2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
52 /* Data structures. */
54 #define RCU_STATE_INITIALIZER(name) { \
55 .level = { &name.node[0] }, \
57 NUM_RCU_LVL_0, /* root of hierarchy. */ \
60 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
62 .signaled = RCU_GP_IDLE, \
65 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
66 .orphan_cbs_list = NULL, \
67 .orphan_cbs_tail = &name.orphan_cbs_list, \
69 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
71 .n_force_qs_ngp = 0, \
74 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched_state
);
75 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
77 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
78 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
82 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
83 * permit this function to be invoked without holding the root rcu_node
84 * structure's ->lock, but of course results can be subject to change.
86 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
88 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
92 * Note a quiescent state. Because we do not need to know
93 * how many quiescent states passed, just if there was at least
94 * one since the start of the grace period, this just sets a flag.
96 void rcu_sched_qs(int cpu
)
100 rdp
= &per_cpu(rcu_sched_data
, cpu
);
101 rdp
->passed_quiesc_completed
= rdp
->completed
;
103 rdp
->passed_quiesc
= 1;
104 rcu_preempt_note_context_switch(cpu
);
107 void rcu_bh_qs(int cpu
)
109 struct rcu_data
*rdp
;
111 rdp
= &per_cpu(rcu_bh_data
, cpu
);
112 rdp
->passed_quiesc_completed
= rdp
->completed
;
114 rdp
->passed_quiesc
= 1;
118 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
119 .dynticks_nesting
= 1,
122 #endif /* #ifdef CONFIG_NO_HZ */
124 static int blimit
= 10; /* Maximum callbacks per softirq. */
125 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
126 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
128 module_param(blimit
, int, 0);
129 module_param(qhimark
, int, 0);
130 module_param(qlowmark
, int, 0);
132 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
133 static int rcu_pending(int cpu
);
136 * Return the number of RCU-sched batches processed thus far for debug & stats.
138 long rcu_batches_completed_sched(void)
140 return rcu_sched_state
.completed
;
142 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
145 * Return the number of RCU BH batches processed thus far for debug & stats.
147 long rcu_batches_completed_bh(void)
149 return rcu_bh_state
.completed
;
151 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
154 * Does the CPU have callbacks ready to be invoked?
157 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
159 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
163 * Does the current CPU require a yet-as-unscheduled grace period?
166 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
168 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
172 * Return the root node of the specified rcu_state structure.
174 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
176 return &rsp
->node
[0];
180 * Record the specified "completed" value, which is later used to validate
181 * dynticks counter manipulations and CPU-offline checks. Specify
182 * "rsp->completed - 1" to unconditionally invalidate any future dynticks
183 * manipulations and CPU-offline checks. Such invalidation is useful at
184 * the beginning of a grace period.
186 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
188 rsp
->dynticks_completed
= comp
;
194 * Recall the previously recorded value of the completion for dynticks.
196 static long dyntick_recall_completed(struct rcu_state
*rsp
)
198 return rsp
->dynticks_completed
;
202 * If the specified CPU is offline, tell the caller that it is in
203 * a quiescent state. Otherwise, whack it with a reschedule IPI.
204 * Grace periods can end up waiting on an offline CPU when that
205 * CPU is in the process of coming online -- it will be added to the
206 * rcu_node bitmasks before it actually makes it online. The same thing
207 * can happen while a CPU is in the process of coming online. Because this
208 * race is quite rare, we check for it after detecting that the grace
209 * period has been delayed rather than checking each and every CPU
210 * each and every time we start a new grace period.
212 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
215 * If the CPU is offline, it is in a quiescent state. We can
216 * trust its state not to change because interrupts are disabled.
218 if (cpu_is_offline(rdp
->cpu
)) {
223 /* If preemptable RCU, no point in sending reschedule IPI. */
224 if (rdp
->preemptable
)
227 /* The CPU is online, so send it a reschedule IPI. */
228 if (rdp
->cpu
!= smp_processor_id())
229 smp_send_reschedule(rdp
->cpu
);
236 #endif /* #ifdef CONFIG_SMP */
241 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
243 * Enter nohz mode, in other words, -leave- the mode in which RCU
244 * read-side critical sections can occur. (Though RCU read-side
245 * critical sections can occur in irq handlers in nohz mode, a possibility
246 * handled by rcu_irq_enter() and rcu_irq_exit()).
248 void rcu_enter_nohz(void)
251 struct rcu_dynticks
*rdtp
;
253 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
254 local_irq_save(flags
);
255 rdtp
= &__get_cpu_var(rcu_dynticks
);
257 rdtp
->dynticks_nesting
--;
258 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
259 local_irq_restore(flags
);
263 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
265 * Exit nohz mode, in other words, -enter- the mode in which RCU
266 * read-side critical sections normally occur.
268 void rcu_exit_nohz(void)
271 struct rcu_dynticks
*rdtp
;
273 local_irq_save(flags
);
274 rdtp
= &__get_cpu_var(rcu_dynticks
);
276 rdtp
->dynticks_nesting
++;
277 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
278 local_irq_restore(flags
);
279 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
283 * rcu_nmi_enter - inform RCU of entry to NMI context
285 * If the CPU was idle with dynamic ticks active, and there is no
286 * irq handler running, this updates rdtp->dynticks_nmi to let the
287 * RCU grace-period handling know that the CPU is active.
