cifs: always do is_path_accessible check in cifs_mount
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blob5b158da7e0bb7816710859ee47f7fad4007fb4a2
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
31 #define BTRFS_ROOT_TRANS_TAG 0
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 static noinline void switch_commit_root(struct btrfs_root *root)
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
51 * either allocate a new transaction or hop into the existing one
53 static noinline int join_transaction(struct btrfs_root *root)
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 if (!cur_trans)
61 return -ENOMEM;
62 root->fs_info->generation++;
63 cur_trans->num_writers = 1;
64 cur_trans->num_joined = 0;
65 cur_trans->transid = root->fs_info->generation;
66 init_waitqueue_head(&cur_trans->writer_wait);
67 init_waitqueue_head(&cur_trans->commit_wait);
68 cur_trans->in_commit = 0;
69 cur_trans->blocked = 0;
70 cur_trans->use_count = 1;
71 cur_trans->commit_done = 0;
72 cur_trans->start_time = get_seconds();
74 cur_trans->delayed_refs.root = RB_ROOT;
75 cur_trans->delayed_refs.num_entries = 0;
76 cur_trans->delayed_refs.num_heads_ready = 0;
77 cur_trans->delayed_refs.num_heads = 0;
78 cur_trans->delayed_refs.flushing = 0;
79 cur_trans->delayed_refs.run_delayed_start = 0;
80 spin_lock_init(&cur_trans->delayed_refs.lock);
82 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
83 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
84 extent_io_tree_init(&cur_trans->dirty_pages,
85 root->fs_info->btree_inode->i_mapping,
86 GFP_NOFS);
87 spin_lock(&root->fs_info->new_trans_lock);
88 root->fs_info->running_transaction = cur_trans;
89 spin_unlock(&root->fs_info->new_trans_lock);
90 } else {
91 cur_trans->num_writers++;
92 cur_trans->num_joined++;
95 return 0;
99 * this does all the record keeping required to make sure that a reference
100 * counted root is properly recorded in a given transaction. This is required
101 * to make sure the old root from before we joined the transaction is deleted
102 * when the transaction commits
104 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root)
107 if (root->ref_cows && root->last_trans < trans->transid) {
108 WARN_ON(root == root->fs_info->extent_root);
109 WARN_ON(root->commit_root != root->node);
111 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
112 (unsigned long)root->root_key.objectid,
113 BTRFS_ROOT_TRANS_TAG);
114 root->last_trans = trans->transid;
115 btrfs_init_reloc_root(trans, root);
117 return 0;
120 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
121 struct btrfs_root *root)
123 if (!root->ref_cows)
124 return 0;
126 mutex_lock(&root->fs_info->trans_mutex);
127 if (root->last_trans == trans->transid) {
128 mutex_unlock(&root->fs_info->trans_mutex);
129 return 0;
132 record_root_in_trans(trans, root);
133 mutex_unlock(&root->fs_info->trans_mutex);
134 return 0;
137 /* wait for commit against the current transaction to become unblocked
138 * when this is done, it is safe to start a new transaction, but the current
139 * transaction might not be fully on disk.
141 static void wait_current_trans(struct btrfs_root *root)
143 struct btrfs_transaction *cur_trans;
145 cur_trans = root->fs_info->running_transaction;
146 if (cur_trans && cur_trans->blocked) {
147 DEFINE_WAIT(wait);
148 cur_trans->use_count++;
149 while (1) {
150 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
151 TASK_UNINTERRUPTIBLE);
152 if (!cur_trans->blocked)
153 break;
154 mutex_unlock(&root->fs_info->trans_mutex);
155 schedule();
156 mutex_lock(&root->fs_info->trans_mutex);
158 finish_wait(&root->fs_info->transaction_wait, &wait);
159 put_transaction(cur_trans);
163 enum btrfs_trans_type {
164 TRANS_START,
165 TRANS_JOIN,
166 TRANS_USERSPACE,
167 TRANS_JOIN_NOLOCK,
170 static int may_wait_transaction(struct btrfs_root *root, int type)
172 if (!root->fs_info->log_root_recovering &&
173 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
174 type == TRANS_USERSPACE))
175 return 1;
176 return 0;
179 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
180 u64 num_items, int type)
