Merge branch 'for-chris' of git://git.kernel.org/pub/scm/linux/kernel/git/arne/btrfs...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / tree-log.c
blobb4c191d6c7747395ba9710277fac0209d41d229f
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
137 int ret;
138 int err = 0;
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 if (ret)
160 err = ret;
162 if (err == 0 && !root->log_root) {
163 ret = btrfs_add_log_tree(trans, root);
164 if (ret)
165 err = ret;
167 mutex_unlock(&root->fs_info->tree_log_mutex);
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
171 return err;
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
179 static int join_running_log_trans(struct btrfs_root *root)
181 int ret = -ENOENT;
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
187 mutex_lock(&root->log_mutex);
188 if (root->log_root) {
189 ret = 0;
190 atomic_inc(&root->log_writers);
192 mutex_unlock(&root->log_mutex);
193 return ret;
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root *root)
203 int ret = -ENOENT;
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root *root)
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
222 return 0;
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
236 int free;
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
241 int write;
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
246 int wait;
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
251 int pin;
253 /* what stage of the replay code we're currently in */
254 int stage;
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
278 if (wc->pin)
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
288 return 0;
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
335 if (item_size == 0) {
336 btrfs_release_path(path);
337 return 0;
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
355 kfree(dst_copy);
356 kfree(src_copy);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
363 if (ret == 0) {
364 btrfs_release_path(path);
365 return 0;
369 insert:
370 btrfs_release_path(path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
385 BUG_ON(ret);
387 } else if (ret) {
388 return ret;
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
439 no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(path);
442 return 0;
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
452 struct btrfs_key key;
453 struct inode *inode;
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
462 iput(inode);
463 inode = NULL;
465 return inode;
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
491 u64 saved_nbytes;
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 size = btrfs_file_extent_inline_len(eb, item);
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
522 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
523 start, 0);
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(path);
548 goto out;
551 btrfs_release_path(path);
553 saved_nbytes = inode_get_bytes(inode);
554 /* drop any overlapping extents */
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
557 BUG_ON(ret);
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 u64 offset;
562 unsigned long dest_offset;
563 struct btrfs_key ins;
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
576 offset = key->offset - btrfs_file_extent_offset(eb, item);
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
591 0, root->root_key.objectid,
592 key->objectid, offset);
593 } else {
595 * insert the extent pointer in the extent
596 * allocation tree
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
601 BUG_ON(ret);
603 btrfs_release_path(path);
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums, 0);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
631 } else {
632 btrfs_release_path(path);
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
640 inode_set_bytes(inode, saved_nbytes);
641 btrfs_update_inode(trans, root, inode);
642 out:
643 if (inode)
644 iput(inode);
645 return ret;
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
654 * item
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
669 leaf = path->nodes[0];
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
674 if (!name)
675 return -ENOMEM;
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(path);
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
687 BUG_ON(ret);
688 kfree(name);
690 iput(inode);
691 return ret;
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
699 static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(path);
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726 out:
727 btrfs_release_path(path);
728 return match;
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
741 static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
755 path = btrfs_alloc_path();
756 if (!path)
757 return -ENOMEM;
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
778 ptr = (unsigned long)(ref + 1) + found_name_len;
780 out:
781 btrfs_free_path(path);
782 return match;
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
792 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
799 struct inode *dir;
800 int ret;
801 struct btrfs_inode_ref *ref;
802 struct inode *inode;
803 char *name;
804 int namelen;
805 unsigned long ref_ptr;
806 unsigned long ref_end;
807 int search_done = 0;
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
819 inode = read_one_inode(root, key->objectid);
820 BUG_ON(!inode);
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
825 again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
849 if (search_done)
850 goto insert;
852 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
853 if (ret == 0) {
854 char *victim_name;
855 int victim_name_len;
856 struct btrfs_inode_ref *victim_ref;
857 unsigned long ptr;
858 unsigned long ptr_end;
859 struct extent_buffer *leaf = path->nodes[0];
861 /* are we trying to overwrite a back ref for the root directory
862 * if so, just jump out, we're done
864 if (key->objectid == key->offset)
865 goto out_nowrite;
867 /* check all the names in this back reference to see
868 * if they are in the log. if so, we allow them to stay
869 * otherwise they must be unlinked as a conflict
871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
872 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
873 while (ptr < ptr_end) {
874 victim_ref = (struct btrfs_inode_ref *)ptr;
875 victim_name_len = btrfs_inode_ref_name_len(leaf,
876 victim_ref);
877 victim_name = kmalloc(victim_name_len, GFP_NOFS);
878 BUG_ON(!victim_name);
880 read_extent_buffer(leaf, victim_name,
881 (unsigned long)(victim_ref + 1),
882 victim_name_len);
884 if (!backref_in_log(log, key, victim_name,
885 victim_name_len)) {
886 btrfs_inc_nlink(inode);
887 btrfs_release_path(path);
889 ret = btrfs_unlink_inode(trans, root, dir,
890 inode, victim_name,
891 victim_name_len);
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
896 BUG_ON(ret);
899 * NOTE: we have searched root tree and checked the
900 * coresponding ref, it does not need to check again.
902 search_done = 1;
904 btrfs_release_path(path);
906 insert:
907 /* insert our name */
908 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
909 btrfs_inode_ref_index(eb, ref));
910 BUG_ON(ret);
912 btrfs_update_inode(trans, root, inode);
914 out:
915 ref_ptr = (unsigned long)(ref + 1) + namelen;
916 kfree(name);
917 if (ref_ptr < ref_end)
918 goto again;
920 /* finally write the back reference in the inode */
921 ret = overwrite_item(trans, root, path, eb, slot, key);
922 BUG_ON(ret);
924 out_nowrite:
925 btrfs_release_path(path);
926 iput(dir);
927 iput(inode);
928 return 0;
931 static int insert_orphan_item(struct btrfs_trans_handle *trans,
932 struct btrfs_root *root, u64 offset)
934 int ret;
935 ret = btrfs_find_orphan_item(root, offset);
936 if (ret > 0)
937 ret = btrfs_insert_orphan_item(trans, root, offset);
938 return ret;
943 * There are a few corners where the link count of the file can't
944 * be properly maintained during replay. So, instead of adding
945 * lots of complexity to the log code, we just scan the backrefs
946 * for any file that has been through replay.
948 * The scan will update the link count on the inode to reflect the
949 * number of back refs found. If it goes down to zero, the iput
950 * will free the inode.
952 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
953 struct btrfs_root *root,
954 struct inode *inode)
956 struct btrfs_path *path;
957 int ret;
958 struct btrfs_key key;
959 u64 nlink = 0;
960 unsigned long ptr;
961 unsigned long ptr_end;
962 int name_len;
963 u64 ino = btrfs_ino(inode);
965 key.objectid = ino;
966 key.type = BTRFS_INODE_REF_KEY;
967 key.offset = (u64)-1;
969 path = btrfs_alloc_path();
970 if (!path)
971 return -ENOMEM;
973 while (1) {
974 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
975 if (ret < 0)
976 break;
977 if (ret > 0) {
978 if (path->slots[0] == 0)
979 break;
980 path->slots[0]--;
982 btrfs_item_key_to_cpu(path->nodes[0], &key,
983 path->slots[0]);
984 if (key.objectid != ino ||
985 key.type != BTRFS_INODE_REF_KEY)
986 break;
987 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
988 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
989 path->slots[0]);
990 while (ptr < ptr_end) {
991 struct btrfs_inode_ref *ref;
993 ref = (struct btrfs_inode_ref *)ptr;
994 name_len = btrfs_inode_ref_name_len(path->nodes[0],
995 ref);
996 ptr = (unsigned long)(ref + 1) + name_len;
997 nlink++;
1000 if (key.offset == 0)
1001 break;
1002 key.offset--;
1003 btrfs_release_path(path);
1005 btrfs_release_path(path);
1006 if (nlink != inode->i_nlink) {
1007 inode->i_nlink = nlink;
1008 btrfs_update_inode(trans, root, inode);
1010 BTRFS_I(inode)->index_cnt = (u64)-1;
1012 if (inode->i_nlink == 0) {
1013 if (S_ISDIR(inode->i_mode)) {
1014 ret = replay_dir_deletes(trans, root, NULL, path,
1015 ino, 1);
1016 BUG_ON(ret);
1018 ret = insert_orphan_item(trans, root, ino);
1019 BUG_ON(ret);
1021 btrfs_free_path(path);
1023 return 0;
1026 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1027 struct btrfs_root *root,
1028 struct btrfs_path *path)
1030 int ret;
1031 struct btrfs_key key;
1032 struct inode *inode;
1034 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1035 key.type = BTRFS_ORPHAN_ITEM_KEY;
1036 key.offset = (u64)-1;
1037 while (1) {
1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1039 if (ret < 0)
1040 break;
1042 if (ret == 1) {
1043 if (path->slots[0] == 0)
1044 break;
1045 path->slots[0]--;
1048 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1049 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1050 key.type != BTRFS_ORPHAN_ITEM_KEY)
1051 break;
1053 ret = btrfs_del_item(trans, root, path);
1054 BUG_ON(ret);
1056 btrfs_release_path(path);
1057 inode = read_one_inode(root, key.offset);
1058 BUG_ON(!inode);
1060 ret = fixup_inode_link_count(trans, root, inode);
1061 BUG_ON(ret);
1063 iput(inode);
1066 * fixup on a directory may create new entries,
1067 * make sure we always look for the highset possible
1068 * offset
1070 key.offset = (u64)-1;
1072 btrfs_release_path(path);
1073 return 0;
1078 * record a given inode in the fixup dir so we can check its link
1079 * count when replay is done. The link count is incremented here
1080 * so the inode won't go away until we check it
1082 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1083 struct btrfs_root *root,
1084 struct btrfs_path *path,
1085 u64 objectid)
1087 struct btrfs_key key;
1088 int ret = 0;
1089 struct inode *inode;
1091 inode = read_one_inode(root, objectid);
1092 BUG_ON(!inode);
1094 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1095 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1096 key.offset = objectid;
1098 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1100 btrfs_release_path(path);
1101 if (ret == 0) {
1102 btrfs_inc_nlink(inode);
1103 btrfs_update_inode(trans, root, inode);
1104 } else if (ret == -EEXIST) {
1105 ret = 0;
1106 } else {
1107 BUG();
1109 iput(inode);
1111 return ret;
1115 * when replaying the log for a directory, we only insert names
1116 * for inodes that actually exist. This means an fsync on a directory
1117 * does not implicitly fsync all the new files in it
1119 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1120 struct btrfs_root *root,
1121 struct btrfs_path *path,
1122 u64 dirid, u64 index,
1123 char *name, int name_len, u8 type,
1124 struct btrfs_key *location)
1126 struct inode *inode;
1127 struct inode *dir;
1128 int ret;
1130 inode = read_one_inode(root, location->objectid);
1131 if (!inode)
1132 return -ENOENT;
1134 dir = read_one_inode(root, dirid);
1135 if (!dir) {
1136 iput(inode);
1137 return -EIO;
1139 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1141 /* FIXME, put inode into FIXUP list */
1143 iput(inode);
1144 iput(dir);
1145 return ret;
1149 * take a single entry in a log directory item and replay it into
1150 * the subvolume.
