1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/tty.h>
34 #include <linux/tty_flip.h>
35 #include <linux/serial.h>
36 #include <linux/seq_file.h>
37 #include <linux/cd1400.h>
38 #include <linux/sc26198.h>
39 #include <linux/comstats.h>
40 #include <linux/stallion.h>
41 #include <linux/ioport.h>
42 #include <linux/init.h>
43 #include <linux/device.h>
44 #include <linux/delay.h>
45 #include <linux/ctype.h>
48 #include <asm/uaccess.h>
50 #include <linux/pci.h>
52 /*****************************************************************************/
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
70 unsigned long memaddr
;
75 static unsigned int stl_nrbrds
;
77 /*****************************************************************************/
80 * Define some important driver characteristics. Device major numbers
81 * allocated as per Linux Device Registry.
83 #ifndef STL_SIOMEMMAJOR
84 #define STL_SIOMEMMAJOR 28
86 #ifndef STL_SERIALMAJOR
87 #define STL_SERIALMAJOR 24
89 #ifndef STL_CALLOUTMAJOR
90 #define STL_CALLOUTMAJOR 25
94 * Set the TX buffer size. Bigger is better, but we don't want
95 * to chew too much memory with buffers!
97 #define STL_TXBUFLOW 512
98 #define STL_TXBUFSIZE 4096
100 /*****************************************************************************/
103 * Define our local driver identity first. Set up stuff to deal with
104 * all the local structures required by a serial tty driver.
106 static char *stl_drvtitle
= "Stallion Multiport Serial Driver";
107 static char *stl_drvname
= "stallion";
108 static char *stl_drvversion
= "5.6.0";
110 static struct tty_driver
*stl_serial
;
113 * Define a local default termios struct. All ports will be created
114 * with this termios initially. Basically all it defines is a raw port
115 * at 9600, 8 data bits, 1 stop bit.
117 static struct ktermios stl_deftermios
= {
118 .c_cflag
= (B9600
| CS8
| CREAD
| HUPCL
| CLOCAL
),
125 * Define global place to put buffer overflow characters.
127 static char stl_unwanted
[SC26198_RXFIFOSIZE
];
129 /*****************************************************************************/
131 static DEFINE_MUTEX(stl_brdslock
);
132 static struct stlbrd
*stl_brds
[STL_MAXBRDS
];
134 static const struct tty_port_operations stl_port_ops
;
137 * Per board state flags. Used with the state field of the board struct.
138 * Not really much here!
140 #define BRD_FOUND 0x1
141 #define STL_PROBED 0x2
145 * Define the port structure istate flags. These set of flags are
146 * modified at interrupt time - so setting and reseting them needs
147 * to be atomic. Use the bit clear/setting routines for this.
149 #define ASYI_TXBUSY 1
151 #define ASYI_TXFLOWED 3
154 * Define an array of board names as printable strings. Handy for
155 * referencing boards when printing trace and stuff.
157 static char *stl_brdnames
[] = {
189 /*****************************************************************************/
192 * Define some string labels for arguments passed from the module
193 * load line. These allow for easy board definitions, and easy
194 * modification of the io, memory and irq resoucres.
196 static unsigned int stl_nargs
;
197 static char *board0
[4];
198 static char *board1
[4];
199 static char *board2
[4];
200 static char *board3
[4];
202 static char **stl_brdsp
[] = {
210 * Define a set of common board names, and types. This is used to
211 * parse any module arguments.
218 { "easyio", BRD_EASYIO
},
219 { "eio", BRD_EASYIO
},
220 { "20", BRD_EASYIO
},
221 { "ec8/32", BRD_ECH
},
222 { "ec8/32-at", BRD_ECH
},
223 { "ec8/32-isa", BRD_ECH
},
225 { "echat", BRD_ECH
},
227 { "ec8/32-mc", BRD_ECHMC
},
228 { "ec8/32-mca", BRD_ECHMC
},
229 { "echmc", BRD_ECHMC
},
230 { "echmca", BRD_ECHMC
},
232 { "ec8/32-pc", BRD_ECHPCI
},
233 { "ec8/32-pci", BRD_ECHPCI
},
234 { "26", BRD_ECHPCI
},
235 { "ec8/64-pc", BRD_ECH64PCI
},
236 { "ec8/64-pci", BRD_ECH64PCI
},
237 { "ech-pci", BRD_ECH64PCI
},
238 { "echpci", BRD_ECH64PCI
},
239 { "echpc", BRD_ECH64PCI
},
240 { "27", BRD_ECH64PCI
},
241 { "easyio-pc", BRD_EASYIOPCI
},
242 { "easyio-pci", BRD_EASYIOPCI
},
243 { "eio-pci", BRD_EASYIOPCI
},
244 { "eiopci", BRD_EASYIOPCI
},
245 { "28", BRD_EASYIOPCI
},
249 * Define the module agruments.
252 module_param_array(board0
, charp
, &stl_nargs
, 0);
253 MODULE_PARM_DESC(board0
, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
254 module_param_array(board1
, charp
, &stl_nargs
, 0);
255 MODULE_PARM_DESC(board1
, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
256 module_param_array(board2
, charp
, &stl_nargs
, 0);
257 MODULE_PARM_DESC(board2
, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
258 module_param_array(board3
, charp
, &stl_nargs
, 0);
259 MODULE_PARM_DESC(board3
, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
261 /*****************************************************************************/
264 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
265 * to the directly accessible io ports of these boards (not the uarts -
266 * they are in cd1400.h and sc26198.h).
268 #define EIO_8PORTRS 0x04
269 #define EIO_4PORTRS 0x05
270 #define EIO_8PORTDI 0x00
271 #define EIO_8PORTM 0x06
273 #define EIO_IDBITMASK 0x07
275 #define EIO_BRDMASK 0xf0
278 #define ID_BRD16 0x30
280 #define EIO_INTRPEND 0x08
281 #define EIO_INTEDGE 0x00
282 #define EIO_INTLEVEL 0x08
286 #define ECH_IDBITMASK 0xe0
287 #define ECH_BRDENABLE 0x08
288 #define ECH_BRDDISABLE 0x00
289 #define ECH_INTENABLE 0x01
290 #define ECH_INTDISABLE 0x00
291 #define ECH_INTLEVEL 0x02
292 #define ECH_INTEDGE 0x00
293 #define ECH_INTRPEND 0x01
294 #define ECH_BRDRESET 0x01
296 #define ECHMC_INTENABLE 0x01
297 #define ECHMC_BRDRESET 0x02
299 #define ECH_PNLSTATUS 2
300 #define ECH_PNL16PORT 0x20
301 #define ECH_PNLIDMASK 0x07
302 #define ECH_PNLXPID 0x40
303 #define ECH_PNLINTRPEND 0x80
305 #define ECH_ADDR2MASK 0x1e0
308 * Define the vector mapping bits for the programmable interrupt board
309 * hardware. These bits encode the interrupt for the board to use - it
310 * is software selectable (except the EIO-8M).
312 static unsigned char stl_vecmap
[] = {
313 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
314 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
318 * Lock ordering is that you may not take stallion_lock holding
322 static spinlock_t brd_lock
; /* Guard the board mapping */
323 static spinlock_t stallion_lock
; /* Guard the tty driver */
326 * Set up enable and disable macros for the ECH boards. They require
327 * the secondary io address space to be activated and deactivated.
328 * This way all ECH boards can share their secondary io region.
329 * If this is an ECH-PCI board then also need to set the page pointer
330 * to point to the correct page.
332 #define BRDENABLE(brdnr,pagenr) \
333 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
334 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
335 stl_brds[(brdnr)]->ioctrl); \
336 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
337 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
339 #define BRDDISABLE(brdnr) \
340 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
341 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
342 stl_brds[(brdnr)]->ioctrl);
344 #define STL_CD1400MAXBAUD 230400
345 #define STL_SC26198MAXBAUD 460800
347 #define STL_BAUDBASE 115200
348 #define STL_CLOSEDELAY (5 * HZ / 10)
350 /*****************************************************************************/
353 * Define the Stallion PCI vendor and device IDs.
355 #ifndef PCI_VENDOR_ID_STALLION
356 #define PCI_VENDOR_ID_STALLION 0x124d
358 #ifndef PCI_DEVICE_ID_ECHPCI832
359 #define PCI_DEVICE_ID_ECHPCI832 0x0000
361 #ifndef PCI_DEVICE_ID_ECHPCI864
362 #define PCI_DEVICE_ID_ECHPCI864 0x0002
364 #ifndef PCI_DEVICE_ID_EIOPCI
365 #define PCI_DEVICE_ID_EIOPCI 0x0003
369 * Define structure to hold all Stallion PCI boards.
372 static struct pci_device_id stl_pcibrds
[] = {
373 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI864
),
374 .driver_data
= BRD_ECH64PCI
},
375 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_EIOPCI
),
376 .driver_data
= BRD_EASYIOPCI
},
377 { PCI_DEVICE(PCI_VENDOR_ID_STALLION
, PCI_DEVICE_ID_ECHPCI832
),
378 .driver_data
= BRD_ECHPCI
},
379 { PCI_DEVICE(PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_87410
),
380 .driver_data
= BRD_ECHPCI
},
383 MODULE_DEVICE_TABLE(pci
, stl_pcibrds
);
385 /*****************************************************************************/
388 * Define macros to extract a brd/port number from a minor number.
390 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
391 #define MINOR2PORT(min) ((min) & 0x3f)
394 * Define a baud rate table that converts termios baud rate selector
395 * into the actual baud rate value. All baud rate calculations are
396 * based on the actual baud rate required.
398 static unsigned int stl_baudrates
[] = {
399 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
400 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
403 /*****************************************************************************/
406 * Declare all those functions in this driver!
409 static long stl_memioctl(struct file
*fp
, unsigned int cmd
, unsigned long arg
);
410 static int stl_brdinit(struct stlbrd
*brdp
);
411 static int stl_getportstats(struct tty_struct
*tty
, struct stlport
*portp
, comstats_t __user
*cp
);
412 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
);
415 * CD1400 uart specific handling functions.
417 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
);
418 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
);
419 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
);
420 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
421 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
422 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
);
423 static int stl_cd1400getsignals(struct stlport
*portp
);
424 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
);
425 static void stl_cd1400ccrwait(struct stlport
*portp
);
426 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
);
427 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
);
428 static void stl_cd1400disableintrs(struct stlport
*portp
);
429 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
);
430 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
);
431 static void stl_cd1400sendflow(struct stlport
*portp
, int state
);
432 static void stl_cd1400flush(struct stlport
*portp
);
433 static int stl_cd1400datastate(struct stlport
*portp
);
434 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
);
435 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
);
436 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
);
437 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
);
438 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
);
440 static inline int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
);
443 * SC26198 uart specific handling functions.
445 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
);
446 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
);
447 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
);
448 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
);
449 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
450 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
451 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
);
452 static int stl_sc26198getsignals(struct stlport
*portp
);
453 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
);
454 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
);
455 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
);
456 static void stl_sc26198disableintrs(struct stlport
*portp
);
457 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
);
458 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
);
459 static void stl_sc26198sendflow(struct stlport
*portp
, int state
);
460 static void stl_sc26198flush(struct stlport
*portp
);
461 static int stl_sc26198datastate(struct stlport
*portp
);
462 static void stl_sc26198wait(struct stlport
*portp
);
463 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
);
464 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
);
465 static void stl_sc26198txisr(struct stlport
*port
);
466 static void stl_sc26198rxisr(struct stlport
*port
, unsigned int iack
);
467 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
);
468 static void stl_sc26198rxbadchars(struct stlport
*portp
);
469 static void stl_sc26198otherisr(struct stlport
*port
, unsigned int iack
);
471 /*****************************************************************************/
474 * Generic UART support structure.
476 typedef struct uart
{
477 int (*panelinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
);
478 void (*portinit
)(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
);
479 void (*setport
)(struct stlport
*portp
, struct ktermios
*tiosp
);
480 int (*getsignals
)(struct stlport
*portp
);
481 void (*setsignals
)(struct stlport
*portp
, int dtr
, int rts
);
482 void (*enablerxtx
)(struct stlport
*portp
, int rx
, int tx
);
483 void (*startrxtx
)(struct stlport
*portp
, int rx
, int tx
);
484 void (*disableintrs
)(struct stlport
*portp
);
485 void (*sendbreak
)(struct stlport
*portp
, int len
);
486 void (*flowctrl
)(struct stlport
*portp
, int state
);
487 void (*sendflow
)(struct stlport
*portp
, int state
);
488 void (*flush
)(struct stlport
*portp
);
489 int (*datastate
)(struct stlport
*portp
);
490 void (*intr
)(struct stlpanel
*panelp
, unsigned int iobase
);
494 * Define some macros to make calling these functions nice and clean.
496 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
497 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
498 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
499 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
500 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
501 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
502 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
503 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
504 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
505 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
506 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
507 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
508 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
510 /*****************************************************************************/
513 * CD1400 UART specific data initialization.
515 static uart_t stl_cd1400uart
= {
519 stl_cd1400getsignals
,
520 stl_cd1400setsignals
,
521 stl_cd1400enablerxtx
,
523 stl_cd1400disableintrs
,
533 * Define the offsets within the register bank of a cd1400 based panel.
534 * These io address offsets are common to the EasyIO board as well.
542 #define EREG_BANKSIZE 8
544 #define CD1400_CLK 25000000
545 #define CD1400_CLK8M 20000000
548 * Define the cd1400 baud rate clocks. These are used when calculating
549 * what clock and divisor to use for the required baud rate. Also
550 * define the maximum baud rate allowed, and the default base baud.
552 static int stl_cd1400clkdivs
[] = {
553 CD1400_CLK0
, CD1400_CLK1
, CD1400_CLK2
, CD1400_CLK3
, CD1400_CLK4
556 /*****************************************************************************/
559 * SC26198 UART specific data initization.
561 static uart_t stl_sc26198uart
= {
562 stl_sc26198panelinit
,
565 stl_sc26198getsignals
,
566 stl_sc26198setsignals
,
567 stl_sc26198enablerxtx
,
568 stl_sc26198startrxtx
,
569 stl_sc26198disableintrs
,
570 stl_sc26198sendbreak
,
574 stl_sc26198datastate
,
579 * Define the offsets within the register bank of a sc26198 based panel.
587 #define XP_BANKSIZE 4
590 * Define the sc26198 baud rate table. Offsets within the table
591 * represent the actual baud rate selector of sc26198 registers.
593 static unsigned int sc26198_baudtable
[] = {
594 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
595 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
596 230400, 460800, 921600
599 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
601 /*****************************************************************************/
604 * Define the driver info for a user level control device. Used mainly
605 * to get at port stats - only not using the port device itself.
607 static const struct file_operations stl_fsiomem
= {
608 .owner
= THIS_MODULE
,
609 .unlocked_ioctl
= stl_memioctl
,
610 .llseek
= noop_llseek
,
613 static struct class *stallion_class
;
615 static void stl_cd_change(struct stlport
*portp
)
617 unsigned int oldsigs
= portp
->sigs
;
618 struct tty_struct
*tty
= tty_port_tty_get(&portp
->port
);
623 portp
->sigs
= stl_getsignals(portp
);
625 if ((portp
->sigs
& TIOCM_CD
) && ((oldsigs
& TIOCM_CD
) == 0))
626 wake_up_interruptible(&portp
->port
.open_wait
);
628 if ((oldsigs
& TIOCM_CD
) && ((portp
->sigs
& TIOCM_CD
) == 0))
629 if (portp
->port
.flags
& ASYNC_CHECK_CD
)
635 * Check for any arguments passed in on the module load command line.
638 /*****************************************************************************/
641 * Parse the supplied argument string, into the board conf struct.
644 static int __init
stl_parsebrd(struct stlconf
*confp
, char **argp
)
649 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp
, argp
);
651 if ((argp
[0] == NULL
) || (*argp
[0] == 0))
654 for (sp
= argp
[0], i
= 0; (*sp
!= 0) && (i
< 25); sp
++, i
++)
657 for (i
= 0; i
< ARRAY_SIZE(stl_brdstr
); i
++)
658 if (strcmp(stl_brdstr
[i
].name
, argp
[0]) == 0)
661 if (i
== ARRAY_SIZE(stl_brdstr
)) {
662 printk("STALLION: unknown board name, %s?\n", argp
[0]);
666 confp
->brdtype
= stl_brdstr
[i
].type
;
669 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
670 confp
->ioaddr1
= simple_strtoul(argp
[i
], NULL
, 0);
672 if (confp
->brdtype
== BRD_ECH
) {
673 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
674 confp
->ioaddr2
= simple_strtoul(argp
[i
], NULL
, 0);
677 if ((argp
[i
] != NULL
) && (*argp
[i
] != 0))
678 confp
->irq
= simple_strtoul(argp
[i
], NULL
, 0);
682 /*****************************************************************************/
685 * Allocate a new board structure. Fill out the basic info in it.
