = seed_devices;
1413 generate_random_uuid(fs_devices->fsid);
1414 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1415 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1416 super_flags = btrfs_super_flags(disk_super) &
1417 ~BTRFS_SUPER_FLAG_SEEDING;
1418 btrfs_set_super_flags(disk_super, super_flags);
1420 return 0;
1424 * strore the expected generation for seed devices in device items.
1426 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1427 struct btrfs_root *root)
1429 struct btrfs_path *path;
1430 struct extent_buffer *leaf;
1431 struct btrfs_dev_item *dev_item;
1432 struct btrfs_device *device;
1433 struct btrfs_key key;
1434 u8 fs_uuid[BTRFS_UUID_SIZE];
1435 u8 dev_uuid[BTRFS_UUID_SIZE];
1436 u64 devid;
1437 int ret;
1439 path = btrfs_alloc_path();
1440 if (!path)
1441 return -ENOMEM;
1443 root = root->fs_info->chunk_root;
1444 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1445 key.offset = 0;
1446 key.type = BTRFS_DEV_ITEM_KEY;
1448 while (1) {
1449 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1450 if (ret < 0)
1451 goto error;
1453 leaf = path->nodes[0];
1454 next_slot:
1455 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1456 ret = btrfs_next_leaf(root, path);
1457 if (ret > 0)
1458 break;
1459 if (ret < 0)
1460 goto error;
1461 leaf = path->nodes[0];
1462 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1463 btrfs_release_path(path);
1464 continue;
1467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1468 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1469 key.type != BTRFS_DEV_ITEM_KEY)
1470 break;
1472 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1473 struct btrfs_dev_item);
1474 devid = btrfs_device_id(leaf, dev_item);
1475 read_extent_buffer(leaf, dev_uuid,
1476 (unsigned long)btrfs_device_uuid(dev_item),
1477 BTRFS_UUID_SIZE);
1478 read_extent_buffer(leaf, fs_uuid,
1479 (unsigned long)btrfs_device_fsid(dev_item),
1480 BTRFS_UUID_SIZE);
1481 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1482 BUG_ON(!device);
1484 if (device->fs_devices->seeding) {
1485 btrfs_set_device_generation(leaf, dev_item,
1486 device->generation);
1487 btrfs_mark_buffer_dirty(leaf);
1490 path->slots[0]++;
1491 goto next_slot;
1493 ret = 0;
1494 error:
1495 btrfs_free_path(path);
1496 return ret;
1499 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1501 struct btrfs_trans_handle *trans;
1502 struct btrfs_device *device;
1503 struct block_device *bdev;
1504 struct list_head *devices;
1505 struct super_block *sb = root->fs_info->sb;
1506 u64 total_bytes;
1507 int seeding_dev = 0;
1508 int ret = 0;
1510 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1511 return -EINVAL;
1513 bdev = blkdev_get_by_path(device_path, FMODE_EXCL,
1514 root->fs_info->bdev_holder);
1515 if (IS_ERR(bdev))
1516 return PTR_ERR(bdev);
1518 if (root->fs_info->fs_devices->seeding) {
1519 seeding_dev = 1;
1520 down_write(&sb->s_umount);
1521 mutex_lock(&uuid_mutex);
1524 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1525 mutex_lock(&root->fs_info->volume_mutex);
1527 devices = &root->fs_info->fs_devices->devices;
1529 * we have the volume lock, so we don't need the extra
1530 * device list mutex while reading the list here.
1532 list_for_each_entry(device, devices, dev_list) {
1533 if (device->bdev == bdev) {
1534 ret = -EEXIST;
1535 goto error;
1539 device = kzalloc(sizeof(*device), GFP_NOFS);
1540 if (!device) {
1541 /* we can safely leave the fs_devices entry around */
1542 ret = -ENOMEM;
1543 goto error;
1546 device->name = kstrdup(device_path, GFP_NOFS);
1547 if (!device->name) {
1548 kfree(device);
1549 ret = -ENOMEM;
1550 goto error;
1553 ret = find_next_devid(root, &device->devid);
1554 if (ret) {
1555 kfree(device->name);
1556 kfree(device);
1557 goto error;
1560 trans = btrfs_start_transaction(root, 0);
1561 if (IS_ERR(trans)) {
1562 kfree(device->name);
1563 kfree(device);
1564 ret = PTR_ERR(trans);
1565 goto error;
1568 lock_chunks(root);
1570 device->writeable = 1;
1571 device->work.func = pending_bios_fn;
1572 generate_random_uuid(device->uuid);
1573 spin_lock_init(&device->io_lock);
1574 device->generation = trans->transid;
1575 device->io_width = root->sectorsize;
1576 device->io_align = root->sectorsize;
1577 device->sector_size = root->sectorsize;
1578 device->total_bytes = i_size_read(bdev->bd_inode);
1579 device->disk_total_bytes = device->total_bytes;
1580 device->dev_root = root->fs_info->dev_root;
1581 device->bdev = bdev;
1582 device->in_fs_metadata = 1;
1583 device->mode = FMODE_EXCL;
1584 set_blocksize(device->bdev, 4096);
1586 if (seeding_dev) {
1587 sb->s_flags &= ~MS_RDONLY;
1588 ret = btrfs_prepare_sprout(trans, root);
1589 BUG_ON(ret);
1592 device->fs_devices = root->fs_info->fs_devices;
1595 * we don't want write_supers to jump in here with our device
1596 * half setup
1598 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1599 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1600 list_add(&device->dev_alloc_list,
1601 &root->fs_info->fs_devices->alloc_list);
1602 root->fs_info->fs_devices->num_devices++;
1603 root->fs_info->fs_devices->open_devices++;
1604 root->fs_info->fs_devices->rw_devices++;
1605 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1607 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1608 root->fs_info->fs_devices->rotating = 1;
1610 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1611 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1612 total_bytes + device->total_bytes);
1614 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1615 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1616 total_bytes + 1);
1617 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1619 if (seeding_dev) {
1620 ret = init_first_rw_device(trans, root, device);
1621 BUG_ON(ret);
1622 ret = btrfs_finish_sprout(trans, root);
1623 BUG_ON(ret);
1624 } else {
1625 ret = btrfs_add_device(trans, root, device);
1629 * we've got more storage, clear any full flags on the space
1630 * infos
1632 btrfs_clear_space_info_full(root->fs_info);
1634 unlock_chunks(root);
1635 btrfs_commit_transaction(trans, root);
1637 if (seeding_dev) {
1638 mutex_unlock(&uuid_mutex);
1639 up_write(&sb->s_umount);
1641 ret = btrfs_relocate_sys_chunks(root);
1642 BUG_ON(ret);
1644 out:
1645 mutex_unlock(&root->fs_info->volume_mutex);
1646 return ret;
1647 error:
1648 blkdev_put(bdev, FMODE_EXCL);
1649 if (seeding_dev) {
1650 mutex_unlock(&uuid_mutex);
1651 up_write(&sb->s_umount);
1653 goto out;
1656 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1657 struct btrfs_device *device)
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_root *root;
1662 struct btrfs_dev_item *dev_item;
1663 struct extent_buffer *leaf;
1664 struct btrfs_key key;
1666 root = device->dev_root->fs_info->chunk_root;
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
1674 key.offset = device->devid;
1676 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1677 if (ret < 0)
1678 goto out;
1680 if (ret > 0) {
1681 ret = -ENOENT;
1682 goto out;
1685 leaf = path->nodes[0];
1686 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1688 btrfs_set_device_id(leaf, dev_item, device->devid);
1689 btrfs_set_device_type(leaf, dev_item, device->type);
1690 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1691 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1692 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1693 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1694 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1695 btrfs_mark_buffer_dirty(leaf);
1697 out:
1698 btrfs_free_path(path);
1699 return ret;
1702 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1703 struct btrfs_device *device, u64 new_size)
1705 struct btrfs_super_block *super_copy =
1706 &device->dev_root->fs_info->super_copy;
1707 u64 old_total = btrfs_super_total_bytes(super_copy);
1708 u64 diff = new_size - device->total_bytes;
1710 if (!device->writeable)
1711 return -EACCES;
1712 if (new_size <= device->total_bytes)
1713 return -EINVAL;
1715 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1716 device->fs_devices->total_rw_bytes += diff;
1718 device->total_bytes = new_size;
1719 device->disk_total_bytes = new_size;
1720 btrfs_clear_space_info_full(device->dev_root->fs_info);
1722 return btrfs_update_device(trans, device);
1725 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1726 struct btrfs_device *device, u64 new_size)
