Add appropriate <linux/prefetch.h> include for prefetch users
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / cxgb4 / sge.c
blob56adf448b9fe85664d77f60e0e7106c4262093bb
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <net/ipv6.h>
44 #include <net/tcp.h>
45 #include "cxgb4.h"
46 #include "t4_regs.h"
47 #include "t4_msg.h"
48 #include "t4fw_api.h"
51 * Rx buffer size. We use largish buffers if possible but settle for single
52 * pages under memory shortage.
54 #if PAGE_SHIFT >= 16
55 # define FL_PG_ORDER 0
56 #else
57 # define FL_PG_ORDER (16 - PAGE_SHIFT)
58 #endif
60 /* RX_PULL_LEN should be <= RX_COPY_THRES */
61 #define RX_COPY_THRES 256
62 #define RX_PULL_LEN 128
65 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
66 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 #define RX_PKT_SKB_LEN 512
70 /* Ethernet header padding prepended to RX_PKTs */
71 #define RX_PKT_PAD 2
74 * Max number of Tx descriptors we clean up at a time. Should be modest as
75 * freeing skbs isn't cheap and it happens while holding locks. We just need
76 * to free packets faster than they arrive, we eventually catch up and keep
77 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
79 #define MAX_TX_RECLAIM 16
82 * Max number of Rx buffers we replenish at a time. Again keep this modest,
83 * allocating buffers isn't cheap either.
85 #define MAX_RX_REFILL 16U
88 * Period of the Rx queue check timer. This timer is infrequent as it has
89 * something to do only when the system experiences severe memory shortage.
91 #define RX_QCHECK_PERIOD (HZ / 2)
94 * Period of the Tx queue check timer.
96 #define TX_QCHECK_PERIOD (HZ / 2)
99 * Max number of Tx descriptors to be reclaimed by the Tx timer.
101 #define MAX_TIMER_TX_RECLAIM 100
104 * Timer index used when backing off due to memory shortage.
106 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
109 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
110 * attempt to refill it.
112 #define FL_STARVE_THRES 4
115 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
116 * This is the same as calc_tx_descs() for a TSO packet with
117 * nr_frags == MAX_SKB_FRAGS.
119 #define ETHTXQ_STOP_THRES \
120 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
123 * Suspension threshold for non-Ethernet Tx queues. We require enough room
124 * for a full sized WR.
126 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
129 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
130 * into a WR.
132 #define MAX_IMM_TX_PKT_LEN 128
135 * Max size of a WR sent through a control Tx queue.
137 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
139 enum {
140 /* packet alignment in FL buffers */
141 FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES,
142 /* egress status entry size */
143 STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64
146 struct tx_sw_desc { /* SW state per Tx descriptor */
147 struct sk_buff *skb;
148 struct ulptx_sgl *sgl;
151 struct rx_sw_desc { /* SW state per Rx descriptor */
152 struct page *page;
153 dma_addr_t dma_addr;
157 * The low bits of rx_sw_desc.dma_addr have special meaning.
159 enum {
160 RX_LARGE_BUF = 1 << 0, /* buffer is larger than PAGE_SIZE */
161 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
164 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
166 return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
169 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
171 return !(d->dma_addr & RX_UNMAPPED_BUF);
175 * txq_avail - return the number of available slots in a Tx queue
176 * @q: the Tx queue
178 * Returns the number of descriptors in a Tx queue available to write new
179 * packets.
181 static inline unsigned int txq_avail(const struct sge_txq *q)
183 return q->size - 1 - q->in_use;
187 * fl_cap - return the capacity of a free-buffer list
188 * @fl: the FL
190 * Returns the capacity of a free-buffer list. The capacity is less than
191 * the size because one descriptor needs to be left unpopulated, otherwise
192 * HW will think the FL is empty.
194 static inline unsigned int fl_cap(const struct sge_fl *fl)
196 return fl->size - 8; /* 1 descriptor = 8 buffers */
199 static inline bool fl_starving(const struct sge_fl *fl)
201 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
204 static int map_skb(struct device *dev, const struct sk_buff *skb,
205 dma_addr_t *addr)
207 const skb_frag_t *fp, *end;
208 const struct skb_shared_info *si;
210 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
211 if (dma_mapping_error(dev, *addr))
212 goto out_err;
214 si = skb_shinfo(skb);
215 end = &si->frags[si->nr_frags];
217 for (fp = si->frags; fp < end; fp++) {
218 *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
219 DMA_TO_DEVICE);
220 if (dma_mapping_error(dev, *addr))
221 goto unwind;
223 return 0;
225 unwind:
226 while (fp-- > si->frags)
227 dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
229 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
230 out_err:
231 return -ENOMEM;
234 #ifdef CONFIG_NEED_DMA_MAP_STATE
235 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
236 const dma_addr_t *addr)
238 const skb_frag_t *fp, *end;
239 const struct skb_shared_info *si;
241 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
243 si = skb_shinfo(skb);
244 end = &si->frags[si->nr_frags];
245 for (fp = si->frags; fp < end; fp++)
246 dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE);
250 * deferred_unmap_destructor - unmap a packet when it is freed
251 * @skb: the packet
253 * This is the packet destructor used for Tx packets that need to remain
254 * mapped until they are freed rather than until their Tx descriptors are
255 * freed.
257 static void deferred_unmap_destructor(struct sk_buff *skb)
259 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
261 #endif
263 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
264 const struct ulptx_sgl *sgl, const struct sge_txq *q)
266 const struct ulptx_sge_pair *p;
267 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
269 if (likely(skb_headlen(skb)))
270 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
271 DMA_TO_DEVICE);
272 else {
273 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
274 DMA_TO_DEVICE);
275 nfrags--;
279 * the complexity below is because of the possibility of a wrap-around
280 * in the middle of an SGL
282 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
283 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
284 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
285 ntohl(p->len[0]), DMA_TO_DEVICE);
286 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
287 ntohl(p->len[1]), DMA_TO_DEVICE);
288 p++;
289 } else if ((u8 *)p == (u8 *)q->stat) {
290 p = (const struct ulptx_sge_pair *)q->desc;
291 goto unmap;
292 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
293 const __be64 *addr = (const __be64 *)q->desc;
295 dma_unmap_page(dev, be64_to_cpu(addr[0]),
296 ntohl(p->len[0]), DMA_TO_DEVICE);
297 dma_unmap_page(dev, be64_to_cpu(addr[1]),
298 ntohl(p->len[1]), DMA_TO_DEVICE);
299 p = (const struct ulptx_sge_pair *)&addr[2];
300 } else {
301 const __be64 *addr = (const __be64 *)q->desc;
303 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
304 ntohl(p->len[0]), DMA_TO_DEVICE);
305 dma_unmap_page(dev, be64_to_cpu(addr[0]),
306 ntohl(p->len[1]), DMA_TO_DEVICE);
307 p = (const struct ulptx_sge_pair *)&addr[1];
310 if (nfrags) {
311 __be64 addr;
313 if ((u8 *)p == (u8 *)q->stat)
314 p = (const struct ulptx_sge_pair *)q->desc;
315 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
316 *(const __be64 *)q->desc;
317 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
318 DMA_TO_DEVICE);
323 * free_tx_desc - reclaims Tx descriptors and their buffers
324 * @adapter: the adapter
325 * @q: the Tx queue to reclaim descriptors from
326 * @n: the number of descriptors to reclaim
327 * @unmap: whether the buffers should be unmapped for DMA
329 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
330 * Tx buffers. Called with the Tx queue lock held.
332 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
333 unsigned int n, bool unmap)
335 struct tx_sw_desc *d;
336 unsigned int cidx = q->cidx;
337 struct device *dev = adap->pdev_dev;
339 d = &q->sdesc[cidx];
340 while (n--) {
341 if (d->skb) { /* an SGL is present */
342 if (unmap)
343 unmap_sgl(dev, d->skb, d->sgl, q);
344 kfree_skb(d->skb);
345 d->skb = NULL;
347 ++d;
348 if (++cidx == q->size) {
349 cidx = 0;
350 d = q->sdesc;
353 q->cidx = cidx;
357 * Return the number of reclaimable descriptors in a Tx queue.