688 static struct stlbrd
*stl_allocbrd(void)
692 brdp
= kzalloc(sizeof(struct stlbrd
), GFP_KERNEL
);
694 printk("STALLION: failed to allocate memory (size=%Zd)\n",
695 sizeof(struct stlbrd
));
699 brdp
->magic
= STL_BOARDMAGIC
;
703 /*****************************************************************************/
705 static int stl_activate(struct tty_port
*port
, struct tty_struct
*tty
)
707 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
708 if (!portp
->tx
.buf
) {
709 portp
->tx
.buf
= kmalloc(STL_TXBUFSIZE
, GFP_KERNEL
);
712 portp
->tx
.head
= portp
->tx
.buf
;
713 portp
->tx
.tail
= portp
->tx
.buf
;
715 stl_setport(portp
, tty
->termios
);
716 portp
->sigs
= stl_getsignals(portp
);
717 stl_setsignals(portp
, 1, 1);
718 stl_enablerxtx(portp
, 1, 1);
719 stl_startrxtx(portp
, 1, 0);
723 static int stl_open(struct tty_struct
*tty
, struct file
*filp
)
725 struct stlport
*portp
;
727 unsigned int minordev
, brdnr
, panelnr
;
730 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty
, filp
, tty
->name
);
732 minordev
= tty
->index
;
733 brdnr
= MINOR2BRD(minordev
);
734 if (brdnr
>= stl_nrbrds
)
736 brdp
= stl_brds
[brdnr
];
740 minordev
= MINOR2PORT(minordev
);
741 for (portnr
= -1, panelnr
= 0; panelnr
< STL_MAXPANELS
; panelnr
++) {
742 if (brdp
->panels
[panelnr
] == NULL
)
744 if (minordev
< brdp
->panels
[panelnr
]->nrports
) {
748 minordev
-= brdp
->panels
[panelnr
]->nrports
;
753 portp
= brdp
->panels
[panelnr
]->ports
[portnr
];
757 tty
->driver_data
= portp
;
758 return tty_port_open(&portp
->port
, tty
, filp
);
762 /*****************************************************************************/
764 static int stl_carrier_raised(struct tty_port
*port
)
766 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
767 return (portp
->sigs
& TIOCM_CD
) ? 1 : 0;
770 static void stl_dtr_rts(struct tty_port
*port
, int on
)
772 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
773 /* Takes brd_lock internally */
774 stl_setsignals(portp
, on
, on
);
777 /*****************************************************************************/
779 static void stl_flushbuffer(struct tty_struct
*tty
)
781 struct stlport
*portp
;
783 pr_debug("stl_flushbuffer(tty=%p)\n", tty
);
785 portp
= tty
->driver_data
;
793 /*****************************************************************************/
795 static void stl_waituntilsent(struct tty_struct
*tty
, int timeout
)
797 struct stlport
*portp
;
800 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty
, timeout
);
802 portp
= tty
->driver_data
;
808 tend
= jiffies
+ timeout
;
810 while (stl_datastate(portp
)) {
811 if (signal_pending(current
))
813 msleep_interruptible(20);
814 if (time_after_eq(jiffies
, tend
))
819 /*****************************************************************************/
821 static void stl_shutdown(struct tty_port
*port
)
823 struct stlport
*portp
= container_of(port
, struct stlport
, port
);
824 stl_disableintrs(portp
);
825 stl_enablerxtx(portp
, 0, 0);
828 if (portp
->tx
.buf
!= NULL
) {
829 kfree(portp
->tx
.buf
);
830 portp
->tx
.buf
= NULL
;
831 portp
->tx
.head
= NULL
;
832 portp
->tx
.tail
= NULL
;
836 static void stl_close(struct tty_struct
*tty
, struct file
*filp
)
838 struct stlport
*portp
;
839 pr_debug("stl_close(tty=%p,filp=%p)\n", tty
, filp
);
841 portp
= tty
->driver_data
;
844 tty_port_close(&portp
->port
, tty
, filp
);
847 /*****************************************************************************/
850 * Write routine. Take data and stuff it in to the TX ring queue.
851 * If transmit interrupts are not running then start them.
854 static int stl_write(struct tty_struct
*tty
, const unsigned char *buf
, int count
)
856 struct stlport
*portp
;
857 unsigned int len
, stlen
;
858 unsigned char *chbuf
;
861 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty
, buf
, count
);
863 portp
= tty
->driver_data
;
866 if (portp
->tx
.buf
== NULL
)
870 * If copying direct from user space we must cater for page faults,
871 * causing us to "sleep" here for a while. To handle this copy in all
872 * the data we need now, into a local buffer. Then when we got it all
873 * copy it into the TX buffer.
875 chbuf
= (unsigned char *) buf
;
877 head
= portp
->tx
.head
;
878 tail
= portp
->tx
.tail
;
880 len
= STL_TXBUFSIZE
- (head
- tail
) - 1;
881 stlen
= STL_TXBUFSIZE
- (head
- portp
->tx
.buf
);
883 len
= tail
- head
- 1;
887 len
= min(len
, (unsigned int)count
);
890 stlen
= min(len
, stlen
);
891 memcpy(head
, chbuf
, stlen
);
896 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
)) {
897 head
= portp
->tx
.buf
;
901 portp
->tx
.head
= head
;
903 clear_bit(ASYI_TXLOW
, &portp
->istate
);
904 stl_startrxtx(portp
, -1, 1);
909 /*****************************************************************************/
911 static int stl_putchar(struct tty_struct
*tty
, unsigned char ch
)
913 struct stlport
*portp
;
917 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty
, ch
);
919 portp
= tty
->driver_data
;
922 if (portp
->tx
.buf
== NULL
)
925 head
= portp
->tx
.head
;
926 tail
= portp
->tx
.tail
;
928 len
= (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
)) : (tail
- head
);
933 if (head
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
934 head
= portp
->tx
.buf
;
936 portp
->tx
.head
= head
;
940 /*****************************************************************************/
943 * If there are any characters in the buffer then make sure that TX
944 * interrupts are on and get'em out. Normally used after the putchar
945 * routine has been called.
948 static void stl_flushchars(struct tty_struct
*tty
)
950 struct stlport
*portp
;
952 pr_debug("stl_flushchars(tty=%p)\n", tty
);
954 portp
= tty
->driver_data
;
957 if (portp
->tx
.buf
== NULL
)
960 stl_startrxtx(portp
, -1, 1);
963 /*****************************************************************************/
965 static int stl_writeroom(struct tty_struct
*tty
)
967 struct stlport
*portp
;
970 pr_debug("stl_writeroom(tty=%p)\n", tty
);
972 portp
= tty
->driver_data
;
975 if (portp
->tx
.buf
== NULL
)
978 head
= portp
->tx
.head
;
979 tail
= portp
->tx
.tail
;
980 return (head
>= tail
) ? (STL_TXBUFSIZE
- (head
- tail
) - 1) : (tail
- head
- 1);
983 /*****************************************************************************/
986 * Return number of chars in the TX buffer. Normally we would just
987 * calculate the number of chars in the buffer and return that, but if
988 * the buffer is empty and TX interrupts are still on then we return
989 * that the buffer still has 1 char in it. This way whoever called us
990 * will not think that ALL chars have drained - since the UART still
991 * must have some chars in it (we are busy after all).
994 static int stl_charsinbuffer(struct tty_struct
*tty
)
996 struct stlport
*portp
;
1000 pr_debug("stl_charsinbuffer(tty=%p)\n", tty
);
1002 portp
= tty
->driver_data
;
1005 if (portp
->tx
.buf
== NULL
)
1008 head
= portp
->tx
.head
;
1009 tail
= portp
->tx
.tail
;
1010 size
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
1011 if ((size
== 0) && test_bit(ASYI_TXBUSY
, &portp
->istate
))
1016 /*****************************************************************************/
1019 * Generate the serial struct info.
1022 static int stl_getserial(struct stlport
*portp
, struct serial_struct __user
*sp
)
1024 struct serial_struct sio
;
1025 struct stlbrd
*brdp
;
1027 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp
, sp
);
1029 memset(&sio
, 0, sizeof(struct serial_struct
));
1031 mutex_lock(&portp
->port
.mutex
);
1032 sio
.line
= portp
->portnr
;
1033 sio
.port
= portp
->ioaddr
;
1034 sio
.flags
= portp
->port
.flags
;
1035 sio
.baud_base
= portp
->baud_base
;
1036 sio
.close_delay
= portp
->close_delay
;
1037 sio
.closing_wait
= portp
->closing_wait
;
1038 sio
.custom_divisor
= portp
->custom_divisor
;
1040 if (portp
->uartp
== &stl_cd1400uart
) {
1041 sio
.type
= PORT_CIRRUS
;
1042 sio
.xmit_fifo_size
= CD1400_TXFIFOSIZE
;
1044 sio
.type
= PORT_UNKNOWN
;
1045 sio
.xmit_fifo_size
= SC26198_TXFIFOSIZE
;
1048 brdp
= stl_brds
[portp
->brdnr
];
1050 sio
.irq
= brdp
->irq
;
1051 mutex_unlock(&portp
->port
.mutex
);
1053 return copy_to_user(sp
, &sio
, sizeof(struct serial_struct
)) ? -EFAULT
: 0;
1056 /*****************************************************************************/
1059 * Set port according to the serial struct info.
1060 * At this point we do not do any auto-configure stuff, so we will
1061 * just quietly ignore any requests to change irq, etc.
1064 static int stl_setserial(struct tty_struct
*tty
, struct serial_struct __user
*sp
)
1066 struct stlport
* portp
= tty
->driver_data
;
1067 struct serial_struct sio
;
1069 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp
, sp
);
1071 if (copy_from_user(&sio
, sp
, sizeof(struct serial_struct
)))
1073 mutex_lock(&portp
->port
.mutex
);
1074 if (!capable(CAP_SYS_ADMIN
)) {
1075 if ((sio
.baud_base
!= portp
->baud_base
) ||
1076 (sio
.close_delay
!= portp
->close_delay
) ||
1077 ((sio
.flags
& ~ASYNC_USR_MASK
) !=
1078 (portp
->port
.flags
& ~ASYNC_USR_MASK
))) {
1079 mutex_unlock(&portp
->port
.mutex
);
1084 portp
->port
.flags
= (portp
->port
.flags
& ~ASYNC_USR_MASK
) |
1085 (sio
.flags
& ASYNC_USR_MASK
);
1086 portp
->baud_base
= sio
.baud_base
;
1087 portp
->close_delay
= sio
.close_delay
;
1088 portp
->closing_wait
= sio
.closing_wait
;
1089 portp
->custom_divisor
= sio
.custom_divisor
;
1090 mutex_unlock(&portp
->port
.mutex
);
1091 stl_setport(portp
, tty
->termios
);
1095 /*****************************************************************************/
1097 static int stl_tiocmget(struct tty_struct
*tty
, struct file
*file
)
1099 struct stlport
*portp
;
1101 portp
= tty
->driver_data
;
1104 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1107 return stl_getsignals(portp
);
1110 static int stl_tiocmset(struct tty_struct
*tty
, struct file
*file
,
1111 unsigned int set
, unsigned int clear
)
1113 struct stlport
*portp
;
1114 int rts
= -1, dtr
= -1;
1116 portp
= tty
->driver_data
;
1119 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1122 if (set
& TIOCM_RTS
)
1124 if (set
& TIOCM_DTR
)
1126 if (clear
& TIOCM_RTS
)
1128 if (clear
& TIOCM_DTR
)
1131 stl_setsignals(portp
, dtr
, rts
);
1135 static int stl_ioctl(struct tty_struct
*tty
, struct file
*file
, unsigned int cmd
, unsigned long arg
)
1137 struct stlport
*portp
;
1139 void __user
*argp
= (void __user
*)arg
;
1141 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty
, file
, cmd
,
1144 portp
= tty
->driver_data
;
1148 if ((cmd
!= TIOCGSERIAL
) && (cmd
!= TIOCSSERIAL
) &&
1149 (cmd
!= COM_GETPORTSTATS
) && (cmd
!= COM_CLRPORTSTATS
))
1150 if (tty
->flags
& (1 << TTY_IO_ERROR
))
1157 rc
= stl_getserial(portp
, argp
);
1160 rc
= stl_setserial(tty
, argp
);
1162 case COM_GETPORTSTATS
:
1163 rc
= stl_getportstats(tty
, portp
, argp
);
1165 case COM_CLRPORTSTATS
:
1166 rc
= stl_clrportstats(portp
, argp
);
1172 case TIOCSERGSTRUCT
:
1173 case TIOCSERGETMULTI
:
1174 case TIOCSERSETMULTI
:
1182 /*****************************************************************************/
1185 * Start the transmitter again. Just turn TX interrupts back on.
1188 static void stl_start(struct tty_struct
*tty
)
1190 struct stlport
*portp
;
1192 pr_debug("stl_start(tty=%p)\n", tty
);
1194 portp
= tty
->driver_data
;
1197 stl_startrxtx(portp
, -1, 1);
1200 /*****************************************************************************/
1202 static void stl_settermios(struct tty_struct
*tty
, struct ktermios
*old
)
1204 struct stlport
*portp
;
1205 struct ktermios
*tiosp
;
1207 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty
, old
);
1209 portp
= tty
->driver_data
;
1213 tiosp
= tty
->termios
;
1214 if ((tiosp
->c_cflag
== old
->c_cflag
) &&
1215 (tiosp
->c_iflag
== old
->c_iflag
))
1218 stl_setport(portp
, tiosp
);
1219 stl_setsignals(portp
, ((tiosp
->c_cflag
& (CBAUD
& ~CBAUDEX
)) ? 1 : 0),
1221 if ((old
->c_cflag
& CRTSCTS
) && ((tiosp
->c_cflag
& CRTSCTS
) == 0)) {
1222 tty
->hw_stopped
= 0;
1225 if (((old
->c_cflag
& CLOCAL
) == 0) && (tiosp
->c_cflag
& CLOCAL
))
1226 wake_up_interruptible(&portp
->port
.open_wait
);
1229 /*****************************************************************************/
1232 * Attempt to flow control who ever is sending us data. Based on termios
1233 * settings use software or/and hardware flow control.
1236 static void stl_throttle(struct tty_struct
*tty
)
1238 struct stlport
*portp
;
1240 pr_debug("stl_throttle(tty=%p)\n", tty
);
1242 portp
= tty
->driver_data
;
1245 stl_flowctrl(portp
, 0);
1248 /*****************************************************************************/
1251 * Unflow control the device sending us data...
1254 static void stl_unthrottle(struct tty_struct
*tty
)
1256 struct stlport
*portp
;
1258 pr_debug("stl_unthrottle(tty=%p)\n", tty
);
1260 portp
= tty
->driver_data
;
1263 stl_flowctrl(portp
, 1);
1266 /*****************************************************************************/
1269 * Stop the transmitter. Basically to do this we will just turn TX
1273 static void stl_stop(struct tty_struct
*tty
)
1275 struct stlport
*portp
;
1277 pr_debug("stl_stop(tty=%p)\n", tty
);
1279 portp
= tty
->driver_data
;
1282 stl_startrxtx(portp
, -1, 0);
1285 /*****************************************************************************/
1288 * Hangup this port. This is pretty much like closing the port, only
1289 * a little more brutal. No waiting for data to drain. Shutdown the
1290 * port and maybe drop signals.
