MIPS: Clean up notify_die() usage.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / lguest / lguest.c
blobe9ce3c5545145f9b2c683c26690c0159b6c437fc
1 /*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6 :*/
7 #define _LARGEFILE64_SOURCE
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <elf.h>
16 #include <sys/mman.h>
17 #include <sys/param.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <sys/wait.h>
21 #include <sys/eventfd.h>
22 #include <fcntl.h>
23 #include <stdbool.h>
24 #include <errno.h>
25 #include <ctype.h>
26 #include <sys/socket.h>
27 #include <sys/ioctl.h>
28 #include <sys/time.h>
29 #include <time.h>
30 #include <netinet/in.h>
31 #include <net/if.h>
32 #include <linux/sockios.h>
33 #include <linux/if_tun.h>
34 #include <sys/uio.h>
35 #include <termios.h>
36 #include <getopt.h>
37 #include <assert.h>
38 #include <sched.h>
39 #include <limits.h>
40 #include <stddef.h>
41 #include <signal.h>
42 #include "linux/lguest_launcher.h"
43 #include "linux/virtio_config.h"
44 #include "linux/virtio_net.h"
45 #include "linux/virtio_blk.h"
46 #include "linux/virtio_console.h"
47 #include "linux/virtio_rng.h"
48 #include "linux/virtio_ring.h"
49 #include "asm/bootparam.h"
50 /*L:110
51 * We can ignore the 42 include files we need for this program, but I do want
52 * to draw attention to the use of kernel-style types.
54 * As Linus said, "C is a Spartan language, and so should your naming be." I
55 * like these abbreviations, so we define them here. Note that u64 is always
56 * unsigned long long, which works on all Linux systems: this means that we can
57 * use %llu in printf for any u64.
59 typedef unsigned long long u64;
60 typedef uint32_t u32;
61 typedef uint16_t u16;
62 typedef uint8_t u8;
63 /*:*/
65 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
66 #define BRIDGE_PFX "bridge:"
67 #ifndef SIOCBRADDIF
68 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
69 #endif
70 /* We can have up to 256 pages for devices. */
71 #define DEVICE_PAGES 256
72 /* This will occupy 3 pages: it must be a power of 2. */
73 #define VIRTQUEUE_NUM 256
75 /*L:120
76 * verbose is both a global flag and a macro. The C preprocessor allows
77 * this, and although I wouldn't recommend it, it works quite nicely here.
79 static bool verbose;
80 #define verbose(args...) \
81 do { if (verbose) printf(args); } while(0)
82 /*:*/
84 /* The pointer to the start of guest memory. */
85 static void *guest_base;
86 /* The maximum guest physical address allowed, and maximum possible. */
87 static unsigned long guest_limit, guest_max;
88 /* The /dev/lguest file descriptor. */
89 static int lguest_fd;
91 /* a per-cpu variable indicating whose vcpu is currently running */
92 static unsigned int __thread cpu_id;
94 /* This is our list of devices. */
95 struct device_list {
96 /* Counter to assign interrupt numbers. */
97 unsigned int next_irq;
99 /* Counter to print out convenient device numbers. */
100 unsigned int device_num;
102 /* The descriptor page for the devices. */
103 u8 *descpage;
105 /* A single linked list of devices. */
106 struct device *dev;
107 /* And a pointer to the last device for easy append. */
108 struct device *lastdev;
111 /* The list of Guest devices, based on command line arguments. */
112 static struct device_list devices;
114 /* The device structure describes a single device. */
115 struct device {
116 /* The linked-list pointer. */
117 struct device *next;
119 /* The device's descriptor, as mapped into the Guest. */
120 struct lguest_device_desc *desc;
122 /* We can't trust desc values once Guest has booted: we use these. */
123 unsigned int feature_len;
124 unsigned int num_vq;
126 /* The name of this device, for --verbose. */
127 const char *name;
129 /* Any queues attached to this device */
130 struct virtqueue *vq;
132 /* Is it operational */
133 bool running;
135 /* Does Guest want an intrrupt on empty? */
136 bool irq_on_empty;
138 /* Device-specific data. */
139 void *priv;
142 /* The virtqueue structure describes a queue attached to a device. */
143 struct virtqueue {
144 struct virtqueue *next;
146 /* Which device owns me. */
147 struct device *dev;
149 /* The configuration for this queue. */
150 struct lguest_vqconfig config;
152 /* The actual ring of buffers. */
153 struct vring vring;
155 /* Last available index we saw. */
156 u16 last_avail_idx;
158 /* How many are used since we sent last irq? */
159 unsigned int pending_used;
161 /* Eventfd where Guest notifications arrive. */
162 int eventfd;
164 /* Function for the thread which is servicing this virtqueue. */
165 void (*service)(struct virtqueue *vq);
166 pid_t thread;
169 /* Remember the arguments to the program so we can "reboot" */
170 static char **main_args;
172 /* The original tty settings to restore on exit. */
173 static struct termios orig_term;
176 * We have to be careful with barriers: our devices are all run in separate
177 * threads and so we need to make sure that changes visible to the Guest happen
178 * in precise order.
180 #define wmb() __asm__ __volatile__("" : : : "memory")
181 #define mb() __asm__ __volatile__("" : : : "memory")
184 * Convert an iovec element to the given type.
186 * This is a fairly ugly trick: we need to know the size of the type and
187 * alignment requirement to check the pointer is kosher. It's also nice to
188 * have the name of the type in case we report failure.
190 * Typing those three things all the time is cumbersome and error prone, so we
191 * have a macro which sets them all up and passes to the real function.
193 #define convert(iov, type) \
194 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
196 static void *_convert(struct iovec *iov, size_t size, size_t align,
197 const char *name)
199 if (iov->iov_len != size)
200 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
201 if ((unsigned long)iov->iov_base % align != 0)
202 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
203 return iov->iov_base;
206 /* Wrapper for the last available index. Makes it easier to change. */
207 #define lg_last_avail(vq) ((vq)->last_avail_idx)
210 * The virtio configuration space is defined to be little-endian. x86 is
211 * little-endian too, but it's nice to be explicit so we have these helpers.
213 #define cpu_to_le16(v16) (v16)
214 #define cpu_to_le32(v32) (v32)
215 #define cpu_to_le64(v64) (v64)
216 #define le16_to_cpu(v16) (v16)
217 #define le32_to_cpu(v32) (v32)
218 #define le64_to_cpu(v64) (v64)
220 /* Is this iovec empty? */
221 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
223 unsigned int i;
225 for (i = 0; i < num_iov; i++)
226 if (iov[i].iov_len)
227 return false;
228 return true;
231 /* Take len bytes from the front of this iovec. */
232 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
234 unsigned int i;
236 for (i = 0; i < num_iov; i++) {
237 unsigned int used;
239 used = iov[i].iov_len < len ? iov[i].iov_len : len;
240 iov[i].iov_base += used;
241 iov[i].iov_len -= used;
242 len -= used;
244 assert(len == 0);
247 /* The device virtqueue descriptors are followed by feature bitmasks. */
248 static u8 *get_feature_bits(struct device *dev)
250 return (u8 *)(dev->desc + 1)
251 + dev->num_vq * sizeof(struct lguest_vqconfig);
254 /*L:100
255 * The Launcher code itself takes us out into userspace, that scary place where
256 * pointers run wild and free! Unfortunately, like most userspace programs,
257 * it's quite boring (which is why everyone likes to hack on the kernel!).