359 static inline int reclaimable(const struct sge_txq *q)
361 int hw_cidx = ntohs(q->stat->cidx);
362 hw_cidx -= q->cidx;
363 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
367 * reclaim_completed_tx - reclaims completed Tx descriptors
368 * @adap: the adapter
369 * @q: the Tx queue to reclaim completed descriptors from
370 * @unmap: whether the buffers should be unmapped for DMA
372 * Reclaims Tx descriptors that the SGE has indicated it has processed,
373 * and frees the associated buffers if possible. Called with the Tx
374 * queue locked.
376 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
377 bool unmap)
379 int avail = reclaimable(q);
381 if (avail) {
383 * Limit the amount of clean up work we do at a time to keep
384 * the Tx lock hold time O(1).
386 if (avail > MAX_TX_RECLAIM)
387 avail = MAX_TX_RECLAIM;
389 free_tx_desc(adap, q, avail, unmap);
390 q->in_use -= avail;
394 static inline int get_buf_size(const struct rx_sw_desc *d)
396 #if FL_PG_ORDER > 0
397 return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) :
398 PAGE_SIZE;
399 #else
400 return PAGE_SIZE;
401 #endif
405 * free_rx_bufs - free the Rx buffers on an SGE free list
406 * @adap: the adapter
407 * @q: the SGE free list to free buffers from
408 * @n: how many buffers to free
410 * Release the next @n buffers on an SGE free-buffer Rx queue. The
411 * buffers must be made inaccessible to HW before calling this function.
413 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
415 while (n--) {
416 struct rx_sw_desc *d = &q->sdesc[q->cidx];
418 if (is_buf_mapped(d))
419 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
420 get_buf_size(d), PCI_DMA_FROMDEVICE);
421 put_page(d->page);
422 d->page = NULL;
423 if (++q->cidx == q->size)
424 q->cidx = 0;
425 q->avail--;
430 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list
434 * Unmap the current buffer on an SGE free-buffer Rx queue. The
435 * buffer must be made inaccessible to HW before calling this function.
437 * This is similar to @free_rx_bufs above but does not free the buffer.
438 * Do note that the FL still loses any further access to the buffer.
440 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
442 struct rx_sw_desc *d = &q->sdesc[q->cidx];
444 if (is_buf_mapped(d))
445 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
446 get_buf_size(d), PCI_DMA_FROMDEVICE);
447 d->page = NULL;
448 if (++q->cidx == q->size)
449 q->cidx = 0;
450 q->avail--;
453 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
455 if (q->pend_cred >= 8) {
456 wmb();
457 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO |
458 QID(q->cntxt_id) | PIDX(q->pend_cred / 8));
459 q->pend_cred &= 7;
463 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
464 dma_addr_t mapping)
466 sd->page = pg;
467 sd->dma_addr = mapping; /* includes size low bits */
471 * refill_fl - refill an SGE Rx buffer ring
472 * @adap: the adapter
473 * @q: the ring to refill
474 * @n: the number of new buffers to allocate
475 * @gfp: the gfp flags for the allocations
477 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
478 * allocated with the supplied gfp flags. The caller must assure that
479 * @n does not exceed the queue's capacity. If afterwards the queue is
480 * found critically low mark it as starving in the bitmap of starving FLs.
482 * Returns the number of buffers allocated.
484 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
485 gfp_t gfp)
487 struct page *pg;
488 dma_addr_t mapping;
489 unsigned int cred = q->avail;
490 __be64 *d = &q->desc[q->pidx];
491 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
493 gfp |= __GFP_NOWARN; /* failures are expected */
495 #if FL_PG_ORDER > 0
497 * Prefer large buffers
499 while (n) {
500 pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER);
501 if (unlikely(!pg)) {
502 q->large_alloc_failed++;
503 break; /* fall back to single pages */
506 mapping = dma_map_page(adap->pdev_dev, pg, 0,
507 PAGE_SIZE << FL_PG_ORDER,
508 PCI_DMA_FROMDEVICE);
509 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
510 __free_pages(pg, FL_PG_ORDER);
511 goto out; /* do not try small pages for this error */
513 mapping |= RX_LARGE_BUF;
514 *d++ = cpu_to_be64(mapping);
516 set_rx_sw_desc(sd, pg, mapping);
517 sd++;
519 q->avail++;
520 if (++q->pidx == q->size) {
521 q->pidx = 0;
522 sd = q->sdesc;
523 d = q->desc;
525 n--;
527 #endif
529 while (n--) {
530 pg = __netdev_alloc_page(adap->port[0], gfp);
531 if (unlikely(!pg)) {
532 q->alloc_failed++;
533 break;
536 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
537 PCI_DMA_FROMDEVICE);
538 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
539 netdev_free_page(adap->port[0], pg);
540 goto out;
542 *d++ = cpu_to_be64(mapping);
544 set_rx_sw_desc(sd, pg, mapping);
545 sd++;
547 q->avail++;
548 if (++q->pidx == q->size) {
549 q->pidx = 0;
550 sd = q->sdesc;
551 d = q->desc;
555 out: cred = q->avail - cred;
556 q->pend_cred += cred;
557 ring_fl_db(adap, q);
559 if (unlikely(fl_starving(q))) {
560 smp_wmb();
561 set_bit(q->cntxt_id - adap->sge.egr_start,
562 adap->sge.starving_fl);
565 return cred;
568 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
570 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
571 GFP_ATOMIC);
575 * alloc_ring - allocate resources for an SGE descriptor ring
576 * @dev: the PCI device's core device
577 * @nelem: the number of descriptors
578 * @elem_size: the size of each descriptor
579 * @sw_size: the size of the SW state associated with each ring element
580 * @phys: the physical address of the allocated ring
581 * @metadata: address of the array holding the SW state for the ring
582 * @stat_size: extra space in HW ring for status information
583 * @node: preferred node for memory allocations
585 * Allocates resources for an SGE descriptor ring, such as Tx queues,
586 * free buffer lists, or response queues. Each SGE ring requires
587 * space for its HW descriptors plus, optionally, space for the SW state
588 * associated with each HW entry (the metadata). The function returns
589 * three values: the virtual address for the HW ring (the return value
590 * of the function), the bus address of the HW ring, and the address
591 * of the SW ring.
593 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
594 size_t sw_size, dma_addr_t *phys, void *metadata,
595 size_t stat_size, int node)
597 size_t len = nelem * elem_size + stat_size;
598 void *s = NULL;
599 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
601 if (!p)
602 return NULL;
603 if (sw_size) {
604 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
606 if (!s) {
607 dma_free_coherent(dev, len, p, *phys);
608 return NULL;
611 if (metadata)
612 *(void **)metadata = s;
613 memset(p, 0, len);
614 return p;
618 * sgl_len - calculates the size of an SGL of the given capacity
619 * @n: the number of SGL entries
621 * Calculates the number of flits needed for a scatter/gather list that
622 * can hold the given number of entries.
624 static inline unsigned int sgl_len(unsigned int n)
626 n--;
627 return (3 * n) / 2 + (n & 1) + 2;
631 * flits_to_desc - returns the num of Tx descriptors for the given flits
632 * @n: the number of flits
634 * Returns the number of Tx descriptors needed for the supplied number
635 * of flits.
637 static inline unsigned int flits_to_desc(unsigned int n)
639 BUG_ON(n > SGE_MAX_WR_LEN / 8);
640 return DIV_ROUND_UP(n, 8);
644 * is_eth_imm - can an Ethernet packet be sent as immediate data?
645 * @skb: the packet
647 * Returns whether an Ethernet packet is small enough to fit as
648 * immediate data.
650 static inline int is_eth_imm(const struct sk_buff *skb)
652 return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt);
656 * calc_tx_flits - calculate the number of flits for a packet Tx WR
657 * @skb: the packet
659 * Returns the number of flits needed for a Tx WR for the given Ethernet
660 * packet, including the needed WR and CPL headers.
662 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
664 unsigned int flits;
666 if (is_eth_imm(skb))
667 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8);
669 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
670 if (skb_shinfo(skb)->gso_size)
671 flits += 2;
672 return flits;
676 * calc_tx_descs - calculate the number of Tx descriptors for a packet
677 * @skb: the packet
679 * Returns the number of Tx descriptors needed for the given Ethernet
680 * packet, including the needed WR and CPL headers.
682 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
684 return flits_to_desc(calc_tx_flits(skb));
688 * write_sgl - populate a scatter/gather list for a packet
689 * @skb: the packet
690 * @q: the Tx queue we are writing into
691 * @sgl: starting location for writing the SGL
692 * @end: points right after the end of the SGL
693 * @start: start offset into skb main-body data to include in the SGL
694 * @addr: the list of bus addresses for the SGL elements
696 * Generates a gather list for the buffers that make up a packet.
