4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
29 PERF_TYPE_HARDWARE
= 0,
30 PERF_TYPE_SOFTWARE
= 1,
31 PERF_TYPE_TRACEPOINT
= 2,
32 PERF_TYPE_HW_CACHE
= 3,
34 PERF_TYPE_BREAKPOINT
= 5,
36 PERF_TYPE_MAX
, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES
= 0,
49 PERF_COUNT_HW_INSTRUCTIONS
= 1,
50 PERF_COUNT_HW_CACHE_REFERENCES
= 2,
51 PERF_COUNT_HW_CACHE_MISSES
= 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS
= 4,
53 PERF_COUNT_HW_BRANCH_MISSES
= 5,
54 PERF_COUNT_HW_BUS_CYCLES
= 6,
56 PERF_COUNT_HW_MAX
, /* non-ABI */
60 * Generalized hardware cache events:
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
66 enum perf_hw_cache_id
{
67 PERF_COUNT_HW_CACHE_L1D
= 0,
68 PERF_COUNT_HW_CACHE_L1I
= 1,
69 PERF_COUNT_HW_CACHE_LL
= 2,
70 PERF_COUNT_HW_CACHE_DTLB
= 3,
71 PERF_COUNT_HW_CACHE_ITLB
= 4,
72 PERF_COUNT_HW_CACHE_BPU
= 5,
74 PERF_COUNT_HW_CACHE_MAX
, /* non-ABI */
77 enum perf_hw_cache_op_id
{
78 PERF_COUNT_HW_CACHE_OP_READ
= 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE
= 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH
= 2,
82 PERF_COUNT_HW_CACHE_OP_MAX
, /* non-ABI */
85 enum perf_hw_cache_op_result_id
{
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS
= 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS
= 1,
89 PERF_COUNT_HW_CACHE_RESULT_MAX
, /* non-ABI */
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
99 PERF_COUNT_SW_CPU_CLOCK
= 0,
100 PERF_COUNT_SW_TASK_CLOCK
= 1,
101 PERF_COUNT_SW_PAGE_FAULTS
= 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES
= 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS
= 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN
= 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ
= 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS
= 7,
107 PERF_COUNT_SW_EMULATION_FAULTS
= 8,
109 PERF_COUNT_SW_MAX
, /* non-ABI */
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
116 enum perf_event_sample_format
{
117 PERF_SAMPLE_IP
= 1U << 0,
118 PERF_SAMPLE_TID
= 1U << 1,
119 PERF_SAMPLE_TIME
= 1U << 2,
120 PERF_SAMPLE_ADDR
= 1U << 3,
121 PERF_SAMPLE_READ
= 1U << 4,
122 PERF_SAMPLE_CALLCHAIN
= 1U << 5,
123 PERF_SAMPLE_ID
= 1U << 6,
124 PERF_SAMPLE_CPU
= 1U << 7,
125 PERF_SAMPLE_PERIOD
= 1U << 8,
126 PERF_SAMPLE_STREAM_ID
= 1U << 9,
127 PERF_SAMPLE_RAW
= 1U << 10,
129 PERF_SAMPLE_MAX
= 1U << 11, /* non-ABI */
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
136 * struct read_format {
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
147 * { u64 id; } && PERF_FORMAT_ID
149 * } && PERF_FORMAT_GROUP
152 enum perf_event_read_format
{
153 PERF_FORMAT_TOTAL_TIME_ENABLED
= 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING
= 1U << 1,
155 PERF_FORMAT_ID
= 1U << 2,
156 PERF_FORMAT_GROUP
= 1U << 3,
158 PERF_FORMAT_MAX
= 1U << 4, /* non-ABI */
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
164 * Hardware event_id to monitor via a performance monitoring event:
166 struct perf_event_attr
{
169 * Major type: hardware/software/tracepoint/etc.
174 * Size of the attr structure, for fwd/bwd compat.
179 * Type specific configuration information.