182 struct btrfs_trans_handle *h;
183 struct btrfs_transaction *cur_trans;
184 int ret;
186 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
187 return ERR_PTR(-EROFS);
188 again:
189 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
190 if (!h)
191 return ERR_PTR(-ENOMEM);
193 if (type != TRANS_JOIN_NOLOCK)
194 mutex_lock(&root->fs_info->trans_mutex);
195 if (may_wait_transaction(root, type))
196 wait_current_trans(root);
198 ret = join_transaction(root);
199 if (ret < 0) {
200 kmem_cache_free(btrfs_trans_handle_cachep, h);
201 if (type != TRANS_JOIN_NOLOCK)
202 mutex_unlock(&root->fs_info->trans_mutex);
203 return ERR_PTR(ret);
206 cur_trans = root->fs_info->running_transaction;
207 cur_trans->use_count++;
208 if (type != TRANS_JOIN_NOLOCK)
209 mutex_unlock(&root->fs_info->trans_mutex);
211 h->transid = cur_trans->transid;
212 h->transaction = cur_trans;
213 h->blocks_used = 0;
214 h->block_group = 0;
215 h->bytes_reserved = 0;
216 h->delayed_ref_updates = 0;
217 h->block_rsv = NULL;
219 smp_mb();
220 if (cur_trans->blocked && may_wait_transaction(root, type)) {
221 btrfs_commit_transaction(h, root);
222 goto again;
225 if (num_items > 0) {
226 ret = btrfs_trans_reserve_metadata(h, root, num_items);
227 if (ret == -EAGAIN) {
228 btrfs_commit_transaction(h, root);
229 goto again;
231 if (ret < 0) {
232 btrfs_end_transaction(h, root);
233 return ERR_PTR(ret);
237 if (type != TRANS_JOIN_NOLOCK)
238 mutex_lock(&root->fs_info->trans_mutex);
239 record_root_in_trans(h, root);
240 if (type != TRANS_JOIN_NOLOCK)
241 mutex_unlock(&root->fs_info->trans_mutex);
243 if (!current->journal_info && type != TRANS_USERSPACE)
244 current->journal_info = h;
245 return h;
248 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
249 int num_items)
251 return start_transaction(root, num_items, TRANS_START);
253 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
254 int num_blocks)
256 return start_transaction(root, 0, TRANS_JOIN);
259 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
260 int num_blocks)
262 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
265 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
266 int num_blocks)
268 return start_transaction(r, 0, TRANS_USERSPACE);
271 /* wait for a transaction commit to be fully complete */
272 static noinline int wait_for_commit(struct btrfs_root *root,
273 struct btrfs_transaction *commit)
275 DEFINE_WAIT(wait);
276 mutex_lock(&root->fs_info->trans_mutex);
277 while (!commit->commit_done) {
278 prepare_to_wait(&commit->commit_wait, &wait,
279 TASK_UNINTERRUPTIBLE);
280 if (commit->commit_done)
281 break;
282 mutex_unlock(&root->fs_info->trans_mutex);
283 schedule();
284 mutex_lock(&root->fs_info->trans_mutex);
286 mutex_unlock(&root->fs_info->trans_mutex);
287 finish_wait(&commit->commit_wait, &wait);
288 return 0;
291 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
293 struct btrfs_transaction *cur_trans = NULL, *t;
294 int ret;
296 mutex_lock(&root->fs_info->trans_mutex);
298 ret = 0;
299 if (transid) {
300 if (transid <= root->fs_info->last_trans_committed)
301 goto out_unlock;
303 /* find specified transaction */
304 list_for_each_entry(t, &root->fs_info->trans_list, list) {
305 if (t->transid == transid) {
306 cur_trans = t;
307 break;
309 if (t->transid > transid)
310 break;
312 ret = -EINVAL;
313 if (!cur_trans)
314 goto out_unlock; /* bad transid */
315 } else {
316 /* find newest transaction that is committing | committed */
317 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
318 list) {
319 if (t->in_commit) {
320 if (t->commit_done)
321 goto out_unlock;
322 cur_trans = t;
323 break;
326 if (!cur_trans)
327 goto out_unlock; /* nothing committing|committed */
330 cur_trans->use_count++;
331 mutex_unlock(&root->fs_info->trans_mutex);
333 wait_for_commit(root, cur_trans);
335 mutex_lock(&root->fs_info->trans_mutex);
336 put_transaction(cur_trans);
337 ret = 0;
338 out_unlock:
339 mutex_unlock(&root->fs_info->trans_mutex);
340 return ret;
343 #if 0
345 * rate limit against the drop_snapshot code. This helps to slow down new
346 * operations if the drop_snapshot code isn't able to keep up.