289 void rcu_nmi_enter(void)
291 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
293 if (rdtp
->dynticks
& 0x1)
295 rdtp
->dynticks_nmi
++;
296 WARN_ON_ONCE(!(rdtp
->dynticks_nmi
& 0x1));
297 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
301 * rcu_nmi_exit - inform RCU of exit from NMI context
303 * If the CPU was idle with dynamic ticks active, and there is no
304 * irq handler running, this updates rdtp->dynticks_nmi to let the
305 * RCU grace-period handling know that the CPU is no longer active.
307 void rcu_nmi_exit(void)
309 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
311 if (rdtp
->dynticks
& 0x1)
313 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
314 rdtp
->dynticks_nmi
++;
315 WARN_ON_ONCE(rdtp
->dynticks_nmi
& 0x1);
319 * rcu_irq_enter - inform RCU of entry to hard irq context
321 * If the CPU was idle with dynamic ticks active, this updates the
322 * rdtp->dynticks to let the RCU handling know that the CPU is active.
324 void rcu_irq_enter(void)
326 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
328 if (rdtp
->dynticks_nesting
++)
331 WARN_ON_ONCE(!(rdtp
->dynticks
& 0x1));
332 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
336 * rcu_irq_exit - inform RCU of exit from hard irq context
338 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
339 * to put let the RCU handling be aware that the CPU is going back to idle
342 void rcu_irq_exit(void)
344 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
346 if (--rdtp
->dynticks_nesting
)
348 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
350 WARN_ON_ONCE(rdtp
->dynticks
& 0x1);
352 /* If the interrupt queued a callback, get out of dyntick mode. */
353 if (__get_cpu_var(rcu_sched_data
).nxtlist
||
354 __get_cpu_var(rcu_bh_data
).nxtlist
)
361 * Snapshot the specified CPU's dynticks counter so that we can later
362 * credit them with an implicit quiescent state. Return 1 if this CPU
363 * is in dynticks idle mode, which is an extended quiescent state.
365 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
371 snap
= rdp
->dynticks
->dynticks
;
372 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
373 smp_mb(); /* Order sampling of snap with end of grace period. */
374 rdp
->dynticks_snap
= snap
;
375 rdp
->dynticks_nmi_snap
= snap_nmi
;
376 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
383 * Return true if the specified CPU has passed through a quiescent
384 * state by virtue of being in or having passed through an dynticks
385 * idle state since the last call to dyntick_save_progress_counter()
388 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
395 curr
= rdp
->dynticks
->dynticks
;
396 snap
= rdp
->dynticks_snap
;
397 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
398 snap_nmi
= rdp
->dynticks_nmi_snap
;
399 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
402 * If the CPU passed through or entered a dynticks idle phase with
403 * no active irq/NMI handlers, then we can safely pretend that the CPU
404 * already acknowledged the request to pass through a quiescent
405 * state. Either way, that CPU cannot possibly be in an RCU
406 * read-side critical section that started before the beginning
407 * of the current RCU grace period.
409 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
410 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
415 /* Go check for the CPU being offline. */
416 return rcu_implicit_offline_qs(rdp
);
419 #endif /* #ifdef CONFIG_SMP */
421 #else /* #ifdef CONFIG_NO_HZ */
425 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
430 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
432 return rcu_implicit_offline_qs(rdp
);
435 #endif /* #ifdef CONFIG_SMP */
437 #endif /* #else #ifdef CONFIG_NO_HZ */
439 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
441 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
443 rsp
->gp_start
= jiffies
;
444 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
447 static void print_other_cpu_stall(struct rcu_state
*rsp
)
452 struct rcu_node
*rnp
= rcu_get_root(rsp
);
454 /* Only let one CPU complain about others per time interval. */
456 spin_lock_irqsave(&rnp
->lock
, flags
);
457 delta
= jiffies
- rsp
->jiffies_stall
;
458 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
459 spin_unlock_irqrestore(&rnp
->lock
, flags
);
462 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
465 * Now rat on any tasks that got kicked up to the root rcu_node
466 * due to CPU offlining.
468 rcu_print_task_stall(rnp
);
469 spin_unlock_irqrestore(&rnp
->lock
, flags
);
471 /* OK, time to rat on our buddy... */
473 printk(KERN_ERR
"INFO: RCU detected CPU stalls:");
474 rcu_for_each_leaf_node(rsp
, rnp
) {
475 rcu_print_task_stall(rnp
);
476 if (rnp
->qsmask
== 0)
478 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
479 if (rnp
->qsmask
& (1UL << cpu
))
480 printk(" %d", rnp
->grplo
+ cpu
);
482 printk(" (detected by %d, t=%ld jiffies)\n",
483 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
484 trigger_all_cpu_backtrace();
486 force_quiescent_state(rsp
, 0); /* Kick them all. */
489 static void print_cpu_stall(struct rcu_state
*rsp
)
492 struct rcu_node
*rnp
= rcu_get_root(rsp
);
494 printk(KERN_ERR
"INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
495 smp_processor_id(), jiffies
- rsp
->gp_start
);
496 trigger_all_cpu_backtrace();
498 spin_lock_irqsave(&rnp
->lock
, flags
);
499 if ((long)(jiffies
- rsp
->jiffies_stall
) >= 0)
501 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
502 spin_unlock_irqrestore(&rnp
->lock
, flags
);
504 set_need_resched(); /* kick ourselves to get things going. */
507 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
510 struct rcu_node
*rnp
;
512 delta
= jiffies
- rsp
->jiffies_stall
;
514 if ((rnp
->qsmask
& rdp
->grpmask
) && delta
>= 0) {
516 /* We haven't checked in, so go dump stack. */
517 print_cpu_stall(rsp
);
519 } else if (rcu_gp_in_progress(rsp
) && delta
>= RCU_STALL_RAT_DELAY
) {
521 /* They had two time units to dump stack, so complain. */
522 print_other_cpu_stall(rsp
);
526 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
528 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
532 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
536 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
539 * Update CPU-local rcu_data state to record the newly noticed grace period.