191 __u64 disabled
: 1, /* off by default */
192 inherit
: 1, /* children inherit it */
193 pinned
: 1, /* must always be on PMU */
194 exclusive
: 1, /* only group on PMU */
195 exclude_user
: 1, /* don't count user */
196 exclude_kernel
: 1, /* ditto kernel */
197 exclude_hv
: 1, /* ditto hypervisor */
198 exclude_idle
: 1, /* don't count when idle */
199 mmap
: 1, /* include mmap data */
200 comm
: 1, /* include comm data */
201 freq
: 1, /* use freq, not period */
202 inherit_stat
: 1, /* per task counts */
203 enable_on_exec
: 1, /* next exec enables */
204 task
: 1, /* trace fork/exit */
205 watermark
: 1, /* wakeup_watermark */
209 * 0 - SAMPLE_IP can have arbitrary skid
210 * 1 - SAMPLE_IP must have constant skid
211 * 2 - SAMPLE_IP requested to have 0 skid
212 * 3 - SAMPLE_IP must have 0 skid
214 * See also PERF_RECORD_MISC_EXACT_IP
216 precise_ip
: 2, /* skid constraint */
217 mmap_data
: 1, /* non-exec mmap data */
218 sample_id_all
: 1, /* sample_type all events */
223 __u32 wakeup_events
; /* wakeup every n events */
224 __u32 wakeup_watermark
; /* bytes before wakeup */
233 * Ioctls that can be done on a perf event fd:
235 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
236 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
237 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
238 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
239 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
240 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
241 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
243 enum perf_event_ioc_flags
{
244 PERF_IOC_FLAG_GROUP
= 1U << 0,
248 * Structure of the page that can be mapped via mmap
250 struct perf_event_mmap_page
{
251 __u32 version
; /* version number of this structure */
252 __u32 compat_version
; /* lowest version this is compat with */
255 * Bits needed to read the hw events in user-space.
265 * count = pmc_read(pc->index - 1);
266 * count += pc->offset;
271 * } while (pc->lock != seq);
273 * NOTE: for obvious reason this only works on self-monitoring
276 __u32 lock
; /* seqlock for synchronization */
277 __u32 index
; /* hardware event identifier */
278 __s64 offset
; /* add to hardware event value */
279 __u64 time_enabled
; /* time event active */
280 __u64 time_running
; /* time event on cpu */
283 * Hole for extension of the self monitor capabilities
286 __u64 __reserved
[123]; /* align to 1k */
289 * Control data for the mmap() data buffer.
291 * User-space reading the @data_head value should issue an rmb(), on
292 * SMP capable platforms, after reading this value -- see
293 * perf_event_wakeup().
295 * When the mapping is PROT_WRITE the @data_tail value should be
296 * written by userspace to reflect the last read data. In this case
297 * the kernel will not over-write unread data.
299 __u64 data_head
; /* head in the data section */
300 __u64 data_tail
; /* user-space written tail */
303 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
304 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
305 #define PERF_RECORD_MISC_KERNEL (1 << 0)
306 #define PERF_RECORD_MISC_USER (2 << 0)
307 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
308 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
309 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
312 * Indicates that the content of PERF_SAMPLE_IP points to
313 * the actual instruction that triggered the event. See also
314 * perf_event_attr::precise_ip.
316 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
318 * Reserve the last bit to indicate some extended misc field
320 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
322 struct perf_event_header
{
328 enum perf_event_type
{
331 * If perf_event_attr.sample_id_all is set then all event types will
332 * have the sample_type selected fields related to where/when
333 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
334 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
335 * the perf_event_header and the fields already present for the existing
336 * fields, i.e. at the end of the payload. That way a newer perf.data
337 * file will be supported by older perf tools, with these new optional
338 * fields being ignored.