348 static void throttle_on_drops(struct btrfs_root *root)
350 struct btrfs_fs_info *info = root->fs_info;
351 int harder_count = 0;
353 harder:
354 if (atomic_read(&info->throttles)) {
355 DEFINE_WAIT(wait);
356 int thr;
357 thr = atomic_read(&info->throttle_gen);
359 do {
360 prepare_to_wait(&info->transaction_throttle,
361 &wait, TASK_UNINTERRUPTIBLE);
362 if (!atomic_read(&info->throttles)) {
363 finish_wait(&info->transaction_throttle, &wait);
364 break;
366 schedule();
367 finish_wait(&info->transaction_throttle, &wait);
368 } while (thr == atomic_read(&info->throttle_gen));
369 harder_count++;
371 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
372 harder_count < 2)
373 goto harder;
375 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
376 harder_count < 10)
377 goto harder;
379 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
380 harder_count < 20)
381 goto harder;
384 #endif
386 void btrfs_throttle(struct btrfs_root *root)
388 mutex_lock(&root->fs_info->trans_mutex);
389 if (!root->fs_info->open_ioctl_trans)
390 wait_current_trans(root);
391 mutex_unlock(&root->fs_info->trans_mutex);
394 static int should_end_transaction(struct btrfs_trans_handle *trans,
395 struct btrfs_root *root)
397 int ret;
398 ret = btrfs_block_rsv_check(trans, root,
399 &root->fs_info->global_block_rsv, 0, 5);
400 return ret ? 1 : 0;
403 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
404 struct btrfs_root *root)
406 struct btrfs_transaction *cur_trans = trans->transaction;
407 int updates;
409 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
410 return 1;
412 updates = trans->delayed_ref_updates;
413 trans->delayed_ref_updates = 0;
414 if (updates)
415 btrfs_run_delayed_refs(trans, root, updates);
417 return should_end_transaction(trans, root);
420 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
421 struct btrfs_root *root, int throttle, int lock)
423 struct btrfs_transaction *cur_trans = trans->transaction;
424 struct btrfs_fs_info *info = root->fs_info;
425 int count = 0;
427 while (count < 4) {
428 unsigned long cur = trans->delayed_ref_updates;
429 trans->delayed_ref_updates = 0;
430 if (cur &&
431 trans->transaction->delayed_refs.num_heads_ready > 64) {
432 trans->delayed_ref_updates = 0;
435 * do a full flush if the transaction is trying
436 * to close
438 if (trans->transaction->delayed_refs.flushing)
439 cur = 0;
440 btrfs_run_delayed_refs(trans, root, cur);
441 } else {
442 break;
444 count++;
447 btrfs_trans_release_metadata(trans, root);
449 if (lock && !root->fs_info->open_ioctl_trans &&
450 should_end_transaction(trans, root))
451 trans->transaction->blocked = 1;
453 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
454 if (throttle)
455 return btrfs_commit_transaction(trans, root);
456 else
457 wake_up_process(info->transaction_kthread);
460 if (lock)
461 mutex_lock(&info->trans_mutex);
462 WARN_ON(cur_trans != info->running_transaction);
463 WARN_ON(cur_trans->num_writers < 1);
464 cur_trans->num_writers--;
466 smp_mb();
467 if (waitqueue_active(&cur_trans->writer_wait))
468 wake_up(&cur_trans->writer_wait);
469 put_transaction(cur_trans);
470 if (lock)
471 mutex_unlock(&info->trans_mutex);
473 if (current->journal_info == trans)
474 current->journal_info = NULL;
475 memset(trans, 0, sizeof(*trans));
476 kmem_cache_free(btrfs_trans_handle_cachep, trans);
478 if (throttle)
479 btrfs_run_delayed_iputs(root);
481 return 0;
484 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
487 return __btrfs_end_transaction(trans, root, 0, 1);
490 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
491 struct btrfs_root *root)
493 return __btrfs_end_transaction(trans, root, 1, 1);
496 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
497 struct btrfs_root *root)
499 return __btrfs_end_transaction(trans, root, 0, 0);
503 * when btree blocks are allocated, they have some corresponding bits set for
504 * them in one of two extent_io trees. This is used to make sure all of
505 * those extents are sent to disk but does not wait on them
507 int btrfs_write_marked_extents(struct btrfs_root *root,
508 struct extent_io_tree *dirty_pages, int mark)
510 int ret;
511 int err = 0;
512 int werr = 0;
513 struct page *page;
514 struct inode *btree_inode = root->fs_info->btree_inode;
515 u64 start = 0;
516 u64 end;
517 unsigned long index;
519 while (1) {
520 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
521 mark);
522 if (ret)
523 break;
524 while (start <= end) {
525 cond_resched();
527 index = start >> PAGE_CACHE_SHIFT;
528 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
529 page = find_get_page(btree_inode->i_mapping, index);
530 if (!page)
531 continue;
533 btree_lock_page_hook(page);
534 if (!page->mapping) {
535 unlock_page(page);
536 page_cache_release(page);
537 continue;
540 if (PageWriteback(page)) {
541 if (PageDirty(page))
542 wait_on_page_writeback(page);
543 else {
544 unlock_page(page);
545 page_cache_release(page);
546 continue;
549 err = write_one_page(page, 0);
550 if (err)
551 werr = err;
552 page_cache_release(page);
555 if (err)
556 werr = err;
557 return werr;
561 * when btree blocks are allocated, they have some corresponding bits set for
562 * them in one of two extent_io trees. This is used to make sure all of
563 * those extents are on disk for transaction or log commit. We wait
564 * on all the pages and clear them from the dirty pages state tree
566 int btrfs_wait_marked_extents(struct btrfs_root *root,