540 * This is used both when we started the grace period and when we notice
541 * that someone else started the grace period. The caller must hold the
542 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
543 * and must have irqs disabled.
545 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
547 if (rdp
->gpnum
!= rnp
->gpnum
) {
549 rdp
->passed_quiesc
= 0;
550 rdp
->gpnum
= rnp
->gpnum
;
554 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
557 struct rcu_node
*rnp
;
559 local_irq_save(flags
);
561 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
562 !spin_trylock(&rnp
->lock
)) { /* irqs already off, retry later. */
563 local_irq_restore(flags
);
566 __note_new_gpnum(rsp
, rnp
, rdp
);
567 spin_unlock_irqrestore(&rnp
->lock
, flags
);
571 * Did someone else start a new RCU grace period start since we last
572 * checked? Update local state appropriately if so. Must be called
573 * on the CPU corresponding to rdp.
576 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
581 local_irq_save(flags
);
582 if (rdp
->gpnum
!= rsp
->gpnum
) {
583 note_new_gpnum(rsp
, rdp
);
586 local_irq_restore(flags
);
591 * Advance this CPU's callbacks, but only if the current grace period
592 * has ended. This may be called only from the CPU to whom the rdp
593 * belongs. In addition, the corresponding leaf rcu_node structure's
594 * ->lock must be held by the caller, with irqs disabled.
597 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
599 /* Did another grace period end? */
600 if (rdp
->completed
!= rnp
->completed
) {
602 /* Advance callbacks. No harm if list empty. */
603 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
604 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
605 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
607 /* Remember that we saw this grace-period completion. */
608 rdp
->completed
= rnp
->completed
;
613 * Advance this CPU's callbacks, but only if the current grace period
614 * has ended. This may be called only from the CPU to whom the rdp
618 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
621 struct rcu_node
*rnp
;
623 local_irq_save(flags
);
625 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
626 !spin_trylock(&rnp
->lock
)) { /* irqs already off, retry later. */
627 local_irq_restore(flags
);
630 __rcu_process_gp_end(rsp
, rnp
, rdp
);
631 spin_unlock_irqrestore(&rnp
->lock
, flags
);
635 * Do per-CPU grace-period initialization for running CPU. The caller
636 * must hold the lock of the leaf rcu_node structure corresponding to
640 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
642 /* Prior grace period ended, so advance callbacks for current CPU. */
643 __rcu_process_gp_end(rsp
, rnp
, rdp
);
646 * Because this CPU just now started the new grace period, we know
647 * that all of its callbacks will be covered by this upcoming grace
648 * period, even the ones that were registered arbitrarily recently.
649 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
651 * Other CPUs cannot be sure exactly when the grace period started.
652 * Therefore, their recently registered callbacks must pass through
653 * an additional RCU_NEXT_READY stage, so that they will be handled
654 * by the next RCU grace period.
656 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
657 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
659 /* Set state so that this CPU will detect the next quiescent state. */
660 __note_new_gpnum(rsp
, rnp
, rdp
);
664 * Start a new RCU grace period if warranted, re-initializing the hierarchy
665 * in preparation for detecting the next grace period. The caller must hold
666 * the root node's ->lock, which is released before return. Hard irqs must
670 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
671 __releases(rcu_get_root(rsp
)->lock
)
673 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
674 struct rcu_node
*rnp
= rcu_get_root(rsp
);
676 if (!cpu_needs_another_gp(rsp
, rdp
)) {
677 spin_unlock_irqrestore(&rnp
->lock
, flags
);
681 /* Advance to a new grace period and initialize state. */
683 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
684 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
685 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
686 record_gp_stall_check_time(rsp
);
687 dyntick_record_completed(rsp
, rsp
->completed
- 1);
689 /* Special-case the common single-level case. */
690 if (NUM_RCU_NODES
== 1) {
691 rcu_preempt_check_blocked_tasks(rnp
);
692 rnp
->qsmask
= rnp
->qsmaskinit
;
693 rnp
->gpnum
= rsp
->gpnum
;
694 rnp
->completed
= rsp
->completed
;
695 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
696 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
697 spin_unlock_irqrestore(&rnp
->lock
, flags
);
701 spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
704 /* Exclude any concurrent CPU-hotplug operations. */
705 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
708 * Set the quiescent-state-needed bits in all the rcu_node
709 * structures for all currently online CPUs in breadth-first
710 * order, starting from the root rcu_node structure. This
711 * operation relies on the layout of the hierarchy within the
712 * rsp->node[] array. Note that other CPUs will access only
713 * the leaves of the hierarchy, which still indicate that no
714 * grace period is in progress, at least until the corresponding
715 * leaf node has been initialized. In addition, we have excluded
716 * CPU-hotplug operations.