1152 * if a conflicting item exists in the subdirectory already,
1153 * the inode it points to is unlinked and put into the link count
1154 * fix up tree.
1156 * If a name from the log points to a file or directory that does
1157 * not exist in the FS, it is skipped. fsyncs on directories
1158 * do not force down inodes inside that directory, just changes to the
1159 * names or unlinks in a directory.
1161 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1162 struct btrfs_root *root,
1163 struct btrfs_path *path,
1164 struct extent_buffer *eb,
1165 struct btrfs_dir_item *di,
1166 struct btrfs_key *key)
1168 char *name;
1169 int name_len;
1170 struct btrfs_dir_item *dst_di;
1171 struct btrfs_key found_key;
1172 struct btrfs_key log_key;
1173 struct inode *dir;
1174 u8 log_type;
1175 int exists;
1176 int ret;
1178 dir = read_one_inode(root, key->objectid);
1179 BUG_ON(!dir);
1181 name_len = btrfs_dir_name_len(eb, di);
1182 name = kmalloc(name_len, GFP_NOFS);
1183 if (!name)
1184 return -ENOMEM;
1186 log_type = btrfs_dir_type(eb, di);
1187 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1188 name_len);
1190 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1191 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1192 if (exists == 0)
1193 exists = 1;
1194 else
1195 exists = 0;
1196 btrfs_release_path(path);
1198 if (key->type == BTRFS_DIR_ITEM_KEY) {
1199 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1200 name, name_len, 1);
1201 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1202 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1203 key->objectid,
1204 key->offset, name,
1205 name_len, 1);
1206 } else {
1207 BUG();
1209 if (IS_ERR_OR_NULL(dst_di)) {
1210 /* we need a sequence number to insert, so we only
1211 * do inserts for the BTRFS_DIR_INDEX_KEY types
1213 if (key->type != BTRFS_DIR_INDEX_KEY)
1214 goto out;
1215 goto insert;
1218 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1219 /* the existing item matches the logged item */
1220 if (found_key.objectid == log_key.objectid &&
1221 found_key.type == log_key.type &&
1222 found_key.offset == log_key.offset &&
1223 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1224 goto out;
1228 * don't drop the conflicting directory entry if the inode
1229 * for the new entry doesn't exist
1231 if (!exists)
1232 goto out;
1234 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1235 BUG_ON(ret);
1237 if (key->type == BTRFS_DIR_INDEX_KEY)
1238 goto insert;
1239 out:
1240 btrfs_release_path(path);
1241 kfree(name);
1242 iput(dir);
1243 return 0;
1245 insert:
1246 btrfs_release_path(path);
1247 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1248 name, name_len, log_type, &log_key);
1250 BUG_ON(ret && ret != -ENOENT);
1251 goto out;
1255 * find all the names in a directory item and reconcile them into
1256 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1257 * one name in a directory item, but the same code gets used for
1258 * both directory index types
1260 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1261 struct btrfs_root *root,
1262 struct btrfs_path *path,
1263 struct extent_buffer *eb, int slot,
1264 struct btrfs_key *key)
1266 int ret;
1267 u32 item_size = btrfs_item_size_nr(eb, slot);
1268 struct btrfs_dir_item *di;
1269 int name_len;
1270 unsigned long ptr;
1271 unsigned long ptr_end;
1273 ptr = btrfs_item_ptr_offset(eb, slot);
1274 ptr_end = ptr + item_size;
1275 while (ptr < ptr_end) {
1276 di = (struct btrfs_dir_item *)ptr;
1277 if (verify_dir_item(root, eb, di))
1278 return -EIO;
1279 name_len = btrfs_dir_name_len(eb, di);
1280 ret = replay_one_name(trans, root, path, eb, di, key);
1281 BUG_ON(ret);
1282 ptr = (unsigned long)(di + 1);
1283 ptr += name_len;
1285 return 0;
1289 * directory replay has two parts. There are the standard directory
1290 * items in the log copied from the subvolume, and range items
1291 * created in the log while the subvolume was logged.
1293 * The range items tell us which parts of the key space the log
1294 * is authoritative for. During replay, if a key in the subvolume
1295 * directory is in a logged range item, but not actually in the log
1296 * that means it was deleted from the directory before the fsync
1297 * and should be removed.