258 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
259 * you through this section. Or, maybe not.
261 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
262 * memory and stores it in "guest_base". In other words, Guest physical ==
263 * Launcher virtual with an offset.
265 * This can be tough to get your head around, but usually it just means that we
266 * use these trivial conversion functions when the Guest gives us its
267 * "physical" addresses:
269 static void *from_guest_phys(unsigned long addr)
271 return guest_base + addr;
274 static unsigned long to_guest_phys(const void *addr)
276 return (addr - guest_base);
279 /*L:130
280 * Loading the Kernel.
282 * We start with couple of simple helper routines. open_or_die() avoids
283 * error-checking code cluttering the callers:
285 static int open_or_die(const char *name, int flags)
287 int fd = open(name, flags);
288 if (fd < 0)
289 err(1, "Failed to open %s", name);
290 return fd;
293 /* map_zeroed_pages() takes a number of pages. */
294 static void *map_zeroed_pages(unsigned int num)
296 int fd = open_or_die("/dev/zero", O_RDONLY);
297 void *addr;
300 * We use a private mapping (ie. if we write to the page, it will be
301 * copied).
303 addr = mmap(NULL, getpagesize() * num,
304 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
305 if (addr == MAP_FAILED)
306 err(1, "Mmapping %u pages of /dev/zero", num);
309 * One neat mmap feature is that you can close the fd, and it
310 * stays mapped.
312 close(fd);
314 return addr;
317 /* Get some more pages for a device. */
318 static void *get_pages(unsigned int num)
320 void *addr = from_guest_phys(guest_limit);
322 guest_limit += num * getpagesize();
323 if (guest_limit > guest_max)
324 errx(1, "Not enough memory for devices");
325 return addr;
329 * This routine is used to load the kernel or initrd. It tries mmap, but if
330 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
331 * it falls back to reading the memory in.
333 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
335 ssize_t r;
338 * We map writable even though for some segments are marked read-only.
339 * The kernel really wants to be writable: it patches its own
340 * instructions.
342 * MAP_PRIVATE means that the page won't be copied until a write is
343 * done to it. This allows us to share untouched memory between
344 * Guests.
346 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
347 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
348 return;
350 /* pread does a seek and a read in one shot: saves a few lines. */
351 r = pread(fd, addr, len, offset);
352 if (r != len)
353 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
357 * This routine takes an open vmlinux image, which is in ELF, and maps it into
358 * the Guest memory. ELF = Embedded Linking Format, which is the format used
359 * by all modern binaries on Linux including the kernel.
361 * The ELF headers give *two* addresses: a physical address, and a virtual
362 * address. We use the physical address; the Guest will map itself to the
363 * virtual address.
365 * We return the starting address.
367 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
369 Elf32_Phdr phdr[ehdr->e_phnum];
370 unsigned int i;
373 * Sanity checks on the main ELF header: an x86 executable with a
374 * reasonable number of correctly-sized program headers.
376 if (ehdr->e_type != ET_EXEC
377 || ehdr->e_machine != EM_386
378 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
379 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
380 errx(1, "Malformed elf header");
383 * An ELF executable contains an ELF header and a number of "program"
384 * headers which indicate which parts ("segments") of the program to
385 * load where.
388 /* We read in all the program headers at once: */
389 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
390 err(1, "Seeking to program headers");
391 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
392 err(1, "Reading program headers");
395 * Try all the headers: there are usually only three. A read-only one,
396 * a read-write one, and a "note" section which we don't load.
398 for (i = 0; i < ehdr->e_phnum; i++) {
399 /* If this isn't a loadable segment, we ignore it */
400 if (phdr[i].p_type != PT_LOAD)
401 continue;
403 verbose("Section %i: size %i addr %p\n",
404 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
406 /* We map this section of the file at its physical address. */
407 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
408 phdr[i].p_offset, phdr[i].p_filesz);
411 /* The entry point is given in the ELF header. */
412 return ehdr->e_entry;
415 /*L:150
416 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
417 * to jump into it and it will unpack itself. We used to have to perform some
418 * hairy magic because the unpacking code scared me.
420 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
421 * a small patch to jump over the tricky bits in the Guest, so now we just read
422 * the funky header so we know where in the file to load, and away we go!
424 static unsigned long load_bzimage(int fd)
426 struct boot_params boot;
427 int r;
428 /* Modern bzImages get loaded at 1M. */
429 void *p = from_guest_phys(0x100000);
432 * Go back to the start of the file and read the header. It should be
433 * a Linux boot header (see Documentation/x86/i386/boot.txt)
435 lseek(fd, 0, SEEK_SET);
436 read(fd, &boot, sizeof(boot));
438 /* Inside the setup_hdr, we expect the magic "HdrS" */
439 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
440 errx(1, "This doesn't look like a bzImage to me");
442 /* Skip over the extra sectors of the header. */
443 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
445 /* Now read everything into memory. in nice big chunks. */
446 while ((r = read(fd, p, 65536)) > 0)
447 p += r;
449 /* Finally, code32_start tells us where to enter the kernel. */
450 return boot.hdr.code32_start;
453 /*L:140
454 * Loading the kernel is easy when it's a "vmlinux", but most kernels
455 * come wrapped up in the self-decompressing "bzImage" format. With a little
456 * work, we can load those, too.
458 static unsigned long load_kernel(int fd)
460 Elf32_Ehdr hdr;
462 /* Read in the first few bytes. */
463 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
464 err(1, "Reading kernel");
466 /* If it's an ELF file, it starts with "\177ELF" */
467 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
468 return map_elf(fd, &hdr);
470 /* Otherwise we assume it's a bzImage, and try to load it. */
471 return load_bzimage(fd);
475 * This is a trivial little helper to align pages. Andi Kleen hated it because
476 * it calls getpagesize() twice: "it's dumb code."
478 * Kernel guys get really het up about optimization, even when it's not
479 * necessary. I leave this code as a reaction against that.
481 static inline unsigned long page_align(unsigned long addr)
483 /* Add upwards and truncate downwards. */
484 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
487 /*L:180
488 * An "initial ram disk" is a disk image loaded into memory along with the
489 * kernel which the kernel can use to boot from without needing any drivers.
490 * Most distributions now use this as standard: the initrd contains the code to
491 * load the appropriate driver modules for the current machine.
493 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
494 * kernels. He sent me this (and tells me when I break it).
496 static unsigned long load_initrd(const char *name, unsigned long mem)
498 int ifd;
499 struct stat st;
500 unsigned long len;
502 ifd = open_or_die(name, O_RDONLY);
503 /* fstat() is needed to get the file size. */
504 if (fstat(ifd, &st) < 0)
505 err(1, "fstat() on initrd '%s'", name);
508 * We map the initrd at the top of memory, but mmap wants it to be
509 * page-aligned, so we round the size up for that.
511 len = page_align(st.st_size);
512 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
514 * Once a file is mapped, you can close the file descriptor. It's a
515 * little odd, but quite useful.
517 close(ifd);
518 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
520 /* We return the initrd size. */
521 return len;
523 /*:*/
526 * Simple routine to roll all the commandline arguments together with spaces
527 * between them.