1728 int ret;
1729 lock_chunks(device->dev_root);
1730 ret = __btrfs_grow_device(trans, device, new_size);
1731 unlock_chunks(device->dev_root);
1732 return ret;
1735 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1736 struct btrfs_root *root,
1737 u64 chunk_tree, u64 chunk_objectid,
1738 u64 chunk_offset)
1740 int ret;
1741 struct btrfs_path *path;
1742 struct btrfs_key key;
1744 root = root->fs_info->chunk_root;
1745 path = btrfs_alloc_path();
1746 if (!path)
1747 return -ENOMEM;
1749 key.objectid = chunk_objectid;
1750 key.offset = chunk_offset;
1751 key.type = BTRFS_CHUNK_ITEM_KEY;
1753 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1754 BUG_ON(ret);
1756 ret = btrfs_del_item(trans, root, path);
1757 BUG_ON(ret);
1759 btrfs_free_path(path);
1760 return 0;
1763 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1764 chunk_offset)
1766 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1767 struct btrfs_disk_key *disk_key;
1768 struct btrfs_chunk *chunk;
1769 u8 *ptr;
1770 int ret = 0;
1771 u32 num_stripes;
1772 u32 array_size;
1773 u32 len = 0;
1774 u32 cur;
1775 struct btrfs_key key;
1777 array_size = btrfs_super_sys_array_size(super_copy);
1779 ptr = super_copy->sys_chunk_array;
1780 cur = 0;
1782 while (cur < array_size) {
1783 disk_key = (struct btrfs_disk_key *)ptr;
1784 btrfs_disk_key_to_cpu(&key, disk_key);
1786 len = sizeof(*disk_key);
1788 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1789 chunk = (struct btrfs_chunk *)(ptr + len);
1790 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1791 len += btrfs_chunk_item_size(num_stripes);
1792 } else {
1793 ret = -EIO;
1794 break;
1796 if (key.objectid == chunk_objectid &&
1797 key.offset == chunk_offset) {
1798 memmove(ptr, ptr + len, array_size - (cur + len));
1799 array_size -= len;
1800 btrfs_set_super_sys_array_size(super_copy, array_size);
1801 } else {
1802 ptr += len;
1803 cur += len;
1806 return ret;
1809 static int btrfs_relocate_chunk(struct btrfs_root *root,
1810 u64 chunk_tree, u64 chunk_objectid,
1811 u64 chunk_offset)
1813 struct extent_map_tree *em_tree;
1814 struct btrfs_root *extent_root;
1815 struct btrfs_trans_handle *trans;
1816 struct extent_map *em;
1817 struct map_lookup *map;
1818 int ret;
1819 int i;
1821 root = root->fs_info->chunk_root;
1822 extent_root = root->fs_info->extent_root;
1823 em_tree = &root->fs_info->mapping_tree.map_tree;
1825 ret = btrfs_can_relocate(extent_root, chunk_offset);
1826 if (ret)
1827 return -ENOSPC;
1829 /* step one, relocate all the extents inside this chunk */
1830 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1831 if (ret)
1832 return ret;
1834 trans = btrfs_start_transaction(root, 0);
1835 BUG_ON(IS_ERR(trans));
1837 lock_chunks(root);
1840 * step two, delete the device extents and the
1841 * chunk tree entries
1843 read_lock(&em_tree->lock);
1844 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1845 read_unlock(&em_tree->lock);
1847 BUG_ON(em->start > chunk_offset ||
1848 em->start + em->len < chunk_offset);
1849 map = (struct map_lookup *)em->bdev;
1851 for (i = 0; i < map->num_stripes; i++) {
1852 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1853 map->stripes[i].physical);
1854 BUG_ON(ret);
1856 if (map->stripes[i].dev) {
1857 ret = btrfs_update_device(trans, map->stripes[i].dev);
1858 BUG_ON(ret);
1861 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1862 chunk_offset);
1864 BUG_ON(ret);
1866 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1868 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1869 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1870 BUG_ON(ret);
1873 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1874 BUG_ON(ret);
1876 write_lock(&em_tree->lock);
1877 remove_extent_mapping(em_tree, em);
1878 write_unlock(&em_tree->lock);
1880 kfree(map);
1881 em->bdev = NULL;
1883 /* once for the tree */
1884 free_extent_map(em);
1885 /* once for us */
1886 free_extent_map(em);
1888 unlock_chunks(root);
1889 btrfs_end_transaction(trans, root);
1890 return 0;
1893 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1895 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1896 struct btrfs_path *path;
1897 struct extent_buffer *leaf;
1898 struct btrfs_chunk *chunk;
1899 struct btrfs_key key;
1900 struct btrfs_key found_key;
1901 u64 chunk_tree = chunk_root->root_key.objectid;
1902 u64 chunk_type;
1903 bool retried = false;
1904 int failed = 0;
1905 int ret;
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1911 again:
1912 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1913 key.offset = (u64)-1;
1914 key.type = BTRFS_CHUNK_ITEM_KEY;
1916 while (1) {
1917 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1918 if (ret < 0)
1919 goto error;
1920 BUG_ON(ret == 0);
1922 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1923 key.type);
1924 if (ret < 0)
1925 goto error;
1926 if (ret > 0)
1927 break;
1929 leaf = path->nodes[0];
1930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1932 chunk = btrfs_item_ptr(leaf, path->slots[0],
1933 struct btrfs_chunk);
1934 chunk_type = btrfs_chunk_type(leaf, chunk);
1935 btrfs_release_path(path);
1937 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1938 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1939 found_key.objectid,
1940 found_key.offset);
1941 if (ret == -ENOSPC)
1942 failed++;
1943 else if (ret)
1944 BUG();
1947 if (found_key.offset == 0)
1948 break;
1949 key.offset = found_key.offset - 1;
1951 ret = 0;
1952 if (failed && !retried) {
1953 failed = 0;
1954 retried = true;
1955 goto again;
1956 } else if (failed && retried) {
1957 WARN_ON(1);
1958 ret = -ENOSPC;
1960 error:
1961 btrfs_free_path(path);
1962 return ret;
1965 static u64 div_factor(u64 num, int factor)
1967 if (factor == 10)
1968 return num;
1969 num *= factor;
1970 do_div(num, 10);
1971 return num;
1974 int btrfs_balance(struct btrfs_root *dev_root)
1976 int ret;
1977 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1978 struct btrfs_device *device;
1979 u64 old_size;
1980 u64 size_to_free;
1981 struct btrfs_path *path;
1982 struct btrfs_key key;
1983 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1984 struct btrfs_trans_handle *trans;
1985 struct btrfs_key found_key;
1987 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1988 return -EROFS;
1990 if (!capable(CAP_SYS_ADMIN))
1991 return -EPERM;
1993 mutex_lock(&dev_root->fs_info->volume_mutex);
1994 dev_root = dev_root->fs_info->dev_root;
1996 /* step one make some room on all the devices */
1997 list_for_each_entry(device, devices, dev_list) {
1998 old_size = device->total_bytes;
1999 size_to_free = div_factor(old_size, 1);
2000 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2001 if (!device->writeable ||
2002 device->total_bytes - device->bytes_used > size_to_free)
2003 continue;
2005 ret = btrfs_shrink_device(device, old_size - size_to_free);
2006 if (ret == -ENOSPC)
2007 break;
2008 BUG_ON(ret);
2010 trans = btrfs_start_transaction(dev_root, 0);
2011 BUG_ON(IS_ERR(trans));
2013 ret = btrfs_grow_device(trans, device, old_size);
2014 BUG_ON(ret);
2016 btrfs_end_transaction(trans, dev_root);
2019 /* step two, relocate all the chunks */
2020 path = btrfs_alloc_path();
2021 BUG_ON(!path);
2023 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2024 key.offset = (u64)-1;
2025 key.type = BTRFS_CHUNK_ITEM_KEY;
2027 while (1) {
2028 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2029 if (ret < 0)
2030 goto error;
2033 * this shouldn't happen, it means the last relocate
2034 * failed
2036 if (ret == 0)
2037 break;
2039 ret = btrfs_previous_item(chunk_root, path, 0,
2040 BTRFS_CHUNK_ITEM_KEY);
2041 if (ret)
2042 break;
2044 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2045 path->slots[0]);
2046 if (found_key.objectid != key.objectid)
2047 break;
2049 /* chunk zero is special */
2050 if (found_key.offset == 0)
2051 break;
2053 btrfs_release_path(path);
2054 ret = btrfs_relocate_chunk(chunk_root,
2055 chunk_root->root_key.objectid,
2056 found_key.objectid,
2057 found_key.offset);
2058 BUG_ON(ret && ret != -ENOSPC);
2059 key.offset = found_key.offset - 1;
2061 ret = 0;
2062 error:
2063 btrfs_free_path(path);
2064 mutex_unlock(&dev_root->fs_info->volume_mutex);
2065 return ret;
2069 * shrinking a device means finding all of the device extents past
2070 * the new size, and then following the back refs to the chunks.