1299 static noinline int find_dir_range(struct btrfs_root *root,
1300 struct btrfs_path *path,
1301 u64 dirid, int key_type,
1302 u64 *start_ret, u64 *end_ret)
1304 struct btrfs_key key;
1305 u64 found_end;
1306 struct btrfs_dir_log_item *item;
1307 int ret;
1308 int nritems;
1310 if (*start_ret == (u64)-1)
1311 return 1;
1313 key.objectid = dirid;
1314 key.type = key_type;
1315 key.offset = *start_ret;
1317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1318 if (ret < 0)
1319 goto out;
1320 if (ret > 0) {
1321 if (path->slots[0] == 0)
1322 goto out;
1323 path->slots[0]--;
1325 if (ret != 0)
1326 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1328 if (key.type != key_type || key.objectid != dirid) {
1329 ret = 1;
1330 goto next;
1332 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1333 struct btrfs_dir_log_item);
1334 found_end = btrfs_dir_log_end(path->nodes[0], item);
1336 if (*start_ret >= key.offset && *start_ret <= found_end) {
1337 ret = 0;
1338 *start_ret = key.offset;
1339 *end_ret = found_end;
1340 goto out;
1342 ret = 1;
1343 next:
1344 /* check the next slot in the tree to see if it is a valid item */
1345 nritems = btrfs_header_nritems(path->nodes[0]);
1346 if (path->slots[0] >= nritems) {
1347 ret = btrfs_next_leaf(root, path);
1348 if (ret)
1349 goto out;
1350 } else {
1351 path->slots[0]++;
1354 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1356 if (key.type != key_type || key.objectid != dirid) {
1357 ret = 1;
1358 goto out;
1360 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1361 struct btrfs_dir_log_item);
1362 found_end = btrfs_dir_log_end(path->nodes[0], item);
1363 *start_ret = key.offset;
1364 *end_ret = found_end;
1365 ret = 0;
1366 out:
1367 btrfs_release_path(path);
1368 return ret;
1372 * this looks for a given directory item in the log. If the directory
1373 * item is not in the log, the item is removed and the inode it points
1374 * to is unlinked
1376 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root,
1378 struct btrfs_root *log,
1379 struct btrfs_path *path,
1380 struct btrfs_path *log_path,
1381 struct inode *dir,
1382 struct btrfs_key *dir_key)
1384 int ret;
1385 struct extent_buffer *eb;
1386 int slot;
1387 u32 item_size;
1388 struct btrfs_dir_item *di;
1389 struct btrfs_dir_item *log_di;
1390 int name_len;
1391 unsigned long ptr;
1392 unsigned long ptr_end;
1393 char *name;
1394 struct inode *inode;
1395 struct btrfs_key location;
1397 again:
1398 eb = path->nodes[0];
1399 slot = path->slots[0];
1400 item_size = btrfs_item_size_nr(eb, slot);
1401 ptr = btrfs_item_ptr_offset(eb, slot);
1402 ptr_end = ptr + item_size;
1403 while (ptr < ptr_end) {
1404 di = (struct btrfs_dir_item *)ptr;
1405 if (verify_dir_item(root, eb, di)) {
1406 ret = -EIO;
1407 goto out;
1410 name_len = btrfs_dir_name_len(eb, di);
1411 name = kmalloc(name_len, GFP_NOFS);
1412 if (!name) {
1413 ret = -ENOMEM;
1414 goto out;
1416 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1417 name_len);
1418 log_di = NULL;
1419 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1420 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1421 dir_key->objectid,
1422 name, name_len, 0);
1423 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1424 log_di = btrfs_lookup_dir_index_item(trans, log,
1425 log_path,
1426 dir_key->objectid,
1427 dir_key->offset,
1428 name, name_len, 0);
1430 if (IS_ERR_OR_NULL(log_di)) {
1431 btrfs_dir_item_key_to_cpu(eb, di, &location);
1432 btrfs_release_path(path);
1433 btrfs_release_path(log_path);
1434 inode = read_one_inode(root, location.objectid);
1435 BUG_ON(!inode);
1437 ret = link_to_fixup_dir(trans, root,
1438 path, location.objectid);
1439 BUG_ON(ret);
1440 btrfs_inc_nlink(inode);
1441 ret = btrfs_unlink_inode(trans, root, dir, inode,
1442 name, name_len);
1443 BUG_ON(ret);
1444 kfree(name);
1445 iput(inode);
1447 /* there might still be more names under this key
1448 * check and repeat if required
1450 ret = btrfs_search_slot(NULL, root, dir_key, path,
1451 0, 0);
1452 if (ret == 0)
1453 goto again;
1454 ret = 0;
1455 goto out;
1457 btrfs_release_path(log_path);
1458 kfree(name);
1460 ptr = (unsigned long)(di + 1);
1461 ptr += name_len;
1463 ret = 0;
1464 out:
1465 btrfs_release_path(path);
1466 btrfs_release_path(log_path);
1467 return ret;
1471 * deletion replay happens before we copy any new directory items
1472 * out of the log or out of backreferences from inodes. It
1473 * scans the log to find ranges of keys that log is authoritative for,
1474 * and then scans the directory to find items in those ranges that are
1475 * not present in the log.
1477 * Anything we don't find in the log is unlinked and removed from the
1478 * directory.
1480 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1481 struct btrfs_root *root,
1482 struct btrfs_root *log,
1483 struct btrfs_path *path,
1484 u64 dirid, int del_all)
1486 u64 range_start;
1487 u64 range_end;
1488 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1489 int ret = 0;
1490 struct btrfs_key dir_key;
1491 struct btrfs_key found_key;
1492 struct btrfs_path *log_path;
1493 struct inode *dir;
1495 dir_key.objectid = dirid;
1496 dir_key.type = BTRFS_DIR_ITEM_KEY;
1497 log_path = btrfs_alloc_path();
1498 if (!log_path)
1499 return -ENOMEM;
1501 dir = read_one_inode(root, dirid);
1502 /* it isn't an error if the inode isn't there, that can happen
1503 * because we replay the deletes before we copy in the inode item
1504 * from the log
1506 if (!dir) {
1507 btrfs_free_path(log_path);
1508 return 0;
1510 again:
1511 range_start = 0;
1512 range_end = 0;
1513 while (1) {
1514 if (del_all)
1515 range_end = (u64)-1;
1516 else {
1517 ret = find_dir_range(log, path, dirid, key_type,
1518 &range_start, &range_end);
1519 if (ret != 0)
1520 break;
1523 dir_key.offset = range_start;
1524 while (1) {
1525 int nritems;
1526 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1527 0, 0);
1528 if (ret < 0)
1529 goto out;
1531 nritems = btrfs_header_nritems(path->nodes[0]);
1532 if (path->slots[0] >= nritems) {
1533 ret = btrfs_next_leaf(root, path);
1534 if (ret)
1535 break;
1537 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1538 path->slots[0]);
1539 if (found_key.objectid != dirid ||
1540 found_key.type != dir_key.type)
1541 goto next_type;
1543 if (found_key.offset > range_end)
1544 break;
1546 ret = check_item_in_log(trans, root, log, path,
1547 log_path, dir,
1548 &found_key);
1549 BUG_ON(ret);
1550 if (found_key.offset == (u64)-1)
1551 break;
1552 dir_key.offset = found_key.offset + 1;
1554 btrfs_release_path(path);
1555 if (range_end == (u64)-1)
1556 break;
1557 range_start = range_end + 1;
1560 next_type:
1561 ret = 0;
1562 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1563 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1564 dir_key.type = BTRFS_DIR_INDEX_KEY;
1565 btrfs_release_path(path);
1566 goto again;
1568 out:
1569 btrfs_release_path(path);
1570 btrfs_free_path(log_path);
1571 iput(dir);
1572 return ret;
1576 * the process_func used to replay items from the log tree. This
1577 * gets called in two different stages. The first stage just looks
1578 * for inodes and makes sure they are all copied into the subvolume.
1580 * The second stage copies all the other item types from the log into
1581 * the subvolume. The two stage approach is slower, but gets rid of
1582 * lots of complexity around inodes referencing other inodes that exist
1583 * only in the log (references come from either directory items or inode
1584 * back refs).
1586 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1587 struct walk_control *wc, u64 gen)
1589 int nritems;
1590 struct btrfs_path *path;
1591 struct btrfs_root *root = wc->replay_dest;
1592 struct btrfs_key key;
1593 int level;
1594 int i;
1595 int ret;
1597 btrfs_read_buffer(eb, gen);
1599 level = btrfs_header_level(eb);
1601 if (level != 0)
1602 return 0;
1604 path = btrfs_alloc_path();
1605 BUG_ON(!path);
1607 nritems = btrfs_header_nritems(eb);
1608 for (i = 0; i < nritems; i++) {
1609 btrfs_item_key_to_cpu(eb, &key, i);
1611 /* inode keys are done during the first stage */
1612 if (key.type == BTRFS_INODE_ITEM_KEY &&
1613 wc->stage == LOG_WALK_REPLAY_INODES) {
1614 struct btrfs_inode_item *inode_item;
1615 u32 mode;
1617 inode_item = btrfs_item_ptr(eb, i,
1618 struct btrfs_inode_item);
1619 mode = btrfs_inode_mode(eb, inode_item);
1620 if (S_ISDIR(mode)) {
1621 ret = replay_dir_deletes(wc->trans,
1622 root, log, path, key.objectid, 0);
1623 BUG_ON(ret);
1625 ret = overwrite_item(wc->trans, root, path,
1626 eb, i, &key);
1627 BUG_ON(ret);
1629 /* for regular files, make sure corresponding
1630 * orhpan item exist. extents past the new EOF
1631 * will be truncated later by orphan cleanup.
