Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / spi / spi_imx.c
blob269a55ec52ef0e617caff931c448056cc991c32a
1 /*
2 * drivers/spi/spi_imx.c
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Initial version inspired by:
8 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
32 #include <linux/clk.h>
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/delay.h>
38 #include <mach/hardware.h>
39 #include <mach/imx-dma.h>
40 #include <mach/spi_imx.h>
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA (0x00)
45 #define SPI_TXDATA (0x04)
46 #define SPI_CONTROL (0x08)
47 #define SPI_INT_STATUS (0x0C)
48 #define SPI_TEST (0x10)
49 #define SPI_PERIOD (0x14)
50 #define SPI_DMA (0x18)
51 #define SPI_RESET (0x1C)
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK (0xF) /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n) (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL (0x1 << 4) /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH (0x0 << 4) /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW (0x1 << 4) /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA (0x1 << 5) /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0 (0x0 << 5) /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1 (0x1 << 5) /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL (0x1 << 6) /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0 (0x0 << 6) /* Master: /SS stays low between SPI burst
64 Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1 (0x1 << 6) /* Master: /SS insert pulse between SPI burst
66 Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL (0x1 << 7) /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW (0x0 << 7) /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH (0x1 << 7) /* /SS Active high */
70 #define SPI_CONTROL_XCH (0x1 << 8) /* Exchange */
71 #define SPI_CONTROL_SPIEN (0x1 << 9) /* SPI Module Enable */
72 #define SPI_CONTROL_MODE (0x1 << 10) /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE (0x0 << 10) /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER (0x1 << 10) /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL (0x3 << 11) /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0 (0x0 << 11) /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1 (0x1 << 11) /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2 (0x2 << 11) /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE (0x7 << 13) /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN (0) /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX (7) /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD (SPI_CONTROL_DATARATE_MIN + 1)
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE (0x1 << 0) /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH (0x1 << 1) /* TXFIFO Half Status */
89 #define SPI_STATUS_TF (0x1 << 2) /* TXFIFO Full Status */
90 #define SPI_STATUS_RR (0x1 << 3) /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH (0x1 << 4) /* RXFIFO Half Status */
92 #define SPI_STATUS_RF (0x1 << 5) /* RXFIFO Full Status */
93 #define SPI_STATUS_RO (0x1 << 6) /* RXFIFO Overflow */
94 #define SPI_STATUS_BO (0x1 << 7) /* Bit Count Overflow */
95 #define SPI_STATUS (0xFF) /* SPI Status Mask */
96 #define SPI_INTEN_TE (0x1 << 8) /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH (0x1 << 9) /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF (0x1 << 10) /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE (0x1 << 11) /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH (0x1 << 12) /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF (0x1 << 13) /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO (0x1 << 14) /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO (0x1 << 15) /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN (0xFF << 8) /* SPI Interrupt Enable Mask */
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT (0xF << 0) /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB (4) /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT (0xF << 4) /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS (0xF << 8) /* State Machine Status */
111 #define SPI_TEST_LBC (0x1 << 14) /* Loop Back Control */
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT (0x7FFF << 0) /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT (0x7FFF) /* Max Wait Between
116 Transactions */
117 #define SPI_PERIOD_CSRC (0x1 << 15) /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK (0x0 << 15) /* Period Clock Source is
119 Bit Clock */
120 #define SPI_PERIOD_CSRC_32768 (0x1 << 15) /* Period Clock Source is
121 32.768 KHz Clock */
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA (0x1 << 4) /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA (0x1 << 5) /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA (0x1 << 6) /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA (0x1 << 7) /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN (0x1 << 12) /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN (0x1 << 13) /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN (0x1 << 14) /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN (0x1 << 15) /* TXFIFO Half DMA Request Enable */
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1) /* Start */
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL \
139 SPI_CONTROL_BITCOUNT(16) | \
140 SPI_CONTROL_POL_ACT_HIGH | \
141 SPI_CONTROL_PHA_0 | \
142 SPI_CONTROL_SPIEN | \
143 SPI_CONTROL_SSCTL_1 | \
144 SPI_CONTROL_MODE_MASTER | \
145 SPI_CONTROL_DRCTL_0 | \
146 SPI_CONTROL_DATARATE_MIN \
148 #define SPI_DEFAULT_ENABLE_LOOPBACK (0)
149 #define SPI_DEFAULT_ENABLE_DMA (0)
150 #define SPI_DEFAULT_PERIOD_WAIT (8)
151 /*-------------------------------------------------------------------------*/
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH (8)
157 #define SPI_FIFO_BYTE_WIDTH (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN (2)
160 /* DMA burst length for half full/empty request trigger */
161 #define SPI_DMA_BLR (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
163 /* Dummy char output to achieve reads.
164 Choosing something different from all zeroes may help pattern recogition
165 for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8 0
167 #define SPI_DUMMY_u16 ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32 ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
171 * Macro to change a u32 field:
172 * @r : register to edit
173 * @m : bit mask
174 * @v : new value for the field correctly bit-alligned
176 #define u32_EDIT(r, m, v) r = (r & ~(m)) | (v)
178 /* Message state */