1293 static void stl_hangup(struct tty_struct
*tty
)
1295 struct stlport
*portp
= tty
->driver_data
;
1296 pr_debug("stl_hangup(tty=%p)\n", tty
);
1300 tty_port_hangup(&portp
->port
);
1303 /*****************************************************************************/
1305 static int stl_breakctl(struct tty_struct
*tty
, int state
)
1307 struct stlport
*portp
;
1309 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty
, state
);
1311 portp
= tty
->driver_data
;
1315 stl_sendbreak(portp
, ((state
== -1) ? 1 : 2));
1319 /*****************************************************************************/
1321 static void stl_sendxchar(struct tty_struct
*tty
, char ch
)
1323 struct stlport
*portp
;
1325 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty
, ch
);
1327 portp
= tty
->driver_data
;
1331 if (ch
== STOP_CHAR(tty
))
1332 stl_sendflow(portp
, 0);
1333 else if (ch
== START_CHAR(tty
))
1334 stl_sendflow(portp
, 1);
1336 stl_putchar(tty
, ch
);
1339 static void stl_portinfo(struct seq_file
*m
, struct stlport
*portp
, int portnr
)
1344 seq_printf(m
, "%d: uart:%s tx:%d rx:%d",
1345 portnr
, (portp
->hwid
== 1) ? "SC26198" : "CD1400",
1346 (int) portp
->stats
.txtotal
, (int) portp
->stats
.rxtotal
);
1348 if (portp
->stats
.rxframing
)
1349 seq_printf(m
, " fe:%d", (int) portp
->stats
.rxframing
);
1350 if (portp
->stats
.rxparity
)
1351 seq_printf(m
, " pe:%d", (int) portp
->stats
.rxparity
);
1352 if (portp
->stats
.rxbreaks
)
1353 seq_printf(m
, " brk:%d", (int) portp
->stats
.rxbreaks
);
1354 if (portp
->stats
.rxoverrun
)
1355 seq_printf(m
, " oe:%d", (int) portp
->stats
.rxoverrun
);
1357 sigs
= stl_getsignals(portp
);
1359 if (sigs
& TIOCM_RTS
) {
1360 seq_printf(m
, "%c%s", sep
, "RTS");
1363 if (sigs
& TIOCM_CTS
) {
1364 seq_printf(m
, "%c%s", sep
, "CTS");
1367 if (sigs
& TIOCM_DTR
) {
1368 seq_printf(m
, "%c%s", sep
, "DTR");
1371 if (sigs
& TIOCM_CD
) {
1372 seq_printf(m
, "%c%s", sep
, "DCD");
1375 if (sigs
& TIOCM_DSR
) {
1376 seq_printf(m
, "%c%s", sep
, "DSR");
1382 /*****************************************************************************/
1385 * Port info, read from the /proc file system.
1388 static int stl_proc_show(struct seq_file
*m
, void *v
)
1390 struct stlbrd
*brdp
;
1391 struct stlpanel
*panelp
;
1392 struct stlport
*portp
;
1393 unsigned int brdnr
, panelnr
, portnr
;
1398 seq_printf(m
, "%s: version %s\n", stl_drvtitle
, stl_drvversion
);
1401 * We scan through for each board, panel and port. The offset is
1402 * calculated on the fly, and irrelevant ports are skipped.
1404 for (brdnr
= 0; brdnr
< stl_nrbrds
; brdnr
++) {
1405 brdp
= stl_brds
[brdnr
];
1408 if (brdp
->state
== 0)
1411 totalport
= brdnr
* STL_MAXPORTS
;
1412 for (panelnr
= 0; panelnr
< brdp
->nrpanels
; panelnr
++) {
1413 panelp
= brdp
->panels
[panelnr
];
1417 for (portnr
= 0; portnr
< panelp
->nrports
; portnr
++,
1419 portp
= panelp
->ports
[portnr
];
1422 stl_portinfo(m
, portp
, totalport
);
1429 static int stl_proc_open(struct inode
*inode
, struct file
*file
)
1431 return single_open(file
, stl_proc_show
, NULL
);
1434 static const struct file_operations stl_proc_fops
= {
1435 .owner
= THIS_MODULE
,
1436 .open
= stl_proc_open
,
1438 .llseek
= seq_lseek
,
1439 .release
= single_release
,
1442 /*****************************************************************************/
1445 * All board interrupts are vectored through here first. This code then
1446 * calls off to the approrpriate board interrupt handlers.
1449 static irqreturn_t
stl_intr(int irq
, void *dev_id
)
1451 struct stlbrd
*brdp
= dev_id
;
1453 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp
, brdp
->irq
);
1455 return IRQ_RETVAL((* brdp
->isr
)(brdp
));
1458 /*****************************************************************************/
1461 * Interrupt service routine for EasyIO board types.
1464 static int stl_eiointr(struct stlbrd
*brdp
)
1466 struct stlpanel
*panelp
;
1467 unsigned int iobase
;
1470 spin_lock(&brd_lock
);
1471 panelp
= brdp
->panels
[0];
1472 iobase
= panelp
->iobase
;
1473 while (inb(brdp
->iostatus
) & EIO_INTRPEND
) {
1475 (* panelp
->isr
)(panelp
, iobase
);
1477 spin_unlock(&brd_lock
);
1481 /*****************************************************************************/
1484 * Interrupt service routine for ECH-AT board types.
1487 static int stl_echatintr(struct stlbrd
*brdp
)
1489 struct stlpanel
*panelp
;
1490 unsigned int ioaddr
, bnknr
;
1493 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1495 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1497 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1498 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1499 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1500 panelp
= brdp
->bnk2panel
[bnknr
];
1501 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1506 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
1511 /*****************************************************************************/
1514 * Interrupt service routine for ECH-MCA board types.
1517 static int stl_echmcaintr(struct stlbrd
*brdp
)
1519 struct stlpanel
*panelp
;
1520 unsigned int ioaddr
, bnknr
;
1523 while (inb(brdp
->iostatus
) & ECH_INTRPEND
) {
1525 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1526 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1527 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1528 panelp
= brdp
->bnk2panel
[bnknr
];
1529 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1536 /*****************************************************************************/
1539 * Interrupt service routine for ECH-PCI board types.
1542 static int stl_echpciintr(struct stlbrd
*brdp
)
1544 struct stlpanel
*panelp
;
1545 unsigned int ioaddr
, bnknr
, recheck
;
1550 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1551 outb(brdp
->bnkpageaddr
[bnknr
], brdp
->ioctrl
);
1552 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1553 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1554 panelp
= brdp
->bnk2panel
[bnknr
];
1555 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1566 /*****************************************************************************/
1569 * Interrupt service routine for ECH-8/64-PCI board types.
1572 static int stl_echpci64intr(struct stlbrd
*brdp
)
1574 struct stlpanel
*panelp
;
1575 unsigned int ioaddr
, bnknr
;
1578 while (inb(brdp
->ioctrl
) & 0x1) {
1580 for (bnknr
= 0; bnknr
< brdp
->nrbnks
; bnknr
++) {
1581 ioaddr
= brdp
->bnkstataddr
[bnknr
];
1582 if (inb(ioaddr
) & ECH_PNLINTRPEND
) {
1583 panelp
= brdp
->bnk2panel
[bnknr
];
1584 (* panelp
->isr
)(panelp
, (ioaddr
& 0xfffc));
1592 /*****************************************************************************/
1595 * Initialize all the ports on a panel.
1598 static int __devinit
stl_initports(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
1600 struct stlport
*portp
;
1604 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp
, panelp
);
1606 chipmask
= stl_panelinit(brdp
, panelp
);
1609 * All UART's are initialized (if found!). Now go through and setup
1610 * each ports data structures.
1612 for (i
= 0; i
< panelp
->nrports
; i
++) {
1613 portp
= kzalloc(sizeof(struct stlport
), GFP_KERNEL
);
1615 printk("STALLION: failed to allocate memory "
1616 "(size=%Zd)\n", sizeof(struct stlport
));
1619 tty_port_init(&portp
->port
);
1620 portp
->port
.ops
= &stl_port_ops
;
1621 portp
->magic
= STL_PORTMAGIC
;
1623 portp
->brdnr
= panelp
->brdnr
;
1624 portp
->panelnr
= panelp
->panelnr
;
1625 portp
->uartp
= panelp
->uartp
;
1626 portp
->clk
= brdp
->clk
;
1627 portp
->baud_base
= STL_BAUDBASE
;
1628 portp
->close_delay
= STL_CLOSEDELAY
;
1629 portp
->closing_wait
= 30 * HZ
;
1630 init_waitqueue_head(&portp
->port
.open_wait
);
1631 init_waitqueue_head(&portp
->port
.close_wait
);
1632 portp
->stats
.brd
= portp
->brdnr
;
1633 portp
->stats
.panel
= portp
->panelnr
;
1634 portp
->stats
.port
= portp
->portnr
;
1635 panelp
->ports
[i
] = portp
;
1636 stl_portinit(brdp
, panelp
, portp
);
1642 static void stl_cleanup_panels(struct stlbrd
*brdp
)
1644 struct stlpanel
*panelp
;
1645 struct stlport
*portp
;
1647 struct tty_struct
*tty
;
1649 for (j
= 0; j
< STL_MAXPANELS
; j
++) {
1650 panelp
= brdp
->panels
[j
];
1653 for (k
= 0; k
< STL_PORTSPERPANEL
; k
++) {
1654 portp
= panelp
->ports
[k
];
1657 tty
= tty_port_tty_get(&portp
->port
);
1662 kfree(portp
->tx
.buf
);
1669 /*****************************************************************************/
1672 * Try to find and initialize an EasyIO board.
1675 static int __devinit
stl_initeio(struct stlbrd
*brdp
)
1677 struct stlpanel
*panelp
;
1678 unsigned int status
;
1682 pr_debug("stl_initeio(brdp=%p)\n", brdp
);
1684 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
1685 brdp
->iostatus
= brdp
->ioaddr1
+ 2;
1687 status
= inb(brdp
->iostatus
);
1688 if ((status
& EIO_IDBITMASK
) == EIO_MK3
)
1692 * Handle board specific stuff now. The real difference is PCI
1695 if (brdp
->brdtype
== BRD_EASYIOPCI
) {
1696 brdp
->iosize1
= 0x80;
1697 brdp
->iosize2
= 0x80;
1698 name
= "serial(EIO-PCI)";
1699 outb(0x41, (brdp
->ioaddr2
+ 0x4c));
1702 name
= "serial(EIO)";
1703 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1704 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1705 printk("STALLION: invalid irq=%d for brd=%d\n",
1706 brdp
->irq
, brdp
->brdnr
);
1710 outb((stl_vecmap
[brdp
->irq
] | EIO_0WS
|
1711 ((brdp
->irqtype
) ? EIO_INTLEVEL
: EIO_INTEDGE
)),
1716 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
1717 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
1718 "%x conflicts with another device\n", brdp
->brdnr
,
1723 if (brdp
->iosize2
> 0)
1724 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
1725 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
1726 "address %x conflicts with another device\n",
1727 brdp
->brdnr
, brdp
->ioaddr2
);
1728 printk(KERN_WARNING
"STALLION: Warning, also "
1729 "releasing board %d I/O address %x \n",
1730 brdp
->brdnr
, brdp
->ioaddr1
);
1735 * Everything looks OK, so let's go ahead and probe for the hardware.
1737 brdp
->clk
= CD1400_CLK
;
1738 brdp
->isr
= stl_eiointr
;
1741 switch (status
& EIO_IDBITMASK
) {
1743 brdp
->clk
= CD1400_CLK8M
;
1753 switch (status
& EIO_BRDMASK
) {
1772 * We have verified that the board is actually present, so now we
1773 * can complete the setup.
1776 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
1778 printk(KERN_WARNING
"STALLION: failed to allocate memory "
1779 "(size=%Zd)\n", sizeof(struct stlpanel
));
1784 panelp
->magic
= STL_PANELMAGIC
;
1785 panelp
->brdnr
= brdp
->brdnr
;
1786 panelp
->panelnr
= 0;
1787 panelp
->nrports
= brdp
->nrports
;
1788 panelp
->iobase
= brdp
->ioaddr1
;
1789 panelp
->hwid
= status
;
1790 if ((status
& EIO_IDBITMASK
) == EIO_MK3
) {
1791 panelp
->uartp
= &stl_sc26198uart
;
1792 panelp
->isr
= stl_sc26198intr
;
1794 panelp
->uartp
= &stl_cd1400uart
;
1795 panelp
->isr
= stl_cd1400eiointr
;
1798 brdp
->panels
[0] = panelp
;
1800 brdp
->state
|= BRD_FOUND
;
1801 brdp
->hwid
= status
;
1802 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
1803 printk("STALLION: failed to register interrupt "
1804 "routine for %s irq=%d\n", name
, brdp
->irq
);
1811 stl_cleanup_panels(brdp
);
1813 if (brdp
->iosize2
> 0)
1814 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
1816 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
1821 /*****************************************************************************/
1824 * Try to find an ECH board and initialize it. This code is capable of
1825 * dealing with all types of ECH board.
1828 static int __devinit
stl_initech(struct stlbrd
*brdp
)
1830 struct stlpanel
*panelp
;
1831 unsigned int status
, nxtid
, ioaddr
, conflict
, panelnr
, banknr
, i
;
1835 pr_debug("stl_initech(brdp=%p)\n", brdp
);
1841 * Set up the initial board register contents for boards. This varies a
1842 * bit between the different board types. So we need to handle each
1843 * separately. Also do a check that the supplied IRQ is good.
1845 switch (brdp
->brdtype
) {
1848 brdp
->isr
= stl_echatintr
;
1849 brdp
->ioctrl
= brdp
->ioaddr1
+ 1;
1850 brdp
->iostatus
= brdp
->ioaddr1
+ 1;
1851 status
= inb(brdp
->iostatus
);
1852 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
1856 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1857 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1858 printk("STALLION: invalid irq=%d for brd=%d\n",
1859 brdp
->irq
, brdp
->brdnr
);
1863 status
= ((brdp
->ioaddr2
& ECH_ADDR2MASK
) >> 1);
1864 status
|= (stl_vecmap
[brdp
->irq
] << 1);
1865 outb((status
| ECH_BRDRESET
), brdp
->ioaddr1
);
1866 brdp
->ioctrlval
= ECH_INTENABLE
|
1867 ((brdp
->irqtype
) ? ECH_INTLEVEL
: ECH_INTEDGE
);
1868 for (i
= 0; i
< 10; i
++)
1869 outb((brdp
->ioctrlval
| ECH_BRDENABLE
), brdp
->ioctrl
);
1872 name
= "serial(EC8/32)";
1873 outb(status
, brdp
->ioaddr1
);
1877 brdp
->isr
= stl_echmcaintr
;
1878 brdp
->ioctrl
= brdp
->ioaddr1
+ 0x20;
1879 brdp
->iostatus
= brdp
->ioctrl
;
1880 status
= inb(brdp
->iostatus
);
1881 if ((status
& ECH_IDBITMASK
) != ECH_ID
) {
1885 if ((brdp
->irq
< 0) || (brdp
->irq
> 15) ||
1886 (stl_vecmap
[brdp
->irq
] == (unsigned char) 0xff)) {
1887 printk("STALLION: invalid irq=%d for brd=%d\n",
1888 brdp
->irq
, brdp
->brdnr
);
1892 outb(ECHMC_BRDRESET
, brdp
->ioctrl
);
1893 outb(ECHMC_INTENABLE
, brdp
->ioctrl
);
1895 name
= "serial(EC8/32-MC)";
1899 brdp
->isr
= stl_echpciintr
;
1900 brdp
->ioctrl
= brdp
->ioaddr1
+ 2;
1903 name
= "serial(EC8/32-PCI)";
1907 brdp
->isr
= stl_echpci64intr
;
1908 brdp
->ioctrl
= brdp
->ioaddr2
+ 0x40;
1909 outb(0x43, (brdp
->ioaddr1
+ 0x4c));
1910 brdp
->iosize1
= 0x80;
1911 brdp
->iosize2
= 0x80;
1912 name
= "serial(EC8/64-PCI)";
1916 printk("STALLION: unknown board type=%d\n", brdp
->brdtype
);
1922 * Check boards for possible IO address conflicts and return fail status
1923 * if an IO conflict found.
1926 if (!request_region(brdp
->ioaddr1
, brdp
->iosize1
, name
)) {
1927 printk(KERN_WARNING
"STALLION: Warning, board %d I/O address "
1928 "%x conflicts with another device\n", brdp
->brdnr
,
1933 if (brdp
->iosize2
> 0)
1934 if (!request_region(brdp
->ioaddr2
, brdp
->iosize2
, name
)) {
1935 printk(KERN_WARNING
"STALLION: Warning, board %d I/O "
1936 "address %x conflicts with another device\n",
1937 brdp
->brdnr
, brdp
->ioaddr2
);
1938 printk(KERN_WARNING
"STALLION: Warning, also "
1939 "releasing board %d I/O address %x \n",
1940 brdp
->brdnr
, brdp
->ioaddr1
);
1945 * Scan through the secondary io address space looking for panels.
1946 * As we find'em allocate and initialize panel structures for each.