697 * The caller must provide adequate space for the SGL that will be written.
698 * The SGL includes all of the packet's page fragments and the data in its
699 * main body except for the first @start bytes. @sgl must be 16-byte
700 * aligned and within a Tx descriptor with available space. @end points
701 * right after the end of the SGL but does not account for any potential
702 * wrap around, i.e., @end > @sgl.
704 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
705 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
706 const dma_addr_t *addr)
708 unsigned int i, len;
709 struct ulptx_sge_pair *to;
710 const struct skb_shared_info *si = skb_shinfo(skb);
711 unsigned int nfrags = si->nr_frags;
712 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
714 len = skb_headlen(skb) - start;
715 if (likely(len)) {
716 sgl->len0 = htonl(len);
717 sgl->addr0 = cpu_to_be64(addr[0] + start);
718 nfrags++;
719 } else {
720 sgl->len0 = htonl(si->frags[0].size);
721 sgl->addr0 = cpu_to_be64(addr[1]);
724 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags));
725 if (likely(--nfrags == 0))
726 return;
728 * Most of the complexity below deals with the possibility we hit the
729 * end of the queue in the middle of writing the SGL. For this case
730 * only we create the SGL in a temporary buffer and then copy it.
732 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
734 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
735 to->len[0] = cpu_to_be32(si->frags[i].size);
736 to->len[1] = cpu_to_be32(si->frags[++i].size);
737 to->addr[0] = cpu_to_be64(addr[i]);
738 to->addr[1] = cpu_to_be64(addr[++i]);
740 if (nfrags) {
741 to->len[0] = cpu_to_be32(si->frags[i].size);
742 to->len[1] = cpu_to_be32(0);
743 to->addr[0] = cpu_to_be64(addr[i + 1]);
745 if (unlikely((u8 *)end > (u8 *)q->stat)) {
746 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
748 if (likely(part0))
749 memcpy(sgl->sge, buf, part0);
750 part1 = (u8 *)end - (u8 *)q->stat;
751 memcpy(q->desc, (u8 *)buf + part0, part1);
752 end = (void *)q->desc + part1;
754 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
755 *(u64 *)end = 0;
759 * ring_tx_db - check and potentially ring a Tx queue's doorbell
760 * @adap: the adapter
761 * @q: the Tx queue
762 * @n: number of new descriptors to give to HW
764 * Ring the doorbel for a Tx queue.
766 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
768 wmb(); /* write descriptors before telling HW */
769 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
770 QID(q->cntxt_id) | PIDX(n));
774 * inline_tx_skb - inline a packet's data into Tx descriptors
775 * @skb: the packet
776 * @q: the Tx queue where the packet will be inlined
777 * @pos: starting position in the Tx queue where to inline the packet
779 * Inline a packet's contents directly into Tx descriptors, starting at
780 * the given position within the Tx DMA ring.
781 * Most of the complexity of this operation is dealing with wrap arounds
782 * in the middle of the packet we want to inline.
784 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
785 void *pos)
787 u64 *p;
788 int left = (void *)q->stat - pos;
790 if (likely(skb->len <= left)) {
791 if (likely(!skb->data_len))
792 skb_copy_from_linear_data(skb, pos, skb->len);
793 else
794 skb_copy_bits(skb, 0, pos, skb->len);
795 pos += skb->len;
796 } else {
797 skb_copy_bits(skb, 0, pos, left);
798 skb_copy_bits(skb, left, q->desc, skb->len - left);
799 pos = (void *)q->desc + (skb->len - left);
802 /* 0-pad to multiple of 16 */
803 p = PTR_ALIGN(pos, 8);
804 if ((uintptr_t)p & 8)
805 *p = 0;
809 * Figure out what HW csum a packet wants and return the appropriate control
810 * bits.
812 static u64 hwcsum(const struct sk_buff *skb)
814 int csum_type;
815 const struct iphdr *iph = ip_hdr(skb);
817 if (iph->version == 4) {
818 if (iph->protocol == IPPROTO_TCP)
819 csum_type = TX_CSUM_TCPIP;
820 else if (iph->protocol == IPPROTO_UDP)
821 csum_type = TX_CSUM_UDPIP;
822 else {
823 nocsum: /*
824 * unknown protocol, disable HW csum
825 * and hope a bad packet is detected
827 return TXPKT_L4CSUM_DIS;
829 } else {
831 * this doesn't work with extension headers
833 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
835 if (ip6h->nexthdr == IPPROTO_TCP)
836 csum_type = TX_CSUM_TCPIP6;
837 else if (ip6h->nexthdr == IPPROTO_UDP)
838 csum_type = TX_CSUM_UDPIP6;
839 else
840 goto nocsum;
843 if (likely(csum_type >= TX_CSUM_TCPIP))
844 return TXPKT_CSUM_TYPE(csum_type) |
845 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
846 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
847 else {
848 int start = skb_transport_offset(skb);
850 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
851 TXPKT_CSUM_LOC(start + skb->csum_offset);
855 static void eth_txq_stop(struct sge_eth_txq *q)
857 netif_tx_stop_queue(q->txq);
858 q->q.stops++;
861 static inline void txq_advance(struct sge_txq *q, unsigned int n)
863 q->in_use += n;
864 q->pidx += n;
865 if (q->pidx >= q->size)
866 q->pidx -= q->size;
870 * t4_eth_xmit - add a packet to an Ethernet Tx queue
871 * @skb: the packet
872 * @dev: the egress net device
874 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
876 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
878 u32 wr_mid;
879 u64 cntrl, *end;
880 int qidx, credits;
881 unsigned int flits, ndesc;
882 struct adapter *adap;
883 struct sge_eth_txq *q;
884 const struct port_info *pi;
885 struct fw_eth_tx_pkt_wr *wr;
886 struct cpl_tx_pkt_core *cpl;
887 const struct skb_shared_info *ssi;
888 dma_addr_t addr[MAX_SKB_FRAGS + 1];
891 * The chip min packet length is 10 octets but play safe and reject
892 * anything shorter than an Ethernet header.
894 if (unlikely(skb->len < ETH_HLEN)) {
895 out_free: dev_kfree_skb(skb);
896 return NETDEV_TX_OK;
899 pi = netdev_priv(dev);
900 adap = pi->adapter;
901 qidx = skb_get_queue_mapping(skb);
902 q = &adap->sge.ethtxq[qidx + pi->first_qset];
904 reclaim_completed_tx(adap, &q->q, true);
906 flits = calc_tx_flits(skb);
907 ndesc = flits_to_desc(flits);
908 credits = txq_avail(&q->q) - ndesc;
910 if (unlikely(credits < 0)) {
911 eth_txq_stop(q);
912 dev_err(adap->pdev_dev,
913 "%s: Tx ring %u full while queue awake!\n",
914 dev->name, qidx);
915 return NETDEV_TX_BUSY;
918 if (!is_eth_imm(skb) &&
919 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
920 q->mapping_err++;
921 goto out_free;
924 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
925 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
926 eth_txq_stop(q);
927 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
930 wr = (void *)&q->q.desc[q->q.pidx];
931 wr->equiq_to_len16 = htonl(wr_mid);
932 wr->r3 = cpu_to_be64(0);
933 end = (u64 *)wr + flits;
935 ssi = skb_shinfo(skb);
936 if (ssi->gso_size) {
937 struct cpl_tx_pkt_lso *lso = (void *)wr;
938 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
939 int l3hdr_len = skb_network_header_len(skb);
940 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
942 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
943 FW_WR_IMMDLEN(sizeof(*lso)));
944 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
945 LSO_FIRST_SLICE | LSO_LAST_SLICE |
946 LSO_IPV6(v6) |
947 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
948 LSO_IPHDR_LEN(l3hdr_len / 4) |
949 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
950 lso->c.ipid_ofst = htons(0);
951 lso->c.mss = htons(ssi->gso_size);
952 lso->c.seqno_offset = htonl(0);
953 lso->c.len = htonl(skb->len);
954 cpl = (void *)(lso + 1);
955 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
956 TXPKT_IPHDR_LEN(l3hdr_len) |
957 TXPKT_ETHHDR_LEN(eth_xtra_len);
958 q->tso++;
959 q->tx_cso += ssi->gso_segs;
960 } else {
961 int len;
963 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
964 wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) |
965 FW_WR_IMMDLEN(len));
966 cpl = (void *)(wr + 1);
967 if (skb->ip_summed == CHECKSUM_PARTIAL) {
968 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
969 q->tx_cso++;
970 } else
971 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
974 if (vlan_tx_tag_present(skb)) {
975 q->vlan_ins++;
976 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
979 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
980 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
981 cpl->pack = htons(0);
982 cpl->len = htons(skb->len);
983 cpl->ctrl1 = cpu_to_be64(cntrl);
985 if (is_eth_imm(skb)) {
986 inline_tx_skb(skb, &q->q, cpl + 1);
987 dev_kfree_skb(skb);
988 } else {
989 int last_desc;
991 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
992 addr);
993 skb_orphan(skb);
995 last_desc = q->q.pidx + ndesc - 1;
996 if (last_desc >= q->q.size)
997 last_desc -= q->q.size;
998 q->q.sdesc[last_desc].skb = skb;
999 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1002 txq_advance(&q->q, ndesc);
1004 ring_tx_db(adap, &q->q, ndesc);
1005 return NETDEV_TX_OK;
1009 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1010 * @q: the SGE control Tx queue
1012 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1013 * that send only immediate data (presently just the control queues) and
1014 * thus do not have any sk_buffs to release.