718 * Note that the grace period cannot complete until we finish
719 * the initialization process, as there will be at least one
720 * qsmask bit set in the root node until that time, namely the
721 * one corresponding to this CPU, due to the fact that we have
724 rcu_for_each_node_breadth_first(rsp
, rnp
) {
725 spin_lock(&rnp
->lock
); /* irqs already disabled. */
726 rcu_preempt_check_blocked_tasks(rnp
);
727 rnp
->qsmask
= rnp
->qsmaskinit
;
728 rnp
->gpnum
= rsp
->gpnum
;
729 rnp
->completed
= rsp
->completed
;
730 if (rnp
== rdp
->mynode
)
731 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
732 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
735 rnp
= rcu_get_root(rsp
);
736 spin_lock(&rnp
->lock
); /* irqs already disabled. */
737 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
738 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
739 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
743 * Clean up after the prior grace period and let rcu_start_gp() start up
744 * the next grace period if one is needed. Note that the caller must
745 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
747 static void cpu_quiet_msk_finish(struct rcu_state
*rsp
, unsigned long flags
)
748 __releases(rcu_get_root(rsp
)->lock
)
750 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
751 rsp
->completed
= rsp
->gpnum
;
752 rsp
->signaled
= RCU_GP_IDLE
;
753 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
757 * Similar to cpu_quiet(), for which it is a helper function. Allows
758 * a group of CPUs to be quieted at one go, though all the CPUs in the
759 * group must be represented by the same leaf rcu_node structure.
760 * That structure's lock must be held upon entry, and it is released
764 cpu_quiet_msk(unsigned long mask
, struct rcu_state
*rsp
, struct rcu_node
*rnp
,
766 __releases(rnp
->lock
)
768 struct rcu_node
*rnp_c
;
770 /* Walk up the rcu_node hierarchy. */
772 if (!(rnp
->qsmask
& mask
)) {
774 /* Our bit has already been cleared, so done. */
775 spin_unlock_irqrestore(&rnp
->lock
, flags
);
778 rnp
->qsmask
&= ~mask
;
779 if (rnp
->qsmask
!= 0 || rcu_preempted_readers(rnp
)) {
781 /* Other bits still set at this level, so done. */
782 spin_unlock_irqrestore(&rnp
->lock
, flags
);
786 if (rnp
->parent
== NULL
) {
788 /* No more levels. Exit loop holding root lock. */
792 spin_unlock_irqrestore(&rnp
->lock
, flags
);
795 spin_lock_irqsave(&rnp
->lock
, flags
);
796 WARN_ON_ONCE(rnp_c
->qsmask
);
800 * Get here if we are the last CPU to pass through a quiescent
801 * state for this grace period. Invoke cpu_quiet_msk_finish()
802 * to clean up and start the next grace period if one is needed.
804 cpu_quiet_msk_finish(rsp
, flags
); /* releases rnp->lock. */
808 * Record a quiescent state for the specified CPU, which must either be
809 * the current CPU. The lastcomp argument is used to make sure we are
810 * still in the grace period of interest. We don't want to end the current
811 * grace period based on quiescent states detected in an earlier grace
815 cpu_quiet(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
819 struct rcu_node
*rnp
;
822 spin_lock_irqsave(&rnp
->lock
, flags
);
823 if (lastcomp
!= ACCESS_ONCE(rsp
->completed
)) {
826 * Someone beat us to it for this grace period, so leave.
827 * The race with GP start is resolved by the fact that we
828 * hold the leaf rcu_node lock, so that the per-CPU bits
829 * cannot yet be initialized -- so we would simply find our
830 * CPU's bit already cleared in cpu_quiet_msk() if this race
833 rdp
->passed_quiesc
= 0; /* try again later! */
834 spin_unlock_irqrestore(&rnp
->lock
, flags
);
838 if ((rnp
->qsmask
& mask
) == 0) {
839 spin_unlock_irqrestore(&rnp
->lock
, flags
);
844 * This GP can't end until cpu checks in, so all of our
845 * callbacks can be processed during the next GP.
847 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
849 cpu_quiet_msk(mask
, rsp
, rnp
, flags
); /* releases rnp->lock */
854 * Check to see if there is a new grace period of which this CPU
855 * is not yet aware, and if so, set up local rcu_data state for it.
856 * Otherwise, see if this CPU has just passed through its first
857 * quiescent state for this grace period, and record that fact if so.
860 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
862 /* If there is now a new grace period, record and return. */
863 if (check_for_new_grace_period(rsp
, rdp
))
867 * Does this CPU still need to do its part for current grace period?
868 * If no, return and let the other CPUs do their part as well.
870 if (!rdp
->qs_pending
)
874 * Was there a quiescent state since the beginning of the grace
875 * period? If no, then exit and wait for the next call.
877 if (!rdp
->passed_quiesc
)
880 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
881 cpu_quiet(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
884 #ifdef CONFIG_HOTPLUG_CPU
887 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
888 * specified flavor of RCU. The callbacks will be adopted by the next
889 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
890 * comes first. Because this is invoked from the CPU_DYING notifier,
891 * irqs are already disabled.
893 static void rcu_send_cbs_to_orphanage(struct rcu_state
*rsp
)
896 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
898 if (rdp
->nxtlist
== NULL
)
899 return; /* irqs disabled, so comparison is stable. */
900 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
901 *rsp
->orphan_cbs_tail
= rdp
->nxtlist
;
902 rsp
->orphan_cbs_tail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
904 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
905 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
906 rsp
->orphan_qlen
+= rdp
->qlen
;
908 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
912 * Adopt previously orphaned RCU callbacks.
914 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
917 struct rcu_data
*rdp
;
919 spin_lock_irqsave(&rsp
->onofflock
, flags
);
920 rdp
= rsp
->rda
[smp_processor_id()];
921 if (rsp
->orphan_cbs_list
== NULL
) {
922 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
925 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_cbs_list
;
926 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_cbs_tail
;
927 rdp
->qlen
+= rsp
->orphan_qlen
;
928 rsp
->orphan_cbs_list
= NULL
;
929 rsp
->orphan_cbs_tail
= &rsp
->orphan_cbs_list
;
930 rsp
->orphan_qlen
= 0;
931 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
935 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
936 * and move all callbacks from the outgoing CPU to the current one.