179 #define START_STATE ((void*)0)
180 #define RUNNING_STATE ((void*)1)
181 #define DONE_STATE ((void*)2)
182 #define ERROR_STATE ((void*)-1)
184 /* Queue state */
185 #define QUEUE_RUNNING (0)
186 #define QUEUE_STOPPED (1)
188 #define IS_DMA_ALIGNED(x) (((u32)(x) & 0x03) == 0)
189 /*-------------------------------------------------------------------------*/
192 /*-------------------------------------------------------------------------*/
193 /* Driver data structs */
195 /* Context */
196 struct driver_data {
197 /* Driver model hookup */
198 struct platform_device *pdev;
200 /* SPI framework hookup */
201 struct spi_master *master;
203 /* IMX hookup */
204 struct spi_imx_master *master_info;
206 /* Memory resources and SPI regs virtual address */
207 struct resource *ioarea;
208 void __iomem *regs;
210 /* SPI RX_DATA physical address */
211 dma_addr_t rd_data_phys;
213 /* Driver message queue */
214 struct workqueue_struct *workqueue;
215 struct work_struct work;
216 spinlock_t lock;
217 struct list_head queue;
218 int busy;
219 int run;
221 /* Message Transfer pump */
222 struct tasklet_struct pump_transfers;
224 /* Current message, transfer and state */
225 struct spi_message *cur_msg;
226 struct spi_transfer *cur_transfer;
227 struct chip_data *cur_chip;
229 /* Rd / Wr buffers pointers */
230 size_t len;
231 void *tx;
232 void *tx_end;
233 void *rx;
234 void *rx_end;
236 u8 rd_only;
237 u8 n_bytes;
238 int cs_change;
240 /* Function pointers */
241 irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
242 void (*cs_control)(u32 command);
244 /* DMA setup */
245 int rx_channel;
246 int tx_channel;
247 dma_addr_t rx_dma;
248 dma_addr_t tx_dma;
249 int rx_dma_needs_unmap;
250 int tx_dma_needs_unmap;
251 size_t tx_map_len;
252 u32 dummy_dma_buf ____cacheline_aligned;
254 struct clk *clk;
257 /* Runtime state */
258 struct chip_data {
259 u32 control;
260 u32 period;
261 u32 test;
263 u8 enable_dma:1;
264 u8 bits_per_word;
265 u8 n_bytes;
266 u32 max_speed_hz;
268 void (*cs_control)(u32 command);
270 /*-------------------------------------------------------------------------*/
273 static void pump_messages(struct work_struct *work);
275 static void flush(struct driver_data *drv_data)
277 void __iomem *regs = drv_data->regs;
278 u32 control;
280 dev_dbg(&drv_data->pdev->dev, "flush\n");
282 /* Wait for end of transaction */
283 do {
284 control = readl(regs + SPI_CONTROL);
285 } while (control & SPI_CONTROL_XCH);
287 /* Release chip select if requested, transfer delays are
288 handled in pump_transfers */
289 if (drv_data->cs_change)
290 drv_data->cs_control(SPI_CS_DEASSERT);
292 /* Disable SPI to flush FIFOs */
293 writel(control & ~SPI_CONTROL_SPIEN, regs + SPI_CONTROL);
294 writel(control, regs + SPI_CONTROL);
297 static void restore_state(struct driver_data *drv_data)
299 void __iomem *regs = drv_data->regs;
300 struct chip_data *chip = drv_data->cur_chip;
302 /* Load chip registers */
303 dev_dbg(&drv_data->pdev->dev,
304 "restore_state\n"
305 " test = 0x%08X\n"
306 " control = 0x%08X\n",
307 chip->test,
308 chip->control);
309 writel(chip->test, regs + SPI_TEST);
310 writel(chip->period, regs + SPI_PERIOD);
311 writel(0, regs + SPI_INT_STATUS);
312 writel(chip->control, regs + SPI_CONTROL);
315 static void null_cs_control(u32 command)
319 static inline u32 data_to_write(struct driver_data *drv_data)
321 return ((u32)(drv_data->tx_end - drv_data->tx)) / drv_data->n_bytes;
324 static inline u32 data_to_read(struct driver_data *drv_data)
326 return ((u32)(drv_data->rx_end - drv_data->rx)) / drv_data->n_bytes;
329 static int write(struct driver_data *drv_data)
331 void __iomem *regs = drv_data->regs;
332 void *tx = drv_data->tx;
333 void *tx_end = drv_data->tx_end;
334 u8 n_bytes = drv_data->n_bytes;
335 u32 remaining_writes;
336 u32 fifo_avail_space;
337 u32 n;
338 u16 d;
340 /* Compute how many fifo writes to do */
341 remaining_writes = (u32)(tx_end - tx) / n_bytes;
342 fifo_avail_space = SPI_FIFO_DEPTH -
343 (readl(regs + SPI_TEST) & SPI_TEST_TXCNT);
344 if (drv_data->rx && (fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN))
345 /* Fix misunderstood receive overflow */
346 fifo_avail_space -= SPI_FIFO_OVERFLOW_MARGIN;
347 n = min(remaining_writes, fifo_avail_space);
349 dev_dbg(&drv_data->pdev->dev,
350 "write type %s\n"
351 " remaining writes = %d\n"
352 " fifo avail space = %d\n"
353 " fifo writes = %d\n",
354 (n_bytes == 1) ? "u8" : "u16",
355 remaining_writes,
356 fifo_avail_space,
359 if (n > 0) {
360 /* Fill SPI TXFIFO */
361 if (drv_data->rd_only) {
362 tx += n * n_bytes;
363 while (n--)
364 writel(SPI_DUMMY_u16, regs + SPI_TXDATA);
365 } else {
366 if (n_bytes == 1) {
367 while (n--) {
368 d = *(u8*)tx;
369 writel(d, regs + SPI_TXDATA);
370 tx += 1;
372 } else {
373 while (n--) {
374 d = *(u16*)tx;
375 writel(d, regs + SPI_TXDATA);
376 tx += 2;
381 /* Trigger transfer */
382 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
383 regs + SPI_CONTROL);
385 /* Update tx pointer */
386 drv_data->tx = tx;
389 return (tx >= tx_end);
392 static int read(struct driver_data *drv_data)
394 void __iomem *regs = drv_data->regs;
395 void *rx = drv_data->rx;
396 void *rx_end = drv_data->rx_end;
397 u8 n_bytes = drv_data->n_bytes;
398 u32 remaining_reads;
399 u32 fifo_rxcnt;
400 u32 n;
401 u16 d;
403 /* Compute how many fifo reads to do */
404 remaining_reads = (u32)(rx_end - rx) / n_bytes;
405 fifo_rxcnt = (readl(regs + SPI_TEST) & SPI_TEST_RXCNT) >>
406 SPI_TEST_RXCNT_LSB;
407 n = min(remaining_reads, fifo_rxcnt);
409 dev_dbg(&drv_data->pdev->dev,
410 "read type %s\n"
411 " remaining reads = %d\n"
412 " fifo rx count = %d\n"
413 " fifo reads = %d\n",
414 (n_bytes == 1) ? "u8" : "u16",
415 remaining_reads,
416 fifo_rxcnt,
419 if (n > 0) {
420 /* Read SPI RXFIFO */
421 if (n_bytes == 1) {
422 while (n--) {
423 d = readl(regs + SPI_RXDATA);
424 *((u8*)rx) = d;
425 rx += 1;
427 } else {
428 while (n--) {
429 d = readl(regs + SPI_RXDATA);
430 *((u16*)rx) = d;
431 rx += 2;
435 /* Update rx pointer */
436 drv_data->rx = rx;
439 return (rx >= rx_end);
442 static void *next_transfer(struct driver_data *drv_data)
444 struct spi_message *msg = drv_data->cur_msg;
445 struct spi_transfer *trans = drv_data->cur_transfer;
447 /* Move to next transfer */
448 if (trans->transfer_list.next != &msg->transfers) {
449 drv_data->cur_transfer =
450 list_entry(trans->transfer_list.next,
451 struct spi_transfer,
452 transfer_list);
453 return RUNNING_STATE;
456 return DONE_STATE;
459 static int map_dma_buffers(struct driver_data *drv_data)