1633 if (S_ISREG(mode)) {
1634 ret = insert_orphan_item(wc->trans, root,
1635 key.objectid);
1636 BUG_ON(ret);
1639 ret = link_to_fixup_dir(wc->trans, root,
1640 path, key.objectid);
1641 BUG_ON(ret);
1643 if (wc->stage < LOG_WALK_REPLAY_ALL)
1644 continue;
1646 /* these keys are simply copied */
1647 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1648 ret = overwrite_item(wc->trans, root, path,
1649 eb, i, &key);
1650 BUG_ON(ret);
1651 } else if (key.type == BTRFS_INODE_REF_KEY) {
1652 ret = add_inode_ref(wc->trans, root, log, path,
1653 eb, i, &key);
1654 BUG_ON(ret && ret != -ENOENT);
1655 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1656 ret = replay_one_extent(wc->trans, root, path,
1657 eb, i, &key);
1658 BUG_ON(ret);
1659 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1660 key.type == BTRFS_DIR_INDEX_KEY) {
1661 ret = replay_one_dir_item(wc->trans, root, path,
1662 eb, i, &key);
1663 BUG_ON(ret);
1666 btrfs_free_path(path);
1667 return 0;
1670 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1671 struct btrfs_root *root,
1672 struct btrfs_path *path, int *level,
1673 struct walk_control *wc)
1675 u64 root_owner;
1676 u64 bytenr;
1677 u64 ptr_gen;
1678 struct extent_buffer *next;
1679 struct extent_buffer *cur;
1680 struct extent_buffer *parent;
1681 u32 blocksize;
1682 int ret = 0;
1684 WARN_ON(*level < 0);
1685 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1687 while (*level > 0) {
1688 WARN_ON(*level < 0);
1689 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1690 cur = path->nodes[*level];
1692 if (btrfs_header_level(cur) != *level)
1693 WARN_ON(1);
1695 if (path->slots[*level] >=
1696 btrfs_header_nritems(cur))
1697 break;
1699 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1700 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1701 blocksize = btrfs_level_size(root, *level - 1);
1703 parent = path->nodes[*level];
1704 root_owner = btrfs_header_owner(parent);
1706 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1707 if (!next)
1708 return -ENOMEM;
1710 if (*level == 1) {
1711 wc->process_func(root, next, wc, ptr_gen);
1713 path->slots[*level]++;
1714 if (wc->free) {
1715 btrfs_read_buffer(next, ptr_gen);
1717 btrfs_tree_lock(next);
1718 clean_tree_block(trans, root, next);
1719 btrfs_set_lock_blocking(next);
1720 btrfs_wait_tree_block_writeback(next);
1721 btrfs_tree_unlock(next);
1723 WARN_ON(root_owner !=
1724 BTRFS_TREE_LOG_OBJECTID);
1725 ret = btrfs_free_reserved_extent(root,
1726 bytenr, blocksize);
1727 BUG_ON(ret);
1729 free_extent_buffer(next);
1730 continue;
1732 btrfs_read_buffer(next, ptr_gen);
1734 WARN_ON(*level <= 0);
1735 if (path->nodes[*level-1])
1736 free_extent_buffer(path->nodes[*level-1]);
1737 path->nodes[*level-1] = next;
1738 *level = btrfs_header_level(next);
1739 path->slots[*level] = 0;
1740 cond_resched();
1742 WARN_ON(*level < 0);
1743 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1745 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1747 cond_resched();
1748 return 0;
1751 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1752 struct btrfs_root *root,
1753 struct btrfs_path *path, int *level,
1754 struct walk_control *wc)
1756 u64 root_owner;
1757 int i;
1758 int slot;
1759 int ret;
1761 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1762 slot = path->slots[i];
1763 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1764 path->slots[i]++;
1765 *level = i;
1766 WARN_ON(*level == 0);
1767 return 0;
1768 } else {
1769 struct extent_buffer *parent;
1770 if (path->nodes[*level] == root->node)
1771 parent = path->nodes[*level];
1772 else
1773 parent = path->nodes[*level + 1];
1775 root_owner = btrfs_header_owner(parent);
1776 wc->process_func(root, path->nodes[*level], wc,
1777 btrfs_header_generation(path->nodes[*level]));
1778 if (wc->free) {
1779 struct extent_buffer *next;
1781 next = path->nodes[*level];
1783 btrfs_tree_lock(next);
1784 clean_tree_block(trans, root, next);
1785 btrfs_set_lock_blocking(next);
1786 btrfs_wait_tree_block_writeback(next);
1787 btrfs_tree_unlock(next);
1789 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1790 ret = btrfs_free_reserved_extent(root,
1791 path->nodes[*level]->start,
1792 path->nodes[*level]->len);
1793 BUG_ON(ret);
1795 free_extent_buffer(path->nodes[*level]);
1796 path->nodes[*level] = NULL;
1797 *level = i + 1;
1800 return 1;
1804 * drop the reference count on the tree rooted at 'snap'. This traverses
1805 * the tree freeing any blocks that have a ref count of zero after being
1806 * decremented.
1808 static int walk_log_tree(struct btrfs_trans_handle *trans,
1809 struct btrfs_root *log, struct walk_control *wc)
1811 int ret = 0;
1812 int wret;
1813 int level;
1814 struct btrfs_path *path;
1815 int i;
1816 int orig_level;
1818 path = btrfs_alloc_path();
1819 if (!path)
1820 return -ENOMEM;
1822 level = btrfs_header_level(log->node);
1823 orig_level = level;
1824 path->nodes[level] = log->node;
1825 extent_buffer_get(log->node);
1826 path->slots[level] = 0;
1828 while (1) {
1829 wret = walk_down_log_tree(trans, log, path, &level, wc);
1830 if (wret > 0)
1831 break;
1832 if (wret < 0)
1833 ret = wret;
1835 wret = walk_up_log_tree(trans, log, path, &level, wc);
1836 if (wret > 0)
1837 break;
1838 if (wret < 0)
1839 ret = wret;
1842 /* was the root node processed? if not, catch it here */
1843 if (path->nodes[orig_level]) {
1844 wc->process_func(log, path->nodes[orig_level], wc,
1845 btrfs_header_generation(path->nodes[orig_level]));
1846 if (wc->free) {
1847 struct extent_buffer *next;
1849 next = path->nodes[orig_level];
1851 btrfs_tree_lock(next);
1852 clean_tree_block(trans, log, next);
1853 btrfs_set_lock_blocking(next);
1854 btrfs_wait_tree_block_writeback(next);
1855 btrfs_tree_unlock(next);
1857 WARN_ON(log->root_key.objectid !=
1858 BTRFS_TREE_LOG_OBJECTID);
1859 ret = btrfs_free_reserved_extent(log, next->start,
1860 next->len);
1861 BUG_ON(ret);
1865 for (i = 0; i <= orig_level; i++) {
1866 if (path->nodes[i]) {
1867 free_extent_buffer(path->nodes[i]);
1868 path->nodes[i] = NULL;
1871 btrfs_free_path(path);
1872 return ret;
1876 * helper function to update the item for a given subvolumes log root
1877 * in the tree of log roots
1879 static int update_log_root(struct btrfs_trans_handle *trans,
1880 struct btrfs_root *log)
1882 int ret;
1884 if (log->log_transid == 1) {
1885 /* insert root item on the first sync */
1886 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1887 &log->root_key, &log->root_item);
1888 } else {
1889 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1890 &log->root_key, &log->root_item);
1892 return ret;
1895 static int wait_log_commit(struct btrfs_trans_handle *trans,
1896 struct btrfs_root *root, unsigned long transid)
1898 DEFINE_WAIT(wait);
1899 int index = transid % 2;
1902 * we only allow two pending log transactions at a time,
1903 * so we know that if ours is more than 2 older than the
1904 * current transaction, we're done
1906 do {
1907 prepare_to_wait(&root->log_commit_wait[index],
1908 &wait, TASK_UNINTERRUPTIBLE);
1909 mutex_unlock(&root->log_mutex);
1911 if (root->fs_info->last_trans_log_full_commit !=
1912 trans->transid && root->log_transid < transid + 2 &&
1913 atomic_read(&root->log_commit[index]))
1914 schedule();
1916 finish_wait(&root->log_commit_wait[index], &wait);
1917 mutex_lock(&root->log_mutex);
1918 } while (root->log_transid < transid + 2 &&
1919 atomic_read(&root->log_commit[index]));
1920 return 0;
1923 static int wait_for_writer(struct btrfs_trans_handle *trans,
1924 struct btrfs_root *root)
1926 DEFINE_WAIT(wait);
1927 while (atomic_read(&root->log_writers)) {
1928 prepare_to_wait(&root->log_writer_wait,
1929 &wait, TASK_UNINTERRUPTIBLE);
1930 mutex_unlock(&root->log_mutex);
1931 if (root->fs_info->last_trans_log_full_commit !=
1932 trans->transid && atomic_read(&root->log_writers))
1933 schedule();
1934 mutex_lock(&root->log_mutex);
1935 finish_wait(&root->log_writer_wait, &wait);
1937 return 0;
1941 * btrfs_sync_log does sends a given tree log down to the disk and
1942 * updates the super blocks to record it. When this call is done,
1943 * you know that any inodes previously logged are safely on disk only
1944 * if it returns 0.
1946 * Any other return value means you need to call btrfs_commit_transaction.
1947 * Some of the edge cases for fsyncing directories that have had unlinks
1948 * or renames done in the past mean that sometimes the only safe
1949 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1950 * that has happened.
1952 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root)
1955 int index1;
1956 int index2;
1957 int mark;
1958 int ret;
1959 struct btrfs_root *log = root->log_root;
1960 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1961 unsigned long log_transid = 0;
1963 mutex_lock(&root->log_mutex);
1964 index1 = root->log_transid % 2;
1965 if (atomic_read(&root->log_commit[index1])) {
1966 wait_log_commit(trans, root, root->log_transid);
1967 mutex_unlock(&root->log_mutex);
1968 return 0;
1970 atomic_set(&root->log_commit[index1], 1);
1972 /* wait for previous tree log sync to complete */
1973 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1974 wait_log_commit(trans, root, root->log_transid - 1);
1976 while (1) {
1977 unsigned long batch = root->log_batch;
1978 if (root->log_multiple_pids) {
1979 mutex_unlock(&root->log_mutex);
1980 schedule_timeout_uninterruptible(1);
1981 mutex_lock(&root->log_mutex);
1983 wait_for_writer(trans, root);
1984 if (batch == root->log_batch)
1985 break;
1988 /* bail out if we need to do a full commit */
1989 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1990 ret = -EAGAIN;
1991 mutex_unlock(&root->log_mutex);
1992 goto out;
1995 log_transid = root->log_transid;
1996 if (log_transid % 2 == 0)
1997 mark = EXTENT_DIRTY;
1998 else
1999 mark = EXTENT_NEW;
2001 /* we start IO on all the marked extents here, but we don't actually
2002 * wait for them until later.