567 struct extent_io_tree *dirty_pages, int mark)
569 int ret;
570 int err = 0;
571 int werr = 0;
572 struct page *page;
573 struct inode *btree_inode = root->fs_info->btree_inode;
574 u64 start = 0;
575 u64 end;
576 unsigned long index;
578 while (1) {
579 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
580 mark);
581 if (ret)
582 break;
584 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
585 while (start <= end) {
586 index = start >> PAGE_CACHE_SHIFT;
587 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
588 page = find_get_page(btree_inode->i_mapping, index);
589 if (!page)
590 continue;
591 if (PageDirty(page)) {
592 btree_lock_page_hook(page);
593 wait_on_page_writeback(page);
594 err = write_one_page(page, 0);
595 if (err)
596 werr = err;
598 wait_on_page_writeback(page);
599 page_cache_release(page);
600 cond_resched();
603 if (err)
604 werr = err;
605 return werr;
609 * when btree blocks are allocated, they have some corresponding bits set for
610 * them in one of two extent_io trees. This is used to make sure all of
611 * those extents are on disk for transaction or log commit
613 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
614 struct extent_io_tree *dirty_pages, int mark)
616 int ret;
617 int ret2;
619 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
620 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
621 return ret || ret2;
624 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root)
627 if (!trans || !trans->transaction) {
628 struct inode *btree_inode;
629 btree_inode = root->fs_info->btree_inode;
630 return filemap_write_and_wait(btree_inode->i_mapping);
632 return btrfs_write_and_wait_marked_extents(root,
633 &trans->transaction->dirty_pages,
634 EXTENT_DIRTY);
638 * this is used to update the root pointer in the tree of tree roots.
640 * But, in the case of the extent allocation tree, updating the root
641 * pointer may allocate blocks which may change the root of the extent
642 * allocation tree.
644 * So, this loops and repeats and makes sure the cowonly root didn't
645 * change while the root pointer was being updated in the metadata.
647 static int update_cowonly_root(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root)
650 int ret;
651 u64 old_root_bytenr;
652 u64 old_root_used;
653 struct btrfs_root *tree_root = root->fs_info->tree_root;
655 old_root_used = btrfs_root_used(&root->root_item);
656 btrfs_write_dirty_block_groups(trans, root);
658 while (1) {
659 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
660 if (old_root_bytenr == root->node->start &&
661 old_root_used == btrfs_root_used(&root->root_item))
662 break;
664 btrfs_set_root_node(&root->root_item, root->node);
665 ret = btrfs_update_root(trans, tree_root,
666 &root->root_key,
667 &root->root_item);
668 BUG_ON(ret);
670 old_root_used = btrfs_root_used(&root->root_item);
671 ret = btrfs_write_dirty_block_groups(trans, root);
672 BUG_ON(ret);
675 if (root != root->fs_info->extent_root)
676 switch_commit_root(root);
678 return 0;
682 * update all the cowonly tree roots on disk
684 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
685 struct btrfs_root *root)
687 struct btrfs_fs_info *fs_info = root->fs_info;
688 struct list_head *next;
689 struct extent_buffer *eb;
690 int ret;
692 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
693 BUG_ON(ret);
695 eb = btrfs_lock_root_node(fs_info->tree_root);
696 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
697 btrfs_tree_unlock(eb);
698 free_extent_buffer(eb);
700 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
701 BUG_ON(ret);
703 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
704 next = fs_info->dirty_cowonly_roots.next;
705 list_del_init(next);
706 root = list_entry(next, struct btrfs_root, dirty_list);
708 update_cowonly_root(trans, root);
711 down_write(&fs_info->extent_commit_sem);
712 switch_commit_root(fs_info->extent_root);
713 up_write(&fs_info->extent_commit_sem);
715 return 0;
719 * dead roots are old snapshots that need to be deleted. This allocates
720 * a dirty root struct and adds it into the list of dead roots that need to
721 * be deleted
723 int btrfs_add_dead_root(struct btrfs_root *root)
725 mutex_lock(&root->fs_info->trans_mutex);
726 list_add(&root->root_list, &root->fs_info->dead_roots);
727 mutex_unlock(&root->fs_info->trans_mutex);
728 return 0;
732 * update all the cowonly tree roots on disk
734 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
735 struct btrfs_root *root)
737 struct btrfs_root *gang[8];
738 struct btrfs_fs_info *fs_info = root->fs_info;
739 int i;
740 int ret;
741 int err = 0;
743 while (1) {
744 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
745 (void **)gang, 0,
746 ARRAY_SIZE(gang),
747 BTRFS_ROOT_TRANS_TAG);
748 if (ret == 0)
749 break;
750 for (i = 0; i < ret; i++) {
751 root = gang[i];
752 radix_tree_tag_clear(&fs_info->fs_roots_radix,
753 (unsigned long)root->root_key.objectid,
754 BTRFS_ROOT_TRANS_TAG);
756 btrfs_free_log(trans, root);
757 btrfs_update_reloc_root(trans, root);
758 btrfs_orphan_commit_root(trans, root);
760 if (root->commit_root != root->node) {
761 switch_commit_root(root);
762 btrfs_set_root_node(&root->root_item,
763 root->node);
766 err = btrfs_update_root(trans, fs_info->tree_root,
767 &root->root_key,
768 &root->root_item);
769 if (err)
770 break;
773 return err;
777 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
778 * otherwise every leaf in the btree is read and defragged.