461 struct spi_message *msg;
462 struct device *dev;
463 void *buf;
465 drv_data->rx_dma_needs_unmap = 0;
466 drv_data->tx_dma_needs_unmap = 0;
468 if (!drv_data->master_info->enable_dma ||
469 !drv_data->cur_chip->enable_dma)
470 return -1;
472 msg = drv_data->cur_msg;
473 dev = &msg->spi->dev;
474 if (msg->is_dma_mapped) {
475 if (drv_data->tx_dma)
476 /* The caller provided at least dma and cpu virtual
477 address for write; pump_transfers() will consider the
478 transfer as write only if cpu rx virtual address is
479 NULL */
480 return 0;
482 if (drv_data->rx_dma) {
483 /* The caller provided dma and cpu virtual address to
484 performe read only transfer -->
485 use drv_data->dummy_dma_buf for dummy writes to
486 achive reads */
487 buf = &drv_data->dummy_dma_buf;
488 drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
489 drv_data->tx_dma = dma_map_single(dev,
490 buf,
491 drv_data->tx_map_len,
492 DMA_TO_DEVICE);
493 if (dma_mapping_error(dev, drv_data->tx_dma))
494 return -1;
496 drv_data->tx_dma_needs_unmap = 1;
498 /* Flags transfer as rd_only for pump_transfers() DMA
499 regs programming (should be redundant) */
500 drv_data->tx = NULL;
502 return 0;
506 if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
507 return -1;
509 if (drv_data->tx == NULL) {
510 /* Read only message --> use drv_data->dummy_dma_buf for dummy
511 writes to achive reads */
512 buf = &drv_data->dummy_dma_buf;
513 drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
514 } else {
515 buf = drv_data->tx;
516 drv_data->tx_map_len = drv_data->len;
518 drv_data->tx_dma = dma_map_single(dev,
519 buf,
520 drv_data->tx_map_len,
521 DMA_TO_DEVICE);
522 if (dma_mapping_error(dev, drv_data->tx_dma))
523 return -1;
524 drv_data->tx_dma_needs_unmap = 1;
526 /* NULL rx means write-only transfer and no map needed
527 * since rx DMA will not be used */
528 if (drv_data->rx) {
529 buf = drv_data->rx;
530 drv_data->rx_dma = dma_map_single(dev,
531 buf,
532 drv_data->len,
533 DMA_FROM_DEVICE);
534 if (dma_mapping_error(dev, drv_data->rx_dma)) {
535 if (drv_data->tx_dma) {
536 dma_unmap_single(dev,
537 drv_data->tx_dma,
538 drv_data->tx_map_len,
539 DMA_TO_DEVICE);
540 drv_data->tx_dma_needs_unmap = 0;
542 return -1;
544 drv_data->rx_dma_needs_unmap = 1;
547 return 0;
550 static void unmap_dma_buffers(struct driver_data *drv_data)
552 struct spi_message *msg = drv_data->cur_msg;
553 struct device *dev = &msg->spi->dev;
555 if (drv_data->rx_dma_needs_unmap) {
556 dma_unmap_single(dev,
557 drv_data->rx_dma,
558 drv_data->len,
559 DMA_FROM_DEVICE);
560 drv_data->rx_dma_needs_unmap = 0;
562 if (drv_data->tx_dma_needs_unmap) {
563 dma_unmap_single(dev,
564 drv_data->tx_dma,
565 drv_data->tx_map_len,
566 DMA_TO_DEVICE);
567 drv_data->tx_dma_needs_unmap = 0;
571 /* Caller already set message->status (dma is already blocked) */
572 static void giveback(struct spi_message *message, struct driver_data *drv_data)
574 void __iomem *regs = drv_data->regs;
576 /* Bring SPI to sleep; restore_state() and pump_transfer()
577 will do new setup */
578 writel(0, regs + SPI_INT_STATUS);
579 writel(0, regs + SPI_DMA);
581 /* Unconditioned deselct */
582 drv_data->cs_control(SPI_CS_DEASSERT);
584 message->state = NULL;
585 if (message->complete)
586 message->complete(message->context);
588 drv_data->cur_msg = NULL;
589 drv_data->cur_transfer = NULL;
590 drv_data->cur_chip = NULL;
591 queue_work(drv_data->workqueue, &drv_data->work);
594 static void dma_err_handler(int channel, void *data, int errcode)
596 struct driver_data *drv_data = data;
597 struct spi_message *msg = drv_data->cur_msg;
599 dev_dbg(&drv_data->pdev->dev, "dma_err_handler\n");
601 /* Disable both rx and tx dma channels */
602 imx_dma_disable(drv_data->rx_channel);
603 imx_dma_disable(drv_data->tx_channel);
604 unmap_dma_buffers(drv_data);
606 flush(drv_data);
608 msg->state = ERROR_STATE;
609 tasklet_schedule(&drv_data->pump_transfers);
612 static void dma_tx_handler(int channel, void *data)
614 struct driver_data *drv_data = data;
616 dev_dbg(&drv_data->pdev->dev, "dma_tx_handler\n");
618 imx_dma_disable(channel);
620 /* Now waits for TX FIFO empty */
621 writel(SPI_INTEN_TE, drv_data->regs + SPI_INT_STATUS);
624 static irqreturn_t dma_transfer(struct driver_data *drv_data)
626 u32 status;
627 struct spi_message *msg = drv_data->cur_msg;
628 void __iomem *regs = drv_data->regs;
630 status = readl(regs + SPI_INT_STATUS);
632 if ((status & (SPI_INTEN_RO | SPI_STATUS_RO))
633 == (SPI_INTEN_RO | SPI_STATUS_RO)) {
634 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
636 imx_dma_disable(drv_data->tx_channel);
637 imx_dma_disable(drv_data->rx_channel);
638 unmap_dma_buffers(drv_data);
640 flush(drv_data);
642 dev_warn(&drv_data->pdev->dev,
643 "dma_transfer - fifo overun\n");
645 msg->state = ERROR_STATE;
646 tasklet_schedule(&drv_data->pump_transfers);
648 return IRQ_HANDLED;
651 if (status & SPI_STATUS_TE) {
652 writel(status & ~SPI_INTEN_TE, regs + SPI_INT_STATUS);
654 if (drv_data->rx) {
655 /* Wait end of transfer before read trailing data */
656 while (readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH)
657 cpu_relax();
659 imx_dma_disable(drv_data->rx_channel);
660 unmap_dma_buffers(drv_data);
662 /* Release chip select if requested, transfer delays are
663 handled in pump_transfers() */
664 if (drv_data->cs_change)
665 drv_data->cs_control(SPI_CS_DEASSERT);
667 /* Calculate number of trailing data and read them */
668 dev_dbg(&drv_data->pdev->dev,
669 "dma_transfer - test = 0x%08X\n",
670 readl(regs + SPI_TEST));
671 drv_data->rx = drv_data->rx_end -
672 ((readl(regs + SPI_TEST) &
673 SPI_TEST_RXCNT) >>
674 SPI_TEST_RXCNT_LSB)*drv_data->n_bytes;
675 read(drv_data);
676 } else {
677 /* Write only transfer */
678 unmap_dma_buffers(drv_data);
680 flush(drv_data);
683 /* End of transfer, update total byte transfered */
684 msg->actual_length += drv_data->len;
686 /* Move to next transfer */
687 msg->state = next_transfer(drv_data);
689 /* Schedule transfer tasklet */
690 tasklet_schedule(&drv_data->pump_transfers);
692 return IRQ_HANDLED;
695 /* Opps problem detected */
696 return IRQ_NONE;
699 static irqreturn_t interrupt_wronly_transfer(struct driver_data *drv_data)
701 struct spi_message *msg = drv_data->cur_msg;
702 void __iomem *regs = drv_data->regs;
703 u32 status;
704 irqreturn_t handled = IRQ_NONE;
706 status = readl(regs + SPI_INT_STATUS);
708 if (status & SPI_INTEN_TE) {
709 /* TXFIFO Empty Interrupt on the last transfered word */