529 static void concat(char *dst, char *args[])
531 unsigned int i, len = 0;
533 for (i = 0; args[i]; i++) {
534 if (i) {
535 strcat(dst+len, " ");
536 len++;
538 strcpy(dst+len, args[i]);
539 len += strlen(args[i]);
541 /* In case it's empty. */
542 dst[len] = '\0';
545 /*L:185
546 * This is where we actually tell the kernel to initialize the Guest. We
547 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
548 * the base of Guest "physical" memory, the top physical page to allow and the
549 * entry point for the Guest.
551 static void tell_kernel(unsigned long start)
553 unsigned long args[] = { LHREQ_INITIALIZE,
554 (unsigned long)guest_base,
555 guest_limit / getpagesize(), start };
556 verbose("Guest: %p - %p (%#lx)\n",
557 guest_base, guest_base + guest_limit, guest_limit);
558 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
559 if (write(lguest_fd, args, sizeof(args)) < 0)
560 err(1, "Writing to /dev/lguest");
562 /*:*/
564 /*L:200
565 * Device Handling.
567 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
568 * We need to make sure it's not trying to reach into the Launcher itself, so
569 * we have a convenient routine which checks it and exits with an error message
570 * if something funny is going on:
572 static void *_check_pointer(unsigned long addr, unsigned int size,
573 unsigned int line)
576 * We have to separately check addr and addr+size, because size could
577 * be huge and addr + size might wrap around.
579 if (addr >= guest_limit || addr + size >= guest_limit)
580 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
582 * We return a pointer for the caller's convenience, now we know it's
583 * safe to use.
585 return from_guest_phys(addr);
587 /* A macro which transparently hands the line number to the real function. */
588 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
591 * Each buffer in the virtqueues is actually a chain of descriptors. This
592 * function returns the next descriptor in the chain, or vq->vring.num if we're
593 * at the end.
595 static unsigned next_desc(struct vring_desc *desc,
596 unsigned int i, unsigned int max)
598 unsigned int next;
600 /* If this descriptor says it doesn't chain, we're done. */
601 if (!(desc[i].flags & VRING_DESC_F_NEXT))
602 return max;
604 /* Check they're not leading us off end of descriptors. */
605 next = desc[i].next;
606 /* Make sure compiler knows to grab that: we don't want it changing! */
607 wmb();
609 if (next >= max)
610 errx(1, "Desc next is %u", next);
612 return next;
616 * This actually sends the interrupt for this virtqueue, if we've used a
617 * buffer.
619 static void trigger_irq(struct virtqueue *vq)
621 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
623 /* Don't inform them if nothing used. */
624 if (!vq->pending_used)
625 return;
626 vq->pending_used = 0;
628 /* If they don't want an interrupt, don't send one... */
629 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
630 /* ... unless they've asked us to force one on empty. */
631 if (!vq->dev->irq_on_empty
632 || lg_last_avail(vq) != vq->vring.avail->idx)
633 return;
636 /* Send the Guest an interrupt tell them we used something up. */
637 if (write(lguest_fd, buf, sizeof(buf)) != 0)
638 err(1, "Triggering irq %i", vq->config.irq);
642 * This looks in the virtqueue for the first available buffer, and converts
643 * it to an iovec for convenient access. Since descriptors consist of some
644 * number of output then some number of input descriptors, it's actually two
645 * iovecs, but we pack them into one and note how many of each there were.
647 * This function waits if necessary, and returns the descriptor number found.
649 static unsigned wait_for_vq_desc(struct virtqueue *vq,
650 struct iovec iov[],
651 unsigned int *out_num, unsigned int *in_num)
653 unsigned int i, head, max;
654 struct vring_desc *desc;
655 u16 last_avail = lg_last_avail(vq);
657 /* There's nothing available? */
658 while (last_avail == vq->vring.avail->idx) {
659 u64 event;
662 * Since we're about to sleep, now is a good time to tell the
663 * Guest about what we've used up to now.
665 trigger_irq(vq);
667 /* OK, now we need to know about added descriptors. */
668 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
671 * They could have slipped one in as we were doing that: make
672 * sure it's written, then check again.
674 mb();
675 if (last_avail != vq->vring.avail->idx) {
676 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
677 break;
680 /* Nothing new? Wait for eventfd to tell us they refilled. */
681 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
682 errx(1, "Event read failed?");
684 /* We don't need to be notified again. */
685 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
688 /* Check it isn't doing very strange things with descriptor numbers. */
689 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
690 errx(1, "Guest moved used index from %u to %u",
691 last_avail, vq->vring.avail->idx);
694 * Grab the next descriptor number they're advertising, and increment
695 * the index we've seen.
697 head = vq->vring.avail->ring[last_avail % vq->vring.num];
698 lg_last_avail(vq)++;
700 /* If their number is silly, that's a fatal mistake. */
701 if (head >= vq->vring.num)
702 errx(1, "Guest says index %u is available", head);
704 /* When we start there are none of either input nor output. */
705 *out_num = *in_num = 0;
707 max = vq->vring.num;
708 desc = vq->vring.desc;
709 i = head;
712 * If this is an indirect entry, then this buffer contains a descriptor
713 * table which we handle as if it's any normal descriptor chain.
715 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
716 if (desc[i].len % sizeof(struct vring_desc))
717 errx(1, "Invalid size for indirect buffer table");
719 max = desc[i].len / sizeof(struct vring_desc);
720 desc = check_pointer(desc[i].addr, desc[i].len);
721 i = 0;
724 do {
725 /* Grab the first descriptor, and check it's OK. */
726 iov[*out_num + *in_num].iov_len = desc[i].len;
727 iov[*out_num + *in_num].iov_base
728 = check_pointer(desc[i].addr, desc[i].len);
729 /* If this is an input descriptor, increment that count. */
730 if (desc[i].flags & VRING_DESC_F_WRITE)
731 (*in_num)++;
732 else {
734 * If it's an output descriptor, they're all supposed
735 * to come before any input descriptors.
737 if (*in_num)
738 errx(1, "Descriptor has out after in");
739 (*out_num)++;
742 /* If we've got too many, that implies a descriptor loop. */
743 if (*out_num + *in_num > max)
744 errx(1, "Looped descriptor");
745 } while ((i = next_desc(desc, i, max)) != max);
747 return head;
751 * After we've used one of their buffers, we tell the Guest about it. Sometime
752 * later we'll want to send them an interrupt using trigger_irq(); note that
753 * wait_for_vq_desc() does that for us if it has to wait.
755 static void add_used(struct virtqueue *vq, unsigned int head, int len)
757 struct vring_used_elem *used;
760 * The virtqueue contains a ring of used buffers. Get a pointer to the
761 * next entry in that used ring.
763 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
764 used->id = head;
765 used->len = len;
766 /* Make sure buffer is written before we update index. */
767 wmb();
768 vq->vring.used->idx++;
769 vq->pending_used++;
772 /* And here's the combo meal deal. Supersize me! */
773 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
775 add_used(vq, head, len);
776 trigger_irq(vq);
780 * The Console
782 * We associate some data with the console for our exit hack.
