Add appropriate <linux/prefetch.h> include for prefetch users
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / chelsio / sge.c
blob58380d240619dc232b36c577268b1752606c455c
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
40 #include "common.h"
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57 #include <linux/prefetch.h>
59 #include "cpl5_cmd.h"
60 #include "sge.h"
61 #include "regs.h"
62 #include "espi.h"
64 /* This belongs in if_ether.h */
65 #define ETH_P_CPL5 0xf
67 #define SGE_CMDQ_N 2
68 #define SGE_FREELQ_N 2
69 #define SGE_CMDQ0_E_N 1024
70 #define SGE_CMDQ1_E_N 128
71 #define SGE_FREEL_SIZE 4096
72 #define SGE_JUMBO_FREEL_SIZE 512
73 #define SGE_FREEL_REFILL_THRESH 16
74 #define SGE_RESPQ_E_N 1024
75 #define SGE_INTRTIMER_NRES 1000
76 #define SGE_RX_SM_BUF_SIZE 1536
77 #define SGE_TX_DESC_MAX_PLEN 16384
79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
85 #define TX_RECLAIM_PERIOD (HZ / 4)
87 #define M_CMD_LEN 0x7fffffff
88 #define V_CMD_LEN(v) (v)
89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90 #define V_CMD_GEN1(v) ((v) << 31)
91 #define V_CMD_GEN2(v) (v)
92 #define F_CMD_DATAVALID (1 << 1)
93 #define F_CMD_SOP (1 << 2)
94 #define V_CMD_EOP(v) ((v) << 3)
97 * Command queue, receive buffer list, and response queue descriptors.
99 #if defined(__BIG_ENDIAN_BITFIELD)
100 struct cmdQ_e {
101 u32 addr_lo;
102 u32 len_gen;
103 u32 flags;
104 u32 addr_hi;
107 struct freelQ_e {
108 u32 addr_lo;
109 u32 len_gen;
110 u32 gen2;
111 u32 addr_hi;
114 struct respQ_e {
115 u32 Qsleeping : 4;
116 u32 Cmdq1CreditReturn : 5;
117 u32 Cmdq1DmaComplete : 5;
118 u32 Cmdq0CreditReturn : 5;
119 u32 Cmdq0DmaComplete : 5;
120 u32 FreelistQid : 2;
121 u32 CreditValid : 1;
122 u32 DataValid : 1;
123 u32 Offload : 1;
124 u32 Eop : 1;
125 u32 Sop : 1;
126 u32 GenerationBit : 1;
127 u32 BufferLength;
129 #elif defined(__LITTLE_ENDIAN_BITFIELD)
130 struct cmdQ_e {
131 u32 len_gen;
132 u32 addr_lo;
133 u32 addr_hi;
134 u32 flags;
137 struct freelQ_e {
138 u32 len_gen;
139 u32 addr_lo;
140 u32 addr_hi;
141 u32 gen2;
144 struct respQ_e {
145 u32 BufferLength;
146 u32 GenerationBit : 1;
147 u32 Sop : 1;
148 u32 Eop : 1;
149 u32 Offload : 1;
150 u32 DataValid : 1;
151 u32 CreditValid : 1;
152 u32 FreelistQid : 2;
153 u32 Cmdq0DmaComplete : 5;
154 u32 Cmdq0CreditReturn : 5;
155 u32 Cmdq1DmaComplete : 5;
156 u32 Cmdq1CreditReturn : 5;
157 u32 Qsleeping : 4;
159 #endif
162 * SW Context Command and Freelist Queue Descriptors
164 struct cmdQ_ce {
165 struct sk_buff *skb;
166 DEFINE_DMA_UNMAP_ADDR(dma_addr);
167 DEFINE_DMA_UNMAP_LEN(dma_len);
170 struct freelQ_ce {
171 struct sk_buff *skb;
172 DEFINE_DMA_UNMAP_ADDR(dma_addr);
173 DEFINE_DMA_UNMAP_LEN(dma_len);
177 * SW command, freelist and response rings
179 struct cmdQ {
180 unsigned long status; /* HW DMA fetch status */
181 unsigned int in_use; /* # of in-use command descriptors */
182 unsigned int size; /* # of descriptors */
183 unsigned int processed; /* total # of descs HW has processed */
184 unsigned int cleaned; /* total # of descs SW has reclaimed */
185 unsigned int stop_thres; /* SW TX queue suspend threshold */
186 u16 pidx; /* producer index (SW) */
187 u16 cidx; /* consumer index (HW) */
188 u8 genbit; /* current generation (=valid) bit */
189 u8 sop; /* is next entry start of packet? */
190 struct cmdQ_e *entries; /* HW command descriptor Q */
191 struct cmdQ_ce *centries; /* SW command context descriptor Q */
192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
196 struct freelQ {
197 unsigned int credits; /* # of available RX buffers */
198 unsigned int size; /* free list capacity */
199 u16 pidx; /* producer index (SW) */
200 u16 cidx; /* consumer index (HW) */
201 u16 rx_buffer_size; /* Buffer size on this free list */
202 u16 dma_offset; /* DMA offset to align IP headers */
203 u16 recycleq_idx; /* skb recycle q to use */
204 u8 genbit; /* current generation (=valid) bit */
205 struct freelQ_e *entries; /* HW freelist descriptor Q */
206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
210 struct respQ {
211 unsigned int credits; /* credits to be returned to SGE */
212 unsigned int size; /* # of response Q descriptors */
213 u16 cidx; /* consumer index (SW) */
214 u8 genbit; /* current generation(=valid) bit */
215 struct respQ_e *entries; /* HW response descriptor Q */
216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
219 /* Bit flags for cmdQ.status */
220 enum {
221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
225 /* T204 TX SW scheduler */
227 /* Per T204 TX port */
228 struct sched_port {
229 unsigned int avail; /* available bits - quota */
230 unsigned int drain_bits_per_1024ns; /* drain rate */
231 unsigned int speed; /* drain rate, mbps */
232 unsigned int mtu; /* mtu size */
233 struct sk_buff_head skbq; /* pending skbs */
236 /* Per T204 device */
237 struct sched {
238 ktime_t last_updated; /* last time quotas were computed */
239 unsigned int max_avail; /* max bits to be sent to any port */
240 unsigned int port; /* port index (round robin ports) */
241 unsigned int num; /* num skbs in per port queues */
242 struct sched_port p[MAX_NPORTS];
243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
245 static void restart_sched(unsigned long);
249 * Main SGE data structure
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
254 * contention.