340 * The MMAP events record the PROT_EXEC mappings so that we can
341 * correlate userspace IPs to code. They have the following structure:
344 * struct perf_event_header header;
353 PERF_RECORD_MMAP
= 1,
357 * struct perf_event_header header;
362 PERF_RECORD_LOST
= 2,
366 * struct perf_event_header header;
372 PERF_RECORD_COMM
= 3,
376 * struct perf_event_header header;
382 PERF_RECORD_EXIT
= 4,
386 * struct perf_event_header header;
392 PERF_RECORD_THROTTLE
= 5,
393 PERF_RECORD_UNTHROTTLE
= 6,
397 * struct perf_event_header header;
403 PERF_RECORD_FORK
= 7,
407 * struct perf_event_header header;
410 * struct read_format values;
413 PERF_RECORD_READ
= 8,
417 * struct perf_event_header header;
419 * { u64 ip; } && PERF_SAMPLE_IP
420 * { u32 pid, tid; } && PERF_SAMPLE_TID
421 * { u64 time; } && PERF_SAMPLE_TIME
422 * { u64 addr; } && PERF_SAMPLE_ADDR
423 * { u64 id; } && PERF_SAMPLE_ID
424 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
425 * { u32 cpu, res; } && PERF_SAMPLE_CPU
426 * { u64 period; } && PERF_SAMPLE_PERIOD
428 * { struct read_format values; } && PERF_SAMPLE_READ
431 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
434 * # The RAW record below is opaque data wrt the ABI
436 * # That is, the ABI doesn't make any promises wrt to
437 * # the stability of its content, it may vary depending
438 * # on event, hardware, kernel version and phase of
441 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
445 * char data[size];}&& PERF_SAMPLE_RAW
448 PERF_RECORD_SAMPLE
= 9,
450 PERF_RECORD_MAX
, /* non-ABI */
453 enum perf_callchain_context
{
454 PERF_CONTEXT_HV
= (__u64
)-32,
455 PERF_CONTEXT_KERNEL
= (__u64
)-128,
456 PERF_CONTEXT_USER
= (__u64
)-512,
458 PERF_CONTEXT_GUEST
= (__u64
)-2048,
459 PERF_CONTEXT_GUEST_KERNEL
= (__u64
)-2176,
460 PERF_CONTEXT_GUEST_USER
= (__u64
)-2560,
462 PERF_CONTEXT_MAX
= (__u64
)-4095,
465 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
466 #define PERF_FLAG_FD_OUTPUT (1U << 1)
470 * Kernel-internal data types and definitions:
473 #ifdef CONFIG_PERF_EVENTS
474 # include <asm/perf_event.h>
475 # include <asm/local64.h>
478 struct perf_guest_info_callbacks
{
479 int (*is_in_guest
) (void);
480 int (*is_user_mode
) (void);
481 unsigned long (*get_guest_ip
) (void);
484 #ifdef CONFIG_HAVE_HW_BREAKPOINT
485 #include <asm/hw_breakpoint.h>
488 #include <linux/list.h>
489 #include <linux/mutex.h>
490 #include <linux/rculist.h>
491 #include <linux/rcupdate.h>
492 #include <linux/spinlock.h>
493 #include <linux/hrtimer.h>
494 #include <linux/fs.h>
495 #include <linux/pid_namespace.h>
496 #include <linux/workqueue.h>
497 #include <linux/ftrace.h>
498 #include <linux/cpu.h>
499 #include <linux/irq_work.h>
500 #include <linux/jump_label_ref.h>
501 #include <asm/atomic.h>
502 #include <asm/local.h>
504 #define PERF_MAX_STACK_DEPTH 255
506 struct perf_callchain_entry
{
508 __u64 ip
[PERF_MAX_STACK_DEPTH
];
511 struct perf_raw_record
{
516 struct perf_branch_entry
{
522 struct perf_branch_stack
{
524 struct perf_branch_entry entries
[0];
530 * struct hw_perf_event - performance event hardware details:
532 struct hw_perf_event
{
533 #ifdef CONFIG_PERF_EVENTS
535 struct { /* hardware */
538 unsigned long config_base
;
539 unsigned long event_base
;
543 struct { /* software */
544 struct hrtimer hrtimer
;
546 #ifdef CONFIG_HAVE_HW_BREAKPOINT
547 struct { /* breakpoint */
548 struct arch_hw_breakpoint info
;
549 struct list_head bp_list
;
551 * Crufty hack to avoid the chicken and egg
552 * problem hw_breakpoint has with context
553 * creation and event initalization.
555 struct task_struct
*bp_target
;
560 local64_t prev_count
;
563 local64_t period_left
;
567 u64 freq_count_stamp
;
572 * hw_perf_event::state flags
574 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
575 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
576 #define PERF_HES_ARCH 0x04
581 * Common implementation detail of pmu::{start,commit,cancel}_txn
583 #define PERF_EVENT_TXN 0x1
586 * struct pmu - generic performance monitoring unit
589 struct list_head entry
;
595 int * __percpu pmu_disable_count
;
596 struct perf_cpu_context
* __percpu pmu_cpu_context
;
600 * Fully disable/enable this PMU, can be used to protect from the PMI
601 * as well as for lazy/batch writing of the MSRs.