710 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
711 dev_dbg(&drv_data->pdev->dev,
712 "interrupt_wronly_transfer - end of tx\n");
714 flush(drv_data);
716 /* Update total byte transfered */
717 msg->actual_length += drv_data->len;
719 /* Move to next transfer */
720 msg->state = next_transfer(drv_data);
722 /* Schedule transfer tasklet */
723 tasklet_schedule(&drv_data->pump_transfers);
725 return IRQ_HANDLED;
726 } else {
727 while (status & SPI_STATUS_TH) {
728 dev_dbg(&drv_data->pdev->dev,
729 "interrupt_wronly_transfer - status = 0x%08X\n",
730 status);
732 /* Pump data */
733 if (write(drv_data)) {
734 /* End of TXFIFO writes,
735 now wait until TXFIFO is empty */
736 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
737 return IRQ_HANDLED;
740 status = readl(regs + SPI_INT_STATUS);
742 /* We did something */
743 handled = IRQ_HANDLED;
747 return handled;
750 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
752 struct spi_message *msg = drv_data->cur_msg;
753 void __iomem *regs = drv_data->regs;
754 u32 status, control;
755 irqreturn_t handled = IRQ_NONE;
756 unsigned long limit;
758 status = readl(regs + SPI_INT_STATUS);
760 if (status & SPI_INTEN_TE) {
761 /* TXFIFO Empty Interrupt on the last transfered word */
762 writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
763 dev_dbg(&drv_data->pdev->dev,
764 "interrupt_transfer - end of tx\n");
766 if (msg->state == ERROR_STATE) {
767 /* RXFIFO overrun was detected and message aborted */
768 flush(drv_data);
769 } else {
770 /* Wait for end of transaction */
771 do {
772 control = readl(regs + SPI_CONTROL);
773 } while (control & SPI_CONTROL_XCH);
775 /* Release chip select if requested, transfer delays are
776 handled in pump_transfers */
777 if (drv_data->cs_change)
778 drv_data->cs_control(SPI_CS_DEASSERT);
780 /* Read trailing bytes */
781 limit = loops_per_jiffy << 1;
782 while ((read(drv_data) == 0) && limit--);
784 if (limit == 0)
785 dev_err(&drv_data->pdev->dev,
786 "interrupt_transfer - "
787 "trailing byte read failed\n");
788 else
789 dev_dbg(&drv_data->pdev->dev,
790 "interrupt_transfer - end of rx\n");
792 /* Update total byte transfered */
793 msg->actual_length += drv_data->len;
795 /* Move to next transfer */
796 msg->state = next_transfer(drv_data);
799 /* Schedule transfer tasklet */
800 tasklet_schedule(&drv_data->pump_transfers);
802 return IRQ_HANDLED;
803 } else {
804 while (status & (SPI_STATUS_TH | SPI_STATUS_RO)) {
805 dev_dbg(&drv_data->pdev->dev,
806 "interrupt_transfer - status = 0x%08X\n",
807 status);
809 if (status & SPI_STATUS_RO) {
810 /* RXFIFO overrun, abort message end wait
811 until TXFIFO is empty */
812 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
814 dev_warn(&drv_data->pdev->dev,
815 "interrupt_transfer - fifo overun\n"
816 " data not yet written = %d\n"
817 " data not yet read = %d\n",
818 data_to_write(drv_data),
819 data_to_read(drv_data));
821 msg->state = ERROR_STATE;
823 return IRQ_HANDLED;
826 /* Pump data */
827 read(drv_data);
828 if (write(drv_data)) {
829 /* End of TXFIFO writes,
830 now wait until TXFIFO is empty */
831 writel(SPI_INTEN_TE, regs + SPI_INT_STATUS);
832 return IRQ_HANDLED;
835 status = readl(regs + SPI_INT_STATUS);
837 /* We did something */
838 handled = IRQ_HANDLED;
842 return handled;
845 static irqreturn_t spi_int(int irq, void *dev_id)
847 struct driver_data *drv_data = (struct driver_data *)dev_id;
849 if (!drv_data->cur_msg) {
850 dev_err(&drv_data->pdev->dev,
851 "spi_int - bad message state\n");
852 /* Never fail */
853 return IRQ_HANDLED;
856 return drv_data->transfer_handler(drv_data);
859 static inline u32 spi_speed_hz(struct driver_data *drv_data, u32 data_rate)
861 return clk_get_rate(drv_data->clk) / (4 << ((data_rate) >> 13));
864 static u32 spi_data_rate(struct driver_data *drv_data, u32 speed_hz)
866 u32 div;
867 u32 quantized_hz = clk_get_rate(drv_data->clk) >> 2;
869 for (div = SPI_PERCLK2_DIV_MIN;
870 div <= SPI_PERCLK2_DIV_MAX;
871 div++, quantized_hz >>= 1) {
872 if (quantized_hz <= speed_hz)
873 /* Max available speed LEQ required speed */
874 return div << 13;
876 return SPI_CONTROL_DATARATE_BAD;
879 static void pump_transfers(unsigned long data)
881 struct driver_data *drv_data = (struct driver_data *)data;
882 struct spi_message *message;
883 struct spi_transfer *transfer, *previous;
884 struct chip_data *chip;
885 void __iomem *regs;
886 u32 tmp, control;
888 dev_dbg(&drv_data->pdev->dev, "pump_transfer\n");
890 message = drv_data->cur_msg;
892 /* Handle for abort */
893 if (message->state == ERROR_STATE) {
894 message->status = -EIO;
895 giveback(message, drv_data);
896 return;
899 /* Handle end of message */
900 if (message->state == DONE_STATE) {
901 message->status = 0;
902 giveback(message, drv_data);
903 return;
906 chip = drv_data->cur_chip;
908 /* Delay if requested at end of transfer*/
909 transfer = drv_data->cur_transfer;
910 if (message->state == RUNNING_STATE) {
911 previous = list_entry(transfer->transfer_list.prev,
912 struct spi_transfer,
913 transfer_list);
914 if (previous->delay_usecs)
915 udelay(previous->delay_usecs);
916 } else {
917 /* START_STATE */
918 message->state = RUNNING_STATE;
919 drv_data->cs_control = chip->cs_control;
922 transfer = drv_data->cur_transfer;
923 drv_data->tx = (void *)transfer->tx_buf;
924 drv_data->tx_end = drv_data->tx + transfer->len;
925 drv_data->rx = transfer->rx_buf;
926 drv_data->rx_end = drv_data->rx + transfer->len;
927 drv_data->rx_dma = transfer->rx_dma;
928 drv_data->tx_dma = transfer->tx_dma;
929 drv_data->len = transfer->len;
930 drv_data->cs_change = transfer->cs_change;
931 drv_data->rd_only = (drv_data->tx == NULL);
933 regs = drv_data->regs;
934 control = readl(regs + SPI_CONTROL);
936 /* Bits per word setup */
937 tmp = transfer->bits_per_word;
938 if (tmp == 0) {
939 /* Use device setup */
940 tmp = chip->bits_per_word;
941 drv_data->n_bytes = chip->n_bytes;
942 } else
943 /* Use per-transfer setup */
944 drv_data->n_bytes = (tmp <= 8) ? 1 : 2;
945 u32_EDIT(control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
947 /* Speed setup (surely valid because already checked) */
948 tmp = transfer->speed_hz;
949 if (tmp == 0)
950 tmp = chip->max_speed_hz;
951 tmp = spi_data_rate(drv_data, tmp);
952 u32_EDIT(control, SPI_CONTROL_DATARATE, tmp);
954 writel(control, regs + SPI_CONTROL);
956 /* Assert device chip-select */
957 drv_data->cs_control(SPI_CS_ASSERT);
959 /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
960 if bits_per_word is less or equal 8 PIO transfers are performed.