256 struct sge {
257 struct adapter *adapter; /* adapter backpointer */
258 struct net_device *netdev; /* netdevice backpointer */
259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260 struct respQ respQ; /* response Q */
261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263 unsigned int jumbo_fl; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267 struct timer_list espibug_timer;
268 unsigned long espibug_timeout;
269 struct sk_buff *espibug_skb[MAX_NPORTS];
270 u32 sge_control; /* shadow value of sge control reg */
271 struct sge_intr_counts stats;
272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273 struct sched *tx_sched;
274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
282 * stop tasklet and free all pending skb's
284 static void tx_sched_stop(struct sge *sge)
286 struct sched *s = sge->tx_sched;
287 int i;
289 tasklet_kill(&s->sched_tsk);
291 for (i = 0; i < MAX_NPORTS; i++)
292 __skb_queue_purge(&s->p[s->port].skbq);
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300 unsigned int mtu, unsigned int speed)
302 struct sched *s = sge->tx_sched;
303 struct sched_port *p = &s->p[port];
304 unsigned int max_avail_segs;
306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307 if (speed)
308 p->speed = speed;
309 if (mtu)
310 p->mtu = mtu;
312 if (speed || mtu) {
313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314 do_div(drain, (p->mtu + 50) * 1000);
315 p->drain_bits_per_1024ns = (unsigned int) drain;
317 if (p->speed < 1000)
318 p->drain_bits_per_1024ns =
319 90 * p->drain_bits_per_1024ns / 100;
322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323 p->drain_bits_per_1024ns -= 16;
324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326 } else {
327 s->max_avail = 16384;
328 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333 p->speed, s->max_avail, max_avail_segs,
334 p->drain_bits_per_1024ns);
336 return max_avail_segs * (p->mtu - 40);
339 #if 0
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
347 struct sched *s = sge->tx_sched;
348 unsigned int i;
350 s->max_avail = val;
351 for (i = 0; i < MAX_NPORTS; i++)
352 t1_sched_update_parms(sge, i, 0, 0);
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360 unsigned int val)
362 struct sched *s = sge->tx_sched;
363 struct sched_port *p = &s->p[port];
364 p->drain_bits_per_1024ns = val * 1024 / 1000;
365 t1_sched_update_parms(sge, port, 0, 0);
368 #endif /* 0 */
372 * get_clock() implements a ns clock (see ktime_get)
374 static inline ktime_t get_clock(void)
376 struct timespec ts;
378 ktime_get_ts(&ts);
379 return timespec_to_ktime(ts);
383 * tx_sched_init() allocates resources and does basic initialization.
385 static int tx_sched_init(struct sge *sge)
387 struct sched *s;
388 int i;
390 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
391 if (!s)
392 return -ENOMEM;
394 pr_debug("tx_sched_init\n");
395 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
396 sge->tx_sched = s;
398 for (i = 0; i < MAX_NPORTS; i++) {
399 skb_queue_head_init(&s->p[i].skbq);
400 t1_sched_update_parms(sge, i, 1500, 1000);
403 return 0;
407 * sched_update_avail() computes the delta since the last time it was called
408 * and updates the per port quota (number of bits that can be sent to the any
409 * port).
411 static inline int sched_update_avail(struct sge *sge)
413 struct sched *s = sge->tx_sched;
414 ktime_t now = get_clock();
415 unsigned int i;
416 long long delta_time_ns;
418 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
420 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
421 if (delta_time_ns < 15000)
422 return 0;
424 for (i = 0; i < MAX_NPORTS; i++) {
425 struct sched_port *p = &s->p[i];
426 unsigned int delta_avail;
428 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
429 p->avail = min(p->avail + delta_avail, s->max_avail);
432 s->last_updated = now;
434 return 1;
438 * sched_skb() is called from two different places. In the tx path, any
439 * packet generating load on an output port will call sched_skb()
440 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
441 * context (skb == NULL).
442 * The scheduler only returns a skb (which will then be sent) if the
443 * length of the skb is <= the current quota of the output port.
445 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
446 unsigned int credits)
448 struct sched *s = sge->tx_sched;
449 struct sk_buff_head *skbq;
450 unsigned int i, len, update = 1;
452 pr_debug("sched_skb %p\n", skb);
453 if (!skb) {
454 if (!s->num)
455 return NULL;
456 } else {
457 skbq = &s->p[skb->dev->if_port].skbq;
458 __skb_queue_tail(skbq, skb);
459 s->num++;
460 skb = NULL;
463 if (credits < MAX_SKB_FRAGS + 1)
464 goto out;
466 again:
467 for (i = 0; i < MAX_NPORTS; i++) {
468 s->port = (s->port + 1) & (MAX_NPORTS - 1);
469 skbq = &s->p[s->port].skbq;
471 skb = skb_peek(skbq);
473 if (!skb)
474 continue;
476 len = skb->len;
477 if (len <= s->p[s->port].avail) {
478 s->p[s->port].avail -= len;
479 s->num--;
480 __skb_unlink(skb, skbq);
481 goto out;
483 skb = NULL;
486 if (update-- && sched_update_avail(sge))
487 goto again;
489 out:
490 /* If there are more pending skbs, we use the hardware to schedule us
491 * again.
493 if (s->num && !skb) {
494 struct cmdQ *q = &sge->cmdQ[0];
495 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
496 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
497 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
498 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
501 pr_debug("sched_skb ret %p\n", skb);
503 return skb;
507 * PIO to indicate that memory mapped Q contains valid descriptor(s).
509 static inline void doorbell_pio(struct adapter *adapter, u32 val)
511 wmb();
512 writel(val, adapter->regs + A_SG_DOORBELL);
516 * Frees all RX buffers on the freelist Q. The caller must make sure that
517 * the SGE is turned off before calling this function.
519 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
521 unsigned int cidx = q->cidx;
523 while (q->credits--) {
524 struct freelQ_ce *ce = &q->centries[cidx];
526 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
527 dma_unmap_len(ce, dma_len),
528 PCI_DMA_FROMDEVICE);
529 dev_kfree_skb(ce->skb);
530 ce->skb = NULL;
531 if (++cidx == q->size)
532 cidx = 0;
537 * Free RX free list and response queue resources.
539 static void free_rx_resources(struct sge *sge)
541 struct pci_dev *pdev = sge->adapter->pdev;
542 unsigned int size, i;
544 if (sge->respQ.entries) {
545 size = sizeof(struct respQ_e) * sge->respQ.size;
546 pci_free_consistent(pdev, size, sge->respQ.entries,
547 sge->respQ.dma_addr);
550 for (i = 0; i < SGE_FREELQ_N; i++) {
551 struct freelQ *q = &sge->freelQ[i];
553 if (q->centries) {
554 free_freelQ_buffers(pdev, q);
555 kfree(q->centries);
557 if (q->entries) {
558 size = sizeof(struct freelQ_e) * q->size;
559 pci_free_consistent(pdev, size, q->entries,
560 q->dma_addr);
566 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
567 * response queue.
569 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
571 struct pci_dev *pdev = sge->adapter->pdev;
572 unsigned int size, i;
574 for (i = 0; i < SGE_FREELQ_N; i++) {
575 struct freelQ *q = &sge->freelQ[i];
577 q->genbit = 1;
578 q->size = p->freelQ_size[i];
579 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
580 size = sizeof(struct freelQ_e) * q->size;
581 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
582 if (!q->entries)
583 goto err_no_mem;
585 size = sizeof(struct freelQ_ce) * q->size;
586 q->centries = kzalloc(size, GFP_KERNEL);
587 if (!q->centries)
588 goto err_no_mem;
592 * Calculate the buffer sizes for the two free lists. FL0 accommodates
593 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
594 * including all the sk_buff overhead.