784 struct console_abort {
785 /* How many times have they hit ^C? */
786 int count;
787 /* When did they start? */
788 struct timeval start;
791 /* This is the routine which handles console input (ie. stdin). */
792 static void console_input(struct virtqueue *vq)
794 int len;
795 unsigned int head, in_num, out_num;
796 struct console_abort *abort = vq->dev->priv;
797 struct iovec iov[vq->vring.num];
799 /* Make sure there's a descriptor available. */
800 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
801 if (out_num)
802 errx(1, "Output buffers in console in queue?");
804 /* Read into it. This is where we usually wait. */
805 len = readv(STDIN_FILENO, iov, in_num);
806 if (len <= 0) {
807 /* Ran out of input? */
808 warnx("Failed to get console input, ignoring console.");
810 * For simplicity, dying threads kill the whole Launcher. So
811 * just nap here.
813 for (;;)
814 pause();
817 /* Tell the Guest we used a buffer. */
818 add_used_and_trigger(vq, head, len);
821 * Three ^C within one second? Exit.
823 * This is such a hack, but works surprisingly well. Each ^C has to
824 * be in a buffer by itself, so they can't be too fast. But we check
825 * that we get three within about a second, so they can't be too
826 * slow.
828 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
829 abort->count = 0;
830 return;
833 abort->count++;
834 if (abort->count == 1)
835 gettimeofday(&abort->start, NULL);
836 else if (abort->count == 3) {
837 struct timeval now;
838 gettimeofday(&now, NULL);
839 /* Kill all Launcher processes with SIGINT, like normal ^C */
840 if (now.tv_sec <= abort->start.tv_sec+1)
841 kill(0, SIGINT);
842 abort->count = 0;
846 /* This is the routine which handles console output (ie. stdout). */
847 static void console_output(struct virtqueue *vq)
849 unsigned int head, out, in;
850 struct iovec iov[vq->vring.num];
852 /* We usually wait in here, for the Guest to give us something. */
853 head = wait_for_vq_desc(vq, iov, &out, &in);
854 if (in)
855 errx(1, "Input buffers in console output queue?");
857 /* writev can return a partial write, so we loop here. */
858 while (!iov_empty(iov, out)) {
859 int len = writev(STDOUT_FILENO, iov, out);
860 if (len <= 0)
861 err(1, "Write to stdout gave %i", len);
862 iov_consume(iov, out, len);
866 * We're finished with that buffer: if we're going to sleep,
867 * wait_for_vq_desc() will prod the Guest with an interrupt.
869 add_used(vq, head, 0);
873 * The Network
875 * Handling output for network is also simple: we get all the output buffers
876 * and write them to /dev/net/tun.
878 struct net_info {
879 int tunfd;
882 static void net_output(struct virtqueue *vq)
884 struct net_info *net_info = vq->dev->priv;
885 unsigned int head, out, in;
886 struct iovec iov[vq->vring.num];
888 /* We usually wait in here for the Guest to give us a packet. */
889 head = wait_for_vq_desc(vq, iov, &out, &in);
890 if (in)
891 errx(1, "Input buffers in net output queue?");
893 * Send the whole thing through to /dev/net/tun. It expects the exact
894 * same format: what a coincidence!
896 if (writev(net_info->tunfd, iov, out) < 0)
897 errx(1, "Write to tun failed?");
900 * Done with that one; wait_for_vq_desc() will send the interrupt if
901 * all packets are processed.
903 add_used(vq, head, 0);
907 * Handling network input is a bit trickier, because I've tried to optimize it.
909 * First we have a helper routine which tells is if from this file descriptor
910 * (ie. the /dev/net/tun device) will block:
912 static bool will_block(int fd)
914 fd_set fdset;
915 struct timeval zero = { 0, 0 };
916 FD_ZERO(&fdset);
917 FD_SET(fd, &fdset);
918 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
922 * This handles packets coming in from the tun device to our Guest. Like all
923 * service routines, it gets called again as soon as it returns, so you don't
924 * see a while(1) loop here.
926 static void net_input(struct virtqueue *vq)
928 int len;
929 unsigned int head, out, in;
930 struct iovec iov[vq->vring.num];
931 struct net_info *net_info = vq->dev->priv;
934 * Get a descriptor to write an incoming packet into. This will also
935 * send an interrupt if they're out of descriptors.
937 head = wait_for_vq_desc(vq, iov, &out, &in);
938 if (out)
939 errx(1, "Output buffers in net input queue?");
942 * If it looks like we'll block reading from the tun device, send them
943 * an interrupt.
945 if (vq->pending_used && will_block(net_info->tunfd))
946 trigger_irq(vq);
949 * Read in the packet. This is where we normally wait (when there's no
950 * incoming network traffic).
952 len = readv(net_info->tunfd, iov, in);
953 if (len <= 0)
954 err(1, "Failed to read from tun.");
957 * Mark that packet buffer as used, but don't interrupt here. We want
958 * to wait until we've done as much work as we can.
960 add_used(vq, head, len);
962 /*:*/
964 /* This is the helper to create threads: run the service routine in a loop. */
965 static int do_thread(void *_vq)
967 struct virtqueue *vq = _vq;
969 for (;;)
970 vq->service(vq);
971 return 0;
975 * When a child dies, we kill our entire process group with SIGTERM. This
976 * also has the side effect that the shell restores the console for us!
978 static void kill_launcher(int signal)
980 kill(0, SIGTERM);
983 static void reset_device(struct device *dev)
985 struct virtqueue *vq;
987 verbose("Resetting device %s\n", dev->name);
989 /* Clear any features they've acked. */
990 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
992 /* We're going to be explicitly killing threads, so ignore them. */
993 signal(SIGCHLD, SIG_IGN);
995 /* Zero out the virtqueues, get rid of their threads */
996 for (vq = dev->vq; vq; vq = vq->next) {
997 if (vq->thread != (pid_t)-1) {
998 kill(vq->thread, SIGTERM);
999 waitpid(vq->thread, NULL, 0);
1000 vq->thread = (pid_t)-1;
1002 memset(vq->vring.desc, 0,
1003 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1004 lg_last_avail(vq) = 0;
1006 dev->running = false;
1008 /* Now we care if threads die. */
1009 signal(SIGCHLD, (void *)kill_launcher);
1012 /*L:216
1013 * This actually creates the thread which services the virtqueue for a device.
1015 static void create_thread(struct virtqueue *vq)
1018 * Create stack for thread. Since the stack grows upwards, we point
1019 * the stack pointer to the end of this region.
1021 char *stack = malloc(32768);
1022 unsigned long args[] = { LHREQ_EVENTFD,
1023 vq->config.pfn*getpagesize(), 0 };
1025 /* Create a zero-initialized eventfd. */
1026 vq->eventfd = eventfd(0, 0);
1027 if (vq->eventfd < 0)
1028 err(1, "Creating eventfd");
1029 args[2] = vq->eventfd;
1032 * Attach an eventfd to this virtqueue: it will go off when the Guest
1033 * does an LHCALL_NOTIFY for this vq.
1035 if (write(lguest_fd, &args, sizeof(args)) != 0)
1036 err(1, "Attaching eventfd");
1039 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1040 * we get a signal if it dies.