1016 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1018 int hw_cidx = ntohs(q->stat->cidx);
1019 int reclaim = hw_cidx - q->cidx;
1021 if (reclaim < 0)
1022 reclaim += q->size;
1024 q->in_use -= reclaim;
1025 q->cidx = hw_cidx;
1029 * is_imm - check whether a packet can be sent as immediate data
1030 * @skb: the packet
1032 * Returns true if a packet can be sent as a WR with immediate data.
1034 static inline int is_imm(const struct sk_buff *skb)
1036 return skb->len <= MAX_CTRL_WR_LEN;
1040 * ctrlq_check_stop - check if a control queue is full and should stop
1041 * @q: the queue
1042 * @wr: most recent WR written to the queue
1044 * Check if a control queue has become full and should be stopped.
1045 * We clean up control queue descriptors very lazily, only when we are out.
1046 * If the queue is still full after reclaiming any completed descriptors
1047 * we suspend it and have the last WR wake it up.
1049 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1051 reclaim_completed_tx_imm(&q->q);
1052 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1053 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1054 q->q.stops++;
1055 q->full = 1;
1060 * ctrl_xmit - send a packet through an SGE control Tx queue
1061 * @q: the control queue
1062 * @skb: the packet
1064 * Send a packet through an SGE control Tx queue. Packets sent through
1065 * a control queue must fit entirely as immediate data.
1067 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1069 unsigned int ndesc;
1070 struct fw_wr_hdr *wr;
1072 if (unlikely(!is_imm(skb))) {
1073 WARN_ON(1);
1074 dev_kfree_skb(skb);
1075 return NET_XMIT_DROP;
1078 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1079 spin_lock(&q->sendq.lock);
1081 if (unlikely(q->full)) {
1082 skb->priority = ndesc; /* save for restart */
1083 __skb_queue_tail(&q->sendq, skb);
1084 spin_unlock(&q->sendq.lock);
1085 return NET_XMIT_CN;
1088 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1089 inline_tx_skb(skb, &q->q, wr);
1091 txq_advance(&q->q, ndesc);
1092 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1093 ctrlq_check_stop(q, wr);
1095 ring_tx_db(q->adap, &q->q, ndesc);
1096 spin_unlock(&q->sendq.lock);
1098 kfree_skb(skb);
1099 return NET_XMIT_SUCCESS;
1103 * restart_ctrlq - restart a suspended control queue
1104 * @data: the control queue to restart
1106 * Resumes transmission on a suspended Tx control queue.
1108 static void restart_ctrlq(unsigned long data)
1110 struct sk_buff *skb;
1111 unsigned int written = 0;
1112 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1114 spin_lock(&q->sendq.lock);
1115 reclaim_completed_tx_imm(&q->q);
1116 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1118 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1119 struct fw_wr_hdr *wr;
1120 unsigned int ndesc = skb->priority; /* previously saved */
1123 * Write descriptors and free skbs outside the lock to limit
1124 * wait times. q->full is still set so new skbs will be queued.
1126 spin_unlock(&q->sendq.lock);
1128 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1129 inline_tx_skb(skb, &q->q, wr);
1130 kfree_skb(skb);
1132 written += ndesc;
1133 txq_advance(&q->q, ndesc);
1134 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1135 unsigned long old = q->q.stops;
1137 ctrlq_check_stop(q, wr);
1138 if (q->q.stops != old) { /* suspended anew */
1139 spin_lock(&q->sendq.lock);
1140 goto ringdb;
1143 if (written > 16) {
1144 ring_tx_db(q->adap, &q->q, written);
1145 written = 0;
1147 spin_lock(&q->sendq.lock);
1149 q->full = 0;
1150 ringdb: if (written)
1151 ring_tx_db(q->adap, &q->q, written);
1152 spin_unlock(&q->sendq.lock);
1156 * t4_mgmt_tx - send a management message
1157 * @adap: the adapter
1158 * @skb: the packet containing the management message
1160 * Send a management message through control queue 0.
1162 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1164 int ret;
1166 local_bh_disable();
1167 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1168 local_bh_enable();
1169 return ret;
1173 * is_ofld_imm - check whether a packet can be sent as immediate data
1174 * @skb: the packet
1176 * Returns true if a packet can be sent as an offload WR with immediate
1177 * data. We currently use the same limit as for Ethernet packets.
1179 static inline int is_ofld_imm(const struct sk_buff *skb)
1181 return skb->len <= MAX_IMM_TX_PKT_LEN;
1185 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1186 * @skb: the packet
1188 * Returns the number of flits needed for the given offload packet.
1189 * These packets are already fully constructed and no additional headers
1190 * will be added.
1192 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1194 unsigned int flits, cnt;
1196 if (is_ofld_imm(skb))
1197 return DIV_ROUND_UP(skb->len, 8);
1199 flits = skb_transport_offset(skb) / 8U; /* headers */
1200 cnt = skb_shinfo(skb)->nr_frags;
1201 if (skb->tail != skb->transport_header)
1202 cnt++;
1203 return flits + sgl_len(cnt);
1207 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1208 * @adap: the adapter
1209 * @q: the queue to stop
1211 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1212 * inability to map packets. A periodic timer attempts to restart
1213 * queues so marked.
1215 static void txq_stop_maperr(struct sge_ofld_txq *q)
1217 q->mapping_err++;
1218 q->q.stops++;
1219 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1220 q->adap->sge.txq_maperr);
1224 * ofldtxq_stop - stop an offload Tx queue that has become full
1225 * @q: the queue to stop
1226 * @skb: the packet causing the queue to become full
1228 * Stops an offload Tx queue that has become full and modifies the packet
1229 * being written to request a wakeup.
1231 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1233 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1235 wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ);
1236 q->q.stops++;
1237 q->full = 1;
1241 * service_ofldq - restart a suspended offload queue
1242 * @q: the offload queue
1244 * Services an offload Tx queue by moving packets from its packet queue
1245 * to the HW Tx ring. The function starts and ends with the queue locked.
1247 static void service_ofldq(struct sge_ofld_txq *q)
1249 u64 *pos;
1250 int credits;
1251 struct sk_buff *skb;
1252 unsigned int written = 0;
1253 unsigned int flits, ndesc;
1255 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1257 * We drop the lock but leave skb on sendq, thus retaining
1258 * exclusive access to the state of the queue.