596 * Note: For T2 FL0 and FL1 are reversed.
598 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
599 sizeof(struct cpl_rx_data) +
600 sge->freelQ[!sge->jumbo_fl].dma_offset;
602 size = (16 * 1024) -
603 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
605 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
608 * Setup which skb recycle Q should be used when recycling buffers from
609 * each free list.
611 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
612 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
614 sge->respQ.genbit = 1;
615 sge->respQ.size = SGE_RESPQ_E_N;
616 sge->respQ.credits = 0;
617 size = sizeof(struct respQ_e) * sge->respQ.size;
618 sge->respQ.entries =
619 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
620 if (!sge->respQ.entries)
621 goto err_no_mem;
622 return 0;
624 err_no_mem:
625 free_rx_resources(sge);
626 return -ENOMEM;
630 * Reclaims n TX descriptors and frees the buffers associated with them.
632 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
634 struct cmdQ_ce *ce;
635 struct pci_dev *pdev = sge->adapter->pdev;
636 unsigned int cidx = q->cidx;
638 q->in_use -= n;
639 ce = &q->centries[cidx];
640 while (n--) {
641 if (likely(dma_unmap_len(ce, dma_len))) {
642 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
643 dma_unmap_len(ce, dma_len),
644 PCI_DMA_TODEVICE);
645 if (q->sop)
646 q->sop = 0;
648 if (ce->skb) {
649 dev_kfree_skb_any(ce->skb);
650 q->sop = 1;
652 ce++;
653 if (++cidx == q->size) {
654 cidx = 0;
655 ce = q->centries;
658 q->cidx = cidx;
662 * Free TX resources.
664 * Assumes that SGE is stopped and all interrupts are disabled.
666 static void free_tx_resources(struct sge *sge)
668 struct pci_dev *pdev = sge->adapter->pdev;
669 unsigned int size, i;
671 for (i = 0; i < SGE_CMDQ_N; i++) {
672 struct cmdQ *q = &sge->cmdQ[i];
674 if (q->centries) {
675 if (q->in_use)
676 free_cmdQ_buffers(sge, q, q->in_use);
677 kfree(q->centries);
679 if (q->entries) {
680 size = sizeof(struct cmdQ_e) * q->size;
681 pci_free_consistent(pdev, size, q->entries,
682 q->dma_addr);
688 * Allocates basic TX resources, consisting of memory mapped command Qs.
690 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
692 struct pci_dev *pdev = sge->adapter->pdev;
693 unsigned int size, i;
695 for (i = 0; i < SGE_CMDQ_N; i++) {
696 struct cmdQ *q = &sge->cmdQ[i];
698 q->genbit = 1;
699 q->sop = 1;
700 q->size = p->cmdQ_size[i];
701 q->in_use = 0;
702 q->status = 0;
703 q->processed = q->cleaned = 0;
704 q->stop_thres = 0;
705 spin_lock_init(&q->lock);
706 size = sizeof(struct cmdQ_e) * q->size;
707 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
708 if (!q->entries)
709 goto err_no_mem;
711 size = sizeof(struct cmdQ_ce) * q->size;
712 q->centries = kzalloc(size, GFP_KERNEL);
713 if (!q->centries)
714 goto err_no_mem;
718 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
719 * only. For queue 0 set the stop threshold so we can handle one more
720 * packet from each port, plus reserve an additional 24 entries for
721 * Ethernet packets only. Queue 1 never suspends nor do we reserve
722 * space for Ethernet packets.
724 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
725 (MAX_SKB_FRAGS + 1);
726 return 0;
728 err_no_mem:
729 free_tx_resources(sge);
730 return -ENOMEM;
733 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
734 u32 size, int base_reg_lo,
735 int base_reg_hi, int size_reg)
737 writel((u32)addr, adapter->regs + base_reg_lo);
738 writel(addr >> 32, adapter->regs + base_reg_hi);
739 writel(size, adapter->regs + size_reg);
743 * Enable/disable VLAN acceleration.
745 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
747 struct sge *sge = adapter->sge;
749 sge->sge_control &= ~F_VLAN_XTRACT;
750 if (on_off)
751 sge->sge_control |= F_VLAN_XTRACT;
752 if (adapter->open_device_map) {
753 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
754 readl(adapter->regs + A_SG_CONTROL); /* flush */
759 * Programs the various SGE registers. However, the engine is not yet enabled,
760 * but sge->sge_control is setup and ready to go.
762 static void configure_sge(struct sge *sge, struct sge_params *p)
764 struct adapter *ap = sge->adapter;
766 writel(0, ap->regs + A_SG_CONTROL);
767 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
768 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
769 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
770 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
771 setup_ring_params(ap, sge->freelQ[0].dma_addr,
772 sge->freelQ[0].size, A_SG_FL0BASELWR,
773 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
774 setup_ring_params(ap, sge->freelQ[1].dma_addr,
775 sge->freelQ[1].size, A_SG_FL1BASELWR,
776 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
778 /* The threshold comparison uses <. */
779 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
781 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
782 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
783 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
785 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
786 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
787 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
788 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
790 #if defined(__BIG_ENDIAN_BITFIELD)
791 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
792 #endif
794 /* Initialize no-resource timer */
795 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
797 t1_sge_set_coalesce_params(sge, p);
801 * Return the payload capacity of the jumbo free-list buffers.
803 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
805 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
806 sge->freelQ[sge->jumbo_fl].dma_offset -
807 sizeof(struct cpl_rx_data);
811 * Frees all SGE related resources and the sge structure itself
813 void t1_sge_destroy(struct sge *sge)
815 int i;
817 for_each_port(sge->adapter, i)
818 free_percpu(sge->port_stats[i]);
820 kfree(sge->tx_sched);
821 free_tx_resources(sge);
822 free_rx_resources(sge);
823 kfree(sge);
827 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
828 * context Q) until the Q is full or alloc_skb fails.
830 * It is possible that the generation bits already match, indicating that the
831 * buffer is already valid and nothing needs to be done. This happens when we
832 * copied a received buffer into a new sk_buff during the interrupt processing.
834 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
835 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
836 * aligned.
838 static void refill_free_list(struct sge *sge, struct freelQ *q)
840 struct pci_dev *pdev = sge->adapter->pdev;
841 struct freelQ_ce *ce = &q->centries[q->pidx];
842 struct freelQ_e *e = &q->entries[q->pidx];
843 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
845 while (q->credits < q->size) {
846 struct sk_buff *skb;
847 dma_addr_t mapping;
849 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
850 if (!skb)
851 break;
853 skb_reserve(skb, q->dma_offset);
854 mapping = pci_map_single(pdev, skb->data, dma_len,
855 PCI_DMA_FROMDEVICE);
856 skb_reserve(skb, sge->rx_pkt_pad);
858 ce->skb = skb;
859 dma_unmap_addr_set(ce, dma_addr, mapping);
860 dma_unmap_len_set(ce, dma_len, dma_len);
861 e->addr_lo = (u32)mapping;
862 e->addr_hi = (u64)mapping >> 32;
863 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
864 wmb();
865 e->gen2 = V_CMD_GEN2(q->genbit);
867 e++;
868 ce++;
869 if (++q->pidx == q->size) {
870 q->pidx = 0;
871 q->genbit ^= 1;
872 ce = q->centries;
873 e = q->entries;
875 q->credits++;
880 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
881 * of both rings, we go into 'few interrupt mode' in order to give the system
882 * time to free up resources.