603 void (*pmu_enable
) (struct pmu
*pmu
); /* optional */
604 void (*pmu_disable
) (struct pmu
*pmu
); /* optional */
607 * Try and initialize the event for this PMU.
608 * Should return -ENOENT when the @event doesn't match this PMU.
610 int (*event_init
) (struct perf_event
*event
);
612 #define PERF_EF_START 0x01 /* start the counter when adding */
613 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
614 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
617 * Adds/Removes a counter to/from the PMU, can be done inside
618 * a transaction, see the ->*_txn() methods.
620 int (*add
) (struct perf_event
*event
, int flags
);
621 void (*del
) (struct perf_event
*event
, int flags
);
624 * Starts/Stops a counter present on the PMU. The PMI handler
625 * should stop the counter when perf_event_overflow() returns
626 * !0. ->start() will be used to continue.
628 void (*start
) (struct perf_event
*event
, int flags
);
629 void (*stop
) (struct perf_event
*event
, int flags
);
632 * Updates the counter value of the event.
634 void (*read
) (struct perf_event
*event
);
637 * Group events scheduling is treated as a transaction, add
638 * group events as a whole and perform one schedulability test.
639 * If the test fails, roll back the whole group
641 * Start the transaction, after this ->add() doesn't need to
642 * do schedulability tests.
644 void (*start_txn
) (struct pmu
*pmu
); /* optional */
646 * If ->start_txn() disabled the ->add() schedulability test
647 * then ->commit_txn() is required to perform one. On success
648 * the transaction is closed. On error the transaction is kept
649 * open until ->cancel_txn() is called.
651 int (*commit_txn
) (struct pmu
*pmu
); /* optional */
653 * Will cancel the transaction, assumes ->del() is called
654 * for each successfull ->add() during the transaction.
656 void (*cancel_txn
) (struct pmu
*pmu
); /* optional */
660 * enum perf_event_active_state - the states of a event
662 enum perf_event_active_state
{
663 PERF_EVENT_STATE_ERROR
= -2,
664 PERF_EVENT_STATE_OFF
= -1,
665 PERF_EVENT_STATE_INACTIVE
= 0,
666 PERF_EVENT_STATE_ACTIVE
= 1,
671 #define PERF_BUFFER_WRITABLE 0x01
675 struct rcu_head rcu_head
;
676 #ifdef CONFIG_PERF_USE_VMALLOC
677 struct work_struct work
;
678 int page_order
; /* allocation order */
680 int nr_pages
; /* nr of data pages */
681 int writable
; /* are we writable */
683 atomic_t poll
; /* POLL_ for wakeups */
685 local_t head
; /* write position */
686 local_t nest
; /* nested writers */
687 local_t events
; /* event limit */
688 local_t wakeup
; /* wakeup stamp */
689 local_t lost
; /* nr records lost */
691 long watermark
; /* wakeup watermark */
693 struct perf_event_mmap_page
*user_page
;
697 struct perf_sample_data
;
699 typedef void (*perf_overflow_handler_t
)(struct perf_event
*, int,
700 struct perf_sample_data
*,
701 struct pt_regs
*regs
);
703 enum perf_group_flag
{
704 PERF_GROUP_SOFTWARE
= 0x1,
707 #define SWEVENT_HLIST_BITS 8
708 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
710 struct swevent_hlist
{
711 struct hlist_head heads
[SWEVENT_HLIST_SIZE
];
712 struct rcu_head rcu_head
;
715 #define PERF_ATTACH_CONTEXT 0x01
716 #define PERF_ATTACH_GROUP 0x02
717 #define PERF_ATTACH_TASK 0x04
720 * struct perf_event - performance event kernel representation:
723 #ifdef CONFIG_PERF_EVENTS
724 struct list_head group_entry
;
725 struct list_head event_entry
;
726 struct list_head sibling_list
;
727 struct hlist_node hlist_entry
;
730 struct perf_event
*group_leader
;
733 enum perf_event_active_state state
;
734 unsigned int attach_state
;
736 atomic64_t child_count
;
739 * These are the total time in nanoseconds that the event
740 * has been enabled (i.e. eligible to run, and the task has
741 * been scheduled in, if this is a per-task event)
742 * and running (scheduled onto the CPU), respectively.