938 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
943 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
944 struct rcu_node
*rnp
;
946 /* Exclude any attempts to start a new grace period. */
947 spin_lock_irqsave(&rsp
->onofflock
, flags
);
949 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
950 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
951 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
953 spin_lock(&rnp
->lock
); /* irqs already disabled. */
954 rnp
->qsmaskinit
&= ~mask
;
955 if (rnp
->qsmaskinit
!= 0) {
956 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
961 * If there was a task blocking the current grace period,
962 * and if all CPUs have checked in, we need to propagate
963 * the quiescent state up the rcu_node hierarchy. But that
964 * is inconvenient at the moment due to deadlock issues if
965 * this should end the current grace period. So set the
966 * offlined CPU's bit in ->qsmask in order to force the
967 * next force_quiescent_state() invocation to clean up this
968 * mess in a deadlock-free manner.
970 if (rcu_preempt_offline_tasks(rsp
, rnp
, rdp
) && !rnp
->qsmask
)
974 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
976 } while (rnp
!= NULL
);
977 lastcomp
= rsp
->completed
;
979 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
981 rcu_adopt_orphan_cbs(rsp
);
985 * Remove the specified CPU from the RCU hierarchy and move any pending
986 * callbacks that it might have to the current CPU. This code assumes
987 * that at least one CPU in the system will remain running at all times.
988 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
990 static void rcu_offline_cpu(int cpu
)
992 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
993 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
994 rcu_preempt_offline_cpu(cpu
);
997 #else /* #ifdef CONFIG_HOTPLUG_CPU */
999 static void rcu_send_cbs_to_orphanage(struct rcu_state
*rsp
)
1003 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1007 static void rcu_offline_cpu(int cpu
)
1011 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1014 * Invoke any RCU callbacks that have made it to the end of their grace
1015 * period. Thottle as specified by rdp->blimit.
1017 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1019 unsigned long flags
;
1020 struct rcu_head
*next
, *list
, **tail
;
1023 /* If no callbacks are ready, just return.*/
1024 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
1028 * Extract the list of ready callbacks, disabling to prevent
1029 * races with call_rcu() from interrupt handlers.
1031 local_irq_save(flags
);
1032 list
= rdp
->nxtlist
;
1033 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1034 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1035 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1036 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1037 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1038 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1039 local_irq_restore(flags
);
1041 /* Invoke callbacks. */
1048 if (++count
>= rdp
->blimit
)
1052 local_irq_save(flags
);
1054 /* Update count, and requeue any remaining callbacks. */
1057 *tail
= rdp
->nxtlist
;
1058 rdp
->nxtlist
= list
;
1059 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1060 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1061 rdp
->nxttail
[count
] = tail
;
1066 /* Reinstate batch limit if we have worked down the excess. */
1067 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1068 rdp
->blimit
= blimit
;
1070 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1071 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1072 rdp
->qlen_last_fqs_check
= 0;
1073 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1074 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1075 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1077 local_irq_restore(flags
);
1079 /* Re-raise the RCU softirq if there are callbacks remaining. */
1080 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1081 raise_softirq(RCU_SOFTIRQ
);
1085 * Check to see if this CPU is in a non-context-switch quiescent state
1086 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1087 * Also schedule the RCU softirq handler.
1089 * This function must be called with hardirqs disabled. It is normally
1090 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1091 * false, there is no point in invoking rcu_check_callbacks().
1093 void rcu_check_callbacks(int cpu
, int user
)
1095 if (!rcu_pending(cpu
))
1096 return; /* if nothing for RCU to do. */
1098 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1099 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1102 * Get here if this CPU took its interrupt from user
1103 * mode or from the idle loop, and if this is not a
1104 * nested interrupt. In this case, the CPU is in
1105 * a quiescent state, so note it.
1107 * No memory barrier is required here because both
1108 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1109 * variables that other CPUs neither access nor modify,
1110 * at least not while the corresponding CPU is online.
1116 } else if (!in_softirq()) {
1119 * Get here if this CPU did not take its interrupt from
1120 * softirq, in other words, if it is not interrupting
1121 * a rcu_bh read-side critical section. This is an _bh
1122 * critical section, so note it.
1127 rcu_preempt_check_callbacks(cpu
);
1128 raise_softirq(RCU_SOFTIRQ
);
1134 * Scan the leaf rcu_node structures, processing dyntick state for any that
1135 * have not yet encountered a quiescent state, using the function specified.
1136 * Returns 1 if the current grace period ends while scanning (possibly
1137 * because we made it end).
1139 static int rcu_process_dyntick(struct rcu_state
*rsp
, long lastcomp
,
1140 int (*f
)(struct rcu_data
*))
1144 unsigned long flags
;
1146 struct rcu_node
*rnp
;
1148 rcu_for_each_leaf_node(rsp
, rnp
) {
1150 spin_lock_irqsave(&rnp
->lock
, flags
);
1151 if (rsp
->completed
!= lastcomp
) {
1152 spin_unlock_irqrestore(&rnp
->lock
, flags
);
1155 if (rnp
->qsmask
== 0) {
1156 spin_unlock_irqrestore(&rnp
->lock
, flags
);
1161 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1162 if ((rnp
->qsmask
& bit
) != 0 && f(rsp
->rda
[cpu
]))
1165 if (mask
!= 0 && rsp
->completed
== lastcomp
) {
1167 /* cpu_quiet_msk() releases rnp->lock. */
1168 cpu_quiet_msk(mask
, rsp
, rnp
, flags
);
1171 spin_unlock_irqrestore(&rnp
->lock
, flags
);
1177 * Force quiescent states on reluctant CPUs, and also detect which
1178 * CPUs are in dyntick-idle mode.