1948 brdp
->clk
= CD1400_CLK
;
1949 brdp
->hwid
= status
;
1951 ioaddr
= brdp
->ioaddr2
;
1956 for (i
= 0; i
< STL_MAXPANELS
; i
++) {
1957 if (brdp
->brdtype
== BRD_ECHPCI
) {
1958 outb(nxtid
, brdp
->ioctrl
);
1959 ioaddr
= brdp
->ioaddr2
;
1961 status
= inb(ioaddr
+ ECH_PNLSTATUS
);
1962 if ((status
& ECH_PNLIDMASK
) != nxtid
)
1964 panelp
= kzalloc(sizeof(struct stlpanel
), GFP_KERNEL
);
1966 printk("STALLION: failed to allocate memory "
1967 "(size=%Zd)\n", sizeof(struct stlpanel
));
1971 panelp
->magic
= STL_PANELMAGIC
;
1972 panelp
->brdnr
= brdp
->brdnr
;
1973 panelp
->panelnr
= panelnr
;
1974 panelp
->iobase
= ioaddr
;
1975 panelp
->pagenr
= nxtid
;
1976 panelp
->hwid
= status
;
1977 brdp
->bnk2panel
[banknr
] = panelp
;
1978 brdp
->bnkpageaddr
[banknr
] = nxtid
;
1979 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ ECH_PNLSTATUS
;
1981 if (status
& ECH_PNLXPID
) {
1982 panelp
->uartp
= &stl_sc26198uart
;
1983 panelp
->isr
= stl_sc26198intr
;
1984 if (status
& ECH_PNL16PORT
) {
1985 panelp
->nrports
= 16;
1986 brdp
->bnk2panel
[banknr
] = panelp
;
1987 brdp
->bnkpageaddr
[banknr
] = nxtid
;
1988 brdp
->bnkstataddr
[banknr
++] = ioaddr
+ 4 +
1991 panelp
->nrports
= 8;
1993 panelp
->uartp
= &stl_cd1400uart
;
1994 panelp
->isr
= stl_cd1400echintr
;
1995 if (status
& ECH_PNL16PORT
) {
1996 panelp
->nrports
= 16;
1997 panelp
->ackmask
= 0x80;
1998 if (brdp
->brdtype
!= BRD_ECHPCI
)
1999 ioaddr
+= EREG_BANKSIZE
;
2000 brdp
->bnk2panel
[banknr
] = panelp
;
2001 brdp
->bnkpageaddr
[banknr
] = ++nxtid
;
2002 brdp
->bnkstataddr
[banknr
++] = ioaddr
+
2005 panelp
->nrports
= 8;
2006 panelp
->ackmask
= 0xc0;
2011 ioaddr
+= EREG_BANKSIZE
;
2012 brdp
->nrports
+= panelp
->nrports
;
2013 brdp
->panels
[panelnr
++] = panelp
;
2014 if ((brdp
->brdtype
!= BRD_ECHPCI
) &&
2015 (ioaddr
>= (brdp
->ioaddr2
+ brdp
->iosize2
))) {
2021 brdp
->nrpanels
= panelnr
;
2022 brdp
->nrbnks
= banknr
;
2023 if (brdp
->brdtype
== BRD_ECH
)
2024 outb((brdp
->ioctrlval
| ECH_BRDDISABLE
), brdp
->ioctrl
);
2026 brdp
->state
|= BRD_FOUND
;
2027 if (request_irq(brdp
->irq
, stl_intr
, IRQF_SHARED
, name
, brdp
) != 0) {
2028 printk("STALLION: failed to register interrupt "
2029 "routine for %s irq=%d\n", name
, brdp
->irq
);
2036 stl_cleanup_panels(brdp
);
2037 if (brdp
->iosize2
> 0)
2038 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2040 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2045 /*****************************************************************************/
2048 * Initialize and configure the specified board.
2049 * Scan through all the boards in the configuration and see what we
2050 * can find. Handle EIO and the ECH boards a little differently here
2051 * since the initial search and setup is very different.
2054 static int __devinit
stl_brdinit(struct stlbrd
*brdp
)
2058 pr_debug("stl_brdinit(brdp=%p)\n", brdp
);
2060 switch (brdp
->brdtype
) {
2063 retval
= stl_initeio(brdp
);
2071 retval
= stl_initech(brdp
);
2076 printk("STALLION: board=%d is unknown board type=%d\n",
2077 brdp
->brdnr
, brdp
->brdtype
);
2082 if ((brdp
->state
& BRD_FOUND
) == 0) {
2083 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2084 stl_brdnames
[brdp
->brdtype
], brdp
->brdnr
,
2085 brdp
->ioaddr1
, brdp
->irq
);
2089 for (i
= 0; i
< STL_MAXPANELS
; i
++)
2090 if (brdp
->panels
[i
] != NULL
)
2091 stl_initports(brdp
, brdp
->panels
[i
]);
2093 printk("STALLION: %s found, board=%d io=%x irq=%d "
2094 "nrpanels=%d nrports=%d\n", stl_brdnames
[brdp
->brdtype
],
2095 brdp
->brdnr
, brdp
->ioaddr1
, brdp
->irq
, brdp
->nrpanels
,
2100 free_irq(brdp
->irq
, brdp
);
2102 stl_cleanup_panels(brdp
);
2104 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2105 if (brdp
->iosize2
> 0)
2106 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2111 /*****************************************************************************/
2114 * Find the next available board number that is free.
2117 static int __devinit
stl_getbrdnr(void)
2121 for (i
= 0; i
< STL_MAXBRDS
; i
++)
2122 if (stl_brds
[i
] == NULL
) {
2123 if (i
>= stl_nrbrds
)
2131 /*****************************************************************************/
2133 * We have a Stallion board. Allocate a board structure and
2134 * initialize it. Read its IO and IRQ resources from PCI
2135 * configuration space.
2138 static int __devinit
stl_pciprobe(struct pci_dev
*pdev
,
2139 const struct pci_device_id
*ent
)
2141 struct stlbrd
*brdp
;
2142 unsigned int i
, brdtype
= ent
->driver_data
;
2143 int brdnr
, retval
= -ENODEV
;
2145 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
)
2148 retval
= pci_enable_device(pdev
);
2151 brdp
= stl_allocbrd();
2156 mutex_lock(&stl_brdslock
);
2157 brdnr
= stl_getbrdnr();
2159 dev_err(&pdev
->dev
, "too many boards found, "
2160 "maximum supported %d\n", STL_MAXBRDS
);
2161 mutex_unlock(&stl_brdslock
);
2165 brdp
->brdnr
= (unsigned int)brdnr
;
2166 stl_brds
[brdp
->brdnr
] = brdp
;
2167 mutex_unlock(&stl_brdslock
);
2169 brdp
->brdtype
= brdtype
;
2170 brdp
->state
|= STL_PROBED
;
2173 * We have all resources from the board, so let's setup the actual
2174 * board structure now.
2178 brdp
->ioaddr2
= pci_resource_start(pdev
, 0);
2179 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2182 brdp
->ioaddr2
= pci_resource_start(pdev
, 2);
2183 brdp
->ioaddr1
= pci_resource_start(pdev
, 1);
2186 brdp
->ioaddr1
= pci_resource_start(pdev
, 2);
2187 brdp
->ioaddr2
= pci_resource_start(pdev
, 1);
2190 dev_err(&pdev
->dev
, "unknown PCI board type=%u\n", brdtype
);
2194 brdp
->irq
= pdev
->irq
;
2195 retval
= stl_brdinit(brdp
);
2199 pci_set_drvdata(pdev
, brdp
);
2201 for (i
= 0; i
< brdp
->nrports
; i
++)
2202 tty_register_device(stl_serial
,
2203 brdp
->brdnr
* STL_MAXPORTS
+ i
, &pdev
->dev
);
2207 stl_brds
[brdp
->brdnr
] = NULL
;
2214 static void __devexit
stl_pciremove(struct pci_dev
*pdev
)
2216 struct stlbrd
*brdp
= pci_get_drvdata(pdev
);
2219 free_irq(brdp
->irq
, brdp
);
2221 stl_cleanup_panels(brdp
);
2223 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
2224 if (brdp
->iosize2
> 0)
2225 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
2227 for (i
= 0; i
< brdp
->nrports
; i
++)
2228 tty_unregister_device(stl_serial
,
2229 brdp
->brdnr
* STL_MAXPORTS
+ i
);
2231 stl_brds
[brdp
->brdnr
] = NULL
;
2235 static struct pci_driver stl_pcidriver
= {
2237 .id_table
= stl_pcibrds
,
2238 .probe
= stl_pciprobe
,
2239 .remove
= __devexit_p(stl_pciremove
)
2242 /*****************************************************************************/
2245 * Return the board stats structure to user app.
2248 static int stl_getbrdstats(combrd_t __user
*bp
)
2250 combrd_t stl_brdstats
;
2251 struct stlbrd
*brdp
;
2252 struct stlpanel
*panelp
;
2255 if (copy_from_user(&stl_brdstats
, bp
, sizeof(combrd_t
)))
2257 if (stl_brdstats
.brd
>= STL_MAXBRDS
)
2259 brdp
= stl_brds
[stl_brdstats
.brd
];
2263 memset(&stl_brdstats
, 0, sizeof(combrd_t
));
2264 stl_brdstats
.brd
= brdp
->brdnr
;
2265 stl_brdstats
.type
= brdp
->brdtype
;
2266 stl_brdstats
.hwid
= brdp
->hwid
;
2267 stl_brdstats
.state
= brdp
->state
;
2268 stl_brdstats
.ioaddr
= brdp
->ioaddr1
;
2269 stl_brdstats
.ioaddr2
= brdp
->ioaddr2
;
2270 stl_brdstats
.irq
= brdp
->irq
;
2271 stl_brdstats
.nrpanels
= brdp
->nrpanels
;
2272 stl_brdstats
.nrports
= brdp
->nrports
;
2273 for (i
= 0; i
< brdp
->nrpanels
; i
++) {
2274 panelp
= brdp
->panels
[i
];
2275 stl_brdstats
.panels
[i
].panel
= i
;
2276 stl_brdstats
.panels
[i
].hwid
= panelp
->hwid
;
2277 stl_brdstats
.panels
[i
].nrports
= panelp
->nrports
;
2280 return copy_to_user(bp
, &stl_brdstats
, sizeof(combrd_t
)) ? -EFAULT
: 0;
2283 /*****************************************************************************/
2286 * Resolve the referenced port number into a port struct pointer.
2289 static struct stlport
*stl_getport(int brdnr
, int panelnr
, int portnr
)
2291 struct stlbrd
*brdp
;
2292 struct stlpanel
*panelp
;
2294 if (brdnr
< 0 || brdnr
>= STL_MAXBRDS
)
2296 brdp
= stl_brds
[brdnr
];
2299 if (panelnr
< 0 || (unsigned int)panelnr
>= brdp
->nrpanels
)
2301 panelp
= brdp
->panels
[panelnr
];
2304 if (portnr
< 0 || (unsigned int)portnr
>= panelp
->nrports
)
2306 return panelp
->ports
[portnr
];
2309 /*****************************************************************************/
2312 * Return the port stats structure to user app. A NULL port struct
2313 * pointer passed in means that we need to find out from the app
2314 * what port to get stats for (used through board control device).
2317 static int stl_getportstats(struct tty_struct
*tty
, struct stlport
*portp
, comstats_t __user
*cp
)
2319 comstats_t stl_comstats
;
2320 unsigned char *head
, *tail
;
2321 unsigned long flags
;
2324 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2326 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2332 mutex_lock(&portp
->port
.mutex
);
2333 portp
->stats
.state
= portp
->istate
;
2334 portp
->stats
.flags
= portp
->port
.flags
;
2335 portp
->stats
.hwid
= portp
->hwid
;
2337 portp
->stats
.ttystate
= 0;
2338 portp
->stats
.cflags
= 0;
2339 portp
->stats
.iflags
= 0;
2340 portp
->stats
.oflags
= 0;
2341 portp
->stats
.lflags
= 0;
2342 portp
->stats
.rxbuffered
= 0;
2344 spin_lock_irqsave(&stallion_lock
, flags
);
2345 if (tty
!= NULL
&& portp
->port
.tty
== tty
) {
2346 portp
->stats
.ttystate
= tty
->flags
;
2347 /* No longer available as a statistic */
2348 portp
->stats
.rxbuffered
= 1; /*tty->flip.count; */
2349 if (tty
->termios
!= NULL
) {
2350 portp
->stats
.cflags
= tty
->termios
->c_cflag
;
2351 portp
->stats
.iflags
= tty
->termios
->c_iflag
;
2352 portp
->stats
.oflags
= tty
->termios
->c_oflag
;
2353 portp
->stats
.lflags
= tty
->termios
->c_lflag
;
2356 spin_unlock_irqrestore(&stallion_lock
, flags
);
2358 head
= portp
->tx
.head
;
2359 tail
= portp
->tx
.tail
;
2360 portp
->stats
.txbuffered
= (head
>= tail
) ? (head
- tail
) :
2361 (STL_TXBUFSIZE
- (tail
- head
));
2363 portp
->stats
.signals
= (unsigned long) stl_getsignals(portp
);
2364 mutex_unlock(&portp
->port
.mutex
);
2366 return copy_to_user(cp
, &portp
->stats
,
2367 sizeof(comstats_t
)) ? -EFAULT
: 0;
2370 /*****************************************************************************/
2373 * Clear the port stats structure. We also return it zeroed out...
2376 static int stl_clrportstats(struct stlport
*portp
, comstats_t __user
*cp
)
2378 comstats_t stl_comstats
;
2381 if (copy_from_user(&stl_comstats
, cp
, sizeof(comstats_t
)))
2383 portp
= stl_getport(stl_comstats
.brd
, stl_comstats
.panel
,
2389 mutex_lock(&portp
->port
.mutex
);
2390 memset(&portp
->stats
, 0, sizeof(comstats_t
));
2391 portp
->stats
.brd
= portp
->brdnr
;
2392 portp
->stats
.panel
= portp
->panelnr
;
2393 portp
->stats
.port
= portp
->portnr
;
2394 mutex_unlock(&portp
->port
.mutex
);
2395 return copy_to_user(cp
, &portp
->stats
,
2396 sizeof(comstats_t
)) ? -EFAULT
: 0;
2399 /*****************************************************************************/
2402 * Return the entire driver ports structure to a user app.
2405 static int stl_getportstruct(struct stlport __user
*arg
)
2407 struct stlport stl_dummyport
;
2408 struct stlport
*portp
;
2410 if (copy_from_user(&stl_dummyport
, arg
, sizeof(struct stlport
)))
2412 portp
= stl_getport(stl_dummyport
.brdnr
, stl_dummyport
.panelnr
,
2413 stl_dummyport
.portnr
);
2416 return copy_to_user(arg
, portp
, sizeof(struct stlport
)) ? -EFAULT
: 0;
2419 /*****************************************************************************/
2422 * Return the entire driver board structure to a user app.
2425 static int stl_getbrdstruct(struct stlbrd __user
*arg
)
2427 struct stlbrd stl_dummybrd
;
2428 struct stlbrd
*brdp
;
2430 if (copy_from_user(&stl_dummybrd
, arg
, sizeof(struct stlbrd
)))
2432 if (stl_dummybrd
.brdnr
>= STL_MAXBRDS
)
2434 brdp
= stl_brds
[stl_dummybrd
.brdnr
];
2437 return copy_to_user(arg
, brdp
, sizeof(struct stlbrd
)) ? -EFAULT
: 0;
2440 /*****************************************************************************/
2443 * The "staliomem" device is also required to do some special operations
2444 * on the board and/or ports. In this driver it is mostly used for stats
2448 static long stl_memioctl(struct file
*fp
, unsigned int cmd
, unsigned long arg
)
2451 void __user
*argp
= (void __user
*)arg
;
2453 pr_debug("stl_memioctl(fp=%p,cmd=%x,arg=%lx)\n", fp
, cmd
,arg
);
2455 brdnr
= iminor(fp
->f_dentry
->d_inode
);
2456 if (brdnr
>= STL_MAXBRDS
)
2461 case COM_GETPORTSTATS
:
2462 rc
= stl_getportstats(NULL
, NULL
, argp
);
2464 case COM_CLRPORTSTATS
:
2465 rc
= stl_clrportstats(NULL
, argp
);
2467 case COM_GETBRDSTATS
:
2468 rc
= stl_getbrdstats(argp
);
2471 rc
= stl_getportstruct(argp
);
2474 rc
= stl_getbrdstruct(argp
);
2483 static const struct tty_operations stl_ops
= {
2487 .put_char
= stl_putchar
,
2488 .flush_chars
= stl_flushchars
,
2489 .write_room
= stl_writeroom
,
2490 .chars_in_buffer
= stl_charsinbuffer
,
2492 .set_termios
= stl_settermios
,
2493 .throttle
= stl_throttle
,
2494 .unthrottle
= stl_unthrottle
,
2497 .hangup
= stl_hangup
,
2498 .flush_buffer
= stl_flushbuffer
,
2499 .break_ctl
= stl_breakctl
,
2500 .wait_until_sent
= stl_waituntilsent
,
2501 .send_xchar
= stl_sendxchar
,
2502 .tiocmget
= stl_tiocmget
,
2503 .tiocmset
= stl_tiocmset
,
2504 .proc_fops
= &stl_proc_fops
,
2507 static const struct tty_port_operations stl_port_ops
= {
2508 .carrier_raised
= stl_carrier_raised
,
2509 .dtr_rts
= stl_dtr_rts
,
2510 .activate
= stl_activate
,
2511 .shutdown
= stl_shutdown
,
2514 /*****************************************************************************/
2515 /* CD1400 HARDWARE FUNCTIONS */
2516 /*****************************************************************************/
2519 * These functions get/set/update the registers of the cd1400 UARTs.