744 * They are computed from tstamp_enabled, tstamp_running and
745 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
747 u64 total_time_enabled
;
748 u64 total_time_running
;
751 * These are timestamps used for computing total_time_enabled
752 * and total_time_running when the event is in INACTIVE or
753 * ACTIVE state, measured in nanoseconds from an arbitrary point
755 * tstamp_enabled: the notional time when the event was enabled
756 * tstamp_running: the notional time when the event was scheduled on
757 * tstamp_stopped: in INACTIVE state, the notional time when the
758 * event was scheduled off.
765 * timestamp shadows the actual context timing but it can
766 * be safely used in NMI interrupt context. It reflects the
767 * context time as it was when the event was last scheduled in.
769 * ctx_time already accounts for ctx->timestamp. Therefore to
770 * compute ctx_time for a sample, simply add perf_clock().
774 struct perf_event_attr attr
;
778 struct hw_perf_event hw
;
780 struct perf_event_context
*ctx
;
784 * These accumulate total time (in nanoseconds) that children
785 * events have been enabled and running, respectively.
787 atomic64_t child_total_time_enabled
;
788 atomic64_t child_total_time_running
;
791 * Protect attach/detach and child_list:
793 struct mutex child_mutex
;
794 struct list_head child_list
;
795 struct perf_event
*parent
;
800 struct list_head owner_entry
;
801 struct task_struct
*owner
;
804 struct mutex mmap_mutex
;
807 struct user_struct
*mmap_user
;
808 struct perf_buffer
*buffer
;
811 wait_queue_head_t waitq
;
812 struct fasync_struct
*fasync
;
814 /* delayed work for NMIs and such */
818 struct irq_work pending
;
820 atomic_t event_limit
;
822 void (*destroy
)(struct perf_event
*);
823 struct rcu_head rcu_head
;
825 struct pid_namespace
*ns
;
828 perf_overflow_handler_t overflow_handler
;
830 #ifdef CONFIG_EVENT_TRACING
831 struct ftrace_event_call
*tp_event
;
832 struct event_filter
*filter
;
835 #endif /* CONFIG_PERF_EVENTS */
838 enum perf_event_context_type
{
844 * struct perf_event_context - event context structure
846 * Used as a container for task events and CPU events as well:
848 struct perf_event_context
{
849 enum perf_event_context_type type
;
852 * Protect the states of the events in the list,
853 * nr_active, and the list:
857 * Protect the list of events. Locking either mutex or lock
858 * is sufficient to ensure the list doesn't change; to change
859 * the list you need to lock both the mutex and the spinlock.
863 struct list_head pinned_groups
;
864 struct list_head flexible_groups
;
865 struct list_head event_list
;
872 struct task_struct
*task
;
875 * Context clock, runs when context enabled.
881 * These fields let us detect when two contexts have both
882 * been cloned (inherited) from a common ancestor.
884 struct perf_event_context
*parent_ctx
;
888 struct rcu_head rcu_head
;
892 * Number of contexts where an event can trigger:
893 * task, softirq, hardirq, nmi.