2071 * The chunk relocation code actually frees the device extent
2073 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2075 struct btrfs_trans_handle *trans;
2076 struct btrfs_root *root = device->dev_root;
2077 struct btrfs_dev_extent *dev_extent = NULL;
2078 struct btrfs_path *path;
2079 u64 length;
2080 u64 chunk_tree;
2081 u64 chunk_objectid;
2082 u64 chunk_offset;
2083 int ret;
2084 int slot;
2085 int failed = 0;
2086 bool retried = false;
2087 struct extent_buffer *l;
2088 struct btrfs_key key;
2089 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2090 u64 old_total = btrfs_super_total_bytes(super_copy);
2091 u64 old_size = device->total_bytes;
2092 u64 diff = device->total_bytes - new_size;
2094 if (new_size >= device->total_bytes)
2095 return -EINVAL;
2097 path = btrfs_alloc_path();
2098 if (!path)
2099 return -ENOMEM;
2101 path->reada = 2;
2103 lock_chunks(root);
2105 device->total_bytes = new_size;
2106 if (device->writeable)
2107 device->fs_devices->total_rw_bytes -= diff;
2108 unlock_chunks(root);
2110 again:
2111 key.objectid = device->devid;
2112 key.offset = (u64)-1;
2113 key.type = BTRFS_DEV_EXTENT_KEY;
2115 while (1) {
2116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2117 if (ret < 0)
2118 goto done;
2120 ret = btrfs_previous_item(root, path, 0, key.type);
2121 if (ret < 0)
2122 goto done;
2123 if (ret) {
2124 ret = 0;
2125 btrfs_release_path(path);
2126 break;
2129 l = path->nodes[0];
2130 slot = path->slots[0];
2131 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2133 if (key.objectid != device->devid) {
2134 btrfs_release_path(path);
2135 break;
2138 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2139 length = btrfs_dev_extent_length(l, dev_extent);
2141 if (key.offset + length <= new_size) {
2142 btrfs_release_path(path);
2143 break;
2146 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2147 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2148 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2149 btrfs_release_path(path);
2151 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2152 chunk_offset);
2153 if (ret && ret != -ENOSPC)
2154 goto done;
2155 if (ret == -ENOSPC)
2156 failed++;
2157 key.offset -= 1;
2160 if (failed && !retried) {
2161 failed = 0;
2162 retried = true;
2163 goto again;
2164 } else if (failed && retried) {
2165 ret = -ENOSPC;
2166 lock_chunks(root);
2168 device->total_bytes = old_size;
2169 if (device->writeable)
2170 device->fs_devices->total_rw_bytes += diff;
2171 unlock_chunks(root);
2172 goto done;
2175 /* Shrinking succeeded, else we would be at "done". */
2176 trans = btrfs_start_transaction(root, 0);
2177 if (IS_ERR(trans)) {
2178 ret = PTR_ERR(trans);
2179 goto done;
2182 lock_chunks(root);
2184 device->disk_total_bytes = new_size;
2185 /* Now btrfs_update_device() will change the on-disk size. */
2186 ret = btrfs_update_device(trans, device);
2187 if (ret) {
2188 unlock_chunks(root);
2189 btrfs_end_transaction(trans, root);
2190 goto done;
2192 WARN_ON(diff > old_total);
2193 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2194 unlock_chunks(root);
2195 btrfs_end_transaction(trans, root);
2196 done:
2197 btrfs_free_path(path);
2198 return ret;
2201 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2202 struct btrfs_root *root,
2203 struct btrfs_key *key,
2204 struct btrfs_chunk *chunk, int item_size)
2206 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2207 struct btrfs_disk_key disk_key;
2208 u32 array_size;
2209 u8 *ptr;
2211 array_size = btrfs_super_sys_array_size(super_copy);
2212 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2213 return -EFBIG;
2215 ptr = super_copy->sys_chunk_array + array_size;
2216 btrfs_cpu_key_to_disk(&disk_key, key);
2217 memcpy(ptr, &disk_key, sizeof(disk_key));
2218 ptr += sizeof(disk_key);
2219 memcpy(ptr, chunk, item_size);
2220 item_size += sizeof(disk_key);
2221 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2222 return 0;
2226 * sort the devices in descending order by max_avail, total_avail
2228 static int btrfs_cmp_device_info(const void *a, const void *b)
2230 const struct btrfs_device_info *di_a = a;
2231 const struct btrfs_device_info *di_b = b;
2233 if (di_a->max_avail > di_b->max_avail)
2234 return -1;
2235 if (di_a->max_avail < di_b->max_avail)
2236 return 1;
2237 if (di_a->total_avail > di_b->total_avail)
2238 return -1;
2239 if (di_a->total_avail < di_b->total_avail)
2240 return 1;
2241 return 0;
2244 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *extent_root,
2246 struct map_lookup **map_ret,
2247 u64 *num_bytes_out, u64 *stripe_size_out,
2248 u64 start, u64 type)
2250 struct btrfs_fs_info *info = extent_root->fs_info;
2251 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2252 struct list_head *cur;
2253 struct map_lookup *map = NULL;
2254 struct extent_map_tree *em_tree;
2255 struct extent_map *em;
2256 struct btrfs_device_info *devices_info = NULL;
2257 u64 total_avail;
2258 int num_stripes; /* total number of stripes to allocate */
2259 int sub_stripes; /* sub_stripes info for map */
2260 int dev_stripes; /* stripes per dev */
2261 int devs_max; /* max devs to use */
2262 int devs_min; /* min devs needed */
2263 int devs_increment; /* ndevs has to be a multiple of this */
2264 int ncopies; /* how many copies to data has */
2265 int ret;
2266 u64 max_stripe_size;
2267 u64 max_chunk_size;
2268 u64 stripe_size;
2269 u64 num_bytes;
2270 int ndevs;
2271 int i;
2272 int j;
2274 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2275 (type & BTRFS_BLOCK_GROUP_DUP)) {
2276 WARN_ON(1);
2277 type &= ~BTRFS_BLOCK_GROUP_DUP;
2280 if (list_empty(&fs_devices->alloc_list))
2281 return -ENOSPC;
2283 sub_stripes = 1;
2284 dev_stripes = 1;
2285 devs_increment = 1;
2286 ncopies = 1;
2287 devs_max = 0; /* 0 == as many as possible */
2288 devs_min = 1;
2291 * define the properties of each RAID type.