1042 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1043 if (vq->thread == (pid_t)-1)
1044 err(1, "Creating clone");
1046 /* We close our local copy now the child has it. */
1047 close(vq->eventfd);
1050 static bool accepted_feature(struct device *dev, unsigned int bit)
1052 const u8 *features = get_feature_bits(dev) + dev->feature_len;
1054 if (dev->feature_len < bit / CHAR_BIT)
1055 return false;
1056 return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT));
1059 static void start_device(struct device *dev)
1061 unsigned int i;
1062 struct virtqueue *vq;
1064 verbose("Device %s OK: offered", dev->name);
1065 for (i = 0; i < dev->feature_len; i++)
1066 verbose(" %02x", get_feature_bits(dev)[i]);
1067 verbose(", accepted");
1068 for (i = 0; i < dev->feature_len; i++)
1069 verbose(" %02x", get_feature_bits(dev)
1070 [dev->feature_len+i]);
1072 dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1074 for (vq = dev->vq; vq; vq = vq->next) {
1075 if (vq->service)
1076 create_thread(vq);
1078 dev->running = true;
1081 static void cleanup_devices(void)
1083 struct device *dev;
1085 for (dev = devices.dev; dev; dev = dev->next)
1086 reset_device(dev);
1088 /* If we saved off the original terminal settings, restore them now. */
1089 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1090 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1093 /* When the Guest tells us they updated the status field, we handle it. */
1094 static void update_device_status(struct device *dev)
1096 /* A zero status is a reset, otherwise it's a set of flags. */
1097 if (dev->desc->status == 0)
1098 reset_device(dev);
1099 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1100 warnx("Device %s configuration FAILED", dev->name);
1101 if (dev->running)
1102 reset_device(dev);
1103 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1104 if (!dev->running)
1105 start_device(dev);
1109 /*L:215
1110 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1111 * particular, it's used to notify us of device status changes during boot.
1113 static void handle_output(unsigned long addr)
1115 struct device *i;
1117 /* Check each device. */
1118 for (i = devices.dev; i; i = i->next) {
1119 struct virtqueue *vq;
1122 * Notifications to device descriptors mean they updated the
1123 * device status.
1125 if (from_guest_phys(addr) == i->desc) {
1126 update_device_status(i);
1127 return;
1131 * Devices *can* be used before status is set to DRIVER_OK.
1132 * The original plan was that they would never do this: they
1133 * would always finish setting up their status bits before
1134 * actually touching the virtqueues. In practice, we allowed
1135 * them to, and they do (eg. the disk probes for partition
1136 * tables as part of initialization).
1138 * If we see this, we start the device: once it's running, we
1139 * expect the device to catch all the notifications.
1141 for (vq = i->vq; vq; vq = vq->next) {
1142 if (addr != vq->config.pfn*getpagesize())
1143 continue;
1144 if (i->running)
1145 errx(1, "Notification on running %s", i->name);
1146 /* This just calls create_thread() for each virtqueue */
1147 start_device(i);
1148 return;
1153 * Early console write is done using notify on a nul-terminated string
1154 * in Guest memory. It's also great for hacking debugging messages
1155 * into a Guest.
1157 if (addr >= guest_limit)
1158 errx(1, "Bad NOTIFY %#lx", addr);
1160 write(STDOUT_FILENO, from_guest_phys(addr),
1161 strnlen(from_guest_phys(addr), guest_limit - addr));
1164 /*L:190
1165 * Device Setup
1167 * All devices need a descriptor so the Guest knows it exists, and a "struct
1168 * device" so the Launcher can keep track of it. We have common helper
1169 * routines to allocate and manage them.
1173 * The layout of the device page is a "struct lguest_device_desc" followed by a
1174 * number of virtqueue descriptors, then two sets of feature bits, then an
1175 * array of configuration bytes. This routine returns the configuration
1176 * pointer.
1178 static u8 *device_config(const struct device *dev)
1180 return (void *)(dev->desc + 1)
1181 + dev->num_vq * sizeof(struct lguest_vqconfig)
1182 + dev->feature_len * 2;
1186 * This routine allocates a new "struct lguest_device_desc" from descriptor
1187 * table page just above the Guest's normal memory. It returns a pointer to
1188 * that descriptor.
1190 static struct lguest_device_desc *new_dev_desc(u16 type)
1192 struct lguest_device_desc d = { .type = type };
1193 void *p;
1195 /* Figure out where the next device config is, based on the last one. */
1196 if (devices.lastdev)
1197 p = device_config(devices.lastdev)
1198 + devices.lastdev->desc->config_len;
1199 else
1200 p = devices.descpage;
1202 /* We only have one page for all the descriptors. */
1203 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1204 errx(1, "Too many devices");
1206 /* p might not be aligned, so we memcpy in. */
1207 return memcpy(p, &d, sizeof(d));
1211 * Each device descriptor is followed by the description of its virtqueues. We
1212 * specify how many descriptors the virtqueue is to have.
1214 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1215 void (*service)(struct virtqueue *))
1217 unsigned int pages;
1218 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1219 void *p;
1221 /* First we need some memory for this virtqueue. */
1222 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1223 / getpagesize();
1224 p = get_pages(pages);
1226 /* Initialize the virtqueue */
1227 vq->next = NULL;
1228 vq->last_avail_idx = 0;
1229 vq->dev = dev;
1232 * This is the routine the service thread will run, and its Process ID
1233 * once it's running.
1235 vq->service = service;
1236 vq->thread = (pid_t)-1;
1238 /* Initialize the configuration. */
1239 vq->config.num = num_descs;
1240 vq->config.irq = devices.next_irq++;
1241 vq->config.pfn = to_guest_phys(p) / getpagesize();
1243 /* Initialize the vring. */
1244 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1247 * Append virtqueue to this device's descriptor. We use
1248 * device_config() to get the end of the device's current virtqueues;
1249 * we check that we haven't added any config or feature information
1250 * yet, otherwise we'd be overwriting them.
1252 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1253 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1254 dev->num_vq++;
1255 dev->desc->num_vq++;
1257 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1260 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1261 * second.
1263 for (i = &dev->vq; *i; i = &(*i)->next);
1264 *i = vq;
1268 * The first half of the feature bitmask is for us to advertise features. The
1269 * second half is for the Guest to accept features.
1271 static void add_feature(struct device *dev, unsigned bit)
1273 u8 *features = get_feature_bits(dev);
1275 /* We can't extend the feature bits once we've added config bytes */
1276 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1277 assert(dev->desc->config_len == 0);
1278 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1281 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1285 * This routine sets the configuration fields for an existing device's
1286 * descriptor. It only works for the last device, but that's OK because that's
1287 * how we use it.
1289 static void set_config(struct device *dev, unsigned len, const void *conf)
1291 /* Check we haven't overflowed our single page. */
1292 if (device_config(dev) + len > devices.descpage + getpagesize())
1293 errx(1, "Too many devices");
1295 /* Copy in the config information, and store the length. */
1296 memcpy(device_config(dev), conf, len);
1297 dev->desc->config_len = len;
1299 /* Size must fit in config_len field (8 bits)! */
1300 assert(dev->desc->config_len == len);
1304 * This routine does all the creation and setup of a new device, including
1305 * calling new_dev_desc() to allocate the descriptor and device memory. We
1306 * don't actually start the service threads until later.
1308 * See what I mean about userspace being boring?