884 static void freelQs_empty(struct sge *sge)
886 struct adapter *adapter = sge->adapter;
887 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
888 u32 irqholdoff_reg;
890 refill_free_list(sge, &sge->freelQ[0]);
891 refill_free_list(sge, &sge->freelQ[1]);
893 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
894 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
895 irq_reg |= F_FL_EXHAUSTED;
896 irqholdoff_reg = sge->fixed_intrtimer;
897 } else {
898 /* Clear the F_FL_EXHAUSTED interrupts for now */
899 irq_reg &= ~F_FL_EXHAUSTED;
900 irqholdoff_reg = sge->intrtimer_nres;
902 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
903 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
905 /* We reenable the Qs to force a freelist GTS interrupt later */
906 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
909 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
910 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
911 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
912 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
915 * Disable SGE Interrupts
917 void t1_sge_intr_disable(struct sge *sge)
919 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
921 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
922 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
926 * Enable SGE interrupts.
928 void t1_sge_intr_enable(struct sge *sge)
930 u32 en = SGE_INT_ENABLE;
931 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
933 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
934 en &= ~F_PACKET_TOO_BIG;
935 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
936 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
940 * Clear SGE interrupts.
942 void t1_sge_intr_clear(struct sge *sge)
944 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
945 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
949 * SGE 'Error' interrupt handler
951 int t1_sge_intr_error_handler(struct sge *sge)
953 struct adapter *adapter = sge->adapter;
954 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
956 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
957 cause &= ~F_PACKET_TOO_BIG;
958 if (cause & F_RESPQ_EXHAUSTED)
959 sge->stats.respQ_empty++;
960 if (cause & F_RESPQ_OVERFLOW) {
961 sge->stats.respQ_overflow++;
962 pr_alert("%s: SGE response queue overflow\n",
963 adapter->name);
965 if (cause & F_FL_EXHAUSTED) {
966 sge->stats.freelistQ_empty++;
967 freelQs_empty(sge);
969 if (cause & F_PACKET_TOO_BIG) {
970 sge->stats.pkt_too_big++;
971 pr_alert("%s: SGE max packet size exceeded\n",
972 adapter->name);
974 if (cause & F_PACKET_MISMATCH) {
975 sge->stats.pkt_mismatch++;
976 pr_alert("%s: SGE packet mismatch\n", adapter->name);
978 if (cause & SGE_INT_FATAL)
979 t1_fatal_err(adapter);
981 writel(cause, adapter->regs + A_SG_INT_CAUSE);
982 return 0;
985 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
987 return &sge->stats;
990 void t1_sge_get_port_stats(const struct sge *sge, int port,
991 struct sge_port_stats *ss)
993 int cpu;
995 memset(ss, 0, sizeof(*ss));
996 for_each_possible_cpu(cpu) {
997 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
999 ss->rx_cso_good += st->rx_cso_good;
1000 ss->tx_cso += st->tx_cso;
1001 ss->tx_tso += st->tx_tso;
1002 ss->tx_need_hdrroom += st->tx_need_hdrroom;
1003 ss->vlan_xtract += st->vlan_xtract;
1004 ss->vlan_insert += st->vlan_insert;
1009 * recycle_fl_buf - recycle a free list buffer
1010 * @fl: the free list
1011 * @idx: index of buffer to recycle
1013 * Recycles the specified buffer on the given free list by adding it at
1014 * the next available slot on the list.
1016 static void recycle_fl_buf(struct freelQ *fl, int idx)
1018 struct freelQ_e *from = &fl->entries[idx];
1019 struct freelQ_e *to = &fl->entries[fl->pidx];
1021 fl->centries[fl->pidx] = fl->centries[idx];
1022 to->addr_lo = from->addr_lo;
1023 to->addr_hi = from->addr_hi;
1024 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1025 wmb();
1026 to->gen2 = V_CMD_GEN2(fl->genbit);
1027 fl->credits++;
1029 if (++fl->pidx == fl->size) {
1030 fl->pidx = 0;
1031 fl->genbit ^= 1;
1035 static int copybreak __read_mostly = 256;
1036 module_param(copybreak, int, 0);
1037 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1040 * get_packet - return the next ingress packet buffer
1041 * @pdev: the PCI device that received the packet
1042 * @fl: the SGE free list holding the packet
1043 * @len: the actual packet length, excluding any SGE padding
1045 * Get the next packet from a free list and complete setup of the
1046 * sk_buff. If the packet is small we make a copy and recycle the
1047 * original buffer, otherwise we use the original buffer itself. If a
1048 * positive drop threshold is supplied packets are dropped and their
1049 * buffers recycled if (a) the number of remaining buffers is under the
1050 * threshold and the packet is too big to copy, or (b) the packet should
1051 * be copied but there is no memory for the copy.
1053 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1054 struct freelQ *fl, unsigned int len)
1056 struct sk_buff *skb;
1057 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1059 if (len < copybreak) {
1060 skb = alloc_skb(len + 2, GFP_ATOMIC);
1061 if (!skb)
1062 goto use_orig_buf;
1064 skb_reserve(skb, 2); /* align IP header */
1065 skb_put(skb, len);
1066 pci_dma_sync_single_for_cpu(pdev,
1067 dma_unmap_addr(ce, dma_addr),
1068 dma_unmap_len(ce, dma_len),
1069 PCI_DMA_FROMDEVICE);
1070 skb_copy_from_linear_data(ce->skb, skb->data, len);
1071 pci_dma_sync_single_for_device(pdev,
1072 dma_unmap_addr(ce, dma_addr),
1073 dma_unmap_len(ce, dma_len),
1074 PCI_DMA_FROMDEVICE);
1075 recycle_fl_buf(fl, fl->cidx);
1076 return skb;
1079 use_orig_buf:
1080 if (fl->credits < 2) {
1081 recycle_fl_buf(fl, fl->cidx);
1082 return NULL;
1085 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1086 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1087 skb = ce->skb;
1088 prefetch(skb->data);
1090 skb_put(skb, len);
1091 return skb;
1095 * unexpected_offload - handle an unexpected offload packet
1096 * @adapter: the adapter
1097 * @fl: the free list that received the packet
1099 * Called when we receive an unexpected offload packet (e.g., the TOE
1100 * function is disabled or the card is a NIC). Prints a message and
1101 * recycles the buffer.