1180 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1182 unsigned long flags
;
1184 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1188 if (!rcu_gp_in_progress(rsp
))
1189 return; /* No grace period in progress, nothing to force. */
1190 if (!spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1191 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1192 return; /* Someone else is already on the job. */
1195 (long)(rsp
->jiffies_force_qs
- jiffies
) >= 0)
1196 goto unlock_ret
; /* no emergency and done recently. */
1198 spin_lock(&rnp
->lock
);
1199 lastcomp
= rsp
->completed
;
1200 signaled
= rsp
->signaled
;
1201 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1202 if (lastcomp
== rsp
->gpnum
) {
1203 rsp
->n_force_qs_ngp
++;
1204 spin_unlock(&rnp
->lock
);
1205 goto unlock_ret
; /* no GP in progress, time updated. */
1207 spin_unlock(&rnp
->lock
);
1212 break; /* grace period idle or initializing, ignore. */
1214 case RCU_SAVE_DYNTICK
:
1216 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1217 break; /* So gcc recognizes the dead code. */
1219 /* Record dyntick-idle state. */
1220 if (rcu_process_dyntick(rsp
, lastcomp
,
1221 dyntick_save_progress_counter
))
1223 /* fall into next case. */
1225 case RCU_SAVE_COMPLETED
:
1227 /* Update state, record completion counter. */
1229 spin_lock(&rnp
->lock
);
1230 if (lastcomp
== rsp
->completed
&&
1231 rsp
->signaled
== signaled
) {
1232 rsp
->signaled
= RCU_FORCE_QS
;
1233 dyntick_record_completed(rsp
, lastcomp
);
1234 forcenow
= signaled
== RCU_SAVE_COMPLETED
;
1236 spin_unlock(&rnp
->lock
);
1239 /* fall into next case. */
1243 /* Check dyntick-idle state, send IPI to laggarts. */
1244 if (rcu_process_dyntick(rsp
, dyntick_recall_completed(rsp
),
1245 rcu_implicit_dynticks_qs
))
1248 /* Leave state in case more forcing is required. */
1253 spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1256 #else /* #ifdef CONFIG_SMP */
1258 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1263 #endif /* #else #ifdef CONFIG_SMP */
1266 * This does the RCU processing work from softirq context for the
1267 * specified rcu_state and rcu_data structures. This may be called
1268 * only from the CPU to whom the rdp belongs.
1271 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1273 unsigned long flags
;
1275 WARN_ON_ONCE(rdp
->beenonline
== 0);
1278 * If an RCU GP has gone long enough, go check for dyntick
1279 * idle CPUs and, if needed, send resched IPIs.
1281 if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0)
1282 force_quiescent_state(rsp
, 1);
1285 * Advance callbacks in response to end of earlier grace
1286 * period that some other CPU ended.
1288 rcu_process_gp_end(rsp
, rdp
);
1290 /* Update RCU state based on any recent quiescent states. */
1291 rcu_check_quiescent_state(rsp
, rdp
);
1293 /* Does this CPU require a not-yet-started grace period? */
1294 if (cpu_needs_another_gp(rsp
, rdp
)) {
1295 spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1296 rcu_start_gp(rsp
, flags
); /* releases above lock */
1299 /* If there are callbacks ready, invoke them. */
1300 rcu_do_batch(rsp
, rdp
);
1304 * Do softirq processing for the current CPU.
1306 static void rcu_process_callbacks(struct softirq_action
*unused
)
1309 * Memory references from any prior RCU read-side critical sections
1310 * executed by the interrupted code must be seen before any RCU
1311 * grace-period manipulations below.
1313 smp_mb(); /* See above block comment. */
1315 __rcu_process_callbacks(&rcu_sched_state
,
1316 &__get_cpu_var(rcu_sched_data
));
1317 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1318 rcu_preempt_process_callbacks();
1321 * Memory references from any later RCU read-side critical sections
1322 * executed by the interrupted code must be seen after any RCU
1323 * grace-period manipulations above.
1325 smp_mb(); /* See above block comment. */
1329 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1330 struct rcu_state
*rsp
)
1332 unsigned long flags
;
1333 struct rcu_data
*rdp
;
1338 smp_mb(); /* Ensure RCU update seen before callback registry. */
1341 * Opportunistically note grace-period endings and beginnings.
1342 * Note that we might see a beginning right after we see an
1343 * end, but never vice versa, since this CPU has to pass through
1344 * a quiescent state betweentimes.
1346 local_irq_save(flags
);
1347 rdp
= rsp
->rda
[smp_processor_id()];
1348 rcu_process_gp_end(rsp
, rdp
);
1349 check_for_new_grace_period(rsp
, rdp
);
1351 /* Add the callback to our list. */
1352 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1353 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1355 /* Start a new grace period if one not already started. */
1356 if (!rcu_gp_in_progress(rsp
)) {
1357 unsigned long nestflag
;
1358 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1360 spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1361 rcu_start_gp(rsp
, nestflag
); /* releases rnp_root->lock. */
1365 * Force the grace period if too many callbacks or too long waiting.
1366 * Enforce hysteresis, and don't invoke force_quiescent_state()
1367 * if some other CPU has recently done so. Also, don't bother
1368 * invoking force_quiescent_state() if the newly enqueued callback
1369 * is the only one waiting for a grace period to complete.
