[AX.25]: Move AX.25 symbol exports
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blobc32af7e7581ef0ff11ef112f94b6a84da50cafc4
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/nodemask.h>
107 #include <linux/mempolicy.h>
108 #include <linux/mutex.h>
110 #include <asm/uaccess.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 #include <asm/page.h>
116 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
117 * SLAB_RED_ZONE & SLAB_POISON.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * STATS - 1 to collect stats for /proc/slabinfo.
121 * 0 for faster, smaller code (especially in the critical paths).
123 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 #ifdef CONFIG_DEBUG_SLAB
127 #define DEBUG 1
128 #define STATS 1
129 #define FORCED_DEBUG 1
130 #else
131 #define DEBUG 0
132 #define STATS 0
133 #define FORCED_DEBUG 0
134 #endif
136 /* Shouldn't this be in a header file somewhere? */
137 #define BYTES_PER_WORD sizeof(void *)
139 #ifndef cache_line_size
140 #define cache_line_size() L1_CACHE_BYTES
141 #endif
143 #ifndef ARCH_KMALLOC_MINALIGN
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
150 * Note that this flag disables some debug features.
152 #define ARCH_KMALLOC_MINALIGN 0
153 #endif
155 #ifndef ARCH_SLAB_MINALIGN
157 * Enforce a minimum alignment for all caches.
158 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
159 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
160 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
161 * some debug features.
163 #define ARCH_SLAB_MINALIGN 0
164 #endif
166 #ifndef ARCH_KMALLOC_FLAGS
167 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 #endif
170 /* Legal flag mask for kmem_cache_create(). */
171 #if DEBUG
172 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174 SLAB_CACHE_DMA | \
175 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
176 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
178 #else
179 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
180 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
183 #endif
186 * kmem_bufctl_t:
188 * Bufctl's are used for linking objs within a slab
189 * linked offsets.
191 * This implementation relies on "struct page" for locating the cache &
192 * slab an object belongs to.
193 * This allows the bufctl structure to be small (one int), but limits
194 * the number of objects a slab (not a cache) can contain when off-slab
195 * bufctls are used. The limit is the size of the largest general cache
196 * that does not use off-slab slabs.
197 * For 32bit archs with 4 kB pages, is this 56.
198 * This is not serious, as it is only for large objects, when it is unwise
199 * to have too many per slab.
200 * Note: This limit can be raised by introducing a general cache whose size
201 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 typedef unsigned int kmem_bufctl_t;
205 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
206 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
207 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
208 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 /* Max number of objs-per-slab for caches which use off-slab slabs.
211 * Needed to avoid a possible looping condition in cache_grow().
213 static unsigned long offslab_limit;
216 * struct slab
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct slab {
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
232 * struct slab_rcu
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct slab_rcu {
248 struct rcu_head head;
249 struct kmem_cache *cachep;
250 void *addr;
254 * struct array_cache
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
265 struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
270 spinlock_t lock;
271 void *entry[0]; /*
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
275 * [0] is for gcc 2.95. It should really be [].
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
290 * The slab lists for all objects.
292 struct kmem_list3 {
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
307 * Need this for bootstrapping a per node allocator.
309 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
310 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
311 #define CACHE_CACHE 0
312 #define SIZE_AC 1
313 #define SIZE_L3 (1 + MAX_NUMNODES)
316 * This function must be completely optimized away if a constant is passed to
317 * it. Mostly the same as what is in linux/slab.h except it returns an index.
319 static __always_inline int index_of(const size_t size)
321 extern void __bad_size(void);
323 if (__builtin_constant_p(size)) {
324 int i = 0;
326 #define CACHE(x) \
327 if (size <=x) \
328 return i; \
329 else \
330 i++;
331 #include "linux/kmalloc_sizes.h"
332 #undef CACHE
333 __bad_size();
334 } else
335 __bad_size();
336 return 0;
339 #define INDEX_AC index_of(sizeof(struct arraycache_init))
340 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
342 static void kmem_list3_init(struct kmem_list3 *parent)
344 INIT_LIST_HEAD(&parent->slabs_full);
345 INIT_LIST_HEAD(&parent->slabs_partial);
346 INIT_LIST_HEAD(&parent->slabs_free);
347 parent->shared = NULL;
348 parent->alien = NULL;
349 parent->colour_next = 0;
350 spin_lock_init(&parent->list_lock);
351 parent->free_objects = 0;
352 parent->free_touched = 0;
355 #define MAKE_LIST(cachep, listp, slab, nodeid) \
356 do { \
357 INIT_LIST_HEAD(listp); \
358 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
359 } while (0)
361 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
362 do { \
363 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
365 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
366 } while (0)
369 * struct kmem_cache
371 * manages a cache.