1310 static struct device *new_device(const char *name, u16 type)
1312 struct device *dev = malloc(sizeof(*dev));
1314 /* Now we populate the fields one at a time. */
1315 dev->desc = new_dev_desc(type);
1316 dev->name = name;
1317 dev->vq = NULL;
1318 dev->feature_len = 0;
1319 dev->num_vq = 0;
1320 dev->running = false;
1323 * Append to device list. Prepending to a single-linked list is
1324 * easier, but the user expects the devices to be arranged on the bus
1325 * in command-line order. The first network device on the command line
1326 * is eth0, the first block device /dev/vda, etc.
1328 if (devices.lastdev)
1329 devices.lastdev->next = dev;
1330 else
1331 devices.dev = dev;
1332 devices.lastdev = dev;
1334 return dev;
1338 * Our first setup routine is the console. It's a fairly simple device, but
1339 * UNIX tty handling makes it uglier than it could be.
1341 static void setup_console(void)
1343 struct device *dev;
1345 /* If we can save the initial standard input settings... */
1346 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1347 struct termios term = orig_term;
1349 * Then we turn off echo, line buffering and ^C etc: We want a
1350 * raw input stream to the Guest.
1352 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1353 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1356 dev = new_device("console", VIRTIO_ID_CONSOLE);
1358 /* We store the console state in dev->priv, and initialize it. */
1359 dev->priv = malloc(sizeof(struct console_abort));
1360 ((struct console_abort *)dev->priv)->count = 0;
1363 * The console needs two virtqueues: the input then the output. When
1364 * they put something the input queue, we make sure we're listening to
1365 * stdin. When they put something in the output queue, we write it to
1366 * stdout.
1368 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1369 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1371 verbose("device %u: console\n", ++devices.device_num);
1373 /*:*/
1375 /*M:010
1376 * Inter-guest networking is an interesting area. Simplest is to have a
1377 * --sharenet=<name> option which opens or creates a named pipe. This can be
1378 * used to send packets to another guest in a 1:1 manner.
1380 * More sopisticated is to use one of the tools developed for project like UML
1381 * to do networking.
1383 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1384 * completely generic ("here's my vring, attach to your vring") and would work
1385 * for any traffic. Of course, namespace and permissions issues need to be
1386 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1387 * multiple inter-guest channels behind one interface, although it would
1388 * require some manner of hotplugging new virtio channels.
1390 * Finally, we could implement a virtio network switch in the kernel.
1393 static u32 str2ip(const char *ipaddr)
1395 unsigned int b[4];
1397 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1398 errx(1, "Failed to parse IP address '%s'", ipaddr);
1399 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1402 static void str2mac(const char *macaddr, unsigned char mac[6])
1404 unsigned int m[6];
1405 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1406 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1407 errx(1, "Failed to parse mac address '%s'", macaddr);
1408 mac[0] = m[0];
1409 mac[1] = m[1];
1410 mac[2] = m[2];
1411 mac[3] = m[3];
1412 mac[4] = m[4];
1413 mac[5] = m[5];
1417 * This code is "adapted" from libbridge: it attaches the Host end of the
1418 * network device to the bridge device specified by the command line.
1420 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1421 * dislike bridging), and I just try not to break it.
1423 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1425 int ifidx;
1426 struct ifreq ifr;
1428 if (!*br_name)
1429 errx(1, "must specify bridge name");
1431 ifidx = if_nametoindex(if_name);
1432 if (!ifidx)
1433 errx(1, "interface %s does not exist!", if_name);
1435 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1436 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1437 ifr.ifr_ifindex = ifidx;
1438 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1439 err(1, "can't add %s to bridge %s", if_name, br_name);
1443 * This sets up the Host end of the network device with an IP address, brings
1444 * it up so packets will flow, the copies the MAC address into the hwaddr
1445 * pointer.
1447 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1449 struct ifreq ifr;
1450 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1452 memset(&ifr, 0, sizeof(ifr));
1453 strcpy(ifr.ifr_name, tapif);
1455 /* Don't read these incantations. Just cut & paste them like I did! */
1456 sin->sin_family = AF_INET;
1457 sin->sin_addr.s_addr = htonl(ipaddr);
1458 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1459 err(1, "Setting %s interface address", tapif);
1460 ifr.ifr_flags = IFF_UP;
1461 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1462 err(1, "Bringing interface %s up", tapif);
1465 static int get_tun_device(char tapif[IFNAMSIZ])
1467 struct ifreq ifr;
1468 int netfd;
1470 /* Start with this zeroed. Messy but sure. */
1471 memset(&ifr, 0, sizeof(ifr));
1474 * We open the /dev/net/tun device and tell it we want a tap device. A
1475 * tap device is like a tun device, only somehow different. To tell
1476 * the truth, I completely blundered my way through this code, but it
1477 * works now!
1479 netfd = open_or_die("/dev/net/tun", O_RDWR);
1480 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1481 strcpy(ifr.ifr_name, "tap%d");
1482 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1483 err(1, "configuring /dev/net/tun");
1485 if (ioctl(netfd, TUNSETOFFLOAD,
1486 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1487 err(1, "Could not set features for tun device");
1490 * We don't need checksums calculated for packets coming in this
1491 * device: trust us!
1493 ioctl(netfd, TUNSETNOCSUM, 1);
1495 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1496 return netfd;
1499 /*L:195
1500 * Our network is a Host<->Guest network. This can either use bridging or
1501 * routing, but the principle is the same: it uses the "tun" device to inject
1502 * packets into the Host as if they came in from a normal network card. We
1503 * just shunt packets between the Guest and the tun device.
1505 static void setup_tun_net(char *arg)
1507 struct device *dev;
1508 struct net_info *net_info = malloc(sizeof(*net_info));
1509 int ipfd;
1510 u32 ip = INADDR_ANY;
1511 bool bridging = false;
1512 char tapif[IFNAMSIZ], *p;
1513 struct virtio_net_config conf;
1515 net_info->tunfd = get_tun_device(tapif);
1517 /* First we create a new network device. */
1518 dev = new_device("net", VIRTIO_ID_NET);
1519 dev->priv = net_info;
1521 /* Network devices need a recv and a send queue, just like console. */
1522 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1523 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1526 * We need a socket to perform the magic network ioctls to bring up the
1527 * tap interface, connect to the bridge etc. Any socket will do!
1529 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1530 if (ipfd < 0)
1531 err(1, "opening IP socket");
1533 /* If the command line was --tunnet=bridge:<name> do bridging. */
1534 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1535 arg += strlen(BRIDGE_PFX);
1536 bridging = true;
1539 /* A mac address may follow the bridge name or IP address */
1540 p = strchr(arg, ':');
1541 if (p) {
1542 str2mac(p+1, conf.mac);
1543 add_feature(dev, VIRTIO_NET_F_MAC);
1544 *p = '\0';
1547 /* arg is now either an IP address or a bridge name */
1548 if (bridging)
1549 add_to_bridge(ipfd, tapif, arg);
1550 else
1551 ip = str2ip(arg);
1553 /* Set up the tun device. */
1554 configure_device(ipfd, tapif, ip);
1556 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1557 /* Expect Guest to handle everything except UFO */
1558 add_feature(dev, VIRTIO_NET_F_CSUM);
1559 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1560 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1561 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1562 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1563 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1564 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1565 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1566 /* We handle indirect ring entries */
1567 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1568 set_config(dev, sizeof(conf), &conf);
1570 /* We don't need the socket any more; setup is done. */
1571 close(ipfd);
1573 devices.device_num++;
1575 if (bridging)
1576 verbose("device %u: tun %s attached to bridge: %s\n",
1577 devices.device_num, tapif, arg);
1578 else
1579 verbose("device %u: tun %s: %s\n",
1580 devices.device_num, tapif, arg);
1582 /*:*/
1584 /* This hangs off device->priv. */
1585 struct vblk_info {
1586 /* The size of the file. */
1587 off64_t len;
1589 /* The file descriptor for the file. */
1590 int fd;
1594 /*L:210
1595 * The Disk
1597 * The disk only has one virtqueue, so it only has one thread. It is really
1598 * simple: the Guest asks for a block number and we read or write that position
1599 * in the file.