2292 * FIXME: move this to a global table and use it in all RAID
2293 * calculation code
2295 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2296 dev_stripes = 2;
2297 ncopies = 2;
2298 devs_max = 1;
2299 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2300 devs_min = 2;
2301 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2302 devs_increment = 2;
2303 ncopies = 2;
2304 devs_max = 2;
2305 devs_min = 2;
2306 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2307 sub_stripes = 2;
2308 devs_increment = 2;
2309 ncopies = 2;
2310 devs_min = 4;
2311 } else {
2312 devs_max = 1;
2315 if (type & BTRFS_BLOCK_GROUP_DATA) {
2316 max_stripe_size = 1024 * 1024 * 1024;
2317 max_chunk_size = 10 * max_stripe_size;
2318 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2319 max_stripe_size = 256 * 1024 * 1024;
2320 max_chunk_size = max_stripe_size;
2321 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2322 max_stripe_size = 8 * 1024 * 1024;
2323 max_chunk_size = 2 * max_stripe_size;
2324 } else {
2325 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
2326 type);
2327 BUG_ON(1);
2330 /* we don't want a chunk larger than 10% of writeable space */
2331 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2332 max_chunk_size);
2334 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2335 GFP_NOFS);
2336 if (!devices_info)
2337 return -ENOMEM;
2339 cur = fs_devices->alloc_list.next;
2342 * in the first pass through the devices list, we gather information
2343 * about the available holes on each device.
2345 ndevs = 0;
2346 while (cur != &fs_devices->alloc_list) {
2347 struct btrfs_device *device;
2348 u64 max_avail;
2349 u64 dev_offset;
2351 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2353 cur = cur->next;
2355 if (!device->writeable) {
2356 printk(KERN_ERR
2357 "btrfs: read-only device in alloc_list\n");
2358 WARN_ON(1);
2359 continue;
2362 if (!device->in_fs_metadata)
2363 continue;
2365 if (device->total_bytes > device->bytes_used)
2366 total_avail = device->total_bytes - device->bytes_used;
2367 else
2368 total_avail = 0;
2369 /* avail is off by max(alloc_start, 1MB), but that is the same
2370 * for all devices, so it doesn't hurt the sorting later on
2373 ret = find_free_dev_extent(trans, device,
2374 max_stripe_size * dev_stripes,
2375 &dev_offset, &max_avail);
2376 if (ret && ret != -ENOSPC)
2377 goto error;
2379 if (ret == 0)
2380 max_avail = max_stripe_size * dev_stripes;
2382 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
2383 continue;
2385 devices_info[ndevs].dev_offset = dev_offset;
2386 devices_info[ndevs].max_avail = max_avail;
2387 devices_info[ndevs].total_avail = total_avail;
2388 devices_info[ndevs].dev = device;
2389 ++ndevs;
2393 * now sort the devices by hole size / available space
2395 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
2396 btrfs_cmp_device_info, NULL);
2398 /* round down to number of usable stripes */
2399 ndevs -= ndevs % devs_increment;
2401 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
2402 ret = -ENOSPC;
2403 goto error;
2406 if (devs_max && ndevs > devs_max)
2407 ndevs = devs_max;
2409 * the primary goal is to maximize the number of stripes, so use as many
2410 * devices as possible, even if the stripes are not maximum sized.
2412 stripe_size = devices_info[ndevs-1].max_avail;
2413 num_stripes = ndevs * dev_stripes;
2415 if (stripe_size * num_stripes > max_chunk_size * ncopies) {
2416 stripe_size = max_chunk_size * ncopies;
2417 do_div(stripe_size, num_stripes);
2420 do_div(stripe_size, dev_stripes);
2421 do_div(stripe_size, BTRFS_STRIPE_LEN);
2422 stripe_size *= BTRFS_STRIPE_LEN;
2424 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2425 if (!map) {
2426 ret = -ENOMEM;
2427 goto error;
2429 map->num_stripes = num_stripes;
2431 for (i = 0; i < ndevs; ++i) {
2432 for (j = 0; j < dev_stripes; ++j) {
2433 int s = i * dev_stripes + j;
2434 map->stripes[s].dev = devices_info[i].dev;
2435 map->stripes[s].physical = devices_info[i].dev_offset +
2436 j * stripe_size;
2439 map->sector_size = extent_root->sectorsize;
2440 map->stripe_len = BTRFS_STRIPE_LEN;
2441 map->io_align = BTRFS_STRIPE_LEN;
2442 map->io_width = BTRFS_STRIPE_LEN;
2443 map->type = type;
2444 map->sub_stripes = sub_stripes;
2446 *map_ret = map;
2447 num_bytes = stripe_size * (num_stripes / ncopies);
2449 *stripe_size_out = stripe_size;
2450 *num_bytes_out = num_bytes;
2452 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
2454 em = alloc_extent_map();
2455 if (!em) {
2456 ret = -ENOMEM;
2457 goto error;
2459 em->bdev = (struct block_device *)map;
2460 em->start = start;
2461 em->len = num_bytes;
2462 em->block_start = 0;
2463 em->block_len = em->len;
2465 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2466 write_lock(&em_tree->lock);
2467 ret = add_extent_mapping(em_tree, em);
2468 write_unlock(&em_tree->lock);
2469 BUG_ON(ret);
2470 free_extent_map(em);
2472 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2473 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2474 start, num_bytes);
2475 BUG_ON(ret);
2477 for (i = 0; i < map->num_stripes; ++i) {
2478 struct btrfs_device *device;
2479 u64 dev_offset;
2481 device = map->stripes[i].dev;
2482 dev_offset = map->stripes[i].physical;
2484 ret = btrfs_alloc_dev_extent(trans, device,
2485 info->chunk_root->root_key.objectid,
2486 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2487 start, dev_offset, stripe_size);
2488 BUG_ON(ret);
2491 kfree(devices_info);
2492 return 0;
2494 error:
2495 kfree(map);
2496 kfree(devices_info);
2497 return ret;
2500 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2501 struct btrfs_root *extent_root,
2502 struct map_lookup *map, u64 chunk_offset,
2503 u64 chunk_size, u64 stripe_size)
2505 u64 dev_offset;
2506 struct btrfs_key key;
2507 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2508 struct btrfs_device *device;
2509 struct btrfs_chunk *chunk;
2510 struct btrfs_stripe *stripe;
2511 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2512 int index = 0;
2513 int ret;
2515 chunk = kzalloc(item_size, GFP_NOFS);
2516 if (!chunk)
2517 return -ENOMEM;
2519 index = 0;
2520 while (index < map->num_stripes) {
2521 device = map->stripes[index].dev;
2522 device->bytes_used += stripe_size;
2523 ret = btrfs_update_device(trans, device);
2524 BUG_ON(ret);
2525 index++;
2528 index = 0;
2529 stripe = &chunk->stripe;
2530 while (index < map->num_stripes) {
2531 device = map->stripes[index].dev;
2532 dev_offset = map->stripes[index].physical;
2534 btrfs_set_stack_stripe_devid(stripe, device->devid);
2535 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2536 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2537 stripe++;
2538 index++;
2541 btrfs_set_stack_chunk_length(chunk, chunk_size);
2542 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2543 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2544 btrfs_set_stack_chunk_type(chunk, map->type);
2545 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2546 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2547 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2548 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2549 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2551 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2552 key.type = BTRFS_CHUNK_ITEM_KEY;
2553 key.offset = chunk_offset;
2555 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2556 BUG_ON(ret);
2558 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2559 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2560 item_size);
2561 BUG_ON(ret);
2564 kfree(chunk);
2565 return 0;
2569 * Chunk allocation falls into two parts. The first part does works
2570 * that make the new allocated chunk useable, but not do any operation
2571 * that modifies the chunk tree. The second part does the works that
2572 * require modifying the chunk tree. This division is important for the
2573 * bootstrap process of adding storage to a seed btrfs.