374 struct kmem_cache {
375 /* 1) per-cpu data, touched during every alloc/free */
376 struct array_cache *array[NR_CPUS];
377 /* 2) Cache tunables. Protected by cache_chain_mutex */
378 unsigned int batchcount;
379 unsigned int limit;
380 unsigned int shared;
382 unsigned int buffer_size;
383 /* 3) touched by every alloc & free from the backend */
384 struct kmem_list3 *nodelists[MAX_NUMNODES];
386 unsigned int flags; /* constant flags */
387 unsigned int num; /* # of objs per slab */
389 /* 4) cache_grow/shrink */
390 /* order of pgs per slab (2^n) */
391 unsigned int gfporder;
393 /* force GFP flags, e.g. GFP_DMA */
394 gfp_t gfpflags;
396 size_t colour; /* cache colouring range */
397 unsigned int colour_off; /* colour offset */
398 struct kmem_cache *slabp_cache;
399 unsigned int slab_size;
400 unsigned int dflags; /* dynamic flags */
402 /* constructor func */
403 void (*ctor) (void *, struct kmem_cache *, unsigned long);
405 /* de-constructor func */
406 void (*dtor) (void *, struct kmem_cache *, unsigned long);
408 /* 5) cache creation/removal */
409 const char *name;
410 struct list_head next;
412 /* 6) statistics */
413 #if STATS
414 unsigned long num_active;
415 unsigned long num_allocations;
416 unsigned long high_mark;
417 unsigned long grown;
418 unsigned long reaped;
419 unsigned long errors;
420 unsigned long max_freeable;
421 unsigned long node_allocs;
422 unsigned long node_frees;
423 unsigned long node_overflow;
424 atomic_t allochit;
425 atomic_t allocmiss;
426 atomic_t freehit;
427 atomic_t freemiss;
428 #endif
429 #if DEBUG
431 * If debugging is enabled, then the allocator can add additional
432 * fields and/or padding to every object. buffer_size contains the total
433 * object size including these internal fields, the following two
434 * variables contain the offset to the user object and its size.
436 int obj_offset;
437 int obj_size;
438 #endif
441 #define CFLGS_OFF_SLAB (0x80000000UL)
442 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
444 #define BATCHREFILL_LIMIT 16
446 * Optimization question: fewer reaps means less probability for unnessary
447 * cpucache drain/refill cycles.
449 * OTOH the cpuarrays can contain lots of objects,
450 * which could lock up otherwise freeable slabs.
452 #define REAPTIMEOUT_CPUC (2*HZ)
453 #define REAPTIMEOUT_LIST3 (4*HZ)
455 #if STATS
456 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
457 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
458 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
459 #define STATS_INC_GROWN(x) ((x)->grown++)
460 #define STATS_INC_REAPED(x) ((x)->reaped++)
461 #define STATS_SET_HIGH(x) \
462 do { \
463 if ((x)->num_active > (x)->high_mark) \
464 (x)->high_mark = (x)->num_active; \
465 } while (0)
466 #define STATS_INC_ERR(x) ((x)->errors++)
467 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
468 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
469 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
470 #define STATS_SET_FREEABLE(x, i) \
471 do { \
472 if ((x)->max_freeable < i) \
473 (x)->max_freeable = i; \
474 } while (0)
475 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
476 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
477 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
478 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
479 #else
480 #define STATS_INC_ACTIVE(x) do { } while (0)
481 #define STATS_DEC_ACTIVE(x) do { } while (0)
482 #define STATS_INC_ALLOCED(x) do { } while (0)
483 #define STATS_INC_GROWN(x) do { } while (0)
484 #define STATS_INC_REAPED(x) do { } while (0)
485 #define STATS_SET_HIGH(x) do { } while (0)
486 #define STATS_INC_ERR(x) do { } while (0)
487 #define STATS_INC_NODEALLOCS(x) do { } while (0)
488 #define STATS_INC_NODEFREES(x) do { } while (0)
489 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
490 #define STATS_SET_FREEABLE(x, i) do { } while (0)
491 #define STATS_INC_ALLOCHIT(x) do { } while (0)
492 #define STATS_INC_ALLOCMISS(x) do { } while (0)
493 #define STATS_INC_FREEHIT(x) do { } while (0)
494 #define STATS_INC_FREEMISS(x) do { } while (0)
495 #endif
497 #if DEBUG
499 * Magic nums for obj red zoning.