780 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
782 struct btrfs_fs_info *info = root->fs_info;
783 struct btrfs_trans_handle *trans;
784 int ret;
785 unsigned long nr;
787 if (xchg(&root->defrag_running, 1))
788 return 0;
790 while (1) {
791 trans = btrfs_start_transaction(root, 0);
792 if (IS_ERR(trans))
793 return PTR_ERR(trans);
795 ret = btrfs_defrag_leaves(trans, root, cacheonly);
797 nr = trans->blocks_used;
798 btrfs_end_transaction(trans, root);
799 btrfs_btree_balance_dirty(info->tree_root, nr);
800 cond_resched();
802 if (root->fs_info->closing || ret != -EAGAIN)
803 break;
805 root->defrag_running = 0;
806 return ret;
809 #if 0
811 * when dropping snapshots, we generate a ton of delayed refs, and it makes
812 * sense not to join the transaction while it is trying to flush the current
813 * queue of delayed refs out.
815 * This is used by the drop snapshot code only
817 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
819 DEFINE_WAIT(wait);
821 mutex_lock(&info->trans_mutex);
822 while (info->running_transaction &&
823 info->running_transaction->delayed_refs.flushing) {
824 prepare_to_wait(&info->transaction_wait, &wait,
825 TASK_UNINTERRUPTIBLE);
826 mutex_unlock(&info->trans_mutex);
828 schedule();
830 mutex_lock(&info->trans_mutex);
831 finish_wait(&info->transaction_wait, &wait);
833 mutex_unlock(&info->trans_mutex);
834 return 0;
838 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
839 * all of them
841 int btrfs_drop_dead_root(struct btrfs_root *root)
843 struct btrfs_trans_handle *trans;
844 struct btrfs_root *tree_root = root->fs_info->tree_root;
845 unsigned long nr;
846 int ret;
848 while (1) {
850 * we don't want to jump in and create a bunch of
851 * delayed refs if the transaction is starting to close
853 wait_transaction_pre_flush(tree_root->fs_info);
854 trans = btrfs_start_transaction(tree_root, 1);
857 * we've joined a transaction, make sure it isn't
858 * closing right now
860 if (trans->transaction->delayed_refs.flushing) {
861 btrfs_end_transaction(trans, tree_root);
862 continue;
865 ret = btrfs_drop_snapshot(trans, root);
866 if (ret != -EAGAIN)
867 break;
869 ret = btrfs_update_root(trans, tree_root,
870 &root->root_key,
871 &root->root_item);
872 if (ret)
873 break;
875 nr = trans->blocks_used;
876 ret = btrfs_end_transaction(trans, tree_root);
877 BUG_ON(ret);
879 btrfs_btree_balance_dirty(tree_root, nr);
880 cond_resched();
882 BUG_ON(ret);
884 ret = btrfs_del_root(trans, tree_root, &root->root_key);
885 BUG_ON(ret);
887 nr = trans->blocks_used;
888 ret = btrfs_end_transaction(trans, tree_root);
889 BUG_ON(ret);
891 free_extent_buffer(root->node);
892 free_extent_buffer(root->commit_root);
893 kfree(root);
895 btrfs_btree_balance_dirty(tree_root, nr);
896 return ret;
898 #endif
901 * new snapshots need to be created at a very specific time in the
902 * transaction commit. This does the actual creation
904 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
905 struct btrfs_fs_info *fs_info,
906 struct btrfs_pending_snapshot *pending)
908 struct btrfs_key key;
909 struct btrfs_root_item *new_root_item;
910 struct btrfs_root *tree_root = fs_info->tree_root;
911 struct btrfs_root *root = pending->root;
912 struct btrfs_root *parent_root;
913 struct inode *parent_inode;
914 struct dentry *parent;
915 struct dentry *dentry;
916 struct extent_buffer *tmp;
917 struct extent_buffer *old;
918 int ret;
919 u64 to_reserve = 0;
920 u64 index = 0;
921 u64 objectid;
922 u64 root_flags;
924 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
925 if (!new_root_item) {
926 pending->error = -ENOMEM;
927 goto fail;
930 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
931 if (ret) {
932 pending->error = ret;
933 goto fail;
936 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
937 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
939 if (to_reserve > 0) {
940 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
941 to_reserve);
942 if (ret) {
943 pending->error = ret;
944 goto fail;
948 key.objectid = objectid;
949 key.offset = (u64)-1;
950 key.type = BTRFS_ROOT_ITEM_KEY;
952 trans->block_rsv = &pending->block_rsv;
954 dentry = pending->dentry;
955 parent = dget_parent(dentry);
956 parent_inode = parent->d_inode;
957 parent_root = BTRFS_I(parent_inode)->root;
958 record_root_in_trans(trans, parent_root);
961 * insert the directory item