961 Moreover DMA is convinient for transfer length bigger than FIFOs
962 byte size. */
963 if ((drv_data->n_bytes == 2) &&
964 (drv_data->len > SPI_FIFO_DEPTH*SPI_FIFO_BYTE_WIDTH) &&
965 (map_dma_buffers(drv_data) == 0)) {
966 dev_dbg(&drv_data->pdev->dev,
967 "pump dma transfer\n"
968 " tx = %p\n"
969 " tx_dma = %08X\n"
970 " rx = %p\n"
971 " rx_dma = %08X\n"
972 " len = %d\n",
973 drv_data->tx,
974 (unsigned int)drv_data->tx_dma,
975 drv_data->rx,
976 (unsigned int)drv_data->rx_dma,
977 drv_data->len);
979 /* Ensure we have the correct interrupt handler */
980 drv_data->transfer_handler = dma_transfer;
982 /* Trigger transfer */
983 writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
984 regs + SPI_CONTROL);
986 /* Setup tx DMA */
987 if (drv_data->tx)
988 /* Linear source address */
989 CCR(drv_data->tx_channel) =
990 CCR_DMOD_FIFO |
991 CCR_SMOD_LINEAR |
992 CCR_SSIZ_32 | CCR_DSIZ_16 |
993 CCR_REN;
994 else
995 /* Read only transfer -> fixed source address for
996 dummy write to achive read */
997 CCR(drv_data->tx_channel) =
998 CCR_DMOD_FIFO |
999 CCR_SMOD_FIFO |
1000 CCR_SSIZ_32 | CCR_DSIZ_16 |
1001 CCR_REN;
1003 imx_dma_setup_single(
1004 drv_data->tx_channel,
1005 drv_data->tx_dma,
1006 drv_data->len,
1007 drv_data->rd_data_phys + 4,
1008 DMA_MODE_WRITE);
1010 if (drv_data->rx) {
1011 /* Setup rx DMA for linear destination address */
1012 CCR(drv_data->rx_channel) =
1013 CCR_DMOD_LINEAR |
1014 CCR_SMOD_FIFO |
1015 CCR_DSIZ_32 | CCR_SSIZ_16 |
1016 CCR_REN;
1017 imx_dma_setup_single(
1018 drv_data->rx_channel,
1019 drv_data->rx_dma,
1020 drv_data->len,
1021 drv_data->rd_data_phys,
1022 DMA_MODE_READ);
1023 imx_dma_enable(drv_data->rx_channel);
1025 /* Enable SPI interrupt */
1026 writel(SPI_INTEN_RO, regs + SPI_INT_STATUS);
1028 /* Set SPI to request DMA service on both
1029 Rx and Tx half fifo watermark */
1030 writel(SPI_DMA_RHDEN | SPI_DMA_THDEN, regs + SPI_DMA);
1031 } else
1032 /* Write only access -> set SPI to request DMA
1033 service on Tx half fifo watermark */
1034 writel(SPI_DMA_THDEN, regs + SPI_DMA);
1036 imx_dma_enable(drv_data->tx_channel);
1037 } else {
1038 dev_dbg(&drv_data->pdev->dev,
1039 "pump pio transfer\n"
1040 " tx = %p\n"
1041 " rx = %p\n"
1042 " len = %d\n",
1043 drv_data->tx,
1044 drv_data->rx,
1045 drv_data->len);
1047 /* Ensure we have the correct interrupt handler */
1048 if (drv_data->rx)
1049 drv_data->transfer_handler = interrupt_transfer;
1050 else
1051 drv_data->transfer_handler = interrupt_wronly_transfer;
1053 /* Enable SPI interrupt */
1054 if (drv_data->rx)
1055 writel(SPI_INTEN_TH | SPI_INTEN_RO,
1056 regs + SPI_INT_STATUS);
1057 else
1058 writel(SPI_INTEN_TH, regs + SPI_INT_STATUS);
1062 static void pump_messages(struct work_struct *work)
1064 struct driver_data *drv_data =
1065 container_of(work, struct driver_data, work);
1066 unsigned long flags;
1068 /* Lock queue and check for queue work */
1069 spin_lock_irqsave(&drv_data->lock, flags);
1070 if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1071 drv_data->busy = 0;
1072 spin_unlock_irqrestore(&drv_data->lock, flags);
1073 return;
1076 /* Make sure we are not already running a message */
1077 if (drv_data->cur_msg) {
1078 spin_unlock_irqrestore(&drv_data->lock, flags);
1079 return;
1082 /* Extract head of queue */
1083 drv_data->cur_msg = list_entry(drv_data->queue.next,
1084 struct spi_message, queue);
1085 list_del_init(&drv_data->cur_msg->queue);
1086 drv_data->busy = 1;
1087 spin_unlock_irqrestore(&drv_data->lock, flags);
1089 /* Initial message state */
1090 drv_data->cur_msg->state = START_STATE;
1091 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1092 struct spi_transfer,
1093 transfer_list);
1095 /* Setup the SPI using the per chip configuration */
1096 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1097 restore_state(drv_data);
1099 /* Mark as busy and launch transfers */
1100 tasklet_schedule(&drv_data->pump_transfers);
1103 static int transfer(struct spi_device *spi, struct spi_message *msg)
1105 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1106 u32 min_speed_hz, max_speed_hz, tmp;
1107 struct spi_transfer *trans;
1108 unsigned long flags;
1110 msg->actual_length = 0;
1112 /* Per transfer setup check */
1113 min_speed_hz = spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN);
1114 max_speed_hz = spi->max_speed_hz;
1115 list_for_each_entry(trans, &msg->transfers, transfer_list) {
1116 tmp = trans->bits_per_word;
1117 if (tmp > 16) {
1118 dev_err(&drv_data->pdev->dev,
1119 "message rejected : "
1120 "invalid transfer bits_per_word (%d bits)\n",
1121 tmp);
1122 goto msg_rejected;
1124 tmp = trans->speed_hz;
1125 if (tmp) {
1126 if (tmp < min_speed_hz) {
1127 dev_err(&drv_data->pdev->dev,
1128 "message rejected : "
1129 "device min speed (%d Hz) exceeds "
1130 "required transfer speed (%d Hz)\n",
1131 min_speed_hz,
1132 tmp);
1133 goto msg_rejected;
1134 } else if (tmp > max_speed_hz) {
1135 dev_err(&drv_data->pdev->dev,
1136 "message rejected : "
1137 "transfer speed (%d Hz) exceeds "
1138 "device max speed (%d Hz)\n",
1139 tmp,
1140 max_speed_hz);
1141 goto msg_rejected;
1146 /* Message accepted */
1147 msg->status = -EINPROGRESS;
1148 msg->state = START_STATE;
1150 spin_lock_irqsave(&drv_data->lock, flags);
1151 if (drv_data->run == QUEUE_STOPPED) {
1152 spin_unlock_irqrestore(&drv_data->lock, flags);
1153 return -ESHUTDOWN;
1156 list_add_tail(&msg->queue, &drv_data->queue);
1157 if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1158 queue_work(drv_data->workqueue, &drv_data->work);