500 * Placed in the first word before and the first word after an obj.
502 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
503 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
505 /* ...and for poisoning */
506 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
507 #define POISON_FREE 0x6b /* for use-after-free poisoning */
508 #define POISON_END 0xa5 /* end-byte of poisoning */
511 * memory layout of objects:
512 * 0 : objp
513 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
514 * the end of an object is aligned with the end of the real
515 * allocation. Catches writes behind the end of the allocation.
516 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
517 * redzone word.
518 * cachep->obj_offset: The real object.
519 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
520 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
521 * [BYTES_PER_WORD long]
523 static int obj_offset(struct kmem_cache *cachep)
525 return cachep->obj_offset;
528 static int obj_size(struct kmem_cache *cachep)
530 return cachep->obj_size;
533 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
535 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
536 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
539 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
541 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
542 if (cachep->flags & SLAB_STORE_USER)
543 return (unsigned long *)(objp + cachep->buffer_size -
544 2 * BYTES_PER_WORD);
545 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
548 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
550 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
551 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
554 #else
556 #define obj_offset(x) 0
557 #define obj_size(cachep) (cachep->buffer_size)
558 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
559 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
560 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
562 #endif
565 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
566 * order.
568 #if defined(CONFIG_LARGE_ALLOCS)
569 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
570 #define MAX_GFP_ORDER 13 /* up to 32Mb */
571 #elif defined(CONFIG_MMU)
572 #define MAX_OBJ_ORDER 5 /* 32 pages */
573 #define MAX_GFP_ORDER 5 /* 32 pages */
574 #else
575 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
576 #define MAX_GFP_ORDER 8 /* up to 1Mb */
577 #endif
580 * Do not go above this order unless 0 objects fit into the slab.
582 #define BREAK_GFP_ORDER_HI 1
583 #define BREAK_GFP_ORDER_LO 0
584 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
587 * Functions for storing/retrieving the cachep and or slab from the page
588 * allocator. These are used to find the slab an obj belongs to. With kfree(),
589 * these are used to find the cache which an obj belongs to.
591 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
593 page->lru.next = (struct list_head *)cache;
596 static inline struct kmem_cache *page_get_cache(struct page *page)
598 if (unlikely(PageCompound(page)))
599 page = (struct page *)page_private(page);
600 return (struct kmem_cache *)page->lru.next;
603 static inline void page_set_slab(struct page *page, struct slab *slab)
605 page->lru.prev = (struct list_head *)slab;
608 static inline struct slab *page_get_slab(struct page *page)
610 if (unlikely(PageCompound(page)))
611 page = (struct page *)page_private(page);
612 return (struct slab *)page->lru.prev;
615 static inline struct kmem_cache *virt_to_cache(const void *obj)
617 struct page *page = virt_to_page(obj);
618 return page_get_cache(page);
621 static inline struct slab *virt_to_slab(const void *obj)
623 struct page *page = virt_to_page(obj);
624 return page_get_slab(page);
627 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
630 return slab->s_mem + cache->buffer_size * idx;
633 static inline unsigned int obj_to_index(struct kmem_cache *cache,
634 struct slab *slab, void *obj)
636 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
640 * These are the default caches for kmalloc. Custom caches can have other sizes.
642 struct cache_sizes malloc_sizes[] = {
643 #define CACHE(x) { .cs_size = (x) },
644 #include <linux/kmalloc_sizes.h>
645 CACHE(ULONG_MAX)
646 #undef CACHE
648 EXPORT_SYMBOL(malloc_sizes);
650 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
651 struct cache_names {
652 char *name;
653 char *name_dma;
656 static struct cache_names __initdata cache_names[] = {
657 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
658 #include <linux/kmalloc_sizes.h>
659 {NULL,}
660 #undef CACHE
663 static struct arraycache_init initarray_cache __initdata =
664 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
665 static struct arraycache_init initarray_generic =
666 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
668 /* internal cache of cache description objs */
669 static struct kmem_cache cache_cache = {
670 .batchcount = 1,
671 .limit = BOOT_CPUCACHE_ENTRIES,
672 .shared = 1,
673 .buffer_size = sizeof(struct kmem_cache),
674 .name = "kmem_cache",
675 #if DEBUG
676 .obj_size = sizeof(struct kmem_cache),
677 #endif
680 /* Guard access to the cache-chain. */
681 static DEFINE_MUTEX(cache_chain_mutex);
682 static struct list_head cache_chain;
685 * vm_enough_memory() looks at this to determine how many slab-allocated pages
686 * are possibly freeable under pressure
688 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
690 atomic_t slab_reclaim_pages;
693 * chicken and egg problem: delay the per-cpu array allocation
694 * until the general caches are up.