1103 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1105 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1106 struct sk_buff *skb = ce->skb;
1108 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1109 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1110 pr_err("%s: unexpected offload packet, cmd %u\n",
1111 adapter->name, *skb->data);
1112 recycle_fl_buf(fl, fl->cidx);
1116 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1117 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1118 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1119 * Note that the *_large_page_tx_descs stuff will be optimized out when
1120 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1122 * compute_large_page_descs() computes how many additional descriptors are
1123 * required to break down the stack's request.
1125 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1127 unsigned int count = 0;
1129 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1130 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1131 unsigned int i, len = skb_headlen(skb);
1132 while (len > SGE_TX_DESC_MAX_PLEN) {
1133 count++;
1134 len -= SGE_TX_DESC_MAX_PLEN;
1136 for (i = 0; nfrags--; i++) {
1137 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1138 len = frag->size;
1139 while (len > SGE_TX_DESC_MAX_PLEN) {
1140 count++;
1141 len -= SGE_TX_DESC_MAX_PLEN;
1145 return count;
1149 * Write a cmdQ entry.
1151 * Since this function writes the 'flags' field, it must not be used to
1152 * write the first cmdQ entry.
1154 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1155 unsigned int len, unsigned int gen,
1156 unsigned int eop)
1158 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1160 e->addr_lo = (u32)mapping;
1161 e->addr_hi = (u64)mapping >> 32;
1162 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1163 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1167 * See comment for previous function.
1169 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1170 * *desc_len exceeds HW's capability.
1172 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1173 struct cmdQ_e **e,
1174 struct cmdQ_ce **ce,
1175 unsigned int *gen,
1176 dma_addr_t *desc_mapping,
1177 unsigned int *desc_len,
1178 unsigned int nfrags,
1179 struct cmdQ *q)
1181 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1182 struct cmdQ_e *e1 = *e;
1183 struct cmdQ_ce *ce1 = *ce;
1185 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1186 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1187 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1188 *gen, nfrags == 0 && *desc_len == 0);
1189 ce1->skb = NULL;
1190 dma_unmap_len_set(ce1, dma_len, 0);
1191 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1192 if (*desc_len) {
1193 ce1++;
1194 e1++;
1195 if (++pidx == q->size) {
1196 pidx = 0;
1197 *gen ^= 1;
1198 ce1 = q->centries;
1199 e1 = q->entries;
1203 *e = e1;
1204 *ce = ce1;
1206 return pidx;
1210 * Write the command descriptors to transmit the given skb starting at
1211 * descriptor pidx with the given generation.
1213 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1214 unsigned int pidx, unsigned int gen,
1215 struct cmdQ *q)
1217 dma_addr_t mapping, desc_mapping;
1218 struct cmdQ_e *e, *e1;
1219 struct cmdQ_ce *ce;
1220 unsigned int i, flags, first_desc_len, desc_len,
1221 nfrags = skb_shinfo(skb)->nr_frags;
1223 e = e1 = &q->entries[pidx];
1224 ce = &q->centries[pidx];
1226 mapping = pci_map_single(adapter->pdev, skb->data,
1227 skb_headlen(skb), PCI_DMA_TODEVICE);
1229 desc_mapping = mapping;
1230 desc_len = skb_headlen(skb);
1232 flags = F_CMD_DATAVALID | F_CMD_SOP |
1233 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1234 V_CMD_GEN2(gen);
1235 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1236 desc_len : SGE_TX_DESC_MAX_PLEN;
1237 e->addr_lo = (u32)desc_mapping;
1238 e->addr_hi = (u64)desc_mapping >> 32;
1239 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1240 ce->skb = NULL;
1241 dma_unmap_len_set(ce, dma_len, 0);
1243 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1244 desc_len > SGE_TX_DESC_MAX_PLEN) {
1245 desc_mapping += first_desc_len;
1246 desc_len -= first_desc_len;
1247 e1++;
1248 ce++;
1249 if (++pidx == q->size) {
1250 pidx = 0;
1251 gen ^= 1;
1252 e1 = q->entries;
1253 ce = q->centries;
1255 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1256 &desc_mapping, &desc_len,
1257 nfrags, q);
1259 if (likely(desc_len))
1260 write_tx_desc(e1, desc_mapping, desc_len, gen,
1261 nfrags == 0);
1264 ce->skb = NULL;
1265 dma_unmap_addr_set(ce, dma_addr, mapping);
1266 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1268 for (i = 0; nfrags--; i++) {
1269 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1270 e1++;
1271 ce++;
1272 if (++pidx == q->size) {
1273 pidx = 0;
1274 gen ^= 1;
1275 e1 = q->entries;
1276 ce = q->centries;
1279 mapping = pci_map_page(adapter->pdev, frag->page,
1280 frag->page_offset, frag->size,
1281 PCI_DMA_TODEVICE);
1282 desc_mapping = mapping;
1283 desc_len = frag->size;
1285 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1286 &desc_mapping, &desc_len,
1287 nfrags, q);
1288 if (likely(desc_len))
1289 write_tx_desc(e1, desc_mapping, desc_len, gen,
1290 nfrags == 0);
1291 ce->skb = NULL;
1292 dma_unmap_addr_set(ce, dma_addr, mapping);
1293 dma_unmap_len_set(ce, dma_len, frag->size);
1295 ce->skb = skb;
1296 wmb();
1297 e->flags = flags;
1301 * Clean up completed Tx buffers.
1303 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1305 unsigned int reclaim = q->processed - q->cleaned;
1307 if (reclaim) {
1308 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1309 q->processed, q->cleaned);
1310 free_cmdQ_buffers(sge, q, reclaim);
1311 q->cleaned += reclaim;
1316 * Called from tasklet. Checks the scheduler for any
1317 * pending skbs that can be sent.
1319 static void restart_sched(unsigned long arg)
1321 struct sge *sge = (struct sge *) arg;
1322 struct adapter *adapter = sge->adapter;
1323 struct cmdQ *q = &sge->cmdQ[0];
1324 struct sk_buff *skb;
1325 unsigned int credits, queued_skb = 0;
1327 spin_lock(&q->lock);
1328 reclaim_completed_tx(sge, q);
1330 credits = q->size - q->in_use;
1331 pr_debug("restart_sched credits=%d\n", credits);
1332 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1333 unsigned int genbit, pidx, count;
1334 count = 1 + skb_shinfo(skb)->nr_frags;
1335 count += compute_large_page_tx_descs(skb);
1336 q->in_use += count;
1337 genbit = q->genbit;
1338 pidx = q->pidx;
1339 q->pidx += count;
1340 if (q->pidx >= q->size) {
1341 q->pidx -= q->size;
1342 q->genbit ^= 1;
1344 write_tx_descs(adapter, skb, pidx, genbit, q);
1345 credits = q->size - q->in_use;
1346 queued_skb = 1;
1349 if (queued_skb) {
1350 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1351 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1352 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1353 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1356 spin_unlock(&q->lock);
1360 * sge_rx - process an ingress ethernet packet
1361 * @sge: the sge structure
1362 * @fl: the free list that contains the packet buffer
1363 * @len: the packet length
1365 * Process an ingress ethernet pakcet and deliver it to the stack.