1371 if (unlikely(++rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1372 rdp
->blimit
= LONG_MAX
;
1373 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1374 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1375 force_quiescent_state(rsp
, 0);
1376 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1377 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1378 } else if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0)
1379 force_quiescent_state(rsp
, 1);
1380 local_irq_restore(flags
);
1384 * Queue an RCU-sched callback for invocation after a grace period.
1386 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1388 __call_rcu(head
, func
, &rcu_sched_state
);
1390 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1393 * Queue an RCU for invocation after a quicker grace period.
1395 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1397 __call_rcu(head
, func
, &rcu_bh_state
);
1399 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1402 * Check to see if there is any immediate RCU-related work to be done
1403 * by the current CPU, for the specified type of RCU, returning 1 if so.
1404 * The checks are in order of increasing expense: checks that can be
1405 * carried out against CPU-local state are performed first. However,
1406 * we must check for CPU stalls first, else we might not get a chance.
1408 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1410 rdp
->n_rcu_pending
++;
1412 /* Check for CPU stalls, if enabled. */
1413 check_cpu_stall(rsp
, rdp
);
1415 /* Is the RCU core waiting for a quiescent state from this CPU? */
1416 if (rdp
->qs_pending
) {
1417 rdp
->n_rp_qs_pending
++;
1421 /* Does this CPU have callbacks ready to invoke? */
1422 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1423 rdp
->n_rp_cb_ready
++;
1427 /* Has RCU gone idle with this CPU needing another grace period? */
1428 if (cpu_needs_another_gp(rsp
, rdp
)) {
1429 rdp
->n_rp_cpu_needs_gp
++;
1433 /* Has another RCU grace period completed? */
1434 if (ACCESS_ONCE(rsp
->completed
) != rdp
->completed
) { /* outside lock */
1435 rdp
->n_rp_gp_completed
++;
1439 /* Has a new RCU grace period started? */
1440 if (ACCESS_ONCE(rsp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1441 rdp
->n_rp_gp_started
++;
1445 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1446 if (rcu_gp_in_progress(rsp
) &&
1447 ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0)) {
1448 rdp
->n_rp_need_fqs
++;
1453 rdp
->n_rp_need_nothing
++;
1458 * Check to see if there is any immediate RCU-related work to be done
1459 * by the current CPU, returning 1 if so. This function is part of the
1460 * RCU implementation; it is -not- an exported member of the RCU API.
1462 static int rcu_pending(int cpu
)
1464 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
1465 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
1466 rcu_preempt_pending(cpu
);
1470 * Check to see if any future RCU-related work will need to be done
1471 * by the current CPU, even if none need be done immediately, returning
1472 * 1 if so. This function is part of the RCU implementation; it is -not-
1473 * an exported member of the RCU API.
1475 int rcu_needs_cpu(int cpu
)
1477 /* RCU callbacks either ready or pending? */
1478 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
1479 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
1480 rcu_preempt_needs_cpu(cpu
);
1483 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
1484 static atomic_t rcu_barrier_cpu_count
;
1485 static DEFINE_MUTEX(rcu_barrier_mutex
);
1486 static struct completion rcu_barrier_completion
;
1488 static void rcu_barrier_callback(struct rcu_head
*notused
)
1490 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1491 complete(&rcu_barrier_completion
);
1495 * Called with preemption disabled, and from cross-cpu IRQ context.
1497 static void rcu_barrier_func(void *type
)
1499 int cpu
= smp_processor_id();
1500 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
1501 void (*call_rcu_func
)(struct rcu_head
*head
,
1502 void (*func
)(struct rcu_head
*head
));
1504 atomic_inc(&rcu_barrier_cpu_count
);
1505 call_rcu_func
= type
;
1506 call_rcu_func(head
, rcu_barrier_callback
);
1510 * Orchestrate the specified type of RCU barrier, waiting for all
1511 * RCU callbacks of the specified type to complete.
1513 static void _rcu_barrier(struct rcu_state
*rsp
,
1514 void (*call_rcu_func
)(struct rcu_head
*head
,
1515 void (*func
)(struct rcu_head
*head
)))
1517 BUG_ON(in_interrupt());
1518 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1519 mutex_lock(&rcu_barrier_mutex
);
1520 init_completion(&rcu_barrier_completion
);
1522 * Initialize rcu_barrier_cpu_count to 1, then invoke
1523 * rcu_barrier_func() on each CPU, so that each CPU also has
1524 * incremented rcu_barrier_cpu_count. Only then is it safe to
1525 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1526 * might complete its grace period before all of the other CPUs
1527 * did their increment, causing this function to return too
1530 atomic_set(&rcu_barrier_cpu_count
, 1);
1531 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1532 rcu_adopt_orphan_cbs(rsp
);
1533 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
1534 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1535 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1536 complete(&rcu_barrier_completion
);
1537 wait_for_completion(&rcu_barrier_completion
);
1538 mutex_unlock(&rcu_barrier_mutex
);
1542 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1544 void rcu_barrier_bh(void)
1546 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
1548 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
1551 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1553 void rcu_barrier_sched(void)
1555 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
1557 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
1560 * Do boot-time initialization of a CPU's per-CPU RCU data.