895 #define PERF_NR_CONTEXTS 4
898 * struct perf_event_cpu_context - per cpu event context structure
900 struct perf_cpu_context
{
901 struct perf_event_context ctx
;
902 struct perf_event_context
*task_ctx
;
905 struct list_head rotation_list
;
906 int jiffies_interval
;
907 struct pmu
*active_pmu
;
910 struct perf_output_handle
{
911 struct perf_event
*event
;
912 struct perf_buffer
*buffer
;
913 unsigned long wakeup
;
921 #ifdef CONFIG_PERF_EVENTS
923 extern int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
);
924 extern void perf_pmu_unregister(struct pmu
*pmu
);
926 extern int perf_num_counters(void);
927 extern const char *perf_pmu_name(void);
928 extern void __perf_event_task_sched_in(struct task_struct
*task
);
929 extern void __perf_event_task_sched_out(struct task_struct
*task
, struct task_struct
*next
);
930 extern int perf_event_init_task(struct task_struct
*child
);
931 extern void perf_event_exit_task(struct task_struct
*child
);
932 extern void perf_event_free_task(struct task_struct
*task
);
933 extern void perf_event_delayed_put(struct task_struct
*task
);
934 extern void perf_event_print_debug(void);
935 extern void perf_pmu_disable(struct pmu
*pmu
);
936 extern void perf_pmu_enable(struct pmu
*pmu
);
937 extern int perf_event_task_disable(void);
938 extern int perf_event_task_enable(void);
939 extern void perf_event_update_userpage(struct perf_event
*event
);
940 extern int perf_event_release_kernel(struct perf_event
*event
);
941 extern struct perf_event
*
942 perf_event_create_kernel_counter(struct perf_event_attr
*attr
,
944 struct task_struct
*task
,
945 perf_overflow_handler_t callback
);
946 extern u64
perf_event_read_value(struct perf_event
*event
,
947 u64
*enabled
, u64
*running
);
949 struct perf_sample_data
{
966 struct perf_callchain_entry
*callchain
;
967 struct perf_raw_record
*raw
;
971 void perf_sample_data_init(struct perf_sample_data
*data
, u64 addr
)
977 extern void perf_output_sample(struct perf_output_handle
*handle
,
978 struct perf_event_header
*header
,
979 struct perf_sample_data
*data
,
980 struct perf_event
*event
);
981 extern void perf_prepare_sample(struct perf_event_header
*header
,
982 struct perf_sample_data
*data
,
983 struct perf_event
*event
,
984 struct pt_regs
*regs
);
986 extern int perf_event_overflow(struct perf_event
*event
, int nmi
,
987 struct perf_sample_data
*data
,
988 struct pt_regs
*regs
);
990 static inline bool is_sampling_event(struct perf_event
*event
)
992 return event
->attr
.sample_period
!= 0;
996 * Return 1 for a software event, 0 for a hardware event
998 static inline int is_software_event(struct perf_event
*event
)
1000 return event
->pmu
->task_ctx_nr
== perf_sw_context
;
1003 extern atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
1005 extern void __perf_sw_event(u32
, u64
, int, struct pt_regs
*, u64
);
1007 #ifndef perf_arch_fetch_caller_regs
1009 perf_arch_fetch_caller_regs(struct pt_regs
*regs
, unsigned long ip
) { }
1013 * Take a snapshot of the regs. Skip ip and frame pointer to
1014 * the nth caller. We only need a few of the regs:
1015 * - ip for PERF_SAMPLE_IP
1016 * - cs for user_mode() tests
1017 * - bp for callchains
1018 * - eflags, for future purposes, just in case
1020 static inline void perf_fetch_caller_regs(struct pt_regs
*regs
)
1022 memset(regs
, 0, sizeof(*regs
));
1024 perf_arch_fetch_caller_regs(regs
, CALLER_ADDR0
);
1027 static __always_inline
void
1028 perf_sw_event(u32 event_id
, u64 nr
, int nmi
, struct pt_regs
*regs
, u64 addr
)
1030 struct pt_regs hot_regs
;
1032 JUMP_LABEL(&perf_swevent_enabled
[event_id
], have_event
);
1037 perf_fetch_caller_regs(&hot_regs
);
1040 __perf_sw_event(event_id
, nr
, nmi
, regs
, addr
);
1043 extern atomic_t perf_task_events
;
1045 static inline void perf_event_task_sched_in(struct task_struct
*task
)
1047 COND_STMT(&perf_task_events
, __perf_event_task_sched_in(task
));
1051 void perf_event_task_sched_out(struct task_struct
*task
, struct task_struct
*next
)
1053 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, NULL
, 0);
1055 COND_STMT(&perf_task_events
, __perf_event_task_sched_out(task
, next
));
1058 extern void perf_event_mmap(struct vm_area_struct
*vma
);
1059 extern struct perf_guest_info_callbacks
*perf_guest_cbs
;
1060 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*callbacks
);
1061 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*callbacks
);
1063 extern void perf_event_comm(struct task_struct