1367 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1369 struct sk_buff *skb;
1370 const struct cpl_rx_pkt *p;
1371 struct adapter *adapter = sge->adapter;
1372 struct sge_port_stats *st;
1373 struct net_device *dev;
1375 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1376 if (unlikely(!skb)) {
1377 sge->stats.rx_drops++;
1378 return;
1381 p = (const struct cpl_rx_pkt *) skb->data;
1382 if (p->iff >= adapter->params.nports) {
1383 kfree_skb(skb);
1384 return;
1386 __skb_pull(skb, sizeof(*p));
1388 st = this_cpu_ptr(sge->port_stats[p->iff]);
1389 dev = adapter->port[p->iff].dev;
1391 skb->protocol = eth_type_trans(skb, dev);
1392 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1393 skb->protocol == htons(ETH_P_IP) &&
1394 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1395 ++st->rx_cso_good;
1396 skb->ip_summed = CHECKSUM_UNNECESSARY;
1397 } else
1398 skb_checksum_none_assert(skb);
1400 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1401 st->vlan_xtract++;
1402 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1403 ntohs(p->vlan));
1404 } else
1405 netif_receive_skb(skb);
1409 * Returns true if a command queue has enough available descriptors that
1410 * we can resume Tx operation after temporarily disabling its packet queue.
1412 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1414 unsigned int r = q->processed - q->cleaned;
1416 return q->in_use - r < (q->size >> 1);
1420 * Called when sufficient space has become available in the SGE command queues
1421 * after the Tx packet schedulers have been suspended to restart the Tx path.
1423 static void restart_tx_queues(struct sge *sge)
1425 struct adapter *adap = sge->adapter;
1426 int i;
1428 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1429 return;
1431 for_each_port(adap, i) {
1432 struct net_device *nd = adap->port[i].dev;
1434 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1435 netif_running(nd)) {
1436 sge->stats.cmdQ_restarted[2]++;
1437 netif_wake_queue(nd);
1443 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1444 * information.
1446 static unsigned int update_tx_info(struct adapter *adapter,
1447 unsigned int flags,
1448 unsigned int pr0)
1450 struct sge *sge = adapter->sge;
1451 struct cmdQ *cmdq = &sge->cmdQ[0];
1453 cmdq->processed += pr0;
1454 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1455 freelQs_empty(sge);
1456 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1458 if (flags & F_CMDQ0_ENABLE) {
1459 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1461 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1462 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1463 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1464 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1466 if (sge->tx_sched)
1467 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1469 flags &= ~F_CMDQ0_ENABLE;
1472 if (unlikely(sge->stopped_tx_queues != 0))
1473 restart_tx_queues(sge);
1475 return flags;
1479 * Process SGE responses, up to the supplied budget. Returns the number of
1480 * responses processed. A negative budget is effectively unlimited.
1482 static int process_responses(struct adapter *adapter, int budget)
1484 struct sge *sge = adapter->sge;
1485 struct respQ *q = &sge->respQ;
1486 struct respQ_e *e = &q->entries[q->cidx];
1487 int done = 0;
1488 unsigned int flags = 0;
1489 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1491 while (done < budget && e->GenerationBit == q->genbit) {
1492 flags |= e->Qsleeping;
1494 cmdq_processed[0] += e->Cmdq0CreditReturn;
1495 cmdq_processed[1] += e->Cmdq1CreditReturn;
1497 /* We batch updates to the TX side to avoid cacheline
1498 * ping-pong of TX state information on MP where the sender
1499 * might run on a different CPU than this function...
1501 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1502 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1503 cmdq_processed[0] = 0;
1506 if (unlikely(cmdq_processed[1] > 16)) {
1507 sge->cmdQ[1].processed += cmdq_processed[1];
1508 cmdq_processed[1] = 0;
1511 if (likely(e->DataValid)) {
1512 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1514 BUG_ON(!e->Sop || !e->Eop);
1515 if (unlikely(e->Offload))
1516 unexpected_offload(adapter, fl);
1517 else
1518 sge_rx(sge, fl, e->BufferLength);
1520 ++done;
1523 * Note: this depends on each packet consuming a
1524 * single free-list buffer; cf. the BUG above.
1526 if (++fl->cidx == fl->size)
1527 fl->cidx = 0;
1528 prefetch(fl->centries[fl->cidx].skb);
1530 if (unlikely(--fl->credits <
1531 fl->size - SGE_FREEL_REFILL_THRESH))
1532 refill_free_list(sge, fl);
1533 } else
1534 sge->stats.pure_rsps++;
1536 e++;
1537 if (unlikely(++q->cidx == q->size)) {
1538 q->cidx = 0;
1539 q->genbit ^= 1;
1540 e = q->entries;
1542 prefetch(e);
1544 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1545 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1546 q->credits = 0;
1550 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1551 sge->cmdQ[1].processed += cmdq_processed[1];
1553 return done;
1556 static inline int responses_pending(const struct adapter *adapter)
1558 const struct respQ *Q = &adapter->sge->respQ;
1559 const struct respQ_e *e = &Q->entries[Q->cidx];
1561 return e->GenerationBit == Q->genbit;
1565 * A simpler version of process_responses() that handles only pure (i.e.,
1566 * non data-carrying) responses. Such respones are too light-weight to justify
1567 * calling a softirq when using NAPI, so we handle them specially in hard
1568 * interrupt context. The function is called with a pointer to a response,
1569 * which the caller must ensure is a valid pure response. Returns 1 if it
1570 * encounters a valid data-carrying response, 0 otherwise.
1572 static int process_pure_responses(struct adapter *adapter)
1574 struct sge *sge = adapter->sge;
1575 struct respQ *q = &sge->respQ;
1576 struct respQ_e *e = &q->entries[q->cidx];
1577 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1578 unsigned int flags = 0;
1579 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1581 prefetch(fl->centries[fl->cidx].skb);
1582 if (e->DataValid)
1583 return 1;
1585 do {
1586 flags |= e->Qsleeping;
1588 cmdq_processed[0] += e->Cmdq0CreditReturn;
1589 cmdq_processed[1] += e->Cmdq1CreditReturn;
1591 e++;
1592 if (unlikely(++q->cidx == q->size)) {
1593 q->cidx = 0;
1594 q->genbit ^= 1;
1595 e = q->entries;
1597 prefetch(e);
1599 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1600 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1601 q->credits = 0;
1603 sge->stats.pure_rsps++;
1604 } while (e->GenerationBit == q->genbit && !e->DataValid);
1606 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1607 sge->cmdQ[1].processed += cmdq_processed[1];
1609 return e->GenerationBit == q->genbit;
1613 * Handler for new data events when using NAPI. This does not need any locking
1614 * or protection from interrupts as data interrupts are off at this point and
1615 * other adapter interrupts do not interfere.