2575 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2576 struct btrfs_root *extent_root, u64 type)
2578 u64 chunk_offset;
2579 u64 chunk_size;
2580 u64 stripe_size;
2581 struct map_lookup *map;
2582 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2583 int ret;
2585 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2586 &chunk_offset);
2587 if (ret)
2588 return ret;
2590 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2591 &stripe_size, chunk_offset, type);
2592 if (ret)
2593 return ret;
2595 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2596 chunk_size, stripe_size);
2597 BUG_ON(ret);
2598 return 0;
2601 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2602 struct btrfs_root *root,
2603 struct btrfs_device *device)
2605 u64 chunk_offset;
2606 u64 sys_chunk_offset;
2607 u64 chunk_size;
2608 u64 sys_chunk_size;
2609 u64 stripe_size;
2610 u64 sys_stripe_size;
2611 u64 alloc_profile;
2612 struct map_lookup *map;
2613 struct map_lookup *sys_map;
2614 struct btrfs_fs_info *fs_info = root->fs_info;
2615 struct btrfs_root *extent_root = fs_info->extent_root;
2616 int ret;
2618 ret = find_next_chunk(fs_info->chunk_root,
2619 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2620 BUG_ON(ret);
2622 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2623 (fs_info->metadata_alloc_profile &
2624 fs_info->avail_metadata_alloc_bits);
2625 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2627 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2628 &stripe_size, chunk_offset, alloc_profile);
2629 BUG_ON(ret);
2631 sys_chunk_offset = chunk_offset + chunk_size;
2633 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2634 (fs_info->system_alloc_profile &
2635 fs_info->avail_system_alloc_bits);
2636 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2638 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2639 &sys_chunk_size, &sys_stripe_size,
2640 sys_chunk_offset, alloc_profile);
2641 BUG_ON(ret);
2643 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2644 BUG_ON(ret);
2647 * Modifying chunk tree needs allocating new blocks from both
2648 * system block group and metadata block group. So we only can
2649 * do operations require modifying the chunk tree after both
2650 * block groups were created.
2652 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2653 chunk_size, stripe_size);
2654 BUG_ON(ret);
2656 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2657 sys_chunk_offset, sys_chunk_size,
2658 sys_stripe_size);
2659 BUG_ON(ret);
2660 return 0;
2663 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2665 struct extent_map *em;
2666 struct map_lookup *map;
2667 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2668 int readonly = 0;
2669 int i;
2671 read_lock(&map_tree->map_tree.lock);
2672 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2673 read_unlock(&map_tree->map_tree.lock);
2674 if (!em)
2675 return 1;
2677 if (btrfs_test_opt(root, DEGRADED)) {
2678 free_extent_map(em);
2679 return 0;
2682 map = (struct map_lookup *)em->bdev;
2683 for (i = 0; i < map->num_stripes; i++) {
2684 if (!map->stripes[i].dev->writeable) {
2685 readonly = 1;
2686 break;
2689 free_extent_map(em);
2690 return readonly;
2693 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2695 extent_map_tree_init(&tree->map_tree);
2698 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2700 struct extent_map *em;
2702 while (1) {
2703 write_lock(&tree->map_tree.lock);
2704 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2705 if (em)
2706 remove_extent_mapping(&tree->map_tree, em);
2707 write_unlock(&tree->map_tree.lock);
2708 if (!em)
2709 break;
2710 kfree(em->bdev);
2711 /* once for us */
2712 free_extent_map(em);
2713 /* once for the tree */
2714 free_extent_map(em);
2718 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2720 struct extent_map *em;
2721 struct map_lookup *map;
2722 struct extent_map_tree *em_tree = &map_tree->map_tree;
2723 int ret;
2725 read_lock(&em_tree->lock);
2726 em = lookup_extent_mapping(em_tree, logical, len);
2727 read_unlock(&em_tree->lock);
2728 BUG_ON(!em);
2730 BUG_ON(em->start > logical || em->start + em->len < logical);
2731 map = (struct map_lookup *)em->bdev;
2732 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2733 ret = map->num_stripes;
2734 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2735 ret = map->sub_stripes;
2736 else
2737 ret = 1;
2738 free_extent_map(em);
2739 return ret;
2742 static int find_live_mirror(struct map_lookup *map, int first, int num,
2743 int optimal)
2745 int i;
2746 if (map->stripes[optimal].dev->bdev)
2747 return optimal;
2748 for (i = first; i < first + num; i++) {
2749 if (map->stripes[i].dev->bdev)
2750 return i;
2752 /* we couldn't find one that doesn't fail. Just return something
2753 * and the io error handling code will clean up eventually
2755 return optimal;
2758 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2759 u64 logical, u64 *length,
2760 struct btrfs_multi_bio **multi_ret,
2761 int mirror_num)
2763 struct extent_map *em;
2764 struct map_lookup *map;
2765 struct extent_map_tree *em_tree = &map_tree->map_tree;
2766 u64 offset;
2767 u64 stripe_offset;
2768 u64 stripe_end_offset;
2769 u64 stripe_nr;
2770 u64 stripe_nr_orig;
2771 u64 stripe_nr_end;
2772 int stripes_allocated = 8;
2773 int stripes_required = 1;
2774 int stripe_index;
2775 int i;
2776 int num_stripes;
2777 int max_errors = 0;
2778 struct btrfs_multi_bio *multi = NULL;
2780 if (multi_ret && !(rw & (REQ_WRITE | REQ_DISCARD)))
2781 stripes_allocated = 1;
2782 again:
2783 if (multi_ret) {
2784 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2785 GFP_NOFS);
2786 if (!multi)
2787 return -ENOMEM;
2789 atomic_set(&multi->error, 0);
2792 read_lock(&em_tree->lock);
2793 em = lookup_extent_mapping(em_tree, logical, *length);
2794 read_unlock(&em_tree->lock);
2796 if (!em) {
2797 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2798 (unsigned long long)logical,
2799 (unsigned long long)*length);
2800 BUG();
2803 BUG_ON(em->start > logical || em->start + em->len < logical);
2804 map = (struct map_lookup *)em->bdev;
2805 offset = logical - em->start;
2807 if (mirror_num > map->num_stripes)
2808 mirror_num = 0;
2810 /* if our multi bio struct is too small, back off and try again */
2811 if (rw & REQ_WRITE) {
2812 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2813 BTRFS_BLOCK_GROUP_DUP)) {
2814 stripes_required = map->num_stripes;
2815 max_errors = 1;
2816 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2817 stripes_required = map->sub_stripes;
2818 max_errors = 1;
2821 if (rw & REQ_DISCARD) {
2822 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2823 BTRFS_BLOCK_GROUP_RAID1 |
2824 BTRFS_BLOCK_GROUP_DUP |
2825 BTRFS_BLOCK_GROUP_RAID10)) {
2826 stripes_required = map->num_stripes;
2829 if (multi_ret && (rw & (REQ_WRITE | REQ_DISCARD)) &&
2830 stripes_allocated < stripes_required) {
2831 stripes_allocated = map->num_stripes;
2832 free_extent_map(em);
2833 kfree(multi);
2834 goto again;
2836 stripe_nr = offset;
2838 * stripe_nr counts the total number of stripes we have to stride
2839 * to get to this block
2841 do_div(stripe_nr, map->stripe_len);
2843 stripe_offset = stripe_nr * map->stripe_len;
2844 BUG_ON(offset < stripe_offset);
2846 /* stripe_offset is the offset of this block in its stripe*/
2847 stripe_offset = offset - stripe_offset;
2849 if (rw & REQ_DISCARD)
2850 *length = min_t(u64, em->len - offset, *length);
2851 else if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2852 BTRFS_BLOCK_GROUP_RAID1 |
2853 BTRFS_BLOCK_GROUP_RAID10 |
2854 BTRFS_BLOCK_GROUP_DUP)) {
2855 /* we limit the length of each bio to what fits in a stripe */
2856 *length = min_t(u64, em->len - offset,
2857 map->stripe_len - stripe_offset);