1160 spin_unlock_irqrestore(&drv_data->lock, flags);
1161 return 0;
1163 msg_rejected:
1164 /* Message rejected and not queued */
1165 msg->status = -EINVAL;
1166 msg->state = ERROR_STATE;
1167 if (msg->complete)
1168 msg->complete(msg->context);
1169 return -EINVAL;
1172 /* the spi->mode bits understood by this driver: */
1173 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
1175 /* On first setup bad values must free chip_data memory since will cause
1176 spi_new_device to fail. Bad value setup from protocol driver are simply not
1177 applied and notified to the calling driver. */
1178 static int setup(struct spi_device *spi)
1180 struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1181 struct spi_imx_chip *chip_info;
1182 struct chip_data *chip;
1183 int first_setup = 0;
1184 u32 tmp;
1185 int status = 0;
1187 if (spi->mode & ~MODEBITS) {
1188 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
1189 spi->mode & ~MODEBITS);
1190 return -EINVAL;
1193 /* Get controller data */
1194 chip_info = spi->controller_data;
1196 /* Get controller_state */
1197 chip = spi_get_ctldata(spi);
1198 if (chip == NULL) {
1199 first_setup = 1;
1201 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1202 if (!chip) {
1203 dev_err(&spi->dev,
1204 "setup - cannot allocate controller state\n");
1205 return -ENOMEM;
1207 chip->control = SPI_DEFAULT_CONTROL;
1209 if (chip_info == NULL) {
1210 /* spi_board_info.controller_data not is supplied */
1211 chip_info = kzalloc(sizeof(struct spi_imx_chip),
1212 GFP_KERNEL);
1213 if (!chip_info) {
1214 dev_err(&spi->dev,
1215 "setup - "
1216 "cannot allocate controller data\n");
1217 status = -ENOMEM;
1218 goto err_first_setup;
1220 /* Set controller data default value */
1221 chip_info->enable_loopback =
1222 SPI_DEFAULT_ENABLE_LOOPBACK;
1223 chip_info->enable_dma = SPI_DEFAULT_ENABLE_DMA;
1224 chip_info->ins_ss_pulse = 1;
1225 chip_info->bclk_wait = SPI_DEFAULT_PERIOD_WAIT;
1226 chip_info->cs_control = null_cs_control;
1230 /* Now set controller state based on controller data */
1232 if (first_setup) {
1233 /* SPI loopback */
1234 if (chip_info->enable_loopback)
1235 chip->test = SPI_TEST_LBC;
1236 else
1237 chip->test = 0;
1239 /* SPI dma driven */
1240 chip->enable_dma = chip_info->enable_dma;
1242 /* SPI /SS pulse between spi burst */
1243 if (chip_info->ins_ss_pulse)
1244 u32_EDIT(chip->control,
1245 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_1);
1246 else
1247 u32_EDIT(chip->control,
1248 SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_0);
1250 /* SPI bclk waits between each bits_per_word spi burst */
1251 if (chip_info->bclk_wait > SPI_PERIOD_MAX_WAIT) {
1252 dev_err(&spi->dev,
1253 "setup - "
1254 "bclk_wait exceeds max allowed (%d)\n",
1255 SPI_PERIOD_MAX_WAIT);
1256 goto err_first_setup;
1258 chip->period = SPI_PERIOD_CSRC_BCLK |
1259 (chip_info->bclk_wait & SPI_PERIOD_WAIT);
1262 /* SPI mode */
1263 tmp = spi->mode;
1264 if (tmp & SPI_CS_HIGH) {
1265 u32_EDIT(chip->control,
1266 SPI_CONTROL_SSPOL, SPI_CONTROL_SSPOL_ACT_HIGH);
1268 switch (tmp & SPI_MODE_3) {
1269 case SPI_MODE_0:
1270 tmp = 0;
1271 break;
1272 case SPI_MODE_1:
1273 tmp = SPI_CONTROL_PHA_1;
1274 break;
1275 case SPI_MODE_2:
1276 tmp = SPI_CONTROL_POL_ACT_LOW;
1277 break;
1278 default:
1279 /* SPI_MODE_3 */
1280 tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW;
1281 break;
1283 u32_EDIT(chip->control, SPI_CONTROL_POL | SPI_CONTROL_PHA, tmp);
1285 /* SPI word width */
1286 tmp = spi->bits_per_word;
1287 if (tmp == 0) {
1288 tmp = 8;
1289 spi->bits_per_word = 8;
1290 } else if (tmp > 16) {
1291 status = -EINVAL;
1292 dev_err(&spi->dev,
1293 "setup - "
1294 "invalid bits_per_word (%d)\n",
1295 tmp);
1296 if (first_setup)
1297 goto err_first_setup;
1298 else {
1299 /* Undo setup using chip as backup copy */
1300 tmp = chip->bits_per_word;
1301 spi->bits_per_word = tmp;
1304 chip->bits_per_word = tmp;
1305 u32_EDIT(chip->control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
1306 chip->n_bytes = (tmp <= 8) ? 1 : 2;
1308 /* SPI datarate */
1309 tmp = spi_data_rate(drv_data, spi->max_speed_hz);
1310 if (tmp == SPI_CONTROL_DATARATE_BAD) {
1311 status = -EINVAL;
1312 dev_err(&spi->dev,
1313 "setup - "
1314 "HW min speed (%d Hz) exceeds required "
1315 "max speed (%d Hz)\n",
1316 spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1317 spi->max_speed_hz);
1318 if (first_setup)
1319 goto err_first_setup;
1320 else
1321 /* Undo setup using chip as backup copy */
1322 spi->max_speed_hz = chip->max_speed_hz;
1323 } else {
1324 u32_EDIT(chip->control, SPI_CONTROL_DATARATE, tmp);
1325 /* Actual rounded max_speed_hz */
1326 tmp = spi_speed_hz(drv_data, tmp);
1327 spi->max_speed_hz = tmp;
1328 chip->max_speed_hz = tmp;
1331 /* SPI chip-select management */
1332 if (chip_info->cs_control)
1333 chip->cs_control = chip_info->cs_control;
1334 else
1335 chip->cs_control = null_cs_control;
1337 /* Save controller_state */
1338 spi_set_ctldata(spi, chip);
1340 /* Summary */
1341 dev_dbg(&spi->dev,
1342 "setup succeded\n"
1343 " loopback enable = %s\n"
1344 " dma enable = %s\n"
1345 " insert /ss pulse = %s\n"
1346 " period wait = %d\n"
1347 " mode = %d\n"
1348 " bits per word = %d\n"
1349 " min speed = %d Hz\n"
1350 " rounded max speed = %d Hz\n",
1351 chip->test & SPI_TEST_LBC ? "Yes" : "No",
1352 chip->enable_dma ? "Yes" : "No",
1353 chip->control & SPI_CONTROL_SSCTL ? "Yes" : "No",
1354 chip->period & SPI_PERIOD_WAIT,
1355 spi->mode,
1356 spi->bits_per_word,