1617 int t1_poll(struct napi_struct *napi, int budget)
1619 struct adapter *adapter = container_of(napi, struct adapter, napi);
1620 int work_done = process_responses(adapter, budget);
1622 if (likely(work_done < budget)) {
1623 napi_complete(napi);
1624 writel(adapter->sge->respQ.cidx,
1625 adapter->regs + A_SG_SLEEPING);
1627 return work_done;
1630 irqreturn_t t1_interrupt(int irq, void *data)
1632 struct adapter *adapter = data;
1633 struct sge *sge = adapter->sge;
1634 int handled;
1636 if (likely(responses_pending(adapter))) {
1637 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1639 if (napi_schedule_prep(&adapter->napi)) {
1640 if (process_pure_responses(adapter))
1641 __napi_schedule(&adapter->napi);
1642 else {
1643 /* no data, no NAPI needed */
1644 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1645 /* undo schedule_prep */
1646 napi_enable(&adapter->napi);
1649 return IRQ_HANDLED;
1652 spin_lock(&adapter->async_lock);
1653 handled = t1_slow_intr_handler(adapter);
1654 spin_unlock(&adapter->async_lock);
1656 if (!handled)
1657 sge->stats.unhandled_irqs++;
1659 return IRQ_RETVAL(handled != 0);
1663 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1665 * The code figures out how many entries the sk_buff will require in the
1666 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1667 * has complete. Then, it doesn't access the global structure anymore, but
1668 * uses the corresponding fields on the stack. In conjunction with a spinlock
1669 * around that code, we can make the function reentrant without holding the
1670 * lock when we actually enqueue (which might be expensive, especially on
1671 * architectures with IO MMUs).
1673 * This runs with softirqs disabled.
1675 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1676 unsigned int qid, struct net_device *dev)
1678 struct sge *sge = adapter->sge;
1679 struct cmdQ *q = &sge->cmdQ[qid];
1680 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1682 if (!spin_trylock(&q->lock))
1683 return NETDEV_TX_LOCKED;
1685 reclaim_completed_tx(sge, q);
1687 pidx = q->pidx;
1688 credits = q->size - q->in_use;
1689 count = 1 + skb_shinfo(skb)->nr_frags;
1690 count += compute_large_page_tx_descs(skb);
1692 /* Ethernet packet */
1693 if (unlikely(credits < count)) {
1694 if (!netif_queue_stopped(dev)) {
1695 netif_stop_queue(dev);
1696 set_bit(dev->if_port, &sge->stopped_tx_queues);
1697 sge->stats.cmdQ_full[2]++;
1698 pr_err("%s: Tx ring full while queue awake!\n",
1699 adapter->name);
1701 spin_unlock(&q->lock);
1702 return NETDEV_TX_BUSY;
1705 if (unlikely(credits - count < q->stop_thres)) {
1706 netif_stop_queue(dev);
1707 set_bit(dev->if_port, &sge->stopped_tx_queues);
1708 sge->stats.cmdQ_full[2]++;
1711 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1712 * through the scheduler.
1714 if (sge->tx_sched && !qid && skb->dev) {
1715 use_sched:
1716 use_sched_skb = 1;
1717 /* Note that the scheduler might return a different skb than
1718 * the one passed in.
1720 skb = sched_skb(sge, skb, credits);
1721 if (!skb) {
1722 spin_unlock(&q->lock);
1723 return NETDEV_TX_OK;
1725 pidx = q->pidx;
1726 count = 1 + skb_shinfo(skb)->nr_frags;
1727 count += compute_large_page_tx_descs(skb);
1730 q->in_use += count;
1731 genbit = q->genbit;
1732 pidx = q->pidx;
1733 q->pidx += count;
1734 if (q->pidx >= q->size) {
1735 q->pidx -= q->size;
1736 q->genbit ^= 1;
1738 spin_unlock(&q->lock);
1740 write_tx_descs(adapter, skb, pidx, genbit, q);
1743 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1744 * the doorbell if the Q is asleep. There is a natural race, where
1745 * the hardware is going to sleep just after we checked, however,
1746 * then the interrupt handler will detect the outstanding TX packet
1747 * and ring the doorbell for us.
1749 if (qid)
1750 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1751 else {
1752 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1753 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1754 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1755 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1759 if (use_sched_skb) {
1760 if (spin_trylock(&q->lock)) {
1761 credits = q->size - q->in_use;
1762 skb = NULL;
1763 goto use_sched;
1766 return NETDEV_TX_OK;
1769 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1772 * eth_hdr_len - return the length of an Ethernet header
1773 * @data: pointer to the start of the Ethernet header
1775 * Returns the length of an Ethernet header, including optional VLAN tag.
1777 static inline int eth_hdr_len(const void *data)
1779 const struct ethhdr *e = data;
1781 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1785 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1787 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1789 struct adapter *adapter = dev->ml_priv;
1790 struct sge *sge = adapter->sge;
1791 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1792 struct cpl_tx_pkt *cpl;
1793 struct sk_buff *orig_skb = skb;
1794 int ret;
1796 if (skb->protocol == htons(ETH_P_CPL5))
1797 goto send;
1800 * We are using a non-standard hard_header_len.
1801 * Allocate more header room in the rare cases it is not big enough.
1803 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1804 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1805 ++st->tx_need_hdrroom;
1806 dev_kfree_skb_any(orig_skb);
1807 if (!skb)
1808 return NETDEV_TX_OK;
1811 if (skb_shinfo(skb)->gso_size) {
1812 int eth_type;
1813 struct cpl_tx_pkt_lso *hdr;
1815 ++st->tx_tso;
1817 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1818 CPL_ETH_II : CPL_ETH_II_VLAN;
1820 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1821 hdr->opcode = CPL_TX_PKT_LSO;
1822 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1823 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1824 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1825 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1826 skb_shinfo(skb)->gso_size));
1827 hdr->len = htonl(skb->len - sizeof(*hdr));
1828 cpl = (struct cpl_tx_pkt *)hdr;
1829 } else {
1831 * Packets shorter than ETH_HLEN can break the MAC, drop them
1832 * early. Also, we may get oversized packets because some
1833 * parts of the kernel don't handle our unusual hard_header_len
1834 * right, drop those too.
1836 if (unlikely(skb->len < ETH_HLEN ||
1837 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1838 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1839 skb->len, eth_hdr_len(skb->data), dev->mtu);
1840 dev_kfree_skb_any(skb);
1841 return NETDEV_TX_OK;
1844 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1845 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1846 if (unlikely(skb_checksum_help(skb))) {
1847 pr_debug("%s: unable to do udp checksum\n", dev->name);
1848 dev_kfree_skb_any(skb);
1849 return NETDEV_TX_OK;
1853 /* Hmmm, assuming to catch the gratious arp... and we'll use
1854 * it to flush out stuck espi packets...
1856 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1857 if (skb->protocol == htons(ETH_P_ARP) &&
1858 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1859 adapter->sge->espibug_skb[dev->if_port] = skb;
1860 /* We want to re-use this skb later. We
1861 * simply bump the reference count and it
1862 * will not be freed...