2004 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2005 BUG_ON(ret);
2007 btrfs_set_root_node(&log->root_item, log->node);
2009 root->log_batch = 0;
2010 root->log_transid++;
2011 log->log_transid = root->log_transid;
2012 root->log_start_pid = 0;
2013 smp_mb();
2015 * IO has been started, blocks of the log tree have WRITTEN flag set
2016 * in their headers. new modifications of the log will be written to
2017 * new positions. so it's safe to allow log writers to go in.
2019 mutex_unlock(&root->log_mutex);
2021 mutex_lock(&log_root_tree->log_mutex);
2022 log_root_tree->log_batch++;
2023 atomic_inc(&log_root_tree->log_writers);
2024 mutex_unlock(&log_root_tree->log_mutex);
2026 ret = update_log_root(trans, log);
2028 mutex_lock(&log_root_tree->log_mutex);
2029 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2030 smp_mb();
2031 if (waitqueue_active(&log_root_tree->log_writer_wait))
2032 wake_up(&log_root_tree->log_writer_wait);
2035 if (ret) {
2036 BUG_ON(ret != -ENOSPC);
2037 root->fs_info->last_trans_log_full_commit = trans->transid;
2038 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2039 mutex_unlock(&log_root_tree->log_mutex);
2040 ret = -EAGAIN;
2041 goto out;
2044 index2 = log_root_tree->log_transid % 2;
2045 if (atomic_read(&log_root_tree->log_commit[index2])) {
2046 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2047 wait_log_commit(trans, log_root_tree,
2048 log_root_tree->log_transid);
2049 mutex_unlock(&log_root_tree->log_mutex);
2050 ret = 0;
2051 goto out;
2053 atomic_set(&log_root_tree->log_commit[index2], 1);
2055 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2056 wait_log_commit(trans, log_root_tree,
2057 log_root_tree->log_transid - 1);
2060 wait_for_writer(trans, log_root_tree);
2063 * now that we've moved on to the tree of log tree roots,
2064 * check the full commit flag again
2066 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2067 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2068 mutex_unlock(&log_root_tree->log_mutex);
2069 ret = -EAGAIN;
2070 goto out_wake_log_root;
2073 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2074 &log_root_tree->dirty_log_pages,
2075 EXTENT_DIRTY | EXTENT_NEW);
2076 BUG_ON(ret);
2077 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2079 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2080 log_root_tree->node->start);
2081 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2082 btrfs_header_level(log_root_tree->node));
2084 log_root_tree->log_batch = 0;
2085 log_root_tree->log_transid++;
2086 smp_mb();
2088 mutex_unlock(&log_root_tree->log_mutex);
2091 * nobody else is going to jump in and write the the ctree
2092 * super here because the log_commit atomic below is protecting
2093 * us. We must be called with a transaction handle pinning
2094 * the running transaction open, so a full commit can't hop
2095 * in and cause problems either.
2097 btrfs_scrub_pause_super(root);
2098 write_ctree_super(trans, root->fs_info->tree_root, 1);
2099 btrfs_scrub_continue_super(root);
2100 ret = 0;
2102 mutex_lock(&root->log_mutex);
2103 if (root->last_log_commit < log_transid)
2104 root->last_log_commit = log_transid;
2105 mutex_unlock(&root->log_mutex);
2107 out_wake_log_root:
2108 atomic_set(&log_root_tree->log_commit[index2], 0);
2109 smp_mb();
2110 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2111 wake_up(&log_root_tree->log_commit_wait[index2]);
2112 out:
2113 atomic_set(&root->log_commit[index1], 0);
2114 smp_mb();
2115 if (waitqueue_active(&root->log_commit_wait[index1]))
2116 wake_up(&root->log_commit_wait[index1]);
2117 return ret;
2120 static void free_log_tree(struct btrfs_trans_handle *trans,
2121 struct btrfs_root *log)
2123 int ret;
2124 u64 start;
2125 u64 end;
2126 struct walk_control wc = {
2127 .free = 1,
2128 .process_func = process_one_buffer
2131 ret = walk_log_tree(trans, log, &wc);
2132 BUG_ON(ret);
2134 while (1) {
2135 ret = find_first_extent_bit(&log->dirty_log_pages,
2136 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2137 if (ret)
2138 break;
2140 clear_extent_bits(&log->dirty_log_pages, start, end,
2141 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2144 free_extent_buffer(log->node);
2145 kfree(log);
2149 * free all the extents used by the tree log. This should be called
2150 * at commit time of the full transaction
2152 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2154 if (root->log_root) {
2155 free_log_tree(trans, root->log_root);
2156 root->log_root = NULL;
2158 return 0;
2161 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2162 struct btrfs_fs_info *fs_info)
2164 if (fs_info->log_root_tree) {
2165 free_log_tree(trans, fs_info->log_root_tree);
2166 fs_info->log_root_tree = NULL;
2168 return 0;
2172 * If both a file and directory are logged, and unlinks or renames are
2173 * mixed in, we have a few interesting corners:
2175 * create file X in dir Y
2176 * link file X to X.link in dir Y
2177 * fsync file X
2178 * unlink file X but leave X.link
2179 * fsync dir Y
2181 * After a crash we would expect only X.link to exist. But file X
2182 * didn't get fsync'd again so the log has back refs for X and X.link.
2184 * We solve this by removing directory entries and inode backrefs from the
2185 * log when a file that was logged in the current transaction is
2186 * unlinked. Any later fsync will include the updated log entries, and
2187 * we'll be able to reconstruct the proper directory items from backrefs.
2189 * This optimizations allows us to avoid relogging the entire inode
2190 * or the entire directory.
2192 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 const char *name, int name_len,
2195 struct inode *dir, u64 index)
2197 struct btrfs_root *log;
2198 struct btrfs_dir_item *di;
2199 struct btrfs_path *path;
2200 int ret;
2201 int err = 0;
2202 int bytes_del = 0;
2203 u64 dir_ino = btrfs_ino(dir);
2205 if (BTRFS_I(dir)->logged_trans < trans->transid)
2206 return 0;
2208 ret = join_running_log_trans(root);
2209 if (ret)
2210 return 0;
2212 mutex_lock(&BTRFS_I(dir)->log_mutex);
2214 log = root->log_root;
2215 path = btrfs_alloc_path();
2216 if (!path) {
2217 err = -ENOMEM;
2218 goto out_unlock;
2221 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2222 name, name_len, -1);
2223 if (IS_ERR(di)) {
2224 err = PTR_ERR(di);
2225 goto fail;
2227 if (di) {
2228 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2229 bytes_del += name_len;
2230 BUG_ON(ret);
2232 btrfs_release_path(path);
2233 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2234 index, name, name_len, -1);
2235 if (IS_ERR(di)) {
2236 err = PTR_ERR(di);
2237 goto fail;
2239 if (di) {
2240 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2241 bytes_del += name_len;
2242 BUG_ON(ret);
2245 /* update the directory size in the log to reflect the names
2246 * we have removed
2248 if (bytes_del) {
2249 struct btrfs_key key;
2251 key.objectid = dir_ino;
2252 key.offset = 0;
2253 key.type = BTRFS_INODE_ITEM_KEY;
2254 btrfs_release_path(path);
2256 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2257 if (ret < 0) {
2258 err = ret;
2259 goto fail;
2261 if (ret == 0) {
2262 struct btrfs_inode_item *item;
2263 u64 i_size;
2265 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2266 struct btrfs_inode_item);
2267 i_size = btrfs_inode_size(path->nodes[0], item);
2268 if (i_size > bytes_del)
2269 i_size -= bytes_del;
2270 else
2271 i_size = 0;
2272 btrfs_set_inode_size(path->nodes[0], item, i_size);
2273 btrfs_mark_buffer_dirty(path->nodes[0]);
2274 } else
2275 ret = 0;
2276 btrfs_release_path(path);
2278 fail:
2279 btrfs_free_path(path);
2280 out_unlock:
2281 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2282 if (ret == -ENOSPC) {
2283 root->fs_info->last_trans_log_full_commit = trans->transid;
2284 ret = 0;
2286 btrfs_end_log_trans(root);
2288 return err;
2291 /* see comments for btrfs_del_dir_entries_in_log */
2292 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2293 struct btrfs_root *root,
2294 const char *name, int name_len,
2295 struct inode *inode, u64 dirid)
2297 struct btrfs_root *log;
2298 u64 index;
2299 int ret;
2301 if (BTRFS_I(inode)->logged_trans < trans->transid)
2302 return 0;
2304 ret = join_running_log_trans(root);
2305 if (ret)
2306 return 0;
2307 log = root->log_root;
2308 mutex_lock(&BTRFS_I(inode)->log_mutex);
2310 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2311 dirid, &index);
2312 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2313 if (ret == -ENOSPC) {
2314 root->fs_info->last_trans_log_full_commit = trans->transid;
2315 ret = 0;
2317 btrfs_end_log_trans(root);
2319 return ret;
2323 * creates a range item in the log for 'dirid'. first_offset and
2324 * last_offset tell us which parts of the key space the log should
2325 * be considered authoritative for.