1260 spin_unlock(&q->sendq.lock);
1262 reclaim_completed_tx(q->adap, &q->q, false);
1264 flits = skb->priority; /* previously saved */
1265 ndesc = flits_to_desc(flits);
1266 credits = txq_avail(&q->q) - ndesc;
1267 BUG_ON(credits < 0);
1268 if (unlikely(credits < TXQ_STOP_THRES))
1269 ofldtxq_stop(q, skb);
1271 pos = (u64 *)&q->q.desc[q->q.pidx];
1272 if (is_ofld_imm(skb))
1273 inline_tx_skb(skb, &q->q, pos);
1274 else if (map_skb(q->adap->pdev_dev, skb,
1275 (dma_addr_t *)skb->head)) {
1276 txq_stop_maperr(q);
1277 spin_lock(&q->sendq.lock);
1278 break;
1279 } else {
1280 int last_desc, hdr_len = skb_transport_offset(skb);
1282 memcpy(pos, skb->data, hdr_len);
1283 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1284 pos + flits, hdr_len,
1285 (dma_addr_t *)skb->head);
1286 #ifdef CONFIG_NEED_DMA_MAP_STATE
1287 skb->dev = q->adap->port[0];
1288 skb->destructor = deferred_unmap_destructor;
1289 #endif
1290 last_desc = q->q.pidx + ndesc - 1;
1291 if (last_desc >= q->q.size)
1292 last_desc -= q->q.size;
1293 q->q.sdesc[last_desc].skb = skb;
1296 txq_advance(&q->q, ndesc);
1297 written += ndesc;
1298 if (unlikely(written > 32)) {
1299 ring_tx_db(q->adap, &q->q, written);
1300 written = 0;
1303 spin_lock(&q->sendq.lock);
1304 __skb_unlink(skb, &q->sendq);
1305 if (is_ofld_imm(skb))
1306 kfree_skb(skb);
1308 if (likely(written))
1309 ring_tx_db(q->adap, &q->q, written);
1313 * ofld_xmit - send a packet through an offload queue
1314 * @q: the Tx offload queue
1315 * @skb: the packet
1317 * Send an offload packet through an SGE offload queue.
1319 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1321 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1322 spin_lock(&q->sendq.lock);
1323 __skb_queue_tail(&q->sendq, skb);
1324 if (q->sendq.qlen == 1)
1325 service_ofldq(q);
1326 spin_unlock(&q->sendq.lock);
1327 return NET_XMIT_SUCCESS;
1331 * restart_ofldq - restart a suspended offload queue
1332 * @data: the offload queue to restart
1334 * Resumes transmission on a suspended Tx offload queue.
1336 static void restart_ofldq(unsigned long data)
1338 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1340 spin_lock(&q->sendq.lock);
1341 q->full = 0; /* the queue actually is completely empty now */
1342 service_ofldq(q);
1343 spin_unlock(&q->sendq.lock);
1347 * skb_txq - return the Tx queue an offload packet should use
1348 * @skb: the packet
1350 * Returns the Tx queue an offload packet should use as indicated by bits
1351 * 1-15 in the packet's queue_mapping.
1353 static inline unsigned int skb_txq(const struct sk_buff *skb)
1355 return skb->queue_mapping >> 1;
1359 * is_ctrl_pkt - return whether an offload packet is a control packet
1360 * @skb: the packet
1362 * Returns whether an offload packet should use an OFLD or a CTRL
1363 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1365 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1367 return skb->queue_mapping & 1;
1370 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1372 unsigned int idx = skb_txq(skb);
1374 if (unlikely(is_ctrl_pkt(skb)))
1375 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1376 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1380 * t4_ofld_send - send an offload packet
1381 * @adap: the adapter
1382 * @skb: the packet
1384 * Sends an offload packet. We use the packet queue_mapping to select the
1385 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1386 * should be sent as regular or control, bits 1-15 select the queue.
1388 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1390 int ret;
1392 local_bh_disable();
1393 ret = ofld_send(adap, skb);
1394 local_bh_enable();
1395 return ret;
1399 * cxgb4_ofld_send - send an offload packet
1400 * @dev: the net device
1401 * @skb: the packet
1403 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1404 * intended for ULDs.
1406 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1408 return t4_ofld_send(netdev2adap(dev), skb);
1410 EXPORT_SYMBOL(cxgb4_ofld_send);
1412 static inline void copy_frags(struct skb_shared_info *ssi,
1413 const struct pkt_gl *gl, unsigned int offset)
1415 unsigned int n;
1417 /* usually there's just one frag */
1418 ssi->frags[0].page = gl->frags[0].page;
1419 ssi->frags[0].page_offset = gl->frags[0].page_offset + offset;
1420 ssi->frags[0].size = gl->frags[0].size - offset;
1421 ssi->nr_frags = gl->nfrags;
1422 n = gl->nfrags - 1;
1423 if (n)
1424 memcpy(&ssi->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));
1426 /* get a reference to the last page, we don't own it */
1427 get_page(gl->frags[n].page);
1431 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1432 * @gl: the gather list
1433 * @skb_len: size of sk_buff main body if it carries fragments
1434 * @pull_len: amount of data to move to the sk_buff's main body
1436 * Builds an sk_buff from the given packet gather list. Returns the
1437 * sk_buff or %NULL if sk_buff allocation failed.
1439 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1440 unsigned int skb_len, unsigned int pull_len)
1442 struct sk_buff *skb;
1445 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1446 * size, which is expected since buffers are at least PAGE_SIZEd.
1447 * In this case packets up to RX_COPY_THRES have only one fragment.
1449 if (gl->tot_len <= RX_COPY_THRES) {
1450 skb = dev_alloc_skb(gl->tot_len);
1451 if (unlikely(!skb))
1452 goto out;
1453 __skb_put(skb, gl->tot_len);
1454 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1455 } else {
1456 skb = dev_alloc_skb(skb_len);
1457 if (unlikely(!skb))
1458 goto out;
1459 __skb_put(skb, pull_len);
1460 skb_copy_to_linear_data(skb, gl->va, pull_len);
1462 copy_frags(skb_shinfo(skb), gl, pull_len);
1463 skb->len = gl->tot_len;
1464 skb->data_len = skb->len - pull_len;
1465 skb->truesize += skb->data_len;
1467 out: return skb;
1469 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1472 * t4_pktgl_free - free a packet gather list
1473 * @gl: the gather list
1475 * Releases the pages of a packet gather list. We do not own the last
1476 * page on the list and do not free it.
1478 static void t4_pktgl_free(const struct pkt_gl *gl)
1480 int n;
1481 const skb_frag_t *p;
1483 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1484 put_page(p->page);
1488 * Process an MPS trace packet. Give it an unused protocol number so it won't
1489 * be delivered to anyone and send it to the stack for capture.
1491 static noinline int handle_trace_pkt(struct adapter *adap,
1492 const struct pkt_gl *gl)
1494 struct sk_buff *skb;
1495 struct cpl_trace_pkt *p;
1497 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1498 if (unlikely(!skb)) {
1499 t4_pktgl_free(gl);
1500 return 0;
1503 p = (struct cpl_trace_pkt *)skb->data;
1504 __skb_pull(skb, sizeof(*p));
1505 skb_reset_mac_header(skb);
1506 skb->protocol = htons(0xffff);
1507 skb->dev = adap->port[0];
1508 netif_receive_skb(skb);
1509 return 0;
1512 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1513 const struct cpl_rx_pkt *pkt)
1515 int ret;
1516 struct sk_buff *skb;
1518 skb = napi_get_frags(&rxq->rspq.napi);
1519 if (unlikely(!skb)) {
1520 t4_pktgl_free(gl);
1521 rxq->stats.rx_drops++;
1522 return;
1525 copy_frags(skb_shinfo(skb), gl, RX_PKT_PAD);
1526 skb->len = gl->tot_len - RX_PKT_PAD;
1527 skb->data_len = skb->len;
1528 skb->truesize += skb->data_len;
1529 skb->ip_summed = CHECKSUM_UNNECESSARY;
1530 skb_record_rx_queue(skb, rxq->rspq.idx);
1531 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1532 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1534 if (unlikely(pkt->vlan_ex)) {
1535 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1536 rxq->stats.vlan_ex++;
1538 ret = napi_gro_frags(&rxq->rspq.napi);
1539 if (ret == GRO_HELD)
1540 rxq->stats.lro_pkts++;
1541 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1542 rxq->stats.lro_merged++;
1543 rxq->stats.pkts++;
1544 rxq->stats.rx_cso++;
1548 * t4_ethrx_handler - process an ingress ethernet packet
1549 * @q: the response queue that received the packet
1550 * @rsp: the response queue descriptor holding the RX_PKT message
1551 * @si: the gather list of packet fragments
1553 * Process an ingress ethernet packet and deliver it to the stack.