2858 } else {
2859 *length = em->len - offset;
2862 if (!multi_ret)
2863 goto out;
2865 num_stripes = 1;
2866 stripe_index = 0;
2867 stripe_nr_orig = stripe_nr;
2868 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
2869 (~(map->stripe_len - 1));
2870 do_div(stripe_nr_end, map->stripe_len);
2871 stripe_end_offset = stripe_nr_end * map->stripe_len -
2872 (offset + *length);
2873 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2874 if (rw & REQ_DISCARD)
2875 num_stripes = min_t(u64, map->num_stripes,
2876 stripe_nr_end - stripe_nr_orig);
2877 stripe_index = do_div(stripe_nr, map->num_stripes);
2878 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2879 if (rw & (REQ_WRITE | REQ_DISCARD))
2880 num_stripes = map->num_stripes;
2881 else if (mirror_num)
2882 stripe_index = mirror_num - 1;
2883 else {
2884 stripe_index = find_live_mirror(map, 0,
2885 map->num_stripes,
2886 current->pid % map->num_stripes);
2889 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2890 if (rw & (REQ_WRITE | REQ_DISCARD))
2891 num_stripes = map->num_stripes;
2892 else if (mirror_num)
2893 stripe_index = mirror_num - 1;
2895 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2896 int factor = map->num_stripes / map->sub_stripes;
2898 stripe_index = do_div(stripe_nr, factor);
2899 stripe_index *= map->sub_stripes;
2901 if (rw & REQ_WRITE)
2902 num_stripes = map->sub_stripes;
2903 else if (rw & REQ_DISCARD)
2904 num_stripes = min_t(u64, map->sub_stripes *
2905 (stripe_nr_end - stripe_nr_orig),
2906 map->num_stripes);
2907 else if (mirror_num)
2908 stripe_index += mirror_num - 1;
2909 else {
2910 stripe_index = find_live_mirror(map, stripe_index,
2911 map->sub_stripes, stripe_index +
2912 current->pid % map->sub_stripes);
2914 } else {
2916 * after this do_div call, stripe_nr is the number of stripes
2917 * on this device we have to walk to find the data, and
2918 * stripe_index is the number of our device in the stripe array
2920 stripe_index = do_div(stripe_nr, map->num_stripes);
2922 BUG_ON(stripe_index >= map->num_stripes);
2924 if (rw & REQ_DISCARD) {
2925 for (i = 0; i < num_stripes; i++) {
2926 multi->stripes[i].physical =
2927 map->stripes[stripe_index].physical +
2928 stripe_offset + stripe_nr * map->stripe_len;
2929 multi->stripes[i].dev = map->stripes[stripe_index].dev;
2931 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2932 u64 stripes;
2933 u32 last_stripe = 0;
2934 int j;
2936 div_u64_rem(stripe_nr_end - 1,
2937 map->num_stripes,
2938 &last_stripe);
2940 for (j = 0; j < map->num_stripes; j++) {
2941 u32 test;
2943 div_u64_rem(stripe_nr_end - 1 - j,
2944 map->num_stripes, &test);
2945 if (test == stripe_index)
2946 break;
2948 stripes = stripe_nr_end - 1 - j;
2949 do_div(stripes, map->num_stripes);
2950 multi->stripes[i].length = map->stripe_len *
2951 (stripes - stripe_nr + 1);
2953 if (i == 0) {
2954 multi->stripes[i].length -=
2955 stripe_offset;
2956 stripe_offset = 0;
2958 if (stripe_index == last_stripe)
2959 multi->stripes[i].length -=
2960 stripe_end_offset;
2961 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2962 u64 stripes;
2963 int j;
2964 int factor = map->num_stripes /
2965 map->sub_stripes;
2966 u32 last_stripe = 0;
2968 div_u64_rem(stripe_nr_end - 1,
2969 factor, &last_stripe);
2970 last_stripe *= map->sub_stripes;
2972 for (j = 0; j < factor; j++) {
2973 u32 test;
2975 div_u64_rem(stripe_nr_end - 1 - j,
2976 factor, &test);
2978 if (test ==
2979 stripe_index / map->sub_stripes)
2980 break;
2982 stripes = stripe_nr_end - 1 - j;
2983 do_div(stripes, factor);
2984 multi->stripes[i].length = map->stripe_len *
2985 (stripes - stripe_nr + 1);
2987 if (i < map->sub_stripes) {
2988 multi->stripes[i].length -=
2989 stripe_offset;
2990 if (i == map->sub_stripes - 1)
2991 stripe_offset = 0;
2993 if (stripe_index >= last_stripe &&
2994 stripe_index <= (last_stripe +
2995 map->sub_stripes - 1)) {
2996 multi->stripes[i].length -=
2997 stripe_end_offset;
2999 } else
3000 multi->stripes[i].length = *length;
3002 stripe_index++;
3003 if (stripe_index == map->num_stripes) {
3004 /* This could only happen for RAID0/10 */
3005 stripe_index = 0;
3006 stripe_nr++;
3009 } else {
3010 for (i = 0; i < num_stripes; i++) {
3011 multi->stripes[i].physical =
3012 map->stripes[stripe_index].physical +
3013 stripe_offset +
3014 stripe_nr * map->stripe_len;
3015 multi->stripes[i].dev =
3016 map->stripes[stripe_index].dev;
3017 stripe_index++;
3020 if (multi_ret) {
3021 *multi_ret = multi;
3022 multi->num_stripes = num_stripes;
3023 multi->max_errors = max_errors;
3025 out:
3026 free_extent_map(em);
3027 return 0;
3030 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3031 u64 logical, u64 *length,
3032 struct btrfs_multi_bio **multi_ret, int mirror_num)
3034 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3035 mirror_num);
3038 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3039 u64 chunk_start, u64 physical, u64 devid,
3040 u64 **logical, int *naddrs, int *stripe_len)
3042 struct extent_map_tree *em_tree = &map_tree->map_tree;
3043 struct extent_map *em;
3044 struct map_lookup *map;
3045 u64 *buf;
3046 u64 bytenr;
3047 u64 length;
3048 u64 stripe_nr;
3049 int i, j, nr = 0;
3051 read_lock(&em_tree->lock);
3052 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3053 read_unlock(&em_tree->lock);
3055 BUG_ON(!em || em->start != chunk_start);
3056 map = (struct map_lookup *)em->bdev;
3058 length = em->len;
3059 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3060 do_div(length, map->num_stripes / map->sub_stripes);
3061 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3062 do_div(length, map->num_stripes);
3064 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3065 BUG_ON(!buf);
3067 for (i = 0; i < map->num_stripes; i++) {
3068 if (devid && map->stripes[i].dev->devid != devid)
3069 continue;
3070 if (map->stripes[i].physical > physical ||
3071 map->stripes[i].physical + length <= physical)
3072 continue;
3074 stripe_nr = physical - map->stripes[i].physical;
3075 do_div(stripe_nr, map->stripe_len);
3077 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3078 stripe_nr = stripe_nr * map->num_stripes + i;
3079 do_div(stripe_nr, map->sub_stripes);
3080 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3081 stripe_nr = stripe_nr * map->num_stripes + i;
3083 bytenr = chunk_start + stripe_nr * map->stripe_len;
3084 WARN_ON(nr >= map->num_stripes);
3085 for (j = 0; j < nr; j++) {
3086 if (buf[j] == bytenr)
3087 break;
3089 if (j == nr) {
3090 WARN_ON(nr >= map->num_stripes);
3091 buf[nr++] = bytenr;
3095 *logical = buf;
3096 *naddrs = nr;
3097 *stripe_len = map->stripe_len;
3099 free_extent_map(em);
3100 return 0;
3103 static void end_bio_multi_stripe(struct bio *bio, int err)
3105 struct btrfs_multi_bio *multi = bio->bi_private;
3106 int is_orig_bio = 0;
3108 if (err)
3109 atomic_inc(&multi->error);
3111 if (bio == multi->orig_bio)
3112 is_orig_bio = 1;
3114 if (atomic_dec_and_test(&multi->stripes_pending)) {
3115 if (!is_orig_bio) {
3116 bio_put(bio);
3117 bio = multi->orig_bio;
3119 bio->bi_private = multi->private;
3120 bio->bi_end_io = multi->end_io;
3121 /* only send an error to the higher layers if it is
3122 * beyond the tolerance of the multi-bio
3124 if (atomic_read(&multi->error) > multi->max_errors) {
3125 err = -EIO;
3126 } else if (err) {
3128 * this bio is actually up to date, we didn't
3129 * go over the max number of errors
3131 set_bit(BIO_UPTODATE, &bio->bi_flags);
3132 err = 0;
3134 kfree(multi);
3136 bio_endio(bio, err);
3137 } else if (!is_orig_bio) {
3138 bio_put(bio);
3142 struct async_sched {
3143 struct bio *bio;
3144 int rw;
3145 struct btrfs_fs_info *info;
3146 struct btrfs_work work;
3150 * see run_scheduled_bios for a description of why bios are collected for
3151 * async submit.