2327 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2328 struct btrfs_root *log,
2329 struct btrfs_path *path,
2330 int key_type, u64 dirid,
2331 u64 first_offset, u64 last_offset)
2333 int ret;
2334 struct btrfs_key key;
2335 struct btrfs_dir_log_item *item;
2337 key.objectid = dirid;
2338 key.offset = first_offset;
2339 if (key_type == BTRFS_DIR_ITEM_KEY)
2340 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2341 else
2342 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2343 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2344 if (ret)
2345 return ret;
2347 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2348 struct btrfs_dir_log_item);
2349 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2350 btrfs_mark_buffer_dirty(path->nodes[0]);
2351 btrfs_release_path(path);
2352 return 0;
2356 * log all the items included in the current transaction for a given
2357 * directory. This also creates the range items in the log tree required
2358 * to replay anything deleted before the fsync
2360 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2361 struct btrfs_root *root, struct inode *inode,
2362 struct btrfs_path *path,
2363 struct btrfs_path *dst_path, int key_type,
2364 u64 min_offset, u64 *last_offset_ret)
2366 struct btrfs_key min_key;
2367 struct btrfs_key max_key;
2368 struct btrfs_root *log = root->log_root;
2369 struct extent_buffer *src;
2370 int err = 0;
2371 int ret;
2372 int i;
2373 int nritems;
2374 u64 first_offset = min_offset;
2375 u64 last_offset = (u64)-1;
2376 u64 ino = btrfs_ino(inode);
2378 log = root->log_root;
2379 max_key.objectid = ino;
2380 max_key.offset = (u64)-1;
2381 max_key.type = key_type;
2383 min_key.objectid = ino;
2384 min_key.type = key_type;
2385 min_key.offset = min_offset;
2387 path->keep_locks = 1;
2389 ret = btrfs_search_forward(root, &min_key, &max_key,
2390 path, 0, trans->transid);
2393 * we didn't find anything from this transaction, see if there
2394 * is anything at all
2396 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2397 min_key.objectid = ino;
2398 min_key.type = key_type;
2399 min_key.offset = (u64)-1;
2400 btrfs_release_path(path);
2401 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2402 if (ret < 0) {
2403 btrfs_release_path(path);
2404 return ret;
2406 ret = btrfs_previous_item(root, path, ino, key_type);
2408 /* if ret == 0 there are items for this type,
2409 * create a range to tell us the last key of this type.
2410 * otherwise, there are no items in this directory after
2411 * *min_offset, and we create a range to indicate that.
2413 if (ret == 0) {
2414 struct btrfs_key tmp;
2415 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2416 path->slots[0]);
2417 if (key_type == tmp.type)
2418 first_offset = max(min_offset, tmp.offset) + 1;
2420 goto done;
2423 /* go backward to find any previous key */
2424 ret = btrfs_previous_item(root, path, ino, key_type);
2425 if (ret == 0) {
2426 struct btrfs_key tmp;
2427 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2428 if (key_type == tmp.type) {
2429 first_offset = tmp.offset;
2430 ret = overwrite_item(trans, log, dst_path,
2431 path->nodes[0], path->slots[0],
2432 &tmp);
2433 if (ret) {
2434 err = ret;
2435 goto done;
2439 btrfs_release_path(path);
2441 /* find the first key from this transaction again */
2442 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2443 if (ret != 0) {
2444 WARN_ON(1);
2445 goto done;
2449 * we have a block from this transaction, log every item in it
2450 * from our directory
2452 while (1) {
2453 struct btrfs_key tmp;
2454 src = path->nodes[0];
2455 nritems = btrfs_header_nritems(src);
2456 for (i = path->slots[0]; i < nritems; i++) {
2457 btrfs_item_key_to_cpu(src, &min_key, i);
2459 if (min_key.objectid != ino || min_key.type != key_type)
2460 goto done;
2461 ret = overwrite_item(trans, log, dst_path, src, i,
2462 &min_key);
2463 if (ret) {
2464 err = ret;
2465 goto done;
2468 path->slots[0] = nritems;
2471 * look ahead to the next item and see if it is also
2472 * from this directory and from this transaction
2474 ret = btrfs_next_leaf(root, path);
2475 if (ret == 1) {
2476 last_offset = (u64)-1;
2477 goto done;
2479 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2480 if (tmp.objectid != ino || tmp.type != key_type) {
2481 last_offset = (u64)-1;
2482 goto done;
2484 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2485 ret = overwrite_item(trans, log, dst_path,
2486 path->nodes[0], path->slots[0],
2487 &tmp);
2488 if (ret)
2489 err = ret;
2490 else
2491 last_offset = tmp.offset;
2492 goto done;
2495 done:
2496 btrfs_release_path(path);
2497 btrfs_release_path(dst_path);
2499 if (err == 0) {
2500 *last_offset_ret = last_offset;
2502 * insert the log range keys to indicate where the log
2503 * is valid
2505 ret = insert_dir_log_key(trans, log, path, key_type,
2506 ino, first_offset, last_offset);
2507 if (ret)
2508 err = ret;
2510 return err;
2514 * logging directories is very similar to logging inodes, We find all the items
2515 * from the current transaction and write them to the log.
2517 * The recovery code scans the directory in the subvolume, and if it finds a
2518 * key in the range logged that is not present in the log tree, then it means
2519 * that dir entry was unlinked during the transaction.
2521 * In order for that scan to work, we must include one key smaller than
2522 * the smallest logged by this transaction and one key larger than the largest
2523 * key logged by this transaction.
2525 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2526 struct btrfs_root *root, struct inode *inode,
2527 struct btrfs_path *path,
2528 struct btrfs_path *dst_path)
2530 u64 min_key;
2531 u64 max_key;
2532 int ret;
2533 int key_type = BTRFS_DIR_ITEM_KEY;
2535 again:
2536 min_key = 0;
2537 max_key = 0;
2538 while (1) {
2539 ret = log_dir_items(trans, root, inode, path,
2540 dst_path, key_type, min_key,
2541 &max_key);
2542 if (ret)
2543 return ret;
2544 if (max_key == (u64)-1)
2545 break;
2546 min_key = max_key + 1;
2549 if (key_type == BTRFS_DIR_ITEM_KEY) {
2550 key_type = BTRFS_DIR_INDEX_KEY;
2551 goto again;
2553 return 0;
2557 * a helper function to drop items from the log before we relog an
2558 * inode. max_key_type indicates the highest item type to remove.
2559 * This cannot be run for file data extents because it does not
2560 * free the extents they point to.