1864 skb = skb_get(skb);
1868 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1869 cpl->opcode = CPL_TX_PKT;
1870 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1871 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1872 /* the length field isn't used so don't bother setting it */
1874 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1876 cpl->iff = dev->if_port;
1878 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1879 if (vlan_tx_tag_present(skb)) {
1880 cpl->vlan_valid = 1;
1881 cpl->vlan = htons(vlan_tx_tag_get(skb));
1882 st->vlan_insert++;
1883 } else
1884 #endif
1885 cpl->vlan_valid = 0;
1887 send:
1888 ret = t1_sge_tx(skb, adapter, 0, dev);
1890 /* If transmit busy, and we reallocated skb's due to headroom limit,
1891 * then silently discard to avoid leak.
1893 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1894 dev_kfree_skb_any(skb);
1895 ret = NETDEV_TX_OK;
1897 return ret;
1901 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1903 static void sge_tx_reclaim_cb(unsigned long data)
1905 int i;
1906 struct sge *sge = (struct sge *)data;
1908 for (i = 0; i < SGE_CMDQ_N; ++i) {
1909 struct cmdQ *q = &sge->cmdQ[i];
1911 if (!spin_trylock(&q->lock))
1912 continue;
1914 reclaim_completed_tx(sge, q);
1915 if (i == 0 && q->in_use) { /* flush pending credits */
1916 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1918 spin_unlock(&q->lock);
1920 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1924 * Propagate changes of the SGE coalescing parameters to the HW.
1926 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1928 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1929 core_ticks_per_usec(sge->adapter);
1930 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1931 return 0;
1935 * Allocates both RX and TX resources and configures the SGE. However,
1936 * the hardware is not enabled yet.
1938 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1940 if (alloc_rx_resources(sge, p))
1941 return -ENOMEM;
1942 if (alloc_tx_resources(sge, p)) {
1943 free_rx_resources(sge);
1944 return -ENOMEM;
1946 configure_sge(sge, p);
1949 * Now that we have sized the free lists calculate the payload
1950 * capacity of the large buffers. Other parts of the driver use
1951 * this to set the max offload coalescing size so that RX packets
1952 * do not overflow our large buffers.
1954 p->large_buf_capacity = jumbo_payload_capacity(sge);
1955 return 0;
1959 * Disables the DMA engine.
1961 void t1_sge_stop(struct sge *sge)
1963 int i;
1964 writel(0, sge->adapter->regs + A_SG_CONTROL);
1965 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1967 if (is_T2(sge->adapter))
1968 del_timer_sync(&sge->espibug_timer);
1970 del_timer_sync(&sge->tx_reclaim_timer);
1971 if (sge->tx_sched)
1972 tx_sched_stop(sge);
1974 for (i = 0; i < MAX_NPORTS; i++)
1975 kfree_skb(sge->espibug_skb[i]);
1979 * Enables the DMA engine.
1981 void t1_sge_start(struct sge *sge)
1983 refill_free_list(sge, &sge->freelQ[0]);
1984 refill_free_list(sge, &sge->freelQ[1]);
1986 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1987 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1988 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1990 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1992 if (is_T2(sge->adapter))
1993 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1997 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1999 static void espibug_workaround_t204(unsigned long data)
2001 struct adapter *adapter = (struct adapter *)data;
2002 struct sge *sge = adapter->sge;
2003 unsigned int nports = adapter->params.nports;
2004 u32 seop[MAX_NPORTS];
2006 if (adapter->open_device_map & PORT_MASK) {
2007 int i;
2009 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2010 return;
2012 for (i = 0; i < nports; i++) {
2013 struct sk_buff *skb = sge->espibug_skb[i];
2015 if (!netif_running(adapter->port[i].dev) ||
2016 netif_queue_stopped(adapter->port[i].dev) ||
2017 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2018 continue;
2020 if (!skb->cb[0]) {
2021 skb_copy_to_linear_data_offset(skb,
2022 sizeof(struct cpl_tx_pkt),
2023 ch_mac_addr,
2024 ETH_ALEN);
2025 skb_copy_to_linear_data_offset(skb,
2026 skb->len - 10,
2027 ch_mac_addr,
2028 ETH_ALEN);
2029 skb->cb[0] = 0xff;
2032 /* bump the reference count to avoid freeing of
2033 * the skb once the DMA has completed.
2035 skb = skb_get(skb);
2036 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2039 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2042 static void espibug_workaround(unsigned long data)
2044 struct adapter *adapter = (struct adapter *)data;
2045 struct sge *sge = adapter->sge;
2047 if (netif_running(adapter->port[0].dev)) {
2048 struct sk_buff *skb = sge->espibug_skb[0];
2049 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2051 if ((seop & 0xfff0fff) == 0xfff && skb) {
2052 if (!skb->cb[0]) {
2053 skb_copy_to_linear_data_offset(skb,
2054 sizeof(struct cpl_tx_pkt),
2055 ch_mac_addr,
2056 ETH_ALEN);
2057 skb_copy_to_linear_data_offset(skb,
2058 skb->len - 10,
2059 ch_mac_addr,
2060 ETH_ALEN);
2061 skb->cb[0] = 0xff;
2064 /* bump the reference count to avoid freeing of the
2065 * skb once the DMA has completed.
2067 skb = skb_get(skb);
2068 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2071 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2075 * Creates a t1_sge structure and returns suggested resource parameters.
2077 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2078 struct sge_params *p)
2080 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2081 int i;
2083 if (!sge)
2084 return NULL;
2086 sge->adapter = adapter;
2087 sge->netdev = adapter->port[0].dev;
2088 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2089 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2091 for_each_port(adapter, i) {
2092 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2093 if (!sge->port_stats[i])
2094 goto nomem_port;
2097 init_timer(&sge->tx_reclaim_timer);
2098 sge->tx_reclaim_timer.data = (unsigned long)sge;
2099 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2101 if (is_T2(sge->adapter)) {
2102 init_timer(&sge->espibug_timer);
2104 if (adapter->params.nports > 1) {
2105 tx_sched_init(sge);
2106 sge->espibug_timer.function = espibug_workaround_t204;
2107 } else
2108 sge->espibug_timer.function = espibug_workaround;
2109 sge->espibug_timer.data = (unsigned long)sge->adapter;
2111 sge->espibug_timeout = 1;
2112 /* for T204, every 10ms */
2113 if (adapter->params.nports > 1)
2114 sge->espibug_timeout = HZ/100;
2118 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2119 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2120 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2121 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2122 if (sge->tx_sched) {
2123 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2124 p->rx_coalesce_usecs = 15;
2125 else
2126 p->rx_coalesce_usecs = 50;
2127 } else
2128 p->rx_coalesce_usecs = 50;
2130 p->coalesce_enable = 0;
2131 p->sample_interval_usecs = 0;
2133 return sge;
2134 nomem_port:
2135 while (i >= 0) {
2136 free_percpu(sge->port_stats[i]);
2137 --i;
2139 kfree(sge);
2140 return NULL;