1555 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1556 const struct pkt_gl *si)
1558 bool csum_ok;
1559 struct sk_buff *skb;
1560 const struct cpl_rx_pkt *pkt;
1561 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1563 if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT))
1564 return handle_trace_pkt(q->adap, si);
1566 pkt = (const struct cpl_rx_pkt *)rsp;
1567 csum_ok = pkt->csum_calc && !pkt->err_vec;
1568 if ((pkt->l2info & htonl(RXF_TCP)) &&
1569 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1570 do_gro(rxq, si, pkt);
1571 return 0;
1574 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1575 if (unlikely(!skb)) {
1576 t4_pktgl_free(si);
1577 rxq->stats.rx_drops++;
1578 return 0;
1581 __skb_pull(skb, RX_PKT_PAD); /* remove ethernet header padding */
1582 skb->protocol = eth_type_trans(skb, q->netdev);
1583 skb_record_rx_queue(skb, q->idx);
1584 if (skb->dev->features & NETIF_F_RXHASH)
1585 skb->rxhash = (__force u32)pkt->rsshdr.hash_val;
1587 rxq->stats.pkts++;
1589 if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) &&
1590 (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) {
1591 if (!pkt->ip_frag) {
1592 skb->ip_summed = CHECKSUM_UNNECESSARY;
1593 rxq->stats.rx_cso++;
1594 } else if (pkt->l2info & htonl(RXF_IP)) {
1595 __sum16 c = (__force __sum16)pkt->csum;
1596 skb->csum = csum_unfold(c);
1597 skb->ip_summed = CHECKSUM_COMPLETE;
1598 rxq->stats.rx_cso++;
1600 } else
1601 skb_checksum_none_assert(skb);
1603 if (unlikely(pkt->vlan_ex)) {
1604 __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan));
1605 rxq->stats.vlan_ex++;
1607 netif_receive_skb(skb);
1608 return 0;
1612 * restore_rx_bufs - put back a packet's Rx buffers
1613 * @si: the packet gather list
1614 * @q: the SGE free list
1615 * @frags: number of FL buffers to restore
1617 * Puts back on an FL the Rx buffers associated with @si. The buffers
1618 * have already been unmapped and are left unmapped, we mark them so to
1619 * prevent further unmapping attempts.
1621 * This function undoes a series of @unmap_rx_buf calls when we find out
1622 * that the current packet can't be processed right away afterall and we
1623 * need to come back to it later. This is a very rare event and there's
1624 * no effort to make this particularly efficient.
1626 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1627 int frags)
1629 struct rx_sw_desc *d;
1631 while (frags--) {
1632 if (q->cidx == 0)
1633 q->cidx = q->size - 1;
1634 else
1635 q->cidx--;
1636 d = &q->sdesc[q->cidx];
1637 d->page = si->frags[frags].page;
1638 d->dma_addr |= RX_UNMAPPED_BUF;
1639 q->avail++;
1644 * is_new_response - check if a response is newly written
1645 * @r: the response descriptor
1646 * @q: the response queue
1648 * Returns true if a response descriptor contains a yet unprocessed
1649 * response.
1651 static inline bool is_new_response(const struct rsp_ctrl *r,
1652 const struct sge_rspq *q)
1654 return RSPD_GEN(r->type_gen) == q->gen;
1658 * rspq_next - advance to the next entry in a response queue
1659 * @q: the queue
1661 * Updates the state of a response queue to advance it to the next entry.
1663 static inline void rspq_next(struct sge_rspq *q)
1665 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1666 if (unlikely(++q->cidx == q->size)) {
1667 q->cidx = 0;
1668 q->gen ^= 1;
1669 q->cur_desc = q->desc;
1674 * process_responses - process responses from an SGE response queue
1675 * @q: the ingress queue to process
1676 * @budget: how many responses can be processed in this round
1678 * Process responses from an SGE response queue up to the supplied budget.
1679 * Responses include received packets as well as control messages from FW
1680 * or HW.
1682 * Additionally choose the interrupt holdoff time for the next interrupt
1683 * on this queue. If the system is under memory shortage use a fairly
1684 * long delay to help recovery.
1686 static int process_responses(struct sge_rspq *q, int budget)
1688 int ret, rsp_type;
1689 int budget_left = budget;
1690 const struct rsp_ctrl *rc;
1691 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1693 while (likely(budget_left)) {
1694 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1695 if (!is_new_response(rc, q))
1696 break;
1698 rmb();
1699 rsp_type = RSPD_TYPE(rc->type_gen);
1700 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1701 skb_frag_t *fp;
1702 struct pkt_gl si;
1703 const struct rx_sw_desc *rsd;
1704 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1706 if (len & RSPD_NEWBUF) {
1707 if (likely(q->offset > 0)) {
1708 free_rx_bufs(q->adap, &rxq->fl, 1);
1709 q->offset = 0;
1711 len = RSPD_LEN(len);
1713 si.tot_len = len;
1715 /* gather packet fragments */
1716 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1717 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1718 bufsz = get_buf_size(rsd);
1719 fp->page = rsd->page;
1720 fp->page_offset = q->offset;
1721 fp->size = min(bufsz, len);
1722 len -= fp->size;
1723 if (!len)
1724 break;
1725 unmap_rx_buf(q->adap, &rxq->fl);
1729 * Last buffer remains mapped so explicitly make it
1730 * coherent for CPU access.
1732 dma_sync_single_for_cpu(q->adap->pdev_dev,
1733 get_buf_addr(rsd),
1734 fp->size, DMA_FROM_DEVICE);
1736 si.va = page_address(si.frags[0].page) +
1737 si.frags[0].page_offset;
1738 prefetch(si.va);
1740 si.nfrags = frags + 1;
1741 ret = q->handler(q, q->cur_desc, &si);
1742 if (likely(ret == 0))
1743 q->offset += ALIGN(fp->size, FL_ALIGN);
1744 else
1745 restore_rx_bufs(&si, &rxq->fl, frags);
1746 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1747 ret = q->handler(q, q->cur_desc, NULL);
1748 } else {
1749 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1752 if (unlikely(ret)) {
1753 /* couldn't process descriptor, back off for recovery */
1754 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1755 break;
1758 rspq_next(q);
1759 budget_left--;
1762 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1763 __refill_fl(q->adap, &rxq->fl);
1764 return budget - budget_left;
1768 * napi_rx_handler - the NAPI handler for Rx processing
1769 * @napi: the napi instance
1770 * @budget: how many packets we can process in this round
1772 * Handler for new data events when using NAPI. This does not need any
1773 * locking or protection from interrupts as data interrupts are off at
1774 * this point and other adapter interrupts do not interfere (the latter
1775 * in not a concern at all with MSI-X as non-data interrupts then have
1776 * a separate handler).
1778 static int napi_rx_handler(struct napi_struct *napi, int budget)
1780 unsigned int params;
1781 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1782 int work_done = process_responses(q, budget);
1784 if (likely(work_done < budget)) {
1785 napi_complete(napi);
1786 params = q->next_intr_params;
1787 q->next_intr_params = q->intr_params;
1788 } else
1789 params = QINTR_TIMER_IDX(7);
1791 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) |
1792 INGRESSQID((u32)q->cntxt_id) | SEINTARM(params));
1793 return work_done;
1797 * The MSI-X interrupt handler for an SGE response queue.
1799 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
1801 struct sge_rspq *q = cookie;
1803 napi_schedule(&q->napi);
1804 return IRQ_HANDLED;
1808 * Process the indirect interrupt entries in the interrupt queue and kick off
1809 * NAPI for each queue that has generated an entry.
1811 static unsigned int process_intrq(struct adapter *adap)
1813 unsigned int credits;
1814 const struct rsp_ctrl *rc;
1815 struct sge_rspq *q = &adap->sge.intrq;
1817 spin_lock(&adap->sge.intrq_lock);
1818 for (credits = 0; ; credits++) {
1819 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1820 if (!is_new_response(rc, q))
1821 break;
1823 rmb();
1824 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
1825 unsigned int qid = ntohl(rc->pldbuflen_qid);
1827 qid -= adap->sge.ingr_start;
1828 napi_schedule(&adap->sge.ingr_map[qid]->napi);
1831 rspq_next(q);
1834 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) |
1835 INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params));
1836 spin_unlock(&adap->sge.intrq_lock);
1837 return credits;
1841 * The MSI interrupt handler, which handles data events from SGE response queues
1842 * as well as error and other async events as they all use the same MSI vector.
1844 static irqreturn_t t4_intr_msi(int irq, void *cookie)
1846 struct adapter *adap = cookie;
1848 t4_slow_intr_handler(adap);
1849 process_intrq(adap);
1850 return IRQ_HANDLED;
1854 * Interrupt handler for legacy INTx interrupts.
1855 * Handles data events from SGE response queues as well as error and other
1856 * async events as they all use the same interrupt line.