1357 spi_speed_hz(drv_data, SPI_CONTROL_DATARATE_MIN),
1358 spi->max_speed_hz);
1359 return status;
1361 err_first_setup:
1362 kfree(chip);
1363 return status;
1366 static void cleanup(struct spi_device *spi)
1368 kfree(spi_get_ctldata(spi));
1371 static int __init init_queue(struct driver_data *drv_data)
1373 INIT_LIST_HEAD(&drv_data->queue);
1374 spin_lock_init(&drv_data->lock);
1376 drv_data->run = QUEUE_STOPPED;
1377 drv_data->busy = 0;
1379 tasklet_init(&drv_data->pump_transfers,
1380 pump_transfers, (unsigned long)drv_data);
1382 INIT_WORK(&drv_data->work, pump_messages);
1383 drv_data->workqueue = create_singlethread_workqueue(
1384 drv_data->master->dev.parent->bus_id);
1385 if (drv_data->workqueue == NULL)
1386 return -EBUSY;
1388 return 0;
1391 static int start_queue(struct driver_data *drv_data)
1393 unsigned long flags;
1395 spin_lock_irqsave(&drv_data->lock, flags);
1397 if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1398 spin_unlock_irqrestore(&drv_data->lock, flags);
1399 return -EBUSY;
1402 drv_data->run = QUEUE_RUNNING;
1403 drv_data->cur_msg = NULL;
1404 drv_data->cur_transfer = NULL;
1405 drv_data->cur_chip = NULL;
1406 spin_unlock_irqrestore(&drv_data->lock, flags);
1408 queue_work(drv_data->workqueue, &drv_data->work);
1410 return 0;
1413 static int stop_queue(struct driver_data *drv_data)
1415 unsigned long flags;
1416 unsigned limit = 500;
1417 int status = 0;
1419 spin_lock_irqsave(&drv_data->lock, flags);
1421 /* This is a bit lame, but is optimized for the common execution path.
1422 * A wait_queue on the drv_data->busy could be used, but then the common
1423 * execution path (pump_messages) would be required to call wake_up or
1424 * friends on every SPI message. Do this instead */
1425 drv_data->run = QUEUE_STOPPED;
1426 while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1427 spin_unlock_irqrestore(&drv_data->lock, flags);
1428 msleep(10);
1429 spin_lock_irqsave(&drv_data->lock, flags);
1432 if (!list_empty(&drv_data->queue) || drv_data->busy)
1433 status = -EBUSY;
1435 spin_unlock_irqrestore(&drv_data->lock, flags);
1437 return status;
1440 static int destroy_queue(struct driver_data *drv_data)
1442 int status;
1444 status = stop_queue(drv_data);
1445 if (status != 0)
1446 return status;
1448 if (drv_data->workqueue)
1449 destroy_workqueue(drv_data->workqueue);
1451 return 0;
1454 static int __init spi_imx_probe(struct platform_device *pdev)
1456 struct device *dev = &pdev->dev;
1457 struct spi_imx_master *platform_info;
1458 struct spi_master *master;
1459 struct driver_data *drv_data;
1460 struct resource *res;
1461 int irq, status = 0;
1463 platform_info = dev->platform_data;
1464 if (platform_info == NULL) {
1465 dev_err(&pdev->dev, "probe - no platform data supplied\n");
1466 status = -ENODEV;
1467 goto err_no_pdata;
1470 /* Allocate master with space for drv_data */
1471 master = spi_alloc_master(dev, sizeof(struct driver_data));
1472 if (!master) {
1473 dev_err(&pdev->dev, "probe - cannot alloc spi_master\n");
1474 status = -ENOMEM;
1475 goto err_no_mem;
1477 drv_data = spi_master_get_devdata(master);
1478 drv_data->master = master;
1479 drv_data->master_info = platform_info;
1480 drv_data->pdev = pdev;
1482 master->bus_num = pdev->id;
1483 master->num_chipselect = platform_info->num_chipselect;
1484 master->cleanup = cleanup;
1485 master->setup = setup;
1486 master->transfer = transfer;
1488 drv_data->dummy_dma_buf = SPI_DUMMY_u32;
1490 drv_data->clk = clk_get(&pdev->dev, "perclk2");
1491 if (IS_ERR(drv_data->clk)) {
1492 dev_err(&pdev->dev, "probe - cannot get clock\n");
1493 status = PTR_ERR(drv_data->clk);
1494 goto err_no_clk;
1496 clk_enable(drv_data->clk);
1498 /* Find and map resources */
1499 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1500 if (!res) {
1501 dev_err(&pdev->dev, "probe - MEM resources not defined\n");
1502 status = -ENODEV;
1503 goto err_no_iores;
1505 drv_data->ioarea = request_mem_region(res->start,
1506 res->end - res->start + 1,
1507 pdev->name);
1508 if (drv_data->ioarea == NULL) {
1509 dev_err(&pdev->dev, "probe - cannot reserve region\n");
1510 status = -ENXIO;
1511 goto err_no_iores;
1513 drv_data->regs = ioremap(res->start, res->end - res->start + 1);
1514 if (drv_data->regs == NULL) {
1515 dev_err(&pdev->dev, "probe - cannot map IO\n");
1516 status = -ENXIO;
1517 goto err_no_iomap;
1519 drv_data->rd_data_phys = (dma_addr_t)res->start;
1521 /* Attach to IRQ */
1522 irq = platform_get_irq(pdev, 0);
1523 if (irq < 0) {
1524 dev_err(&pdev->dev, "probe - IRQ resource not defined\n");
1525 status = -ENODEV;
1526 goto err_no_irqres;
1528 status = request_irq(irq, spi_int, IRQF_DISABLED, dev->bus_id, drv_data);
1529 if (status < 0) {
1530 dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
1531 goto err_no_irqres;
1534 /* Setup DMA if requested */
1535 drv_data->tx_channel = -1;
1536 drv_data->rx_channel = -1;
1537 if (platform_info->enable_dma) {
1538 /* Get rx DMA channel */
1539 drv_data->rx_channel = imx_dma_request_by_prio("spi_imx_rx",
1540 DMA_PRIO_HIGH);
1541 if (drv_data->rx_channel < 0) {
1542 dev_err(dev,
1543 "probe - problem (%d) requesting rx channel\n",
1544 drv_data->rx_channel);
1545 goto err_no_rxdma;
1546 } else
1547 imx_dma_setup_handlers(drv_data->rx_channel, NULL,
1548 dma_err_handler, drv_data);
1550 /* Get tx DMA channel */
1551 drv_data->tx_channel = imx_dma_request_by_prio("spi_imx_tx",
1552 DMA_PRIO_MEDIUM);
1553 if (drv_data->tx_channel < 0) {
1554 dev_err(dev,