3153 * This will add one bio to the pending list for a device and make sure
3154 * the work struct is scheduled.
3156 static noinline int schedule_bio(struct btrfs_root *root,
3157 struct btrfs_device *device,
3158 int rw, struct bio *bio)
3160 int should_queue = 1;
3161 struct btrfs_pending_bios *pending_bios;
3163 /* don't bother with additional async steps for reads, right now */
3164 if (!(rw & REQ_WRITE)) {
3165 bio_get(bio);
3166 submit_bio(rw, bio);
3167 bio_put(bio);
3168 return 0;
3172 * nr_async_bios allows us to reliably return congestion to the
3173 * higher layers. Otherwise, the async bio makes it appear we have
3174 * made progress against dirty pages when we've really just put it
3175 * on a queue for later
3177 atomic_inc(&root->fs_info->nr_async_bios);
3178 WARN_ON(bio->bi_next);
3179 bio->bi_next = NULL;
3180 bio->bi_rw |= rw;
3182 spin_lock(&device->io_lock);
3183 if (bio->bi_rw & REQ_SYNC)
3184 pending_bios = &device->pending_sync_bios;
3185 else
3186 pending_bios = &device->pending_bios;
3188 if (pending_bios->tail)
3189 pending_bios->tail->bi_next = bio;
3191 pending_bios->tail = bio;
3192 if (!pending_bios->head)
3193 pending_bios->head = bio;
3194 if (device->running_pending)
3195 should_queue = 0;
3197 spin_unlock(&device->io_lock);
3199 if (should_queue)
3200 btrfs_queue_worker(&root->fs_info->submit_workers,
3201 &device->work);
3202 return 0;
3205 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
3206 int mirror_num, int async_submit)
3208 struct btrfs_mapping_tree *map_tree;
3209 struct btrfs_device *dev;
3210 struct bio *first_bio = bio;
3211 u64 logical = (u64)bio->bi_sector << 9;
3212 u64 length = 0;
3213 u64 map_length;
3214 struct btrfs_multi_bio *multi = NULL;
3215 int ret;
3216 int dev_nr = 0;
3217 int total_devs = 1;
3219 length = bio->bi_size;
3220 map_tree = &root->fs_info->mapping_tree;
3221 map_length = length;
3223 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3224 mirror_num);
3225 BUG_ON(ret);
3227 total_devs = multi->num_stripes;
3228 if (map_length < length) {
3229 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3230 "len %llu\n", (unsigned long long)logical,
3231 (unsigned long long)length,
3232 (unsigned long long)map_length);
3233 BUG();
3235 multi->end_io = first_bio->bi_end_io;
3236 multi->private = first_bio->bi_private;
3237 multi->orig_bio = first_bio;
3238 atomic_set(&multi->stripes_pending, multi->num_stripes);
3240 while (dev_nr < total_devs) {
3241 if (total_devs > 1) {
3242 if (dev_nr < total_devs - 1) {
3243 bio = bio_clone(first_bio, GFP_NOFS);
3244 BUG_ON(!bio);
3245 } else {
3246 bio = first_bio;
3248 bio->bi_private = multi;
3249 bio->bi_end_io = end_bio_multi_stripe;
3251 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3252 dev = multi->stripes[dev_nr].dev;
3253 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
3254 bio->bi_bdev = dev->bdev;
3255 if (async_submit)
3256 schedule_bio(root, dev, rw, bio);
3257 else
3258 submit_bio(rw, bio);
3259 } else {
3260 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3261 bio->bi_sector = logical >> 9;
3262 bio_endio(bio, -EIO);
3264 dev_nr++;
3266 if (total_devs == 1)
3267 kfree(multi);
3268 return 0;
3271 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
3272 u8 *uuid, u8 *fsid)
3274 struct btrfs_device *device;
3275 struct btrfs_fs_devices *cur_devices;
3277 cur_devices = root->fs_info->fs_devices;
3278 while (cur_devices) {
3279 if (!fsid ||
3280 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3281 device = __find_device(&cur_devices->devices,
3282 devid, uuid);
3283 if (device)
3284 return device;
3286 cur_devices = cur_devices->seed;
3288 return NULL;
3291 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3292 u64 devid, u8 *dev_uuid)
3294 struct btrfs_device *device;
3295 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3297 device = kzalloc(sizeof(*device), GFP_NOFS);
3298 if (!device)
3299 return NULL;
3300 list_add(&device->dev_list,
3301 &fs_devices->devices);
3302 device->dev_root = root->fs_info->dev_root;
3303 device->devid = devid;
3304 device->work.func = pending_bios_fn;
3305 device->fs_devices = fs_devices;
3306 device->missing = 1;
3307 fs_devices->num_devices++;
3308 fs_devices->missing_devices++;
3309 spin_lock_init(&device->io_lock);
3310 INIT_LIST_HEAD(&device->dev_alloc_list);
3311 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3312 return device;
3315 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3316 struct extent_buffer *leaf,
3317 struct btrfs_chunk *chunk)
3319 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3320 struct map_lookup *map;
3321 struct extent_map *em;
3322 u64 logical;
3323 u64 length;
3324 u64 devid;
3325 u8 uuid[BTRFS_UUID_SIZE];
3326 int num_stripes;
3327 int ret;
3328 int i;
3330 logical = key->offset;
3331 length = btrfs_chunk_length(leaf, chunk);
3333 read_lock(&map_tree->map_tree.lock);
3334 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3335 read_unlock(&map_tree->map_tree.lock);
3337 /* already mapped? */
3338 if (em && em->start <= logical && em->start + em->len > logical) {
3339 free_extent_map(em);
3340 return 0;
3341 } else if (em) {
3342 free_extent_map(em);
3345 em = alloc_extent_map();
3346 if (!em)
3347 return -ENOMEM;
3348 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3350 if (!map) {
3351 free_extent_map(em);
3352 return -ENOMEM;
3355 em->bdev = (struct block_device *)map;
3356 em->start = logical;
3357 em->len = length;
3358 em->block_start = 0;
3359 em->block_len = em->len;
3361 map->num_stripes = num_stripes;
3362 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3363 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3364 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3365 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3366 map->type = btrfs_chunk_type(leaf, chunk);
3367 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3368 for (i = 0; i < num_stripes; i++) {
3369 map->stripes[i].physical =
3370 btrfs_stripe_offset_nr(leaf, chunk, i);
3371 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3372 read_extent_buffer(leaf, uuid, (unsigned long)
3373 btrfs_stripe_dev_uuid_nr(chunk, i),
3374 BTRFS_UUID_SIZE);
3375 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3376 NULL);
3377 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3378 kfree(map);
3379 free_extent_map(em);
3380 return -EIO;
3382 if (!map->stripes[i].dev) {
3383 map->stripes[i].dev =
3384 add_missing_dev(root, devid, uuid);
3385 if (!map->stripes[i].dev) {
3386 kfree(map);
3387 free_extent_map(em);
3388 return -EIO;
3391 map->stripes[i].dev->in_fs_metadata = 1;
3394 write_lock(&map_tree->map_tree.lock);
3395 ret = add_extent_mapping(&map_tree->map_tree, em);
3396 write_unlock(&map_tree->map_tree.lock);
3397 BUG_ON(ret);
3398 free_extent_map(em);
3400 return 0;