1601 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1602 * slow: the Guest waits until the read is finished before running anything
1603 * else, even if it could have been doing useful work.
1605 * We could have used async I/O, except it's reputed to suck so hard that
1606 * characters actually go missing from your code when you try to use it.
1608 static void blk_request(struct virtqueue *vq)
1610 struct vblk_info *vblk = vq->dev->priv;
1611 unsigned int head, out_num, in_num, wlen;
1612 int ret;
1613 u8 *in;
1614 struct virtio_blk_outhdr *out;
1615 struct iovec iov[vq->vring.num];
1616 off64_t off;
1619 * Get the next request, where we normally wait. It triggers the
1620 * interrupt to acknowledge previously serviced requests (if any).
1622 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1625 * Every block request should contain at least one output buffer
1626 * (detailing the location on disk and the type of request) and one
1627 * input buffer (to hold the result).
1629 if (out_num == 0 || in_num == 0)
1630 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1631 head, out_num, in_num);
1633 out = convert(&iov[0], struct virtio_blk_outhdr);
1634 in = convert(&iov[out_num+in_num-1], u8);
1636 * For historical reasons, block operations are expressed in 512 byte
1637 * "sectors".
1639 off = out->sector * 512;
1642 * The block device implements "barriers", where the Guest indicates
1643 * that it wants all previous writes to occur before this write. We
1644 * don't have a way of asking our kernel to do a barrier, so we just
1645 * synchronize all the data in the file. Pretty poor, no?
1647 if (out->type & VIRTIO_BLK_T_BARRIER)
1648 fdatasync(vblk->fd);
1651 * In general the virtio block driver is allowed to try SCSI commands.
1652 * It'd be nice if we supported eject, for example, but we don't.
1654 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1655 fprintf(stderr, "Scsi commands unsupported\n");
1656 *in = VIRTIO_BLK_S_UNSUPP;
1657 wlen = sizeof(*in);
1658 } else if (out->type & VIRTIO_BLK_T_OUT) {
1660 * Write
1662 * Move to the right location in the block file. This can fail
1663 * if they try to write past end.
1665 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1666 err(1, "Bad seek to sector %llu", out->sector);
1668 ret = writev(vblk->fd, iov+1, out_num-1);
1669 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1672 * Grr... Now we know how long the descriptor they sent was, we
1673 * make sure they didn't try to write over the end of the block
1674 * file (possibly extending it).
1676 if (ret > 0 && off + ret > vblk->len) {
1677 /* Trim it back to the correct length */
1678 ftruncate64(vblk->fd, vblk->len);
1679 /* Die, bad Guest, die. */
1680 errx(1, "Write past end %llu+%u", off, ret);
1682 wlen = sizeof(*in);
1683 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1684 } else {
1686 * Read
1688 * Move to the right location in the block file. This can fail
1689 * if they try to read past end.
1691 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1692 err(1, "Bad seek to sector %llu", out->sector);
1694 ret = readv(vblk->fd, iov+1, in_num-1);
1695 verbose("READ from sector %llu: %i\n", out->sector, ret);
1696 if (ret >= 0) {
1697 wlen = sizeof(*in) + ret;
1698 *in = VIRTIO_BLK_S_OK;
1699 } else {
1700 wlen = sizeof(*in);
1701 *in = VIRTIO_BLK_S_IOERR;
1706 * OK, so we noted that it was pretty poor to use an fdatasync as a
1707 * barrier. But Christoph Hellwig points out that we need a sync
1708 * *afterwards* as well: "Barriers specify no reordering to the front
1709 * or the back." And Jens Axboe confirmed it, so here we are:
1711 if (out->type & VIRTIO_BLK_T_BARRIER)
1712 fdatasync(vblk->fd);
1714 /* Finished that request. */
1715 add_used(vq, head, wlen);
1718 /*L:198 This actually sets up a virtual block device. */
1719 static void setup_block_file(const char *filename)
1721 struct device *dev;
1722 struct vblk_info *vblk;
1723 struct virtio_blk_config conf;
1725 /* Creat the device. */
1726 dev = new_device("block", VIRTIO_ID_BLOCK);
1728 /* The device has one virtqueue, where the Guest places requests. */
1729 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1731 /* Allocate the room for our own bookkeeping */
1732 vblk = dev->priv = malloc(sizeof(*vblk));
1734 /* First we open the file and store the length. */
1735 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1736 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1738 /* We support barriers. */
1739 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1741 /* Tell Guest how many sectors this device has. */
1742 conf.capacity = cpu_to_le64(vblk->len / 512);
1745 * Tell Guest not to put in too many descriptors at once: two are used
1746 * for the in and out elements.
1748 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1749 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1751 /* Don't try to put whole struct: we have 8 bit limit. */
1752 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1754 verbose("device %u: virtblock %llu sectors\n",
1755 ++devices.device_num, le64_to_cpu(conf.capacity));
1758 /*L:211
1759 * Our random number generator device reads from /dev/random into the Guest's
1760 * input buffers. The usual case is that the Guest doesn't want random numbers
1761 * and so has no buffers although /dev/random is still readable, whereas
1762 * console is the reverse.
1764 * The same logic applies, however.
1766 struct rng_info {
1767 int rfd;
1770 static void rng_input(struct virtqueue *vq)
1772 int len;
1773 unsigned int head, in_num, out_num, totlen = 0;
1774 struct rng_info *rng_info = vq->dev->priv;
1775 struct iovec iov[vq->vring.num];
1777 /* First we need a buffer from the Guests's virtqueue. */
1778 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1779 if (out_num)
1780 errx(1, "Output buffers in rng?");
1783 * Just like the console write, we loop to cover the whole iovec.
1784 * In this case, short reads actually happen quite a bit.
1786 while (!iov_empty(iov, in_num)) {
1787 len = readv(rng_info->rfd, iov, in_num);
1788 if (len <= 0)
1789 err(1, "Read from /dev/random gave %i", len);
1790 iov_consume(iov, in_num, len);
1791 totlen += len;
1794 /* Tell the Guest about the new input. */
1795 add_used(vq, head, totlen);
1798 /*L:199
1799 * This creates a "hardware" random number device for the Guest.