2520 * Access to the cd1400 registers is via an address/data io port pair.
2521 * (Maybe should make this inline...)
2524 static int stl_cd1400getreg(struct stlport
*portp
, int regnr
)
2526 outb((regnr
+ portp
->uartaddr
), portp
->ioaddr
);
2527 return inb(portp
->ioaddr
+ EREG_DATA
);
2530 static void stl_cd1400setreg(struct stlport
*portp
, int regnr
, int value
)
2532 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2533 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2536 static int stl_cd1400updatereg(struct stlport
*portp
, int regnr
, int value
)
2538 outb(regnr
+ portp
->uartaddr
, portp
->ioaddr
);
2539 if (inb(portp
->ioaddr
+ EREG_DATA
) != value
) {
2540 outb(value
, portp
->ioaddr
+ EREG_DATA
);
2546 /*****************************************************************************/
2549 * Inbitialize the UARTs in a panel. We don't care what sort of board
2550 * these ports are on - since the port io registers are almost
2551 * identical when dealing with ports.
2554 static int stl_cd1400panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
2558 int nrchips
, uartaddr
, ioaddr
;
2559 unsigned long flags
;
2561 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
2563 spin_lock_irqsave(&brd_lock
, flags
);
2564 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
2567 * Check that each chip is present and started up OK.
2570 nrchips
= panelp
->nrports
/ CD1400_PORTS
;
2571 for (i
= 0; i
< nrchips
; i
++) {
2572 if (brdp
->brdtype
== BRD_ECHPCI
) {
2573 outb((panelp
->pagenr
+ (i
>> 1)), brdp
->ioctrl
);
2574 ioaddr
= panelp
->iobase
;
2576 ioaddr
= panelp
->iobase
+ (EREG_BANKSIZE
* (i
>> 1));
2577 uartaddr
= (i
& 0x01) ? 0x080 : 0;
2578 outb((GFRCR
+ uartaddr
), ioaddr
);
2579 outb(0, (ioaddr
+ EREG_DATA
));
2580 outb((CCR
+ uartaddr
), ioaddr
);
2581 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2582 outb(CCR_RESETFULL
, (ioaddr
+ EREG_DATA
));
2583 outb((GFRCR
+ uartaddr
), ioaddr
);
2584 for (j
= 0; j
< CCR_MAXWAIT
; j
++)
2585 if ((gfrcr
= inb(ioaddr
+ EREG_DATA
)) != 0)
2588 if ((j
>= CCR_MAXWAIT
) || (gfrcr
< 0x40) || (gfrcr
> 0x60)) {
2589 printk("STALLION: cd1400 not responding, "
2590 "brd=%d panel=%d chip=%d\n",
2591 panelp
->brdnr
, panelp
->panelnr
, i
);
2594 chipmask
|= (0x1 << i
);
2595 outb((PPR
+ uartaddr
), ioaddr
);
2596 outb(PPR_SCALAR
, (ioaddr
+ EREG_DATA
));
2599 BRDDISABLE(panelp
->brdnr
);
2600 spin_unlock_irqrestore(&brd_lock
, flags
);
2604 /*****************************************************************************/
2607 * Initialize hardware specific port registers.
2610 static void stl_cd1400portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
2612 unsigned long flags
;
2613 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
2616 if ((brdp
== NULL
) || (panelp
== NULL
) ||
2620 spin_lock_irqsave(&brd_lock
, flags
);
2621 portp
->ioaddr
= panelp
->iobase
+ (((brdp
->brdtype
== BRD_ECHPCI
) ||
2622 (portp
->portnr
< 8)) ? 0 : EREG_BANKSIZE
);
2623 portp
->uartaddr
= (portp
->portnr
& 0x04) << 5;
2624 portp
->pagenr
= panelp
->pagenr
+ (portp
->portnr
>> 3);
2626 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2627 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2628 stl_cd1400setreg(portp
, LIVR
, (portp
->portnr
<< 3));
2629 portp
->hwid
= stl_cd1400getreg(portp
, GFRCR
);
2630 BRDDISABLE(portp
->brdnr
);
2631 spin_unlock_irqrestore(&brd_lock
, flags
);
2634 /*****************************************************************************/
2637 * Wait for the command register to be ready. We will poll this,
2638 * since it won't usually take too long to be ready.
2641 static void stl_cd1400ccrwait(struct stlport
*portp
)
2645 for (i
= 0; i
< CCR_MAXWAIT
; i
++)
2646 if (stl_cd1400getreg(portp
, CCR
) == 0)
2649 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2650 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
2653 /*****************************************************************************/
2656 * Set up the cd1400 registers for a port based on the termios port
2660 static void stl_cd1400setport(struct stlport
*portp
, struct ktermios
*tiosp
)
2662 struct stlbrd
*brdp
;
2663 unsigned long flags
;
2664 unsigned int clkdiv
, baudrate
;
2665 unsigned char cor1
, cor2
, cor3
;
2666 unsigned char cor4
, cor5
, ccr
;
2667 unsigned char srer
, sreron
, sreroff
;
2668 unsigned char mcor1
, mcor2
, rtpr
;
2669 unsigned char clk
, div
;
2685 brdp
= stl_brds
[portp
->brdnr
];
2690 * Set up the RX char ignore mask with those RX error types we
2691 * can ignore. We can get the cd1400 to help us out a little here,
2692 * it will ignore parity errors and breaks for us.
2694 portp
->rxignoremsk
= 0;
2695 if (tiosp
->c_iflag
& IGNPAR
) {
2696 portp
->rxignoremsk
|= (ST_PARITY
| ST_FRAMING
| ST_OVERRUN
);
2697 cor1
|= COR1_PARIGNORE
;
2699 if (tiosp
->c_iflag
& IGNBRK
) {
2700 portp
->rxignoremsk
|= ST_BREAK
;
2701 cor4
|= COR4_IGNBRK
;
2704 portp
->rxmarkmsk
= ST_OVERRUN
;
2705 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
2706 portp
->rxmarkmsk
|= (ST_PARITY
| ST_FRAMING
);
2707 if (tiosp
->c_iflag
& BRKINT
)
2708 portp
->rxmarkmsk
|= ST_BREAK
;
2711 * Go through the char size, parity and stop bits and set all the
2712 * option register appropriately.
2714 switch (tiosp
->c_cflag
& CSIZE
) {
2729 if (tiosp
->c_cflag
& CSTOPB
)
2734 if (tiosp
->c_cflag
& PARENB
) {
2735 if (tiosp
->c_cflag
& PARODD
)
2736 cor1
|= (COR1_PARENB
| COR1_PARODD
);
2738 cor1
|= (COR1_PARENB
| COR1_PAREVEN
);
2740 cor1
|= COR1_PARNONE
;
2744 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
2745 * space for hardware flow control and the like. This should be set to
2746 * VMIN. Also here we will set the RX data timeout to 10ms - this should
2747 * really be based on VTIME.
2749 cor3
|= FIFO_RXTHRESHOLD
;
2753 * Calculate the baud rate timers. For now we will just assume that
2754 * the input and output baud are the same. Could have used a baud
2755 * table here, but this way we can generate virtually any baud rate
2758 baudrate
= tiosp
->c_cflag
& CBAUD
;
2759 if (baudrate
& CBAUDEX
) {
2760 baudrate
&= ~CBAUDEX
;
2761 if ((baudrate
< 1) || (baudrate
> 4))
2762 tiosp
->c_cflag
&= ~CBAUDEX
;
2766 baudrate
= stl_baudrates
[baudrate
];
2767 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
2768 if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
2770 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
2772 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
2774 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
2776 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
2777 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
2779 if (baudrate
> STL_CD1400MAXBAUD
)
2780 baudrate
= STL_CD1400MAXBAUD
;
2783 for (clk
= 0; clk
< CD1400_NUMCLKS
; clk
++) {
2784 clkdiv
= (portp
->clk
/ stl_cd1400clkdivs
[clk
]) / baudrate
;
2788 div
= (unsigned char) clkdiv
;
2792 * Check what form of modem signaling is required and set it up.
2794 if ((tiosp
->c_cflag
& CLOCAL
) == 0) {
2797 sreron
|= SRER_MODEM
;
2798 portp
->port
.flags
|= ASYNC_CHECK_CD
;
2800 portp
->port
.flags
&= ~ASYNC_CHECK_CD
;
2803 * Setup cd1400 enhanced modes if we can. In particular we want to
2804 * handle as much of the flow control as possible automatically. As
2805 * well as saving a few CPU cycles it will also greatly improve flow
2806 * control reliability.
2808 if (tiosp
->c_iflag
& IXON
) {
2811 if (tiosp
->c_iflag
& IXANY
)
2815 if (tiosp
->c_cflag
& CRTSCTS
) {
2817 mcor1
|= FIFO_RTSTHRESHOLD
;
2821 * All cd1400 register values calculated so go through and set
2825 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
2826 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
2827 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
2828 cor1
, cor2
, cor3
, cor4
, cor5
);
2829 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
2830 mcor1
, mcor2
, rtpr
, sreron
, sreroff
);
2831 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk
, div
, clk
, div
);
2832 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
2833 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
2834 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
2836 spin_lock_irqsave(&brd_lock
, flags
);
2837 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2838 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x3));
2839 srer
= stl_cd1400getreg(portp
, SRER
);
2840 stl_cd1400setreg(portp
, SRER
, 0);
2841 if (stl_cd1400updatereg(portp
, COR1
, cor1
))
2843 if (stl_cd1400updatereg(portp
, COR2
, cor2
))
2845 if (stl_cd1400updatereg(portp
, COR3
, cor3
))
2848 stl_cd1400ccrwait(portp
);
2849 stl_cd1400setreg(portp
, CCR
, CCR_CORCHANGE
);
2851 stl_cd1400setreg(portp
, COR4
, cor4
);
2852 stl_cd1400setreg(portp
, COR5
, cor5
);
2853 stl_cd1400setreg(portp
, MCOR1
, mcor1
);
2854 stl_cd1400setreg(portp
, MCOR2
, mcor2
);
2856 stl_cd1400setreg(portp
, TCOR
, clk
);
2857 stl_cd1400setreg(portp
, TBPR
, div
);
2858 stl_cd1400setreg(portp
, RCOR
, clk
);
2859 stl_cd1400setreg(portp
, RBPR
, div
);
2861 stl_cd1400setreg(portp
, SCHR1
, tiosp
->c_cc
[VSTART
]);
2862 stl_cd1400setreg(portp
, SCHR2
, tiosp
->c_cc
[VSTOP
]);
2863 stl_cd1400setreg(portp
, SCHR3
, tiosp
->c_cc
[VSTART
]);
2864 stl_cd1400setreg(portp
, SCHR4
, tiosp
->c_cc
[VSTOP
]);
2865 stl_cd1400setreg(portp
, RTPR
, rtpr
);
2866 mcor1
= stl_cd1400getreg(portp
, MSVR1
);
2867 if (mcor1
& MSVR1_DCD
)
2868 portp
->sigs
|= TIOCM_CD
;
2870 portp
->sigs
&= ~TIOCM_CD
;
2871 stl_cd1400setreg(portp
, SRER
, ((srer
& ~sreroff
) | sreron
));
2872 BRDDISABLE(portp
->brdnr
);
2873 spin_unlock_irqrestore(&brd_lock
, flags
);
2876 /*****************************************************************************/
2879 * Set the state of the DTR and RTS signals.
2882 static void stl_cd1400setsignals(struct stlport
*portp
, int dtr
, int rts
)
2884 unsigned char msvr1
, msvr2
;
2885 unsigned long flags
;
2887 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
2897 spin_lock_irqsave(&brd_lock
, flags
);
2898 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2899 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2901 stl_cd1400setreg(portp
, MSVR2
, msvr2
);
2903 stl_cd1400setreg(portp
, MSVR1
, msvr1
);
2904 BRDDISABLE(portp
->brdnr
);
2905 spin_unlock_irqrestore(&brd_lock
, flags
);
2908 /*****************************************************************************/
2911 * Return the state of the signals.
2914 static int stl_cd1400getsignals(struct stlport
*portp
)
2916 unsigned char msvr1
, msvr2
;
2917 unsigned long flags
;
2920 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp
);
2922 spin_lock_irqsave(&brd_lock
, flags
);
2923 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2924 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2925 msvr1
= stl_cd1400getreg(portp
, MSVR1
);
2926 msvr2
= stl_cd1400getreg(portp
, MSVR2
);
2927 BRDDISABLE(portp
->brdnr
);
2928 spin_unlock_irqrestore(&brd_lock
, flags
);
2931 sigs
|= (msvr1
& MSVR1_DCD
) ? TIOCM_CD
: 0;
2932 sigs
|= (msvr1
& MSVR1_CTS
) ? TIOCM_CTS
: 0;
2933 sigs
|= (msvr1
& MSVR1_DTR
) ? TIOCM_DTR
: 0;
2934 sigs
|= (msvr2
& MSVR2_RTS
) ? TIOCM_RTS
: 0;
2936 sigs
|= (msvr1
& MSVR1_RI
) ? TIOCM_RI
: 0;
2937 sigs
|= (msvr1
& MSVR1_DSR
) ? TIOCM_DSR
: 0;
2944 /*****************************************************************************/
2947 * Enable/Disable the Transmitter and/or Receiver.
2950 static void stl_cd1400enablerxtx(struct stlport
*portp
, int rx
, int tx
)
2953 unsigned long flags
;
2955 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
2960 ccr
|= CCR_TXDISABLE
;
2962 ccr
|= CCR_TXENABLE
;
2964 ccr
|= CCR_RXDISABLE
;
2966 ccr
|= CCR_RXENABLE
;
2968 spin_lock_irqsave(&brd_lock
, flags
);
2969 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
2970 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
2971 stl_cd1400ccrwait(portp
);
2972 stl_cd1400setreg(portp
, CCR
, ccr
);
2973 stl_cd1400ccrwait(portp
);
2974 BRDDISABLE(portp
->brdnr
);
2975 spin_unlock_irqrestore(&brd_lock
, flags
);
2978 /*****************************************************************************/
2981 * Start/stop the Transmitter and/or Receiver.
2984 static void stl_cd1400startrxtx(struct stlport
*portp
, int rx
, int tx
)
2986 unsigned char sreron
, sreroff
;
2987 unsigned long flags
;
2989 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
2994 sreroff
|= (SRER_TXDATA
| SRER_TXEMPTY
);
2996 sreron
|= SRER_TXDATA
;
2998 sreron
|= SRER_TXEMPTY
;
3000 sreroff
|= SRER_RXDATA
;
3002 sreron
|= SRER_RXDATA
;
3004 spin_lock_irqsave(&brd_lock
, flags
);
3005 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3006 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3007 stl_cd1400setreg(portp
, SRER
,
3008 ((stl_cd1400getreg(portp
, SRER
) & ~sreroff
) | sreron
));
3009 BRDDISABLE(portp
->brdnr
);
3011 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3012 spin_unlock_irqrestore(&brd_lock
, flags
);
3015 /*****************************************************************************/
3018 * Disable all interrupts from this port.
3021 static void stl_cd1400disableintrs(struct stlport
*portp
)
3023 unsigned long flags
;
3025 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp
);
3027 spin_lock_irqsave(&brd_lock
, flags
);
3028 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3029 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3030 stl_cd1400setreg(portp
, SRER
, 0);
3031 BRDDISABLE(portp
->brdnr
);
3032 spin_unlock_irqrestore(&brd_lock
, flags
);
3035 /*****************************************************************************/
3037 static void stl_cd1400sendbreak(struct stlport
*portp
, int len
)
3039 unsigned long flags
;
3041 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp
, len
);
3043 spin_lock_irqsave(&brd_lock
, flags
);
3044 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3045 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3046 stl_cd1400setreg(portp
, SRER
,
3047 ((stl_cd1400getreg(portp
, SRER
) & ~SRER_TXDATA
) |
3049 BRDDISABLE(portp
->brdnr
);
3050 portp
->brklen
= len
;
3052 portp
->stats
.txbreaks
++;
3053 spin_unlock_irqrestore(&brd_lock
, flags
);
3056 /*****************************************************************************/
3059 * Take flow control actions...