2562 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *log,
2564 struct btrfs_path *path,
2565 u64 objectid, int max_key_type)
2567 int ret;
2568 struct btrfs_key key;
2569 struct btrfs_key found_key;
2571 key.objectid = objectid;
2572 key.type = max_key_type;
2573 key.offset = (u64)-1;
2575 while (1) {
2576 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2577 BUG_ON(ret == 0);
2578 if (ret < 0)
2579 break;
2581 if (path->slots[0] == 0)
2582 break;
2584 path->slots[0]--;
2585 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2586 path->slots[0]);
2588 if (found_key.objectid != objectid)
2589 break;
2591 ret = btrfs_del_item(trans, log, path);
2592 BUG_ON(ret);
2593 btrfs_release_path(path);
2595 btrfs_release_path(path);
2596 return ret;
2599 static noinline int copy_items(struct btrfs_trans_handle *trans,
2600 struct btrfs_root *log,
2601 struct btrfs_path *dst_path,
2602 struct extent_buffer *src,
2603 int start_slot, int nr, int inode_only)
2605 unsigned long src_offset;
2606 unsigned long dst_offset;
2607 struct btrfs_file_extent_item *extent;
2608 struct btrfs_inode_item *inode_item;
2609 int ret;
2610 struct btrfs_key *ins_keys;
2611 u32 *ins_sizes;
2612 char *ins_data;
2613 int i;
2614 struct list_head ordered_sums;
2616 INIT_LIST_HEAD(&ordered_sums);
2618 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2619 nr * sizeof(u32), GFP_NOFS);
2620 if (!ins_data)
2621 return -ENOMEM;
2623 ins_sizes = (u32 *)ins_data;
2624 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2626 for (i = 0; i < nr; i++) {
2627 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2628 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2630 ret = btrfs_insert_empty_items(trans, log, dst_path,
2631 ins_keys, ins_sizes, nr);
2632 if (ret) {
2633 kfree(ins_data);
2634 return ret;
2637 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2638 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2639 dst_path->slots[0]);
2641 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2643 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2644 src_offset, ins_sizes[i]);
2646 if (inode_only == LOG_INODE_EXISTS &&
2647 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2648 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2649 dst_path->slots[0],
2650 struct btrfs_inode_item);
2651 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2653 /* set the generation to zero so the recover code
2654 * can tell the difference between an logging
2655 * just to say 'this inode exists' and a logging
2656 * to say 'update this inode with these values'
2658 btrfs_set_inode_generation(dst_path->nodes[0],
2659 inode_item, 0);
2661 /* take a reference on file data extents so that truncates
2662 * or deletes of this inode don't have to relog the inode
2663 * again
2665 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2666 int found_type;
2667 extent = btrfs_item_ptr(src, start_slot + i,
2668 struct btrfs_file_extent_item);
2670 found_type = btrfs_file_extent_type(src, extent);
2671 if (found_type == BTRFS_FILE_EXTENT_REG ||
2672 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2673 u64 ds, dl, cs, cl;
2674 ds = btrfs_file_extent_disk_bytenr(src,
2675 extent);
2676 /* ds == 0 is a hole */
2677 if (ds == 0)
2678 continue;
2680 dl = btrfs_file_extent_disk_num_bytes(src,
2681 extent);
2682 cs = btrfs_file_extent_offset(src, extent);
2683 cl = btrfs_file_extent_num_bytes(src,
2684 extent);
2685 if (btrfs_file_extent_compression(src,
2686 extent)) {
2687 cs = 0;
2688 cl = dl;
2691 ret = btrfs_lookup_csums_range(
2692 log->fs_info->csum_root,
2693 ds + cs, ds + cs + cl - 1,
2694 &ordered_sums, 0);
2695 BUG_ON(ret);
2700 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2701 btrfs_release_path(dst_path);
2702 kfree(ins_data);
2705 * we have to do this after the loop above to avoid changing the
2706 * log tree while trying to change the log tree.
2708 ret = 0;
2709 while (!list_empty(&ordered_sums)) {
2710 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2711 struct btrfs_ordered_sum,
2712 list);
2713 if (!ret)
2714 ret = btrfs_csum_file_blocks(trans, log, sums);
2715 list_del(&sums->list);
2716 kfree(sums);
2718 return ret;
2721 /* log a single inode in the tree log.
2722 * At least one parent directory for this inode must exist in the tree
2723 * or be logged already.
2725 * Any items from this inode changed by the current transaction are copied
2726 * to the log tree. An extra reference is taken on any extents in this
2727 * file, allowing us to avoid a whole pile of corner cases around logging
2728 * blocks that have been removed from the tree.
2730 * See LOG_INODE_ALL and related defines for a description of what inode_only
2731 * does.
2733 * This handles both files and directories.
2735 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2736 struct btrfs_root *root, struct inode *inode,
2737 int inode_only)
2739 struct btrfs_path *path;
2740 struct btrfs_path *dst_path;
2741 struct btrfs_key min_key;
2742 struct btrfs_key max_key;
2743 struct btrfs_root *log = root->log_root;
2744 struct extent_buffer *src = NULL;
2745 int err = 0;
2746 int ret;
2747 int nritems;
2748 int ins_start_slot = 0;
2749 int ins_nr;
2750 u64 ino = btrfs_ino(inode);
2752 log = root->log_root;
2754 path = btrfs_alloc_path();
2755 if (!path)
2756 return -ENOMEM;
2757 dst_path = btrfs_alloc_path();
2758 if (!dst_path) {
2759 btrfs_free_path(path);
2760 return -ENOMEM;
2763 min_key.objectid = ino;
2764 min_key.type = BTRFS_INODE_ITEM_KEY;
2765 min_key.offset = 0;
2767 max_key.objectid = ino;
2769 /* today the code can only do partial logging of directories */
2770 if (!S_ISDIR(inode->i_mode))
2771 inode_only = LOG_INODE_ALL;
2773 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2774 max_key.type = BTRFS_XATTR_ITEM_KEY;
2775 else
2776 max_key.type = (u8)-1;
2777 max_key.offset = (u64)-1;
2779 ret = btrfs_commit_inode_delayed_items(trans, inode);
2780 if (ret) {
2781 btrfs_free_path(path);
2782 btrfs_free_path(dst_path);
2783 return ret;
2786 mutex_lock(&BTRFS_I(inode)->log_mutex);
2789 * a brute force approach to making sure we get the most uptodate
2790 * copies of everything.
2792 if (S_ISDIR(inode->i_mode)) {
2793 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2795 if (inode_only == LOG_INODE_EXISTS)
2796 max_key_type = BTRFS_XATTR_ITEM_KEY;
2797 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2798 } else {
2799 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2801 if (ret) {
2802 err = ret;
2803 goto out_unlock;
2805 path->keep_locks = 1;
2807 while (1) {
2808 ins_nr = 0;
2809 ret = btrfs_search_forward(root, &min_key, &max_key,
2810 path, 0, trans->transid);
2811 if (ret != 0)
2812 break;
2813 again:
2814 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2815 if (min_key.objectid != ino)
2816 break;
2817 if (min_key.type > max_key.type)
2818 break;
2820 src = path->nodes[0];
2821 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2822 ins_nr++;
2823 goto next_slot;
2824 } else if (!ins_nr) {
2825 ins_start_slot = path->slots[0];
2826 ins_nr = 1;
2827 goto next_slot;
2830 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2831 ins_nr, inode_only);
2832 if (ret) {
2833 err = ret;
2834 goto out_unlock;
2836 ins_nr = 1;
2837 ins_start_slot = path->slots[0];
2838 next_slot:
2840 nritems = btrfs_header_nritems(path->nodes[0]);
2841 path->slots[0]++;
2842 if (path->slots[0] < nritems) {
2843 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2844 path->slots[0]);
2845 goto again;
2847 if (ins_nr) {
2848 ret = copy_items(trans, log, dst_path, src,
2849 ins_start_slot,
2850 ins_nr, inode_only);
2851 if (ret) {
2852 err = ret;
2853 goto out_unlock;
2855 ins_nr = 0;
2857 btrfs_release_path(path);
2859 if (min_key.offset < (u64)-1)
2860 min_key.offset++;
2861 else if (min_key.type < (u8)-1)
2862 min_key.type++;
2863 else if (min_key.objectid < (u64)-1)
2864 min_key.objectid++;
2865 else
2866 break;
2868 if (ins_nr) {
2869 ret = copy_items(trans, log, dst_path, src,
2870 ins_start_slot,
2871 ins_nr, inode_only);
2872 if (ret) {
2873 err = ret;
2874 goto out_unlock;
2876 ins_nr = 0;
2878 WARN_ON(ins_nr);
2879 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2880 btrfs_release_path(path);
2881 btrfs_release_path(dst_path);
2882 ret = log_directory_changes(trans, root, inode, path, dst_path);
2883 if (ret) {
2884 err = ret;
2885 goto out_unlock;
2888 BTRFS_I(inode)->logged_trans = trans->transid;
2889 out_unlock:
2890 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2892 btrfs_free_path(path);
2893 btrfs_free_path(dst_path);
2894 return err;
2898 * follow the dentry parent pointers up the chain and see if any
2899 * of the directories in it require a full commit before they can
2900 * be logged. Returns zero if nothing special needs to be done or 1 if
2901 * a full commit is required.
2903 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2904 struct inode *inode,
2905 struct dentry *parent,
2906 struct super_block *sb,
2907 u64 last_committed)
2909 int ret = 0;
2910 struct btrfs_root *root;
2911 struct dentry *old_parent = NULL;
2914 * for regular files, if its inode is already on disk, we don't
2915 * have to worry about the parents at all. This is because
2916 * we can use the last_unlink_trans field to record renames
2917 * and other fun in this file.