1555 "probe - problem (%d) requesting tx channel\n",
1556 drv_data->tx_channel);
1557 imx_dma_free(drv_data->rx_channel);
1558 goto err_no_txdma;
1559 } else
1560 imx_dma_setup_handlers(drv_data->tx_channel,
1561 dma_tx_handler, dma_err_handler,
1562 drv_data);
1564 /* Set request source and burst length for allocated channels */
1565 switch (drv_data->pdev->id) {
1566 case 1:
1567 /* Using SPI1 */
1568 RSSR(drv_data->rx_channel) = DMA_REQ_SPI1_R;
1569 RSSR(drv_data->tx_channel) = DMA_REQ_SPI1_T;
1570 break;
1571 case 2:
1572 /* Using SPI2 */
1573 RSSR(drv_data->rx_channel) = DMA_REQ_SPI2_R;
1574 RSSR(drv_data->tx_channel) = DMA_REQ_SPI2_T;
1575 break;
1576 default:
1577 dev_err(dev, "probe - bad SPI Id\n");
1578 imx_dma_free(drv_data->rx_channel);
1579 imx_dma_free(drv_data->tx_channel);
1580 status = -ENODEV;
1581 goto err_no_devid;
1583 BLR(drv_data->rx_channel) = SPI_DMA_BLR;
1584 BLR(drv_data->tx_channel) = SPI_DMA_BLR;
1587 /* Load default SPI configuration */
1588 writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1589 writel(0, drv_data->regs + SPI_RESET);
1590 writel(SPI_DEFAULT_CONTROL, drv_data->regs + SPI_CONTROL);
1592 /* Initial and start queue */
1593 status = init_queue(drv_data);
1594 if (status != 0) {
1595 dev_err(&pdev->dev, "probe - problem initializing queue\n");
1596 goto err_init_queue;
1598 status = start_queue(drv_data);
1599 if (status != 0) {
1600 dev_err(&pdev->dev, "probe - problem starting queue\n");
1601 goto err_start_queue;
1604 /* Register with the SPI framework */
1605 platform_set_drvdata(pdev, drv_data);
1606 status = spi_register_master(master);
1607 if (status != 0) {
1608 dev_err(&pdev->dev, "probe - problem registering spi master\n");
1609 goto err_spi_register;
1612 dev_dbg(dev, "probe succeded\n");
1613 return 0;
1615 err_init_queue:
1616 err_start_queue:
1617 err_spi_register:
1618 destroy_queue(drv_data);
1620 err_no_rxdma:
1621 err_no_txdma:
1622 err_no_devid:
1623 free_irq(irq, drv_data);
1625 err_no_irqres:
1626 iounmap(drv_data->regs);
1628 err_no_iomap:
1629 release_resource(drv_data->ioarea);
1630 kfree(drv_data->ioarea);
1632 err_no_iores:
1633 clk_disable(drv_data->clk);
1634 clk_put(drv_data->clk);
1636 err_no_clk:
1637 spi_master_put(master);
1639 err_no_pdata:
1640 err_no_mem:
1641 return status;
1644 static int __exit spi_imx_remove(struct platform_device *pdev)
1646 struct driver_data *drv_data = platform_get_drvdata(pdev);
1647 int irq;
1648 int status = 0;
1650 if (!drv_data)
1651 return 0;
1653 tasklet_kill(&drv_data->pump_transfers);
1655 /* Remove the queue */
1656 status = destroy_queue(drv_data);
1657 if (status != 0) {
1658 dev_err(&pdev->dev, "queue remove failed (%d)\n", status);
1659 return status;
1662 /* Reset SPI */
1663 writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1664 writel(0, drv_data->regs + SPI_RESET);
1666 /* Release DMA */
1667 if (drv_data->master_info->enable_dma) {
1668 RSSR(drv_data->rx_channel) = 0;
1669 RSSR(drv_data->tx_channel) = 0;
1670 imx_dma_free(drv_data->tx_channel);
1671 imx_dma_free(drv_data->rx_channel);
1674 /* Release IRQ */
1675 irq = platform_get_irq(pdev, 0);
1676 if (irq >= 0)
1677 free_irq(irq, drv_data);
1679 clk_disable(drv_data->clk);
1680 clk_put(drv_data->clk);
1682 /* Release map resources */
1683 iounmap(drv_data->regs);
1684 release_resource(drv_data->ioarea);
1685 kfree(drv_data->ioarea);
1687 /* Disconnect from the SPI framework */
1688 spi_unregister_master(drv_data->master);
1689 spi_master_put(drv_data->master);
1691 /* Prevent double remove */
1692 platform_set_drvdata(pdev, NULL);
1694 dev_dbg(&pdev->dev, "remove succeded\n");
1696 return 0;
1699 static void spi_imx_shutdown(struct platform_device *pdev)
1701 struct driver_data *drv_data = platform_get_drvdata(pdev);
1703 /* Reset SPI */
1704 writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1705 writel(0, drv_data->regs + SPI_RESET);
1707 dev_dbg(&pdev->dev, "shutdown succeded\n");
1710 #ifdef CONFIG_PM
1712 static int spi_imx_suspend(struct platform_device *pdev, pm_message_t state)
1714 struct driver_data *drv_data = platform_get_drvdata(pdev);
1715 int status = 0;
1717 status = stop_queue(drv_data);
1718 if (status != 0) {
1719 dev_warn(&pdev->dev, "suspend cannot stop queue\n");
1720 return status;
1723 dev_dbg(&pdev->dev, "suspended\n");
1725 return 0;
1728 static int spi_imx_resume(struct platform_device *pdev)
1730 struct driver_data *drv_data = platform_get_drvdata(pdev);
1731 int status = 0;
1733 /* Start the queue running */
1734 status = start_queue(drv_data);
1735 if (status != 0)
1736 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1737 else
1738 dev_dbg(&pdev->dev, "resumed\n");
1740 return status;
1742 #else
1743 #define spi_imx_suspend NULL
1744 #define spi_imx_resume NULL
1745 #endif /* CONFIG_PM */
1747 /* work with hotplug and coldplug */
1748 MODULE_ALIAS("platform:spi_imx");
1750 static struct platform_driver driver = {
1751 .driver = {
1752 .name = "spi_imx",
1753 .owner = THIS_MODULE,
1755 .remove = __exit_p(spi_imx_remove),
1756 .shutdown = spi_imx_shutdown,
1757 .suspend = spi_imx_suspend,
1758 .resume = spi_imx_resume,
1761 static int __init spi_imx_init(void)
1763 return platform_driver_probe(&driver, spi_imx_probe);
1765 module_init(spi_imx_init);
1767 static void __exit spi_imx_exit(void)
1769 platform_driver_unregister(&driver);
1771 module_exit(spi_imx_exit);
1773 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1774 MODULE_DESCRIPTION("iMX SPI Controller Driver");
1775 MODULE_LICENSE("GPL");