3062 static void stl_cd1400flowctrl(struct stlport
*portp
, int state
)
3064 struct tty_struct
*tty
;
3065 unsigned long flags
;
3067 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp
, state
);
3071 tty
= tty_port_tty_get(&portp
->port
);
3075 spin_lock_irqsave(&brd_lock
, flags
);
3076 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3077 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3080 if (tty
->termios
->c_iflag
& IXOFF
) {
3081 stl_cd1400ccrwait(portp
);
3082 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3083 portp
->stats
.rxxon
++;
3084 stl_cd1400ccrwait(portp
);
3087 * Question: should we return RTS to what it was before? It may
3088 * have been set by an ioctl... Suppose not, since if you have
3089 * hardware flow control set then it is pretty silly to go and
3090 * set the RTS line by hand.
3092 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3093 stl_cd1400setreg(portp
, MCOR1
,
3094 (stl_cd1400getreg(portp
, MCOR1
) |
3095 FIFO_RTSTHRESHOLD
));
3096 stl_cd1400setreg(portp
, MSVR2
, MSVR2_RTS
);
3097 portp
->stats
.rxrtson
++;
3100 if (tty
->termios
->c_iflag
& IXOFF
) {
3101 stl_cd1400ccrwait(portp
);
3102 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3103 portp
->stats
.rxxoff
++;
3104 stl_cd1400ccrwait(portp
);
3106 if (tty
->termios
->c_cflag
& CRTSCTS
) {
3107 stl_cd1400setreg(portp
, MCOR1
,
3108 (stl_cd1400getreg(portp
, MCOR1
) & 0xf0));
3109 stl_cd1400setreg(portp
, MSVR2
, 0);
3110 portp
->stats
.rxrtsoff
++;
3114 BRDDISABLE(portp
->brdnr
);
3115 spin_unlock_irqrestore(&brd_lock
, flags
);
3119 /*****************************************************************************/
3122 * Send a flow control character...
3125 static void stl_cd1400sendflow(struct stlport
*portp
, int state
)
3127 struct tty_struct
*tty
;
3128 unsigned long flags
;
3130 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp
, state
);
3134 tty
= tty_port_tty_get(&portp
->port
);
3138 spin_lock_irqsave(&brd_lock
, flags
);
3139 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3140 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3142 stl_cd1400ccrwait(portp
);
3143 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR1
);
3144 portp
->stats
.rxxon
++;
3145 stl_cd1400ccrwait(portp
);
3147 stl_cd1400ccrwait(portp
);
3148 stl_cd1400setreg(portp
, CCR
, CCR_SENDSCHR2
);
3149 portp
->stats
.rxxoff
++;
3150 stl_cd1400ccrwait(portp
);
3152 BRDDISABLE(portp
->brdnr
);
3153 spin_unlock_irqrestore(&brd_lock
, flags
);
3157 /*****************************************************************************/
3159 static void stl_cd1400flush(struct stlport
*portp
)
3161 unsigned long flags
;
3163 pr_debug("stl_cd1400flush(portp=%p)\n", portp
);
3168 spin_lock_irqsave(&brd_lock
, flags
);
3169 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3170 stl_cd1400setreg(portp
, CAR
, (portp
->portnr
& 0x03));
3171 stl_cd1400ccrwait(portp
);
3172 stl_cd1400setreg(portp
, CCR
, CCR_TXFLUSHFIFO
);
3173 stl_cd1400ccrwait(portp
);
3174 portp
->tx
.tail
= portp
->tx
.head
;
3175 BRDDISABLE(portp
->brdnr
);
3176 spin_unlock_irqrestore(&brd_lock
, flags
);
3179 /*****************************************************************************/
3182 * Return the current state of data flow on this port. This is only
3183 * really interesting when determining if data has fully completed
3184 * transmission or not... This is easy for the cd1400, it accurately
3185 * maintains the busy port flag.
3188 static int stl_cd1400datastate(struct stlport
*portp
)
3190 pr_debug("stl_cd1400datastate(portp=%p)\n", portp
);
3195 return test_bit(ASYI_TXBUSY
, &portp
->istate
) ? 1 : 0;
3198 /*****************************************************************************/
3201 * Interrupt service routine for cd1400 EasyIO boards.
3204 static void stl_cd1400eiointr(struct stlpanel
*panelp
, unsigned int iobase
)
3206 unsigned char svrtype
;
3208 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3210 spin_lock(&brd_lock
);
3212 svrtype
= inb(iobase
+ EREG_DATA
);
3213 if (panelp
->nrports
> 4) {
3214 outb((SVRR
+ 0x80), iobase
);
3215 svrtype
|= inb(iobase
+ EREG_DATA
);
3218 if (svrtype
& SVRR_RX
)
3219 stl_cd1400rxisr(panelp
, iobase
);
3220 else if (svrtype
& SVRR_TX
)
3221 stl_cd1400txisr(panelp
, iobase
);
3222 else if (svrtype
& SVRR_MDM
)
3223 stl_cd1400mdmisr(panelp
, iobase
);
3225 spin_unlock(&brd_lock
);
3228 /*****************************************************************************/
3231 * Interrupt service routine for cd1400 panels.
3234 static void stl_cd1400echintr(struct stlpanel
*panelp
, unsigned int iobase
)
3236 unsigned char svrtype
;
3238 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp
, iobase
);
3241 svrtype
= inb(iobase
+ EREG_DATA
);
3242 outb((SVRR
+ 0x80), iobase
);
3243 svrtype
|= inb(iobase
+ EREG_DATA
);
3244 if (svrtype
& SVRR_RX
)
3245 stl_cd1400rxisr(panelp
, iobase
);
3246 else if (svrtype
& SVRR_TX
)
3247 stl_cd1400txisr(panelp
, iobase
);
3248 else if (svrtype
& SVRR_MDM
)
3249 stl_cd1400mdmisr(panelp
, iobase
);
3253 /*****************************************************************************/
3256 * Unfortunately we need to handle breaks in the TX data stream, since
3257 * this is the only way to generate them on the cd1400.
3260 static int stl_cd1400breakisr(struct stlport
*portp
, int ioaddr
)
3262 if (portp
->brklen
== 1) {
3263 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3264 outb((inb(ioaddr
+ EREG_DATA
) | COR2_ETC
),
3265 (ioaddr
+ EREG_DATA
));
3266 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3267 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3268 outb(ETC_STARTBREAK
, (ioaddr
+ EREG_DATA
));
3269 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3270 outb((inb(ioaddr
+ EREG_DATA
) & ~(SRER_TXDATA
| SRER_TXEMPTY
)),
3271 (ioaddr
+ EREG_DATA
));
3273 } else if (portp
->brklen
> 1) {
3274 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3275 outb(ETC_CMD
, (ioaddr
+ EREG_DATA
));
3276 outb(ETC_STOPBREAK
, (ioaddr
+ EREG_DATA
));
3280 outb((COR2
+ portp
->uartaddr
), ioaddr
);
3281 outb((inb(ioaddr
+ EREG_DATA
) & ~COR2_ETC
),
3282 (ioaddr
+ EREG_DATA
));
3288 /*****************************************************************************/
3291 * Transmit interrupt handler. This has gotta be fast! Handling TX
3292 * chars is pretty simple, stuff as many as possible from the TX buffer
3293 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3294 * are embedded as commands in the data stream. Oh no, had to use a goto!
3295 * This could be optimized more, will do when I get time...
3296 * In practice it is possible that interrupts are enabled but that the
3297 * port has been hung up. Need to handle not having any TX buffer here,
3298 * this is done by using the side effect that head and tail will also
3299 * be NULL if the buffer has been freed.
3302 static void stl_cd1400txisr(struct stlpanel
*panelp
, int ioaddr
)
3304 struct stlport
*portp
;
3307 unsigned char ioack
, srer
;
3308 struct tty_struct
*tty
;
3310 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3312 ioack
= inb(ioaddr
+ EREG_TXACK
);
3313 if (((ioack
& panelp
->ackmask
) != 0) ||
3314 ((ioack
& ACK_TYPMASK
) != ACK_TYPTX
)) {
3315 printk("STALLION: bad TX interrupt ack value=%x\n", ioack
);
3318 portp
= panelp
->ports
[(ioack
>> 3)];
3321 * Unfortunately we need to handle breaks in the data stream, since
3322 * this is the only way to generate them on the cd1400. Do it now if
3323 * a break is to be sent.
3325 if (portp
->brklen
!= 0)
3326 if (stl_cd1400breakisr(portp
, ioaddr
))
3329 head
= portp
->tx
.head
;
3330 tail
= portp
->tx
.tail
;
3331 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
3332 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
3333 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
3334 set_bit(ASYI_TXLOW
, &portp
->istate
);
3335 tty
= tty_port_tty_get(&portp
->port
);
3343 outb((SRER
+ portp
->uartaddr
), ioaddr
);
3344 srer
= inb(ioaddr
+ EREG_DATA
);
3345 if (srer
& SRER_TXDATA
) {
3346 srer
= (srer
& ~SRER_TXDATA
) | SRER_TXEMPTY
;
3348 srer
&= ~(SRER_TXDATA
| SRER_TXEMPTY
);
3349 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
3351 outb(srer
, (ioaddr
+ EREG_DATA
));
3353 len
= min(len
, CD1400_TXFIFOSIZE
);
3354 portp
->stats
.txtotal
+= len
;
3355 stlen
= min_t(unsigned int, len
,
3356 (portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
);
3357 outb((TDR
+ portp
->uartaddr
), ioaddr
);
3358 outsb((ioaddr
+ EREG_DATA
), tail
, stlen
);
3361 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
3362 tail
= portp
->tx
.buf
;
3364 outsb((ioaddr
+ EREG_DATA
), tail
, len
);
3367 portp
->tx
.tail
= tail
;
3371 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3372 outb(0, (ioaddr
+ EREG_DATA
));
3375 /*****************************************************************************/
3378 * Receive character interrupt handler. Determine if we have good chars
3379 * or bad chars and then process appropriately. Good chars are easy
3380 * just shove the lot into the RX buffer and set all status byte to 0.
3381 * If a bad RX char then process as required. This routine needs to be
3382 * fast! In practice it is possible that we get an interrupt on a port
3383 * that is closed. This can happen on hangups - since they completely
3384 * shutdown a port not in user context. Need to handle this case.
3387 static void stl_cd1400rxisr(struct stlpanel
*panelp
, int ioaddr
)
3389 struct stlport
*portp
;
3390 struct tty_struct
*tty
;
3391 unsigned int ioack
, len
, buflen
;
3392 unsigned char status
;
3395 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp
, ioaddr
);
3397 ioack
= inb(ioaddr
+ EREG_RXACK
);
3398 if ((ioack
& panelp
->ackmask
) != 0) {
3399 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3402 portp
= panelp
->ports
[(ioack
>> 3)];
3403 tty
= tty_port_tty_get(&portp
->port
);
3405 if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXGOOD
) {
3406 outb((RDCR
+ portp
->uartaddr
), ioaddr
);
3407 len
= inb(ioaddr
+ EREG_DATA
);
3408 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
3409 len
= min_t(unsigned int, len
, sizeof(stl_unwanted
));
3410 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3411 insb((ioaddr
+ EREG_DATA
), &stl_unwanted
[0], len
);
3412 portp
->stats
.rxlost
+= len
;
3413 portp
->stats
.rxtotal
+= len
;
3415 len
= min(len
, buflen
);
3418 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3419 tty_prepare_flip_string(tty
, &ptr
, len
);
3420 insb((ioaddr
+ EREG_DATA
), ptr
, len
);
3421 tty_schedule_flip(tty
);
3422 portp
->stats
.rxtotal
+= len
;
3425 } else if ((ioack
& ACK_TYPMASK
) == ACK_TYPRXBAD
) {
3426 outb((RDSR
+ portp
->uartaddr
), ioaddr
);
3427 status
= inb(ioaddr
+ EREG_DATA
);
3428 ch
= inb(ioaddr
+ EREG_DATA
);
3429 if (status
& ST_PARITY
)
3430 portp
->stats
.rxparity
++;
3431 if (status
& ST_FRAMING
)
3432 portp
->stats
.rxframing
++;
3433 if (status
& ST_OVERRUN
)
3434 portp
->stats
.rxoverrun
++;
3435 if (status
& ST_BREAK
)
3436 portp
->stats
.rxbreaks
++;
3437 if (status
& ST_SCHARMASK
) {
3438 if ((status
& ST_SCHARMASK
) == ST_SCHAR1
)
3439 portp
->stats
.txxon
++;
3440 if ((status
& ST_SCHARMASK
) == ST_SCHAR2
)
3441 portp
->stats
.txxoff
++;
3444 if (tty
!= NULL
&& (portp
->rxignoremsk
& status
) == 0) {
3445 if (portp
->rxmarkmsk
& status
) {
3446 if (status
& ST_BREAK
) {
3448 if (portp
->port
.flags
& ASYNC_SAK
) {
3450 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3452 } else if (status
& ST_PARITY
)
3453 status
= TTY_PARITY
;
3454 else if (status
& ST_FRAMING
)
3456 else if(status
& ST_OVERRUN
)
3457 status
= TTY_OVERRUN
;
3462 tty_insert_flip_char(tty
, ch
, status
);
3463 tty_schedule_flip(tty
);
3466 printk("STALLION: bad RX interrupt ack value=%x\n", ioack
);
3473 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3474 outb(0, (ioaddr
+ EREG_DATA
));
3477 /*****************************************************************************/
3480 * Modem interrupt handler. The is called when the modem signal line
3481 * (DCD) has changed state. Leave most of the work to the off-level
3482 * processing routine.
3485 static void stl_cd1400mdmisr(struct stlpanel
*panelp
, int ioaddr
)
3487 struct stlport
*portp
;
3491 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp
);
3493 ioack
= inb(ioaddr
+ EREG_MDACK
);
3494 if (((ioack
& panelp
->ackmask
) != 0) ||
3495 ((ioack
& ACK_TYPMASK
) != ACK_TYPMDM
)) {
3496 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack
);
3499 portp
= panelp
->ports
[(ioack
>> 3)];
3501 outb((MISR
+ portp
->uartaddr
), ioaddr
);
3502 misr
= inb(ioaddr
+ EREG_DATA
);
3503 if (misr
& MISR_DCD
) {
3504 stl_cd_change(portp
);
3505 portp
->stats
.modem
++;
3508 outb((EOSRR
+ portp
->uartaddr
), ioaddr
);
3509 outb(0, (ioaddr
+ EREG_DATA
));
3512 /*****************************************************************************/
3513 /* SC26198 HARDWARE FUNCTIONS */
3514 /*****************************************************************************/
3517 * These functions get/set/update the registers of the sc26198 UARTs.
3518 * Access to the sc26198 registers is via an address/data io port pair.
3519 * (Maybe should make this inline...)
3522 static int stl_sc26198getreg(struct stlport
*portp
, int regnr
)
3524 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3525 return inb(portp
->ioaddr
+ XP_DATA
);
3528 static void stl_sc26198setreg(struct stlport
*portp
, int regnr
, int value
)
3530 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3531 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3534 static int stl_sc26198updatereg(struct stlport
*portp
, int regnr
, int value
)
3536 outb((regnr
| portp
->uartaddr
), (portp
->ioaddr
+ XP_ADDR
));
3537 if (inb(portp
->ioaddr
+ XP_DATA
) != value
) {
3538 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3544 /*****************************************************************************/
3547 * Functions to get and set the sc26198 global registers.
3550 static int stl_sc26198getglobreg(struct stlport
*portp
, int regnr
)
3552 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3553 return inb(portp
->ioaddr
+ XP_DATA
);
3557 static void stl_sc26198setglobreg(struct stlport
*portp
, int regnr
, int value
)
3559 outb(regnr
, (portp
->ioaddr
+ XP_ADDR
));
3560 outb(value
, (portp
->ioaddr
+ XP_DATA
));
3564 /*****************************************************************************/
3567 * Inbitialize the UARTs in a panel. We don't care what sort of board
3568 * these ports are on - since the port io registers are almost
3569 * identical when dealing with ports.
3572 static int stl_sc26198panelinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
)
3575 int nrchips
, ioaddr
;
3577 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp
, panelp
);
3579 BRDENABLE(panelp
->brdnr
, panelp
->pagenr
);
3582 * Check that each chip is present and started up OK.