2919 if (S_ISREG(inode->i_mode) &&
2920 BTRFS_I(inode)->generation <= last_committed &&
2921 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2922 goto out;
2924 if (!S_ISDIR(inode->i_mode)) {
2925 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2926 goto out;
2927 inode = parent->d_inode;
2930 while (1) {
2931 BTRFS_I(inode)->logged_trans = trans->transid;
2932 smp_mb();
2934 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2935 root = BTRFS_I(inode)->root;
2938 * make sure any commits to the log are forced
2939 * to be full commits
2941 root->fs_info->last_trans_log_full_commit =
2942 trans->transid;
2943 ret = 1;
2944 break;
2947 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2948 break;
2950 if (IS_ROOT(parent))
2951 break;
2953 parent = dget_parent(parent);
2954 dput(old_parent);
2955 old_parent = parent;
2956 inode = parent->d_inode;
2959 dput(old_parent);
2960 out:
2961 return ret;
2964 static int inode_in_log(struct btrfs_trans_handle *trans,
2965 struct inode *inode)
2967 struct btrfs_root *root = BTRFS_I(inode)->root;
2968 int ret = 0;
2970 mutex_lock(&root->log_mutex);
2971 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2972 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2973 ret = 1;
2974 mutex_unlock(&root->log_mutex);
2975 return ret;
2980 * helper function around btrfs_log_inode to make sure newly created
2981 * parent directories also end up in the log. A minimal inode and backref
2982 * only logging is done of any parent directories that are older than
2983 * the last committed transaction
2985 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root, struct inode *inode,
2987 struct dentry *parent, int exists_only)
2989 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2990 struct super_block *sb;
2991 struct dentry *old_parent = NULL;
2992 int ret = 0;
2993 u64 last_committed = root->fs_info->last_trans_committed;
2995 sb = inode->i_sb;
2997 if (btrfs_test_opt(root, NOTREELOG)) {
2998 ret = 1;
2999 goto end_no_trans;
3002 if (root->fs_info->last_trans_log_full_commit >
3003 root->fs_info->last_trans_committed) {
3004 ret = 1;
3005 goto end_no_trans;
3008 if (root != BTRFS_I(inode)->root ||
3009 btrfs_root_refs(&root->root_item) == 0) {
3010 ret = 1;
3011 goto end_no_trans;
3014 ret = check_parent_dirs_for_sync(trans, inode, parent,
3015 sb, last_committed);
3016 if (ret)
3017 goto end_no_trans;
3019 if (inode_in_log(trans, inode)) {
3020 ret = BTRFS_NO_LOG_SYNC;
3021 goto end_no_trans;
3024 ret = start_log_trans(trans, root);
3025 if (ret)
3026 goto end_trans;
3028 ret = btrfs_log_inode(trans, root, inode, inode_only);
3029 if (ret)
3030 goto end_trans;
3033 * for regular files, if its inode is already on disk, we don't
3034 * have to worry about the parents at all. This is because
3035 * we can use the last_unlink_trans field to record renames
3036 * and other fun in this file.
3038 if (S_ISREG(inode->i_mode) &&
3039 BTRFS_I(inode)->generation <= last_committed &&
3040 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3041 ret = 0;
3042 goto end_trans;
3045 inode_only = LOG_INODE_EXISTS;
3046 while (1) {
3047 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3048 break;
3050 inode = parent->d_inode;
3051 if (root != BTRFS_I(inode)->root)
3052 break;
3054 if (BTRFS_I(inode)->generation >
3055 root->fs_info->last_trans_committed) {
3056 ret = btrfs_log_inode(trans, root, inode, inode_only);
3057 if (ret)
3058 goto end_trans;
3060 if (IS_ROOT(parent))
3061 break;
3063 parent = dget_parent(parent);
3064 dput(old_parent);
3065 old_parent = parent;
3067 ret = 0;
3068 end_trans:
3069 dput(old_parent);
3070 if (ret < 0) {
3071 BUG_ON(ret != -ENOSPC);
3072 root->fs_info->last_trans_log_full_commit = trans->transid;
3073 ret = 1;
3075 btrfs_end_log_trans(root);
3076 end_no_trans:
3077 return ret;
3081 * it is not safe to log dentry if the chunk root has added new
3082 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3083 * If this returns 1, you must commit the transaction to safely get your
3084 * data on disk.
3086 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root, struct dentry *dentry)
3089 struct dentry *parent = dget_parent(dentry);
3090 int ret;
3092 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3093 dput(parent);
3095 return ret;
3099 * should be called during mount to recover any replay any log trees
3100 * from the FS
3102 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3104 int ret;
3105 struct btrfs_path *path;
3106 struct btrfs_trans_handle *trans;
3107 struct btrfs_key key;
3108 struct btrfs_key found_key;
3109 struct btrfs_key tmp_key;
3110 struct btrfs_root *log;
3111 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3112 struct walk_control wc = {
3113 .process_func = process_one_buffer,
3114 .stage = 0,
3117 path = btrfs_alloc_path();
3118 if (!path)
3119 return -ENOMEM;
3121 fs_info->log_root_recovering = 1;
3123 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3124 BUG_ON(IS_ERR(trans));
3126 wc.trans = trans;
3127 wc.pin = 1;
3129 ret = walk_log_tree(trans, log_root_tree, &wc);
3130 BUG_ON(ret);
3132 again:
3133 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3134 key.offset = (u64)-1;
3135 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3137 while (1) {
3138 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3139 if (ret < 0)
3140 break;
3141 if (ret > 0) {
3142 if (path->slots[0] == 0)
3143 break;
3144 path->slots[0]--;
3146 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3147 path->slots[0]);
3148 btrfs_release_path(path);
3149 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3150 break;
3152 log = btrfs_read_fs_root_no_radix(log_root_tree,
3153 &found_key);
3154 BUG_ON(IS_ERR(log));
3156 tmp_key.objectid = found_key.offset;
3157 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3158 tmp_key.offset = (u64)-1;
3160 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3161 BUG_ON(!wc.replay_dest);
3163 wc.replay_dest->log_root = log;
3164 btrfs_record_root_in_trans(trans, wc.replay_dest);
3165 ret = walk_log_tree(trans, log, &wc);
3166 BUG_ON(ret);
3168 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3169 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3170 path);
3171 BUG_ON(ret);
3174 key.offset = found_key.offset - 1;
3175 wc.replay_dest->log_root = NULL;
3176 free_extent_buffer(log->node);
3177 free_extent_buffer(log->commit_root);
3178 kfree(log);
3180 if (found_key.offset == 0)
3181 break;
3183 btrfs_release_path(path);
3185 /* step one is to pin it all, step two is to replay just inodes */
3186 if (wc.pin) {
3187 wc.pin = 0;
3188 wc.process_func = replay_one_buffer;
3189 wc.stage = LOG_WALK_REPLAY_INODES;
3190 goto again;
3192 /* step three is to replay everything */
3193 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3194 wc.stage++;
3195 goto again;
3198 btrfs_free_path(path);
3200 free_extent_buffer(log_root_tree->node);
3201 log_root_tree->log_root = NULL;
3202 fs_info->log_root_recovering = 0;
3204 /* step 4: commit the transaction, which also unpins the blocks */
3205 btrfs_commit_transaction(trans, fs_info->tree_root);
3207 kfree(log_root_tree);
3208 return 0;
3212 * there are some corner cases where we want to force a full
3213 * commit instead of allowing a directory to be logged.
3215 * They revolve around files there were unlinked from the directory, and
3216 * this function updates the parent directory so that a full commit is
3217 * properly done if it is fsync'd later after the unlinks are done.
3219 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3220 struct inode *dir, struct inode *inode,
3221 int for_rename)
3224 * when we're logging a file, if it hasn't been renamed
3225 * or unlinked, and its inode is fully committed on disk,
3226 * we don't have to worry about walking up the directory chain
3227 * to log its parents.
3229 * So, we use the last_unlink_trans field to put this transid
3230 * into the file. When the file is logged we check it and
3231 * don't log the parents if the file is fully on disk.
3233 if (S_ISREG(inode->i_mode))
3234 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3237 * if this directory was already logged any new
3238 * names for this file/dir will get recorded
3240 smp_mb();
3241 if (BTRFS_I(dir)->logged_trans == trans->transid)
3242 return;
3245 * if the inode we're about to unlink was logged,
3246 * the log will be properly updated for any new names
3248 if (BTRFS_I(inode)->logged_trans == trans->transid)
3249 return;
3252 * when renaming files across directories, if the directory
3253 * there we're unlinking from gets fsync'd later on, there's
3254 * no way to find the destination directory later and fsync it
3255 * properly. So, we have to be conservative and force commits
3256 * so the new name gets discovered.
3258 if (for_rename)
3259 goto record;
3261 /* we can safely do the unlink without any special recording */
3262 return;
3264 record:
3265 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3269 * Call this after adding a new name for a file and it will properly
3270 * update the log to reflect the new name.
3272 * It will return zero if all goes well, and it will return 1 if a
3273 * full transaction commit is required.
3275 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3276 struct inode *inode, struct inode *old_dir,
3277 struct dentry *parent)
3279 struct btrfs_root * root = BTRFS_I(inode)->root;
3282 * this will force the logging code to walk the dentry chain
3283 * up for the file
3285 if (S_ISREG(inode->i_mode))
3286 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3289 * if this inode hasn't been logged and directory we're renaming it
3290 * from hasn't been logged, we don't need to log it
3292 if (BTRFS_I(inode)->logged_trans <=
3293 root->fs_info->last_trans_committed &&
3294 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3295 root->fs_info->last_trans_committed))
3296 return 0;
3298 return btrfs_log_inode_parent(trans, root, inode, parent, 1);