1858 static irqreturn_t t4_intr_intx(int irq, void *cookie)
1860 struct adapter *adap = cookie;
1862 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0);
1863 if (t4_slow_intr_handler(adap) | process_intrq(adap))
1864 return IRQ_HANDLED;
1865 return IRQ_NONE; /* probably shared interrupt */
1869 * t4_intr_handler - select the top-level interrupt handler
1870 * @adap: the adapter
1872 * Selects the top-level interrupt handler based on the type of interrupts
1873 * (MSI-X, MSI, or INTx).
1875 irq_handler_t t4_intr_handler(struct adapter *adap)
1877 if (adap->flags & USING_MSIX)
1878 return t4_sge_intr_msix;
1879 if (adap->flags & USING_MSI)
1880 return t4_intr_msi;
1881 return t4_intr_intx;
1884 static void sge_rx_timer_cb(unsigned long data)
1886 unsigned long m;
1887 unsigned int i, cnt[2];
1888 struct adapter *adap = (struct adapter *)data;
1889 struct sge *s = &adap->sge;
1891 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++)
1892 for (m = s->starving_fl[i]; m; m &= m - 1) {
1893 struct sge_eth_rxq *rxq;
1894 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1895 struct sge_fl *fl = s->egr_map[id];
1897 clear_bit(id, s->starving_fl);
1898 smp_mb__after_clear_bit();
1900 if (fl_starving(fl)) {
1901 rxq = container_of(fl, struct sge_eth_rxq, fl);
1902 if (napi_reschedule(&rxq->rspq.napi))
1903 fl->starving++;
1904 else
1905 set_bit(id, s->starving_fl);
1909 t4_write_reg(adap, SGE_DEBUG_INDEX, 13);
1910 cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH);
1911 cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW);
1913 for (i = 0; i < 2; i++)
1914 if (cnt[i] >= s->starve_thres) {
1915 if (s->idma_state[i] || cnt[i] == 0xffffffff)
1916 continue;
1917 s->idma_state[i] = 1;
1918 t4_write_reg(adap, SGE_DEBUG_INDEX, 11);
1919 m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16);
1920 dev_warn(adap->pdev_dev,
1921 "SGE idma%u starvation detected for "
1922 "queue %lu\n", i, m & 0xffff);
1923 } else if (s->idma_state[i])
1924 s->idma_state[i] = 0;
1926 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1929 static void sge_tx_timer_cb(unsigned long data)
1931 unsigned long m;
1932 unsigned int i, budget;
1933 struct adapter *adap = (struct adapter *)data;
1934 struct sge *s = &adap->sge;
1936 for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++)
1937 for (m = s->txq_maperr[i]; m; m &= m - 1) {
1938 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
1939 struct sge_ofld_txq *txq = s->egr_map[id];
1941 clear_bit(id, s->txq_maperr);
1942 tasklet_schedule(&txq->qresume_tsk);
1945 budget = MAX_TIMER_TX_RECLAIM;
1946 i = s->ethtxq_rover;
1947 do {
1948 struct sge_eth_txq *q = &s->ethtxq[i];
1950 if (q->q.in_use &&
1951 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
1952 __netif_tx_trylock(q->txq)) {
1953 int avail = reclaimable(&q->q);
1955 if (avail) {
1956 if (avail > budget)
1957 avail = budget;
1959 free_tx_desc(adap, &q->q, avail, true);
1960 q->q.in_use -= avail;
1961 budget -= avail;
1963 __netif_tx_unlock(q->txq);
1966 if (++i >= s->ethqsets)
1967 i = 0;
1968 } while (budget && i != s->ethtxq_rover);
1969 s->ethtxq_rover = i;
1970 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
1973 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
1974 struct net_device *dev, int intr_idx,
1975 struct sge_fl *fl, rspq_handler_t hnd)
1977 int ret, flsz = 0;
1978 struct fw_iq_cmd c;
1979 struct port_info *pi = netdev_priv(dev);
1981 /* Size needs to be multiple of 16, including status entry. */
1982 iq->size = roundup(iq->size, 16);
1984 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
1985 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
1986 if (!iq->desc)
1987 return -ENOMEM;
1989 memset(&c, 0, sizeof(c));
1990 c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
1991 FW_CMD_WRITE | FW_CMD_EXEC |
1992 FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0));
1993 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) |
1994 FW_LEN16(c));
1995 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1996 FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) |
1997 FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) |
1998 FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx :
1999 -intr_idx - 1));
2000 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2001 FW_IQ_CMD_IQGTSMODE |
2002 FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) |
2003 FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4));
2004 c.iqsize = htons(iq->size);
2005 c.iqaddr = cpu_to_be64(iq->phys_addr);
2007 if (fl) {
2008 fl->size = roundup(fl->size, 8);
2009 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2010 sizeof(struct rx_sw_desc), &fl->addr,
2011 &fl->sdesc, STAT_LEN, NUMA_NO_NODE);
2012 if (!fl->desc)
2013 goto fl_nomem;
2015 flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc);
2016 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN |
2017 FW_IQ_CMD_FL0FETCHRO(1) |
2018 FW_IQ_CMD_FL0DATARO(1) |
2019 FW_IQ_CMD_FL0PADEN);
2020 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) |
2021 FW_IQ_CMD_FL0FBMAX(3));
2022 c.fl0size = htons(flsz);
2023 c.fl0addr = cpu_to_be64(fl->addr);
2026 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2027 if (ret)
2028 goto err;
2030 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2031 iq->cur_desc = iq->desc;
2032 iq->cidx = 0;
2033 iq->gen = 1;
2034 iq->next_intr_params = iq->intr_params;
2035 iq->cntxt_id = ntohs(c.iqid);
2036 iq->abs_id = ntohs(c.physiqid);
2037 iq->size--; /* subtract status entry */
2038 iq->adap = adap;
2039 iq->netdev = dev;
2040 iq->handler = hnd;
2042 /* set offset to -1 to distinguish ingress queues without FL */
2043 iq->offset = fl ? 0 : -1;
2045 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2047 if (fl) {
2048 fl->cntxt_id = ntohs(c.fl0id);
2049 fl->avail = fl->pend_cred = 0;
2050 fl->pidx = fl->cidx = 0;
2051 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2052 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2053 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2055 return 0;
2057 fl_nomem:
2058 ret = -ENOMEM;
2059 err:
2060 if (iq->desc) {
2061 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2062 iq->desc, iq->phys_addr);
2063 iq->desc = NULL;
2065 if (fl && fl->desc) {
2066 kfree(fl->sdesc);
2067 fl->sdesc = NULL;
2068 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2069 fl->desc, fl->addr);
2070 fl->desc = NULL;
2072 return ret;
2075 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2077 q->in_use = 0;
2078 q->cidx = q->pidx = 0;
2079 q->stops = q->restarts = 0;
2080 q->stat = (void *)&q->desc[q->size];
2081 q->cntxt_id = id;
2082 adap->sge.egr_map[id - adap->sge.egr_start] = q;
2085 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2086 struct net_device *dev, struct netdev_queue *netdevq,
2087 unsigned int iqid)
2089 int ret, nentries;
2090 struct fw_eq_eth_cmd c;
2091 struct port_info *pi = netdev_priv(dev);
2093 /* Add status entries */
2094 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2096 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2097 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2098 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2099 netdev_queue_numa_node_read(netdevq));
2100 if (!txq->q.desc)
2101 return -ENOMEM;
2103 memset(&c, 0, sizeof(c));
2104 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
2105 FW_CMD_WRITE | FW_CMD_EXEC |
2106 FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0));
2107 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC |
2108 FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2109 c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid));
2110 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2111 FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
2112 FW_EQ_ETH_CMD_FETCHRO(1) |
2113 FW_EQ_ETH_CMD_IQID(iqid));
2114 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2115 FW_EQ_ETH_CMD_FBMAX(3) |
2116 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2117 FW_EQ_ETH_CMD_EQSIZE(nentries));
2118 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2120 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2121 if (ret) {
2122 kfree(txq->q.sdesc);
2123 txq->q.sdesc = NULL;
2124 dma_free_coherent(adap->pdev_dev,
2125 nentries * sizeof(struct tx_desc),
2126 txq->q.desc, txq->q.phys_addr);
2127 txq->q.desc = NULL;
2128 return ret;
2131 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2132 txq->txq = netdevq;
2133 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2134 txq->mapping_err = 0;
2135 return 0;
2138 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2139 struct net_device *dev, unsigned int iqid,
2140 unsigned int cmplqid)
2142 int ret, nentries;
2143 struct fw_eq_ctrl_cmd c;
2144 struct port_info *pi = netdev_priv(dev);
2146 /* Add status entries */
2147 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2149 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2150 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2151 NULL, 0, NUMA_NO_NODE);
2152 if (!txq->q.desc)
2153 return -ENOMEM;
2155 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
2156 FW_CMD_WRITE | FW_CMD_EXEC |
2157 FW_EQ_CTRL_CMD_PFN(adap->fn) |