3585 nrchips
= (panelp
->nrports
+ 4) / SC26198_PORTS
;
3586 if (brdp
->brdtype
== BRD_ECHPCI
)
3587 outb(panelp
->pagenr
, brdp
->ioctrl
);
3589 for (i
= 0; i
< nrchips
; i
++) {
3590 ioaddr
= panelp
->iobase
+ (i
* 4);
3591 outb(SCCR
, (ioaddr
+ XP_ADDR
));
3592 outb(CR_RESETALL
, (ioaddr
+ XP_DATA
));
3593 outb(TSTR
, (ioaddr
+ XP_ADDR
));
3594 if (inb(ioaddr
+ XP_DATA
) != 0) {
3595 printk("STALLION: sc26198 not responding, "
3596 "brd=%d panel=%d chip=%d\n",
3597 panelp
->brdnr
, panelp
->panelnr
, i
);
3600 chipmask
|= (0x1 << i
);
3601 outb(GCCR
, (ioaddr
+ XP_ADDR
));
3602 outb(GCCR_IVRTYPCHANACK
, (ioaddr
+ XP_DATA
));
3603 outb(WDTRCR
, (ioaddr
+ XP_ADDR
));
3604 outb(0xff, (ioaddr
+ XP_DATA
));
3607 BRDDISABLE(panelp
->brdnr
);
3611 /*****************************************************************************/
3614 * Initialize hardware specific port registers.
3617 static void stl_sc26198portinit(struct stlbrd
*brdp
, struct stlpanel
*panelp
, struct stlport
*portp
)
3619 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp
,
3622 if ((brdp
== NULL
) || (panelp
== NULL
) ||
3626 portp
->ioaddr
= panelp
->iobase
+ ((portp
->portnr
< 8) ? 0 : 4);
3627 portp
->uartaddr
= (portp
->portnr
& 0x07) << 4;
3628 portp
->pagenr
= panelp
->pagenr
;
3631 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3632 stl_sc26198setreg(portp
, IOPCR
, IOPCR_SETSIGS
);
3633 BRDDISABLE(portp
->brdnr
);
3636 /*****************************************************************************/
3639 * Set up the sc26198 registers for a port based on the termios port
3643 static void stl_sc26198setport(struct stlport
*portp
, struct ktermios
*tiosp
)
3645 struct stlbrd
*brdp
;
3646 unsigned long flags
;
3647 unsigned int baudrate
;
3648 unsigned char mr0
, mr1
, mr2
, clk
;
3649 unsigned char imron
, imroff
, iopr
, ipr
;
3659 brdp
= stl_brds
[portp
->brdnr
];
3664 * Set up the RX char ignore mask with those RX error types we
3667 portp
->rxignoremsk
= 0;
3668 if (tiosp
->c_iflag
& IGNPAR
)
3669 portp
->rxignoremsk
|= (SR_RXPARITY
| SR_RXFRAMING
|
3671 if (tiosp
->c_iflag
& IGNBRK
)
3672 portp
->rxignoremsk
|= SR_RXBREAK
;
3674 portp
->rxmarkmsk
= SR_RXOVERRUN
;
3675 if (tiosp
->c_iflag
& (INPCK
| PARMRK
))
3676 portp
->rxmarkmsk
|= (SR_RXPARITY
| SR_RXFRAMING
);
3677 if (tiosp
->c_iflag
& BRKINT
)
3678 portp
->rxmarkmsk
|= SR_RXBREAK
;
3681 * Go through the char size, parity and stop bits and set all the
3682 * option register appropriately.
3684 switch (tiosp
->c_cflag
& CSIZE
) {
3699 if (tiosp
->c_cflag
& CSTOPB
)
3704 if (tiosp
->c_cflag
& PARENB
) {
3705 if (tiosp
->c_cflag
& PARODD
)
3706 mr1
|= (MR1_PARENB
| MR1_PARODD
);
3708 mr1
|= (MR1_PARENB
| MR1_PAREVEN
);
3712 mr1
|= MR1_ERRBLOCK
;
3715 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
3716 * space for hardware flow control and the like. This should be set to
3719 mr2
|= MR2_RXFIFOHALF
;
3722 * Calculate the baud rate timers. For now we will just assume that
3723 * the input and output baud are the same. The sc26198 has a fixed
3724 * baud rate table, so only discrete baud rates possible.
3726 baudrate
= tiosp
->c_cflag
& CBAUD
;
3727 if (baudrate
& CBAUDEX
) {
3728 baudrate
&= ~CBAUDEX
;
3729 if ((baudrate
< 1) || (baudrate
> 4))
3730 tiosp
->c_cflag
&= ~CBAUDEX
;
3734 baudrate
= stl_baudrates
[baudrate
];
3735 if ((tiosp
->c_cflag
& CBAUD
) == B38400
) {
3736 if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_HI
)
3738 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_VHI
)
3740 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_SHI
)
3742 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_WARP
)
3744 else if ((portp
->port
.flags
& ASYNC_SPD_MASK
) == ASYNC_SPD_CUST
)
3745 baudrate
= (portp
->baud_base
/ portp
->custom_divisor
);
3747 if (baudrate
> STL_SC26198MAXBAUD
)
3748 baudrate
= STL_SC26198MAXBAUD
;
3751 for (clk
= 0; clk
< SC26198_NRBAUDS
; clk
++)
3752 if (baudrate
<= sc26198_baudtable
[clk
])
3756 * Check what form of modem signaling is required and set it up.
3758 if (tiosp
->c_cflag
& CLOCAL
) {
3759 portp
->port
.flags
&= ~ASYNC_CHECK_CD
;
3761 iopr
|= IOPR_DCDCOS
;
3763 portp
->port
.flags
|= ASYNC_CHECK_CD
;
3767 * Setup sc26198 enhanced modes if we can. In particular we want to
3768 * handle as much of the flow control as possible automatically. As
3769 * well as saving a few CPU cycles it will also greatly improve flow
3770 * control reliability.
3772 if (tiosp
->c_iflag
& IXON
) {
3773 mr0
|= MR0_SWFTX
| MR0_SWFT
;
3774 imron
|= IR_XONXOFF
;
3776 imroff
|= IR_XONXOFF
;
3778 if (tiosp
->c_iflag
& IXOFF
)
3781 if (tiosp
->c_cflag
& CRTSCTS
) {
3787 * All sc26198 register values calculated so go through and set
3791 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3792 portp
->portnr
, portp
->panelnr
, portp
->brdnr
);
3793 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0
, mr1
, mr2
, clk
);
3794 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr
, imron
, imroff
);
3795 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3796 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
],
3797 tiosp
->c_cc
[VSTART
], tiosp
->c_cc
[VSTOP
]);
3799 spin_lock_irqsave(&brd_lock
, flags
);
3800 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3801 stl_sc26198setreg(portp
, IMR
, 0);
3802 stl_sc26198updatereg(portp
, MR0
, mr0
);
3803 stl_sc26198updatereg(portp
, MR1
, mr1
);
3804 stl_sc26198setreg(portp
, SCCR
, CR_RXERRBLOCK
);
3805 stl_sc26198updatereg(portp
, MR2
, mr2
);
3806 stl_sc26198updatereg(portp
, IOPIOR
,
3807 ((stl_sc26198getreg(portp
, IOPIOR
) & ~IPR_CHANGEMASK
) | iopr
));
3810 stl_sc26198setreg(portp
, TXCSR
, clk
);
3811 stl_sc26198setreg(portp
, RXCSR
, clk
);
3814 stl_sc26198setreg(portp
, XONCR
, tiosp
->c_cc
[VSTART
]);
3815 stl_sc26198setreg(portp
, XOFFCR
, tiosp
->c_cc
[VSTOP
]);
3817 ipr
= stl_sc26198getreg(portp
, IPR
);
3819 portp
->sigs
&= ~TIOCM_CD
;
3821 portp
->sigs
|= TIOCM_CD
;
3823 portp
->imr
= (portp
->imr
& ~imroff
) | imron
;
3824 stl_sc26198setreg(portp
, IMR
, portp
->imr
);
3825 BRDDISABLE(portp
->brdnr
);
3826 spin_unlock_irqrestore(&brd_lock
, flags
);
3829 /*****************************************************************************/
3832 * Set the state of the DTR and RTS signals.
3835 static void stl_sc26198setsignals(struct stlport
*portp
, int dtr
, int rts
)
3837 unsigned char iopioron
, iopioroff
;
3838 unsigned long flags
;
3840 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp
,
3846 iopioroff
|= IPR_DTR
;
3848 iopioron
|= IPR_DTR
;
3850 iopioroff
|= IPR_RTS
;
3852 iopioron
|= IPR_RTS
;
3854 spin_lock_irqsave(&brd_lock
, flags
);
3855 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3856 stl_sc26198setreg(portp
, IOPIOR
,
3857 ((stl_sc26198getreg(portp
, IOPIOR
) & ~iopioroff
) | iopioron
));
3858 BRDDISABLE(portp
->brdnr
);
3859 spin_unlock_irqrestore(&brd_lock
, flags
);
3862 /*****************************************************************************/
3865 * Return the state of the signals.
3868 static int stl_sc26198getsignals(struct stlport
*portp
)
3871 unsigned long flags
;
3874 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp
);
3876 spin_lock_irqsave(&brd_lock
, flags
);
3877 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3878 ipr
= stl_sc26198getreg(portp
, IPR
);
3879 BRDDISABLE(portp
->brdnr
);
3880 spin_unlock_irqrestore(&brd_lock
, flags
);
3883 sigs
|= (ipr
& IPR_DCD
) ? 0 : TIOCM_CD
;
3884 sigs
|= (ipr
& IPR_CTS
) ? 0 : TIOCM_CTS
;
3885 sigs
|= (ipr
& IPR_DTR
) ? 0: TIOCM_DTR
;
3886 sigs
|= (ipr
& IPR_RTS
) ? 0: TIOCM_RTS
;
3891 /*****************************************************************************/
3894 * Enable/Disable the Transmitter and/or Receiver.
3897 static void stl_sc26198enablerxtx(struct stlport
*portp
, int rx
, int tx
)
3900 unsigned long flags
;
3902 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
,tx
);
3904 ccr
= portp
->crenable
;
3906 ccr
&= ~CR_TXENABLE
;
3910 ccr
&= ~CR_RXENABLE
;
3914 spin_lock_irqsave(&brd_lock
, flags
);
3915 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3916 stl_sc26198setreg(portp
, SCCR
, ccr
);
3917 BRDDISABLE(portp
->brdnr
);
3918 portp
->crenable
= ccr
;
3919 spin_unlock_irqrestore(&brd_lock
, flags
);
3922 /*****************************************************************************/
3925 * Start/stop the Transmitter and/or Receiver.
3928 static void stl_sc26198startrxtx(struct stlport
*portp
, int rx
, int tx
)
3931 unsigned long flags
;
3933 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp
, rx
, tx
);
3941 imr
&= ~(IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
);
3943 imr
|= IR_RXRDY
| IR_RXBREAK
| IR_RXWATCHDOG
;
3945 spin_lock_irqsave(&brd_lock
, flags
);
3946 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3947 stl_sc26198setreg(portp
, IMR
, imr
);
3948 BRDDISABLE(portp
->brdnr
);
3951 set_bit(ASYI_TXBUSY
, &portp
->istate
);
3952 spin_unlock_irqrestore(&brd_lock
, flags
);
3955 /*****************************************************************************/
3958 * Disable all interrupts from this port.
3961 static void stl_sc26198disableintrs(struct stlport
*portp
)
3963 unsigned long flags
;
3965 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp
);
3967 spin_lock_irqsave(&brd_lock
, flags
);
3968 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3970 stl_sc26198setreg(portp
, IMR
, 0);
3971 BRDDISABLE(portp
->brdnr
);
3972 spin_unlock_irqrestore(&brd_lock
, flags
);
3975 /*****************************************************************************/
3977 static void stl_sc26198sendbreak(struct stlport
*portp
, int len
)
3979 unsigned long flags
;
3981 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp
, len
);
3983 spin_lock_irqsave(&brd_lock
, flags
);
3984 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
3986 stl_sc26198setreg(portp
, SCCR
, CR_TXSTARTBREAK
);
3987 portp
->stats
.txbreaks
++;
3989 stl_sc26198setreg(portp
, SCCR
, CR_TXSTOPBREAK
);
3991 BRDDISABLE(portp
->brdnr
);
3992 spin_unlock_irqrestore(&brd_lock
, flags
);
3995 /*****************************************************************************/
3998 * Take flow control actions...
4001 static void stl_sc26198flowctrl(struct stlport
*portp
, int state
)
4003 struct tty_struct
*tty
;
4004 unsigned long flags
;
4007 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp
, state
);
4011 tty
= tty_port_tty_get(&portp
->port
);
4015 spin_lock_irqsave(&brd_lock
, flags
);
4016 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4019 if (tty
->termios
->c_iflag
& IXOFF
) {
4020 mr0
= stl_sc26198getreg(portp
, MR0
);
4021 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4022 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4024 portp
->stats
.rxxon
++;
4025 stl_sc26198wait(portp
);
4026 stl_sc26198setreg(portp
, MR0
, mr0
);
4029 * Question: should we return RTS to what it was before? It may
4030 * have been set by an ioctl... Suppose not, since if you have
4031 * hardware flow control set then it is pretty silly to go and
4032 * set the RTS line by hand.
4034 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4035 stl_sc26198setreg(portp
, MR1
,
4036 (stl_sc26198getreg(portp
, MR1
) | MR1_AUTORTS
));
4037 stl_sc26198setreg(portp
, IOPIOR
,
4038 (stl_sc26198getreg(portp
, IOPIOR
) | IOPR_RTS
));
4039 portp
->stats
.rxrtson
++;
4042 if (tty
->termios
->c_iflag
& IXOFF
) {
4043 mr0
= stl_sc26198getreg(portp
, MR0
);
4044 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4045 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4047 portp
->stats
.rxxoff
++;
4048 stl_sc26198wait(portp
);
4049 stl_sc26198setreg(portp
, MR0
, mr0
);
4051 if (tty
->termios
->c_cflag
& CRTSCTS
) {
4052 stl_sc26198setreg(portp
, MR1
,
4053 (stl_sc26198getreg(portp
, MR1
) & ~MR1_AUTORTS
));
4054 stl_sc26198setreg(portp
, IOPIOR
,
4055 (stl_sc26198getreg(portp
, IOPIOR
) & ~IOPR_RTS
));
4056 portp
->stats
.rxrtsoff
++;
4060 BRDDISABLE(portp
->brdnr
);
4061 spin_unlock_irqrestore(&brd_lock
, flags
);
4065 /*****************************************************************************/
4068 * Send a flow control character.
4071 static void stl_sc26198sendflow(struct stlport
*portp
, int state
)
4073 struct tty_struct
*tty
;
4074 unsigned long flags
;
4077 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp
, state
);
4081 tty
= tty_port_tty_get(&portp
->port
);
4085 spin_lock_irqsave(&brd_lock
, flags
);
4086 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4088 mr0
= stl_sc26198getreg(portp
, MR0
);
4089 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4090 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXON
);
4092 portp
->stats
.rxxon
++;
4093 stl_sc26198wait(portp
);
4094 stl_sc26198setreg(portp
, MR0
, mr0
);
4096 mr0
= stl_sc26198getreg(portp
, MR0
);
4097 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4098 stl_sc26198setreg(portp
, SCCR
, CR_TXSENDXOFF
);
4100 portp
->stats
.rxxoff
++;
4101 stl_sc26198wait(portp
);
4102 stl_sc26198setreg(portp
, MR0
, mr0
);
4104 BRDDISABLE(portp
->brdnr
);
4105 spin_unlock_irqrestore(&brd_lock
, flags
);
4109 /*****************************************************************************/
4111 static void stl_sc26198flush(struct stlport
*portp
)
4113 unsigned long flags
;
4115 pr_debug("stl_sc26198flush(portp=%p)\n", portp
);
4120 spin_lock_irqsave(&brd_lock
, flags
);
4121 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4122 stl_sc26198setreg(portp
, SCCR
, CR_TXRESET
);
4123 stl_sc26198setreg(portp
, SCCR
, portp
->crenable
);
4124 BRDDISABLE(portp
->brdnr
);
4125 portp
->tx
.tail
= portp
->tx
.head
;
4126 spin_unlock_irqrestore(&brd_lock
, flags
);
4129 /*****************************************************************************/
4132 * Return the current state of data flow on this port. This is only
4133 * really interesting when determining if data has fully completed
4134 * transmission or not... The sc26198 interrupt scheme cannot
4135 * determine when all data has actually drained, so we need to
4136 * check the port statusy register to be sure.
4139 static int stl_sc26198datastate(struct stlport
*portp
)
4141 unsigned long flags
;
4144 pr_debug("stl_sc26198datastate(portp=%p)\n", portp
);
4148 if (test_bit(ASYI_TXBUSY
, &portp
->istate
))
4151 spin_lock_irqsave(&brd_lock
, flags
);
4152 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4153 sr
= stl_sc26198getreg(portp
, SR
);
4154 BRDDISABLE(portp
->brdnr
);
4155 spin_unlock_irqrestore(&brd_lock
, flags
);
4157 return (sr
& SR_TXEMPTY
) ? 0 : 1;
4160 /*****************************************************************************/
4163 * Delay for a small amount of time, to give the sc26198 a chance
4164 * to process a command...