3403 static int fill_device_from_item(struct extent_buffer *leaf,
3404 struct btrfs_dev_item *dev_item,
3405 struct btrfs_device *device)
3407 unsigned long ptr;
3409 device->devid = btrfs_device_id(leaf, dev_item);
3410 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3411 device->total_bytes = device->disk_total_bytes;
3412 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3413 device->type = btrfs_device_type(leaf, dev_item);
3414 device->io_align = btrfs_device_io_align(leaf, dev_item);
3415 device->io_width = btrfs_device_io_width(leaf, dev_item);
3416 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3418 ptr = (unsigned long)btrfs_device_uuid(dev_item);
3419 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3421 return 0;
3424 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3426 struct btrfs_fs_devices *fs_devices;
3427 int ret;
3429 mutex_lock(&uuid_mutex);
3431 fs_devices = root->fs_info->fs_devices->seed;
3432 while (fs_devices) {
3433 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3434 ret = 0;
3435 goto out;
3437 fs_devices = fs_devices->seed;
3440 fs_devices = find_fsid(fsid);
3441 if (!fs_devices) {
3442 ret = -ENOENT;
3443 goto out;
3446 fs_devices = clone_fs_devices(fs_devices);
3447 if (IS_ERR(fs_devices)) {
3448 ret = PTR_ERR(fs_devices);
3449 goto out;
3452 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3453 root->fs_info->bdev_holder);
3454 if (ret)
3455 goto out;
3457 if (!fs_devices->seeding) {
3458 __btrfs_close_devices(fs_devices);
3459 free_fs_devices(fs_devices);
3460 ret = -EINVAL;
3461 goto out;
3464 fs_devices->seed = root->fs_info->fs_devices->seed;
3465 root->fs_info->fs_devices->seed = fs_devices;
3466 out:
3467 mutex_unlock(&uuid_mutex);
3468 return ret;
3471 static int read_one_dev(struct btrfs_root *root,
3472 struct extent_buffer *leaf,
3473 struct btrfs_dev_item *dev_item)
3475 struct btrfs_device *device;
3476 u64 devid;
3477 int ret;
3478 u8 fs_uuid[BTRFS_UUID_SIZE];
3479 u8 dev_uuid[BTRFS_UUID_SIZE];
3481 devid = btrfs_device_id(leaf, dev_item);
3482 read_extent_buffer(leaf, dev_uuid,
3483 (unsigned long)btrfs_device_uuid(dev_item),
3484 BTRFS_UUID_SIZE);
3485 read_extent_buffer(leaf, fs_uuid,
3486 (unsigned long)btrfs_device_fsid(dev_item),
3487 BTRFS_UUID_SIZE);
3489 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3490 ret = open_seed_devices(root, fs_uuid);
3491 if (ret && !btrfs_test_opt(root, DEGRADED))
3492 return ret;
3495 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3496 if (!device || !device->bdev) {
3497 if (!btrfs_test_opt(root, DEGRADED))
3498 return -EIO;
3500 if (!device) {
3501 printk(KERN_WARNING "warning devid %llu missing\n",
3502 (unsigned long long)devid);
3503 device = add_missing_dev(root, devid, dev_uuid);
3504 if (!device)
3505 return -ENOMEM;
3506 } else if (!device->missing) {
3508 * this happens when a device that was properly setup
3509 * in the device info lists suddenly goes bad.
3510 * device->bdev is NULL, and so we have to set
3511 * device->missing to one here
3513 root->fs_info->fs_devices->missing_devices++;
3514 device->missing = 1;
3518 if (device->fs_devices != root->fs_info->fs_devices) {
3519 BUG_ON(device->writeable);
3520 if (device->generation !=
3521 btrfs_device_generation(leaf, dev_item))
3522 return -EINVAL;
3525 fill_device_from_item(leaf, dev_item, device);
3526 device->dev_root = root->fs_info->dev_root;
3527 device->in_fs_metadata = 1;
3528 if (device->writeable)
3529 device->fs_devices->total_rw_bytes += device->total_bytes;
3530 ret = 0;
3531 return ret;
3534 int btrfs_read_sys_array(struct btrfs_root *root)
3536 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3537 struct extent_buffer *sb;
3538 struct btrfs_disk_key *disk_key;
3539 struct btrfs_chunk *chunk;
3540 u8 *ptr;
3541 unsigned long sb_ptr;
3542 int ret = 0;
3543 u32 num_stripes;
3544 u32 array_size;
3545 u32 len = 0;
3546 u32 cur;
3547 struct btrfs_key key;
3549 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3550 BTRFS_SUPER_INFO_SIZE);
3551 if (!sb)
3552 return -ENOMEM;
3553 btrfs_set_buffer_uptodate(sb);
3554 btrfs_set_buffer_lockdep_class(sb, 0);
3556 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3557 array_size = btrfs_super_sys_array_size(super_copy);
3559 ptr = super_copy->sys_chunk_array;
3560 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3561 cur = 0;
3563 while (cur < array_size) {
3564 disk_key = (struct btrfs_disk_key *)ptr;
3565 btrfs_disk_key_to_cpu(&key, disk_key);
3567 len = sizeof(*disk_key); ptr += len;
3568 sb_ptr += len;
3569 cur += len;
3571 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3572 chunk = (struct btrfs_chunk *)sb_ptr;
3573 ret = read_one_chunk(root, &key, sb, chunk);
3574 if (ret)
3575 break;
3576 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3577 len = btrfs_chunk_item_size(num_stripes);
3578 } else {
3579 ret = -EIO;
3580 break;
3582 ptr += len;
3583 sb_ptr += len;
3584 cur += len;
3586 free_extent_buffer(sb);
3587 return ret;
3590 int btrfs_read_chunk_tree(struct btrfs_root *root)
3592 struct btrfs_path *path;
3593 struct extent_buffer *leaf;
3594 struct btrfs_key key;
3595 struct btrfs_key found_key;
3596 int ret;
3597 int slot;
3599 root = root->fs_info->chunk_root;
3601 path = btrfs_alloc_path();
3602 if (!path)
3603 return -ENOMEM;
3605 /* first we search for all of the device items, and then we
3606 * read in all of the chunk items. This way we can create chunk
3607 * mappings that reference all of the devices that are afound
3609 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3610 key.offset = 0;
3611 key.type = 0;
3612 again:
3613 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3614 if (ret < 0)
3615 goto error;
3616 while (1) {
3617 leaf = path->nodes[0];
3618 slot = path->slots[0];
3619 if (slot >= btrfs_header_nritems(leaf)) {
3620 ret = btrfs_next_leaf(root, path);
3621 if (ret == 0)
3622 continue;
3623 if (ret < 0)
3624 goto error;
3625 break;
3627 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3628 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3629 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3630 break;
3631 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3632 struct btrfs_dev_item *dev_item;
3633 dev_item = btrfs_item_ptr(leaf, slot,
3634 struct btrfs_dev_item);
3635 ret = read_one_dev(root, leaf, dev_item);
3636 if (ret)
3637 goto error;
3639 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3640 struct btrfs_chunk *chunk;
3641 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3642 ret = read_one_chunk(root, &found_key, leaf, chunk);
3643 if (ret)
3644 goto error;
3646 path->slots[0]++;
3648 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3649 key.objectid = 0;
3650 btrfs_release_path(path);
3651 goto again;
3653 ret = 0;
3654 error:
3655 btrfs_free_path(path);
3656 return ret;