*tsk
);
1064 extern void perf_event_fork(struct task_struct
*tsk
);
1067 DECLARE_PER_CPU(struct perf_callchain_entry
, perf_callchain_entry
);
1069 extern void perf_callchain_user(struct perf_callchain_entry
*entry
,
1070 struct pt_regs
*regs
);
1071 extern void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1072 struct pt_regs
*regs
);
1076 perf_callchain_store(struct perf_callchain_entry
*entry
, u64 ip
)
1078 if (entry
->nr
< PERF_MAX_STACK_DEPTH
)
1079 entry
->ip
[entry
->nr
++] = ip
;
1082 extern int sysctl_perf_event_paranoid
;
1083 extern int sysctl_perf_event_mlock
;
1084 extern int sysctl_perf_event_sample_rate
;
1086 static inline bool perf_paranoid_tracepoint_raw(void)
1088 return sysctl_perf_event_paranoid
> -1;
1091 static inline bool perf_paranoid_cpu(void)
1093 return sysctl_perf_event_paranoid
> 0;
1096 static inline bool perf_paranoid_kernel(void)
1098 return sysctl_perf_event_paranoid
> 1;
1101 extern void perf_event_init(void);
1102 extern void perf_tp_event(u64 addr
, u64 count
, void *record
,
1103 int entry_size
, struct pt_regs
*regs
,
1104 struct hlist_head
*head
, int rctx
);
1105 extern void perf_bp_event(struct perf_event
*event
, void *data
);
1107 #ifndef perf_misc_flags
1108 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1109 PERF_RECORD_MISC_KERNEL)
1110 #define perf_instruction_pointer(regs) instruction_pointer(regs)
1113 extern int perf_output_begin(struct perf_output_handle
*handle
,
1114 struct perf_event
*event
, unsigned int size
,
1115 int nmi
, int sample
);
1116 extern void perf_output_end(struct perf_output_handle
*handle
);
1117 extern void perf_output_copy(struct perf_output_handle
*handle
,
1118 const void *buf
, unsigned int len
);
1119 extern int perf_swevent_get_recursion_context(void);
1120 extern void perf_swevent_put_recursion_context(int rctx
);
1121 extern void perf_event_enable(struct perf_event
*event
);
1122 extern void perf_event_disable(struct perf_event
*event
);
1123 extern void perf_event_task_tick(void);
1126 perf_event_task_sched_in(struct task_struct
*task
) { }
1128 perf_event_task_sched_out(struct task_struct
*task
,
1129 struct task_struct
*next
) { }
1130 static inline int perf_event_init_task(struct task_struct
*child
) { return 0; }
1131 static inline void perf_event_exit_task(struct task_struct
*child
) { }
1132 static inline void perf_event_free_task(struct task_struct
*task
) { }
1133 static inline void perf_event_delayed_put(struct task_struct
*task
) { }
1134 static inline void perf_event_print_debug(void) { }
1135 static inline int perf_event_task_disable(void) { return -EINVAL
; }
1136 static inline int perf_event_task_enable(void) { return -EINVAL
; }
1139 perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
1140 struct pt_regs
*regs
, u64 addr
) { }
1142 perf_bp_event(struct perf_event
*event
, void *data
) { }
1144 static inline int perf_register_guest_info_callbacks
1145 (struct perf_guest_info_callbacks
*callbacks
) { return 0; }
1146 static inline int perf_unregister_guest_info_callbacks
1147 (struct perf_guest_info_callbacks
*callbacks
) { return 0; }
1149 static inline void perf_event_mmap(struct vm_area_struct
*vma
) { }
1150 static inline void perf_event_comm(struct task_struct
*tsk
) { }
1151 static inline void perf_event_fork(struct task_struct
*tsk
) { }
1152 static inline void perf_event_init(void) { }
1153 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1154 static inline void perf_swevent_put_recursion_context(int rctx
) { }
1155 static inline void perf_event_enable(struct perf_event
*event
) { }
1156 static inline void perf_event_disable(struct perf_event
*event
) { }
1157 static inline void perf_event_task_tick(void) { }
1160 #define perf_output_put(handle, x) \
1161 perf_output_copy((handle), &(x), sizeof(x))
1164 * This has to have a higher priority than migration_notifier in sched.c.
1166 #define perf_cpu_notifier(fn) \
1168 static struct notifier_block fn##_nb __cpuinitdata = \
1169 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1170 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1171 (void *)(unsigned long)smp_processor_id()); \
1172 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1173 (void *)(unsigned long)smp_processor_id()); \
1174 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1175 (void *)(unsigned long)smp_processor_id()); \
1176 register_cpu_notifier(&fn##_nb); \
1179 #endif /* __KERNEL__ */
1180 #endif /* _LINUX_PERF_EVENT_H */