1801 static void setup_rng(void)
1803 struct device *dev;
1804 struct rng_info *rng_info = malloc(sizeof(*rng_info));
1806 /* Our device's privat info simply contains the /dev/random fd. */
1807 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1809 /* Create the new device. */
1810 dev = new_device("rng", VIRTIO_ID_RNG);
1811 dev->priv = rng_info;
1813 /* The device has one virtqueue, where the Guest places inbufs. */
1814 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1816 verbose("device %u: rng\n", devices.device_num++);
1818 /* That's the end of device setup. */
1820 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1821 static void __attribute__((noreturn)) restart_guest(void)
1823 unsigned int i;
1826 * Since we don't track all open fds, we simply close everything beyond
1827 * stderr.
1829 for (i = 3; i < FD_SETSIZE; i++)
1830 close(i);
1832 /* Reset all the devices (kills all threads). */
1833 cleanup_devices();
1835 execv(main_args[0], main_args);
1836 err(1, "Could not exec %s", main_args[0]);
1839 /*L:220
1840 * Finally we reach the core of the Launcher which runs the Guest, serves
1841 * its input and output, and finally, lays it to rest.
1843 static void __attribute__((noreturn)) run_guest(void)
1845 for (;;) {
1846 unsigned long notify_addr;
1847 int readval;
1849 /* We read from the /dev/lguest device to run the Guest. */
1850 readval = pread(lguest_fd, &notify_addr,
1851 sizeof(notify_addr), cpu_id);
1853 /* One unsigned long means the Guest did HCALL_NOTIFY */
1854 if (readval == sizeof(notify_addr)) {
1855 verbose("Notify on address %#lx\n", notify_addr);
1856 handle_output(notify_addr);
1857 /* ENOENT means the Guest died. Reading tells us why. */
1858 } else if (errno == ENOENT) {
1859 char reason[1024] = { 0 };
1860 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1861 errx(1, "%s", reason);
1862 /* ERESTART means that we need to reboot the guest */
1863 } else if (errno == ERESTART) {
1864 restart_guest();
1865 /* Anything else means a bug or incompatible change. */
1866 } else
1867 err(1, "Running guest failed");
1870 /*L:240
1871 * This is the end of the Launcher. The good news: we are over halfway
1872 * through! The bad news: the most fiendish part of the code still lies ahead
1873 * of us.
1875 * Are you ready? Take a deep breath and join me in the core of the Host, in
1876 * "make Host".
1879 static struct option opts[] = {
1880 { "verbose", 0, NULL, 'v' },
1881 { "tunnet", 1, NULL, 't' },
1882 { "block", 1, NULL, 'b' },
1883 { "rng", 0, NULL, 'r' },
1884 { "initrd", 1, NULL, 'i' },
1885 { NULL },
1887 static void usage(void)
1889 errx(1, "Usage: lguest [--verbose] "
1890 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1891 "|--block=<filename>|--initrd=<filename>]...\n"
1892 "<mem-in-mb> vmlinux [args...]");
1895 /*L:105 The main routine is where the real work begins: */
1896 int main(int argc, char *argv[])
1898 /* Memory, code startpoint and size of the (optional) initrd. */
1899 unsigned long mem = 0, start, initrd_size = 0;
1900 /* Two temporaries. */
1901 int i, c;
1902 /* The boot information for the Guest. */
1903 struct boot_params *boot;
1904 /* If they specify an initrd file to load. */
1905 const char *initrd_name = NULL;
1907 /* Save the args: we "reboot" by execing ourselves again. */
1908 main_args = argv;
1911 * First we initialize the device list. We keep a pointer to the last
1912 * device, and the next interrupt number to use for devices (1:
1913 * remember that 0 is used by the timer).
1915 devices.lastdev = NULL;
1916 devices.next_irq = 1;
1918 /* We're CPU 0. In fact, that's the only CPU possible right now. */
1919 cpu_id = 0;
1922 * We need to know how much memory so we can set up the device
1923 * descriptor and memory pages for the devices as we parse the command
1924 * line. So we quickly look through the arguments to find the amount
1925 * of memory now.
1927 for (i = 1; i < argc; i++) {
1928 if (argv[i][0] != '-') {
1929 mem = atoi(argv[i]) * 1024 * 1024;
1931 * We start by mapping anonymous pages over all of
1932 * guest-physical memory range. This fills it with 0,
1933 * and ensures that the Guest won't be killed when it
1934 * tries to access it.
1936 guest_base = map_zeroed_pages(mem / getpagesize()
1937 + DEVICE_PAGES);
1938 guest_limit = mem;
1939 guest_max = mem + DEVICE_PAGES*getpagesize();
1940 devices.descpage = get_pages(1);
1941 break;
1945 /* The options are fairly straight-forward */
1946 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1947 switch (c) {
1948 case 'v':
1949 verbose = true;
1950 break;
1951 case 't':
1952 setup_tun_net(optarg);
1953 break;
1954 case 'b':
1955 setup_block_file(optarg);
1956 break;
1957 case 'r':
1958 setup_rng();
1959 break;
1960 case 'i':
1961 initrd_name = optarg;
1962 break;
1963 default:
1964 warnx("Unknown argument %s", argv[optind]);
1965 usage();
1969 * After the other arguments we expect memory and kernel image name,
1970 * followed by command line arguments for the kernel.
1972 if (optind + 2 > argc)
1973 usage();
1975 verbose("Guest base is at %p\n", guest_base);
1977 /* We always have a console device */
1978 setup_console();
1980 /* Now we load the kernel */
1981 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1983 /* Boot information is stashed at physical address 0 */
1984 boot = from_guest_phys(0);
1986 /* Map the initrd image if requested (at top of physical memory) */
1987 if (initrd_name) {
1988 initrd_size = load_initrd(initrd_name, mem);
1990 * These are the location in the Linux boot header where the
1991 * start and size of the initrd are expected to be found.
1993 boot->hdr.ramdisk_image = mem - initrd_size;
1994 boot->hdr.ramdisk_size = initrd_size;
1995 /* The bootloader type 0xFF means "unknown"; that's OK. */
1996 boot->hdr.type_of_loader = 0xFF;
2000 * The Linux boot header contains an "E820" memory map: ours is a
2001 * simple, single region.
2003 boot->e820_entries = 1;
2004 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2006 * The boot header contains a command line pointer: we put the command
2007 * line after the boot header.
2009 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2010 /* We use a simple helper to copy the arguments separated by spaces. */
2011 concat((char *)(boot + 1), argv+optind+2);
2013 /* Boot protocol version: 2.07 supports the fields for lguest. */
2014 boot->hdr.version = 0x207;
2016 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2017 boot->hdr.hardware_subarch = 1;
2019 /* Tell the entry path not to try to reload segment registers. */
2020 boot->hdr.loadflags |= KEEP_SEGMENTS;
2023 * We tell the kernel to initialize the Guest: this returns the open
2024 * /dev/lguest file descriptor.
2026 tell_kernel(start);
2028 /* Ensure that we terminate if a device-servicing child dies. */
2029 signal(SIGCHLD, kill_launcher);
2031 /* If we exit via err(), this kills all the threads, restores tty. */
2032 atexit(cleanup_devices);
2034 /* Finally, run the Guest. This doesn't return. */
2035 run_guest();
2037 /*:*/
2039 /*M:999
2040 * Mastery is done: you now know everything I do.
2042 * But surely you have seen code, features and bugs in your wanderings which
2043 * you now yearn to attack? That is the real game, and I look forward to you
2044 * patching and forking lguest into the Your-Name-Here-visor.
2046 * Farewell, and good coding!
2047 * Rusty Russell.