963 ret = btrfs_set_inode_index(parent_inode, &index);
964 BUG_ON(ret);
965 ret = btrfs_insert_dir_item(trans, parent_root,
966 dentry->d_name.name, dentry->d_name.len,
967 parent_inode->i_ino, &key,
968 BTRFS_FT_DIR, index);
969 BUG_ON(ret);
971 btrfs_i_size_write(parent_inode, parent_inode->i_size +
972 dentry->d_name.len * 2);
973 ret = btrfs_update_inode(trans, parent_root, parent_inode);
974 BUG_ON(ret);
976 record_root_in_trans(trans, root);
977 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
978 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
979 btrfs_check_and_init_root_item(new_root_item);
981 root_flags = btrfs_root_flags(new_root_item);
982 if (pending->readonly)
983 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
984 else
985 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
986 btrfs_set_root_flags(new_root_item, root_flags);
988 old = btrfs_lock_root_node(root);
989 btrfs_cow_block(trans, root, old, NULL, 0, &old);
990 btrfs_set_lock_blocking(old);
992 btrfs_copy_root(trans, root, old, &tmp, objectid);
993 btrfs_tree_unlock(old);
994 free_extent_buffer(old);
996 btrfs_set_root_node(new_root_item, tmp);
997 /* record when the snapshot was created in key.offset */
998 key.offset = trans->transid;
999 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1000 btrfs_tree_unlock(tmp);
1001 free_extent_buffer(tmp);
1002 BUG_ON(ret);
1005 * insert root back/forward references
1007 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1008 parent_root->root_key.objectid,
1009 parent_inode->i_ino, index,
1010 dentry->d_name.name, dentry->d_name.len);
1011 BUG_ON(ret);
1012 dput(parent);
1014 key.offset = (u64)-1;
1015 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1016 BUG_ON(IS_ERR(pending->snap));
1018 btrfs_reloc_post_snapshot(trans, pending);
1019 btrfs_orphan_post_snapshot(trans, pending);
1020 fail:
1021 kfree(new_root_item);
1022 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1023 return 0;
1027 * create all the snapshots we've scheduled for creation
1029 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1030 struct btrfs_fs_info *fs_info)
1032 struct btrfs_pending_snapshot *pending;
1033 struct list_head *head = &trans->transaction->pending_snapshots;
1034 int ret;
1036 list_for_each_entry(pending, head, list) {
1037 ret = create_pending_snapshot(trans, fs_info, pending);
1038 BUG_ON(ret);
1040 return 0;
1043 static void update_super_roots(struct btrfs_root *root)
1045 struct btrfs_root_item *root_item;
1046 struct btrfs_super_block *super;
1048 super = &root->fs_info->super_copy;
1050 root_item = &root->fs_info->chunk_root->root_item;
1051 super->chunk_root = root_item->bytenr;
1052 super->chunk_root_generation = root_item->generation;
1053 super->chunk_root_level = root_item->level;
1055 root_item = &root->fs_info->tree_root->root_item;
1056 super->root = root_item->bytenr;
1057 super->generation = root_item->generation;
1058 super->root_level = root_item->level;
1059 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1060 super->cache_generation = root_item->generation;
1063 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1065 int ret = 0;
1066 spin_lock(&info->new_trans_lock);
1067 if (info->running_transaction)
1068 ret = info->running_transaction->in_commit;
1069 spin_unlock(&info->new_trans_lock);
1070 return ret;
1073 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1075 int ret = 0;
1076 spin_lock(&info->new_trans_lock);
1077 if (info->running_transaction)
1078 ret = info->running_transaction->blocked;
1079 spin_unlock(&info->new_trans_lock);
1080 return ret;
1084 * wait for the current transaction commit to start and block subsequent
1085 * transaction joins
1087 static void wait_current_trans_commit_start(struct btrfs_root *root,
1088 struct btrfs_transaction *trans)
1090 DEFINE_WAIT(wait);
1092 if (trans->in_commit)
1093 return;
1095 while (1) {
1096 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1097 TASK_UNINTERRUPTIBLE);
1098 if (trans->in_commit) {
1099 finish_wait(&root->fs_info->transaction_blocked_wait,
1100 &wait);
1101 break;
1103 mutex_unlock(&root->fs_info->trans_mutex);
1104 schedule();
1105 mutex_lock(&root->fs_info->trans_mutex);
1106 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1111 * wait for the current transaction to start and then become unblocked.
1112 * caller holds ref.