2158 FW_EQ_CTRL_CMD_VFN(0));
2159 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC |
2160 FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2161 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid));
2162 c.physeqid_pkd = htonl(0);
2163 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2164 FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) |
2165 FW_EQ_CTRL_CMD_FETCHRO |
2166 FW_EQ_CTRL_CMD_IQID(iqid));
2167 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2168 FW_EQ_CTRL_CMD_FBMAX(3) |
2169 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2170 FW_EQ_CTRL_CMD_EQSIZE(nentries));
2171 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2173 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2174 if (ret) {
2175 dma_free_coherent(adap->pdev_dev,
2176 nentries * sizeof(struct tx_desc),
2177 txq->q.desc, txq->q.phys_addr);
2178 txq->q.desc = NULL;
2179 return ret;
2182 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid)));
2183 txq->adap = adap;
2184 skb_queue_head_init(&txq->sendq);
2185 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2186 txq->full = 0;
2187 return 0;
2190 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2191 struct net_device *dev, unsigned int iqid)
2193 int ret, nentries;
2194 struct fw_eq_ofld_cmd c;
2195 struct port_info *pi = netdev_priv(dev);
2197 /* Add status entries */
2198 nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);
2200 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2201 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2202 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN,
2203 NUMA_NO_NODE);
2204 if (!txq->q.desc)
2205 return -ENOMEM;
2207 memset(&c, 0, sizeof(c));
2208 c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
2209 FW_CMD_WRITE | FW_CMD_EXEC |
2210 FW_EQ_OFLD_CMD_PFN(adap->fn) |
2211 FW_EQ_OFLD_CMD_VFN(0));
2212 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC |
2213 FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2214 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2215 FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) |
2216 FW_EQ_OFLD_CMD_FETCHRO(1) |
2217 FW_EQ_OFLD_CMD_IQID(iqid));
2218 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2219 FW_EQ_OFLD_CMD_FBMAX(3) |
2220 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2221 FW_EQ_OFLD_CMD_EQSIZE(nentries));
2222 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2224 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2225 if (ret) {
2226 kfree(txq->q.sdesc);
2227 txq->q.sdesc = NULL;
2228 dma_free_coherent(adap->pdev_dev,
2229 nentries * sizeof(struct tx_desc),
2230 txq->q.desc, txq->q.phys_addr);
2231 txq->q.desc = NULL;
2232 return ret;
2235 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd)));
2236 txq->adap = adap;
2237 skb_queue_head_init(&txq->sendq);
2238 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2239 txq->full = 0;
2240 txq->mapping_err = 0;
2241 return 0;
2244 static void free_txq(struct adapter *adap, struct sge_txq *q)
2246 dma_free_coherent(adap->pdev_dev,
2247 q->size * sizeof(struct tx_desc) + STAT_LEN,
2248 q->desc, q->phys_addr);
2249 q->cntxt_id = 0;
2250 q->sdesc = NULL;
2251 q->desc = NULL;
2254 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2255 struct sge_fl *fl)
2257 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2259 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2260 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2261 rq->cntxt_id, fl_id, 0xffff);
2262 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2263 rq->desc, rq->phys_addr);
2264 netif_napi_del(&rq->napi);
2265 rq->netdev = NULL;
2266 rq->cntxt_id = rq->abs_id = 0;
2267 rq->desc = NULL;
2269 if (fl) {
2270 free_rx_bufs(adap, fl, fl->avail);
2271 dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN,
2272 fl->desc, fl->addr);
2273 kfree(fl->sdesc);
2274 fl->sdesc = NULL;
2275 fl->cntxt_id = 0;
2276 fl->desc = NULL;
2281 * t4_free_sge_resources - free SGE resources
2282 * @adap: the adapter
2284 * Frees resources used by the SGE queue sets.
2286 void t4_free_sge_resources(struct adapter *adap)
2288 int i;
2289 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2290 struct sge_eth_txq *etq = adap->sge.ethtxq;
2291 struct sge_ofld_rxq *oq = adap->sge.ofldrxq;
2293 /* clean up Ethernet Tx/Rx queues */
2294 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2295 if (eq->rspq.desc)
2296 free_rspq_fl(adap, &eq->rspq, &eq->fl);
2297 if (etq->q.desc) {
2298 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2299 etq->q.cntxt_id);
2300 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2301 kfree(etq->q.sdesc);
2302 free_txq(adap, &etq->q);
2306 /* clean up RDMA and iSCSI Rx queues */
2307 for (i = 0; i < adap->sge.ofldqsets; i++, oq++) {
2308 if (oq->rspq.desc)
2309 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2311 for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) {
2312 if (oq->rspq.desc)
2313 free_rspq_fl(adap, &oq->rspq, &oq->fl);
2316 /* clean up offload Tx queues */
2317 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2318 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2320 if (q->q.desc) {
2321 tasklet_kill(&q->qresume_tsk);
2322 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2323 q->q.cntxt_id);
2324 free_tx_desc(adap, &q->q, q->q.in_use, false);
2325 kfree(q->q.sdesc);
2326 __skb_queue_purge(&q->sendq);
2327 free_txq(adap, &q->q);
2331 /* clean up control Tx queues */
2332 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2333 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2335 if (cq->q.desc) {
2336 tasklet_kill(&cq->qresume_tsk);
2337 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2338 cq->q.cntxt_id);
2339 __skb_queue_purge(&cq->sendq);
2340 free_txq(adap, &cq->q);
2344 if (adap->sge.fw_evtq.desc)
2345 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2347 if (adap->sge.intrq.desc)
2348 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2350 /* clear the reverse egress queue map */
2351 memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map));
2354 void t4_sge_start(struct adapter *adap)
2356 adap->sge.ethtxq_rover = 0;
2357 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2358 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2362 * t4_sge_stop - disable SGE operation
2363 * @adap: the adapter
2365 * Stop tasklets and timers associated with the DMA engine. Note that
2366 * this is effective only if measures have been taken to disable any HW
2367 * events that may restart them.
2369 void t4_sge_stop(struct adapter *adap)
2371 int i;
2372 struct sge *s = &adap->sge;
2374 if (in_interrupt()) /* actions below require waiting */
2375 return;
2377 if (s->rx_timer.function)
2378 del_timer_sync(&s->rx_timer);
2379 if (s->tx_timer.function)
2380 del_timer_sync(&s->tx_timer);
2382 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2383 struct sge_ofld_txq *q = &s->ofldtxq[i];
2385 if (q->q.desc)
2386 tasklet_kill(&q->qresume_tsk);
2388 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2389 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2391 if (cq->q.desc)
2392 tasklet_kill(&cq->qresume_tsk);
2397 * t4_sge_init - initialize SGE
2398 * @adap: the adapter
2400 * Performs SGE initialization needed every time after a chip reset.
2401 * We do not initialize any of the queues here, instead the driver
2402 * top-level must request them individually.
2404 void t4_sge_init(struct adapter *adap)
2406 unsigned int i, v;
2407 struct sge *s = &adap->sge;
2408 unsigned int fl_align_log = ilog2(FL_ALIGN);
2410 t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK |
2411 INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE,
2412 INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) |
2413 RXPKTCPLMODE |
2414 (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0));
2416 for (i = v = 0; i < 32; i += 4)
2417 v |= (PAGE_SHIFT - 10) << i;
2418 t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v);
2419 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE);
2420 #if FL_PG_ORDER > 0
2421 t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER);
2422 #endif
2423 t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD,
2424 THRESHOLD_0(s->counter_val[0]) |
2425 THRESHOLD_1(s->counter_val[1]) |
2426 THRESHOLD_2(s->counter_val[2]) |
2427 THRESHOLD_3(s->counter_val[3]));
2428 t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1,
2429 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) |
2430 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1])));
2431 t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3,
2432 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) |
2433 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3])));
2434 t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5,
2435 TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) |
2436 TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5])));
2437 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2438 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2439 s->starve_thres = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2440 s->idma_state[0] = s->idma_state[1] = 0;
2441 spin_lock_init(&s->intrq_lock);