4167 static void stl_sc26198wait(struct stlport
*portp
)
4171 pr_debug("stl_sc26198wait(portp=%p)\n", portp
);
4176 for (i
= 0; i
< 20; i
++)
4177 stl_sc26198getglobreg(portp
, TSTR
);
4180 /*****************************************************************************/
4183 * If we are TX flow controlled and in IXANY mode then we may
4184 * need to unflow control here. We gotta do this because of the
4185 * automatic flow control modes of the sc26198.
4188 static void stl_sc26198txunflow(struct stlport
*portp
, struct tty_struct
*tty
)
4192 mr0
= stl_sc26198getreg(portp
, MR0
);
4193 stl_sc26198setreg(portp
, MR0
, (mr0
& ~MR0_SWFRXTX
));
4194 stl_sc26198setreg(portp
, SCCR
, CR_HOSTXON
);
4195 stl_sc26198wait(portp
);
4196 stl_sc26198setreg(portp
, MR0
, mr0
);
4197 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4200 /*****************************************************************************/
4203 * Interrupt service routine for sc26198 panels.
4206 static void stl_sc26198intr(struct stlpanel
*panelp
, unsigned int iobase
)
4208 struct stlport
*portp
;
4211 spin_lock(&brd_lock
);
4214 * Work around bug in sc26198 chip... Cannot have A6 address
4215 * line of UART high, else iack will be returned as 0.
4217 outb(0, (iobase
+ 1));
4219 iack
= inb(iobase
+ XP_IACK
);
4220 portp
= panelp
->ports
[(iack
& IVR_CHANMASK
) + ((iobase
& 0x4) << 1)];
4222 if (iack
& IVR_RXDATA
)
4223 stl_sc26198rxisr(portp
, iack
);
4224 else if (iack
& IVR_TXDATA
)
4225 stl_sc26198txisr(portp
);
4227 stl_sc26198otherisr(portp
, iack
);
4229 spin_unlock(&brd_lock
);
4232 /*****************************************************************************/
4235 * Transmit interrupt handler. This has gotta be fast! Handling TX
4236 * chars is pretty simple, stuff as many as possible from the TX buffer
4237 * into the sc26198 FIFO.
4238 * In practice it is possible that interrupts are enabled but that the
4239 * port has been hung up. Need to handle not having any TX buffer here,
4240 * this is done by using the side effect that head and tail will also
4241 * be NULL if the buffer has been freed.
4244 static void stl_sc26198txisr(struct stlport
*portp
)
4246 struct tty_struct
*tty
;
4247 unsigned int ioaddr
;
4252 pr_debug("stl_sc26198txisr(portp=%p)\n", portp
);
4254 ioaddr
= portp
->ioaddr
;
4255 head
= portp
->tx
.head
;
4256 tail
= portp
->tx
.tail
;
4257 len
= (head
>= tail
) ? (head
- tail
) : (STL_TXBUFSIZE
- (tail
- head
));
4258 if ((len
== 0) || ((len
< STL_TXBUFLOW
) &&
4259 (test_bit(ASYI_TXLOW
, &portp
->istate
) == 0))) {
4260 set_bit(ASYI_TXLOW
, &portp
->istate
);
4261 tty
= tty_port_tty_get(&portp
->port
);
4269 outb((MR0
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4270 mr0
= inb(ioaddr
+ XP_DATA
);
4271 if ((mr0
& MR0_TXMASK
) == MR0_TXEMPTY
) {
4272 portp
->imr
&= ~IR_TXRDY
;
4273 outb((IMR
| portp
->uartaddr
), (ioaddr
+ XP_ADDR
));
4274 outb(portp
->imr
, (ioaddr
+ XP_DATA
));
4275 clear_bit(ASYI_TXBUSY
, &portp
->istate
);
4277 mr0
|= ((mr0
& ~MR0_TXMASK
) | MR0_TXEMPTY
);
4278 outb(mr0
, (ioaddr
+ XP_DATA
));
4281 len
= min(len
, SC26198_TXFIFOSIZE
);
4282 portp
->stats
.txtotal
+= len
;
4283 stlen
= min_t(unsigned int, len
,
4284 (portp
->tx
.buf
+ STL_TXBUFSIZE
) - tail
);
4285 outb(GTXFIFO
, (ioaddr
+ XP_ADDR
));
4286 outsb((ioaddr
+ XP_DATA
), tail
, stlen
);
4289 if (tail
>= (portp
->tx
.buf
+ STL_TXBUFSIZE
))
4290 tail
= portp
->tx
.buf
;
4292 outsb((ioaddr
+ XP_DATA
), tail
, len
);
4295 portp
->tx
.tail
= tail
;
4299 /*****************************************************************************/
4302 * Receive character interrupt handler. Determine if we have good chars
4303 * or bad chars and then process appropriately. Good chars are easy
4304 * just shove the lot into the RX buffer and set all status byte to 0.
4305 * If a bad RX char then process as required. This routine needs to be
4306 * fast! In practice it is possible that we get an interrupt on a port
4307 * that is closed. This can happen on hangups - since they completely
4308 * shutdown a port not in user context. Need to handle this case.
4311 static void stl_sc26198rxisr(struct stlport
*portp
, unsigned int iack
)
4313 struct tty_struct
*tty
;
4314 unsigned int len
, buflen
, ioaddr
;
4316 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp
, iack
);
4318 tty
= tty_port_tty_get(&portp
->port
);
4319 ioaddr
= portp
->ioaddr
;
4320 outb(GIBCR
, (ioaddr
+ XP_ADDR
));
4321 len
= inb(ioaddr
+ XP_DATA
) + 1;
4323 if ((iack
& IVR_TYPEMASK
) == IVR_RXDATA
) {
4324 if (tty
== NULL
|| (buflen
= tty_buffer_request_room(tty
, len
)) == 0) {
4325 len
= min_t(unsigned int, len
, sizeof(stl_unwanted
));
4326 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4327 insb((ioaddr
+ XP_DATA
), &stl_unwanted
[0], len
);
4328 portp
->stats
.rxlost
+= len
;
4329 portp
->stats
.rxtotal
+= len
;
4331 len
= min(len
, buflen
);
4334 outb(GRXFIFO
, (ioaddr
+ XP_ADDR
));
4335 tty_prepare_flip_string(tty
, &ptr
, len
);
4336 insb((ioaddr
+ XP_DATA
), ptr
, len
);
4337 tty_schedule_flip(tty
);
4338 portp
->stats
.rxtotal
+= len
;
4342 stl_sc26198rxbadchars(portp
);
4346 * If we are TX flow controlled and in IXANY mode then we may need
4347 * to unflow control here. We gotta do this because of the automatic
4348 * flow control modes of the sc26198.
4350 if (test_bit(ASYI_TXFLOWED
, &portp
->istate
)) {
4351 if ((tty
!= NULL
) &&
4352 (tty
->termios
!= NULL
) &&
4353 (tty
->termios
->c_iflag
& IXANY
)) {
4354 stl_sc26198txunflow(portp
, tty
);
4360 /*****************************************************************************/
4363 * Process an RX bad character.
4366 static void stl_sc26198rxbadch(struct stlport
*portp
, unsigned char status
, char ch
)
4368 struct tty_struct
*tty
;
4369 unsigned int ioaddr
;
4371 tty
= tty_port_tty_get(&portp
->port
);
4372 ioaddr
= portp
->ioaddr
;
4374 if (status
& SR_RXPARITY
)
4375 portp
->stats
.rxparity
++;
4376 if (status
& SR_RXFRAMING
)
4377 portp
->stats
.rxframing
++;
4378 if (status
& SR_RXOVERRUN
)
4379 portp
->stats
.rxoverrun
++;
4380 if (status
& SR_RXBREAK
)
4381 portp
->stats
.rxbreaks
++;
4383 if ((tty
!= NULL
) &&
4384 ((portp
->rxignoremsk
& status
) == 0)) {
4385 if (portp
->rxmarkmsk
& status
) {
4386 if (status
& SR_RXBREAK
) {
4388 if (portp
->port
.flags
& ASYNC_SAK
) {
4390 BRDENABLE(portp
->brdnr
, portp
->pagenr
);
4392 } else if (status
& SR_RXPARITY
)
4393 status
= TTY_PARITY
;
4394 else if (status
& SR_RXFRAMING
)
4396 else if(status
& SR_RXOVERRUN
)
4397 status
= TTY_OVERRUN
;
4403 tty_insert_flip_char(tty
, ch
, status
);
4404 tty_schedule_flip(tty
);
4407 portp
->stats
.rxtotal
++;
4412 /*****************************************************************************/
4415 * Process all characters in the RX FIFO of the UART. Check all char
4416 * status bytes as well, and process as required. We need to check
4417 * all bytes in the FIFO, in case some more enter the FIFO while we
4418 * are here. To get the exact character error type we need to switch
4419 * into CHAR error mode (that is why we need to make sure we empty
4423 static void stl_sc26198rxbadchars(struct stlport
*portp
)
4425 unsigned char status
, mr1
;
4429 * To get the precise error type for each character we must switch
4430 * back into CHAR error mode.
4432 mr1
= stl_sc26198getreg(portp
, MR1
);
4433 stl_sc26198setreg(portp
, MR1
, (mr1
& ~MR1_ERRBLOCK
));
4435 while ((status
= stl_sc26198getreg(portp
, SR
)) & SR_RXRDY
) {
4436 stl_sc26198setreg(portp
, SCCR
, CR_CLEARRXERR
);
4437 ch
= stl_sc26198getreg(portp
, RXFIFO
);
4438 stl_sc26198rxbadch(portp
, status
, ch
);
4442 * To get correct interrupt class we must switch back into BLOCK
4445 stl_sc26198setreg(portp
, MR1
, mr1
);
4448 /*****************************************************************************/
4451 * Other interrupt handler. This includes modem signals, flow
4452 * control actions, etc. Most stuff is left to off-level interrupt
4456 static void stl_sc26198otherisr(struct stlport
*portp
, unsigned int iack
)
4458 unsigned char cir
, ipr
, xisr
;
4460 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp
, iack
);
4462 cir
= stl_sc26198getglobreg(portp
, CIR
);
4464 switch (cir
& CIR_SUBTYPEMASK
) {
4466 ipr
= stl_sc26198getreg(portp
, IPR
);
4467 if (ipr
& IPR_DCDCHANGE
) {
4468 stl_cd_change(portp
);
4469 portp
->stats
.modem
++;
4472 case CIR_SUBXONXOFF
:
4473 xisr
= stl_sc26198getreg(portp
, XISR
);
4474 if (xisr
& XISR_RXXONGOT
) {
4475 set_bit(ASYI_TXFLOWED
, &portp
->istate
);
4476 portp
->stats
.txxoff
++;
4478 if (xisr
& XISR_RXXOFFGOT
) {
4479 clear_bit(ASYI_TXFLOWED
, &portp
->istate
);
4480 portp
->stats
.txxon
++;
4484 stl_sc26198setreg(portp
, SCCR
, CR_BREAKRESET
);
4485 stl_sc26198rxbadchars(portp
);
4492 static void stl_free_isabrds(void)
4494 struct stlbrd
*brdp
;
4497 for (i
= 0; i
< stl_nrbrds
; i
++) {
4498 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4501 free_irq(brdp
->irq
, brdp
);
4503 stl_cleanup_panels(brdp
);
4505 release_region(brdp
->ioaddr1
, brdp
->iosize1
);
4506 if (brdp
->iosize2
> 0)
4507 release_region(brdp
->ioaddr2
, brdp
->iosize2
);
4515 * Loadable module initialization stuff.
4517 static int __init
stallion_module_init(void)
4519 struct stlbrd
*brdp
;
4520 struct stlconf conf
;
4524 printk(KERN_INFO
"%s: version %s\n", stl_drvtitle
, stl_drvversion
);
4526 spin_lock_init(&stallion_lock
);
4527 spin_lock_init(&brd_lock
);
4529 stl_serial
= alloc_tty_driver(STL_MAXBRDS
* STL_MAXPORTS
);
4535 stl_serial
->owner
= THIS_MODULE
;
4536 stl_serial
->driver_name
= stl_drvname
;
4537 stl_serial
->name
= "ttyE";
4538 stl_serial
->major
= STL_SERIALMAJOR
;
4539 stl_serial
->minor_start
= 0;
4540 stl_serial
->type
= TTY_DRIVER_TYPE_SERIAL
;
4541 stl_serial
->subtype
= SERIAL_TYPE_NORMAL
;
4542 stl_serial
->init_termios
= stl_deftermios
;
4543 stl_serial
->flags
= TTY_DRIVER_REAL_RAW
| TTY_DRIVER_DYNAMIC_DEV
;
4544 tty_set_operations(stl_serial
, &stl_ops
);
4546 retval
= tty_register_driver(stl_serial
);
4548 printk("STALLION: failed to register serial driver\n");
4553 * Find any dynamically supported boards. That is via module load
4556 for (i
= stl_nrbrds
; i
< stl_nargs
; i
++) {
4557 memset(&conf
, 0, sizeof(conf
));
4558 if (stl_parsebrd(&conf
, stl_brdsp
[i
]) == 0)
4560 if ((brdp
= stl_allocbrd()) == NULL
)
4563 brdp
->brdtype
= conf
.brdtype
;
4564 brdp
->ioaddr1
= conf
.ioaddr1
;
4565 brdp
->ioaddr2
= conf
.ioaddr2
;
4566 brdp
->irq
= conf
.irq
;
4567 brdp
->irqtype
= conf
.irqtype
;
4568 stl_brds
[brdp
->brdnr
] = brdp
;
4569 if (stl_brdinit(brdp
)) {
4570 stl_brds
[brdp
->brdnr
] = NULL
;
4573 for (j
= 0; j
< brdp
->nrports
; j
++)
4574 tty_register_device(stl_serial
,
4575 brdp
->brdnr
* STL_MAXPORTS
+ j
, NULL
);
4580 /* this has to be _after_ isa finding because of locking */
4581 retval
= pci_register_driver(&stl_pcidriver
);
4582 if (retval
&& stl_nrbrds
== 0) {
4583 printk(KERN_ERR
"STALLION: can't register pci driver\n");
4588 * Set up a character driver for per board stuff. This is mainly used
4589 * to do stats ioctls on the ports.
4591 if (register_chrdev(STL_SIOMEMMAJOR
, "staliomem", &stl_fsiomem
))
4592 printk("STALLION: failed to register serial board device\n");
4594 stallion_class
= class_create(THIS_MODULE
, "staliomem");
4595 if (IS_ERR(stallion_class
))
4596 printk("STALLION: failed to create class\n");
4597 for (i
= 0; i
< 4; i
++)
4598 device_create(stallion_class
, NULL
, MKDEV(STL_SIOMEMMAJOR
, i
),
4599 NULL
, "staliomem%d", i
);
4603 tty_unregister_driver(stl_serial
);
4605 put_tty_driver(stl_serial
);
4610 static void __exit
stallion_module_exit(void)
4612 struct stlbrd
*brdp
;
4615 pr_debug("cleanup_module()\n");
4617 printk(KERN_INFO
"Unloading %s: version %s\n", stl_drvtitle
,
4621 * Free up all allocated resources used by the ports. This includes
4622 * memory and interrupts. As part of this process we will also do
4623 * a hangup on every open port - to try to flush out any processes
4624 * hanging onto ports.
4626 for (i
= 0; i
< stl_nrbrds
; i
++) {
4627 if ((brdp
= stl_brds
[i
]) == NULL
|| (brdp
->state
& STL_PROBED
))
4629 for (j
= 0; j
< brdp
->nrports
; j
++)
4630 tty_unregister_device(stl_serial
,
4631 brdp
->brdnr
* STL_MAXPORTS
+ j
);
4634 for (i
= 0; i
< 4; i
++)
4635 device_destroy(stallion_class
, MKDEV(STL_SIOMEMMAJOR
, i
));
4636 unregister_chrdev(STL_SIOMEMMAJOR
, "staliomem");
4637 class_destroy(stallion_class
);
4639 pci_unregister_driver(&stl_pcidriver
);
4643 tty_unregister_driver(stl_serial
);
4644 put_tty_driver(stl_serial
);
4647 module_init(stallion_module_init
);
4648 module_exit(stallion_module_exit
);
4650 MODULE_AUTHOR("Greg Ungerer");
4651 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4652 MODULE_LICENSE("GPL");