1114 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1115 struct btrfs_transaction *trans)
1117 DEFINE_WAIT(wait);
1119 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1120 return;
1122 while (1) {
1123 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1124 TASK_UNINTERRUPTIBLE);
1125 if (trans->commit_done ||
1126 (trans->in_commit && !trans->blocked)) {
1127 finish_wait(&root->fs_info->transaction_wait,
1128 &wait);
1129 break;
1131 mutex_unlock(&root->fs_info->trans_mutex);
1132 schedule();
1133 mutex_lock(&root->fs_info->trans_mutex);
1134 finish_wait(&root->fs_info->transaction_wait,
1135 &wait);
1140 * commit transactions asynchronously. once btrfs_commit_transaction_async
1141 * returns, any subsequent transaction will not be allowed to join.
1143 struct btrfs_async_commit {
1144 struct btrfs_trans_handle *newtrans;
1145 struct btrfs_root *root;
1146 struct delayed_work work;
1149 static void do_async_commit(struct work_struct *work)
1151 struct btrfs_async_commit *ac =
1152 container_of(work, struct btrfs_async_commit, work.work);
1154 btrfs_commit_transaction(ac->newtrans, ac->root);
1155 kfree(ac);
1158 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1159 struct btrfs_root *root,
1160 int wait_for_unblock)
1162 struct btrfs_async_commit *ac;
1163 struct btrfs_transaction *cur_trans;
1165 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1166 if (!ac)
1167 return -ENOMEM;
1169 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1170 ac->root = root;
1171 ac->newtrans = btrfs_join_transaction(root, 0);
1172 if (IS_ERR(ac->newtrans)) {
1173 int err = PTR_ERR(ac->newtrans);
1174 kfree(ac);
1175 return err;
1178 /* take transaction reference */
1179 mutex_lock(&root->fs_info->trans_mutex);
1180 cur_trans = trans->transaction;
1181 cur_trans->use_count++;
1182 mutex_unlock(&root->fs_info->trans_mutex);
1184 btrfs_end_transaction(trans, root);
1185 schedule_delayed_work(&ac->work, 0);
1187 /* wait for transaction to start and unblock */
1188 mutex_lock(&root->fs_info->trans_mutex);
1189 if (wait_for_unblock)
1190 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1191 else
1192 wait_current_trans_commit_start(root, cur_trans);
1193 put_transaction(cur_trans);
1194 mutex_unlock(&root->fs_info->trans_mutex);
1196 return 0;
1200 * btrfs_transaction state sequence:
1201 * in_commit = 0, blocked = 0 (initial)
1202 * in_commit = 1, blocked = 1
1203 * blocked = 0
1204 * commit_done = 1
1206 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1207 struct btrfs_root *root)
1209 unsigned long joined = 0;
1210 struct btrfs_transaction *cur_trans;
1211 struct btrfs_transaction *prev_trans = NULL;
1212 DEFINE_WAIT(wait);
1213 int ret;
1214 int should_grow = 0;
1215 unsigned long now = get_seconds();
1216 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1218 btrfs_run_ordered_operations(root, 0);
1220 /* make a pass through all the delayed refs we have so far
1221 * any runnings procs may add more while we are here
1223 ret = btrfs_run_delayed_refs(trans, root, 0);
1224 BUG_ON(ret);
1226 btrfs_trans_release_metadata(trans, root);
1228 cur_trans = trans->transaction;
1230 * set the flushing flag so procs in this transaction have to
1231 * start sending their work down.
1233 cur_trans->delayed_refs.flushing = 1;
1235 ret = btrfs_run_delayed_refs(trans, root, 0);
1236 BUG_ON(ret);
1238 mutex_lock(&root->fs_info->trans_mutex);
1239 if (cur_trans->in_commit) {
1240 cur_trans->use_count++;
1241 mutex_unlock(&root->fs_info->trans_mutex);
1242 btrfs_end_transaction(trans, root);
1244 ret = wait_for_commit(root, cur_trans);
1245 BUG_ON(ret);
1247 mutex_lock(&root->fs_info->trans_mutex);
1248 put_transaction(cur_trans);
1249 mutex_unlock(&root->fs_info->trans_mutex);
1251 return 0;
1254 trans->transaction->in_commit = 1;
1255 trans->transaction->blocked = 1;
1256 wake_up(&root->fs_info->transaction_blocked_wait);
1258 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1259 prev_trans = list_entry(cur_trans->list.prev,
1260 struct btrfs_transaction, list);
1261 if (!prev_trans->commit_done) {
1262 prev_trans->use_count++;
1263 mutex_unlock(&root->fs_info->trans_mutex);
1265 wait_for_commit(root, prev_trans);
1267 mutex_lock(&root->fs_info->trans_mutex);
1268 put_transaction(prev_trans);
1272 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1273 should_grow = 1;
1275 do {
1276 int snap_pending = 0;
1277 joined = cur_trans->num_joined;
1278 if (!list_empty(&trans->transaction->pending_snapshots))
1279 snap_pending = 1;
1281 WARN_ON(cur_trans != trans->transaction);
1282 mutex_unlock(&root->fs_info->trans_mutex);