1563 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1565 unsigned long flags
;
1567 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1568 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1570 /* Set up local state, ensuring consistent view of global state. */
1571 spin_lock_irqsave(&rnp
->lock
, flags
);
1572 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1573 rdp
->nxtlist
= NULL
;
1574 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1575 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1578 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1579 #endif /* #ifdef CONFIG_NO_HZ */
1581 spin_unlock_irqrestore(&rnp
->lock
, flags
);
1585 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1586 * offline event can be happening at a given time. Note also that we
1587 * can accept some slop in the rsp->completed access due to the fact
1588 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1590 static void __cpuinit
1591 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptable
)
1593 unsigned long flags
;
1595 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1596 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1598 /* Set up local state, ensuring consistent view of global state. */
1599 spin_lock_irqsave(&rnp
->lock
, flags
);
1600 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1601 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1602 rdp
->beenonline
= 1; /* We have now been online. */
1603 rdp
->preemptable
= preemptable
;
1604 rdp
->qlen_last_fqs_check
= 0;
1605 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1606 rdp
->blimit
= blimit
;
1607 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1610 * A new grace period might start here. If so, we won't be part
1611 * of it, but that is OK, as we are currently in a quiescent state.
1614 /* Exclude any attempts to start a new GP on large systems. */
1615 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1617 /* Add CPU to rcu_node bitmasks. */
1619 mask
= rdp
->grpmask
;
1621 /* Exclude any attempts to start a new GP on small systems. */
1622 spin_lock(&rnp
->lock
); /* irqs already disabled. */
1623 rnp
->qsmaskinit
|= mask
;
1624 mask
= rnp
->grpmask
;
1625 if (rnp
== rdp
->mynode
) {
1626 rdp
->gpnum
= rnp
->completed
; /* if GP in progress... */
1627 rdp
->completed
= rnp
->completed
;
1628 rdp
->passed_quiesc_completed
= rnp
->completed
- 1;
1630 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1632 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1634 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1637 static void __cpuinit
rcu_online_cpu(int cpu
)
1639 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
1640 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
1641 rcu_preempt_init_percpu_data(cpu
);
1645 * Handle CPU online/offline notification events.
1647 int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1648 unsigned long action
, void *hcpu
)
1650 long cpu
= (long)hcpu
;
1653 case CPU_UP_PREPARE
:
1654 case CPU_UP_PREPARE_FROZEN
:
1655 rcu_online_cpu(cpu
);
1658 case CPU_DYING_FROZEN
:
1660 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1661 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1662 * returns, all online cpus have queued rcu_barrier_func().
1663 * The dying CPU clears its cpu_online_mask bit and
1664 * moves all of its RCU callbacks to ->orphan_cbs_list
1665 * in the context of stop_machine(), so subsequent calls
1666 * to _rcu_barrier() will adopt these callbacks and only
1667 * then queue rcu_barrier_func() on all remaining CPUs.
1669 rcu_send_cbs_to_orphanage(&rcu_bh_state
);
1670 rcu_send_cbs_to_orphanage(&rcu_sched_state
);
1671 rcu_preempt_send_cbs_to_orphanage();
1674 case CPU_DEAD_FROZEN
:
1675 case CPU_UP_CANCELED
:
1676 case CPU_UP_CANCELED_FROZEN
:
1677 rcu_offline_cpu(cpu
);
1686 * Compute the per-level fanout, either using the exact fanout specified
1687 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1689 #ifdef CONFIG_RCU_FANOUT_EXACT
1690 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1694 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--)
1695 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1697 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1698 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1705 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1706 ccur
= rsp
->levelcnt
[i
];
1707 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
1711 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1714 * Helper function for rcu_init() that initializes one rcu_state structure.
1716 static void __init
rcu_init_one(struct rcu_state
*rsp
)
1721 struct rcu_node
*rnp
;
1723 /* Initialize the level-tracking arrays. */
1725 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
1726 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
1727 rcu_init_levelspread(rsp
);
1729 /* Initialize the elements themselves, starting from the leaves. */
1731 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1732 cpustride
*= rsp
->levelspread
[i
];
1733 rnp
= rsp
->level
[i
];
1734 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
1735 if (rnp
!= rcu_get_root(rsp
))
1736 spin_lock_init(&rnp
->lock
);
1739 rnp
->qsmaskinit
= 0;
1740 rnp
->grplo
= j
* cpustride
;
1741 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
1742 if (rnp
->grphi
>= NR_CPUS
)
1743 rnp
->grphi
= NR_CPUS
- 1;
1749 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
1750 rnp
->grpmask
= 1UL << rnp
->grpnum
;
1751 rnp
->parent
= rsp
->level
[i
- 1] +
1752 j
/ rsp
->levelspread
[i
- 1];
1755 INIT_LIST_HEAD(&rnp
->blocked_tasks
[0]);
1756 INIT_LIST_HEAD(&rnp
->blocked_tasks
[1]);
1759 spin_lock_init(&rcu_get_root(rsp
)->lock
);
1763 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1764 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1767 #define RCU_INIT_FLAVOR(rsp, rcu_data) \
1771 struct rcu_node *rnp; \
1773 rcu_init_one(rsp); \
1774 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1776 for_each_possible_cpu(i) { \
1777 if (i > rnp[j].grphi) \
1779 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1780 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1781 rcu_boot_init_percpu_data(i, rsp); \
1785 void __init
__rcu_init(void)
1787 rcu_bootup_announce();
1788 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1789 printk(KERN_INFO
"RCU-based detection of stalled CPUs is enabled.\n");
1790 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1791 RCU_INIT_FLAVOR(&rcu_sched_state
, rcu_sched_data
);
1792 RCU_INIT_FLAVOR(&rcu_bh_state
, rcu_bh_data
);
1793 __rcu_init_preempt();
1794 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1797 #include "rcutree_plugin.h"