1284 if (flush_on_commit || snap_pending) {
1285 btrfs_start_delalloc_inodes(root, 1);
1286 ret = btrfs_wait_ordered_extents(root, 0, 1);
1287 BUG_ON(ret);
1291 * rename don't use btrfs_join_transaction, so, once we
1292 * set the transaction to blocked above, we aren't going
1293 * to get any new ordered operations. We can safely run
1294 * it here and no for sure that nothing new will be added
1295 * to the list
1297 btrfs_run_ordered_operations(root, 1);
1299 prepare_to_wait(&cur_trans->writer_wait, &wait,
1300 TASK_UNINTERRUPTIBLE);
1302 smp_mb();
1303 if (cur_trans->num_writers > 1)
1304 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1305 else if (should_grow)
1306 schedule_timeout(1);
1308 mutex_lock(&root->fs_info->trans_mutex);
1309 finish_wait(&cur_trans->writer_wait, &wait);
1310 } while (cur_trans->num_writers > 1 ||
1311 (should_grow && cur_trans->num_joined != joined));
1313 ret = create_pending_snapshots(trans, root->fs_info);
1314 BUG_ON(ret);
1316 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1317 BUG_ON(ret);
1319 WARN_ON(cur_trans != trans->transaction);
1321 /* btrfs_commit_tree_roots is responsible for getting the
1322 * various roots consistent with each other. Every pointer
1323 * in the tree of tree roots has to point to the most up to date
1324 * root for every subvolume and other tree. So, we have to keep
1325 * the tree logging code from jumping in and changing any
1326 * of the trees.
1328 * At this point in the commit, there can't be any tree-log
1329 * writers, but a little lower down we drop the trans mutex
1330 * and let new people in. By holding the tree_log_mutex
1331 * from now until after the super is written, we avoid races
1332 * with the tree-log code.
1334 mutex_lock(&root->fs_info->tree_log_mutex);
1336 ret = commit_fs_roots(trans, root);
1337 BUG_ON(ret);
1339 /* commit_fs_roots gets rid of all the tree log roots, it is now
1340 * safe to free the root of tree log roots
1342 btrfs_free_log_root_tree(trans, root->fs_info);
1344 ret = commit_cowonly_roots(trans, root);
1345 BUG_ON(ret);
1347 btrfs_prepare_extent_commit(trans, root);
1349 cur_trans = root->fs_info->running_transaction;
1350 spin_lock(&root->fs_info->new_trans_lock);
1351 root->fs_info->running_transaction = NULL;
1352 spin_unlock(&root->fs_info->new_trans_lock);
1354 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1355 root->fs_info->tree_root->node);
1356 switch_commit_root(root->fs_info->tree_root);
1358 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1359 root->fs_info->chunk_root->node);
1360 switch_commit_root(root->fs_info->chunk_root);
1362 update_super_roots(root);
1364 if (!root->fs_info->log_root_recovering) {
1365 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1366 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1369 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1370 sizeof(root->fs_info->super_copy));
1372 trans->transaction->blocked = 0;
1374 wake_up(&root->fs_info->transaction_wait);
1376 mutex_unlock(&root->fs_info->trans_mutex);
1377 ret = btrfs_write_and_wait_transaction(trans, root);
1378 BUG_ON(ret);
1379 write_ctree_super(trans, root, 0);
1382 * the super is written, we can safely allow the tree-loggers
1383 * to go about their business
1385 mutex_unlock(&root->fs_info->tree_log_mutex);
1387 btrfs_finish_extent_commit(trans, root);
1389 mutex_lock(&root->fs_info->trans_mutex);
1391 cur_trans->commit_done = 1;
1393 root->fs_info->last_trans_committed = cur_trans->transid;
1395 wake_up(&cur_trans->commit_wait);
1397 put_transaction(cur_trans);
1398 put_transaction(cur_trans);
1400 trace_btrfs_transaction_commit(root);
1402 mutex_unlock(&root->fs_info->trans_mutex);
1404 if (current->journal_info == trans)
1405 current->journal_info = NULL;
1407 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1409 if (current != root->fs_info->transaction_kthread)
1410 btrfs_run_delayed_iputs(root);
1412 return ret;
1416 * interface function to delete all the snapshots we have scheduled for deletion
1418 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1420 LIST_HEAD(list);
1421 struct btrfs_fs_info *fs_info = root->fs_info;
1423 mutex_lock(&fs_info->trans_mutex);
1424 list_splice_init(&fs_info->dead_roots, &list);
1425 mutex_unlock(&fs_info->trans_mutex);
1427 while (!list_empty(&list)) {
1428 root = list_entry(list.next, struct btrfs_root, root_list);
1429 list_del(&root->root_list);
1431 if (btrfs_header_backref_rev(root->node) <
1432 BTRFS_MIXED_BACKREF_REV)
1433 btrfs_drop_snapshot(root, NULL, 0);
1434 else
1435 btrfs_drop_snapshot(root, NULL, 1);
1437 return 0;