696 static enum {
697 NONE,
698 PARTIAL_AC,
699 PARTIAL_L3,
700 FULL
701 } g_cpucache_up;
703 static DEFINE_PER_CPU(struct work_struct, reap_work);
705 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
706 int node);
707 static void enable_cpucache(struct kmem_cache *cachep);
708 static void cache_reap(void *unused);
709 static int __node_shrink(struct kmem_cache *cachep, int node);
711 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
713 return cachep->array[smp_processor_id()];
716 static inline struct kmem_cache *__find_general_cachep(size_t size,
717 gfp_t gfpflags)
719 struct cache_sizes *csizep = malloc_sizes;
721 #if DEBUG
722 /* This happens if someone tries to call
723 * kmem_cache_create(), or __kmalloc(), before
724 * the generic caches are initialized.
726 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
727 #endif
728 while (size > csizep->cs_size)
729 csizep++;
732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
736 if (unlikely(gfpflags & GFP_DMA))
737 return csizep->cs_dmacachep;
738 return csizep->cs_cachep;
741 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
743 return __find_general_cachep(size, gfpflags);
745 EXPORT_SYMBOL(kmem_find_general_cachep);
747 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
749 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
753 * Calculate the number of objects and left-over bytes for a given buffer size.
755 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
756 size_t align, int flags, size_t *left_over,
757 unsigned int *num)
759 int nr_objs;
760 size_t mgmt_size;
761 size_t slab_size = PAGE_SIZE << gfporder;
764 * The slab management structure can be either off the slab or
765 * on it. For the latter case, the memory allocated for a
766 * slab is used for:
768 * - The struct slab
769 * - One kmem_bufctl_t for each object
770 * - Padding to respect alignment of @align
771 * - @buffer_size bytes for each object
773 * If the slab management structure is off the slab, then the
774 * alignment will already be calculated into the size. Because
775 * the slabs are all pages aligned, the objects will be at the
776 * correct alignment when allocated.
778 if (flags & CFLGS_OFF_SLAB) {
779 mgmt_size = 0;
780 nr_objs = slab_size / buffer_size;
782 if (nr_objs > SLAB_LIMIT)
783 nr_objs = SLAB_LIMIT;
784 } else {
786 * Ignore padding for the initial guess. The padding
787 * is at most @align-1 bytes, and @buffer_size is at
788 * least @align. In the worst case, this result will
789 * be one greater than the number of objects that fit
790 * into the memory allocation when taking the padding
791 * into account.
793 nr_objs = (slab_size - sizeof(struct slab)) /
794 (buffer_size + sizeof(kmem_bufctl_t));
797 * This calculated number will be either the right
798 * amount, or one greater than what we want.
800 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
801 > slab_size)
802 nr_objs--;
804 if (nr_objs > SLAB_LIMIT)
805 nr_objs = SLAB_LIMIT;
807 mgmt_size = slab_mgmt_size(nr_objs, align);
809 *num = nr_objs;
810 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
813 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
815 static void __slab_error(const char *function, struct kmem_cache *cachep,
816 char *msg)
818 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
819 function, cachep->name, msg);
820 dump_stack();
823 #ifdef CONFIG_NUMA
825 * Special reaping functions for NUMA systems called from cache_reap().
826 * These take care of doing round robin flushing of alien caches (containing
827 * objects freed on different nodes from which they were allocated) and the
828 * flushing of remote pcps by calling drain_node_pages.
830 static DEFINE_PER_CPU(unsigned long, reap_node);
832 static void init_reap_node(int cpu)
834 int node;
836 node = next_node(cpu_to_node(cpu), node_online_map);
837 if (node == MAX_NUMNODES)
838 node = first_node(node_online_map);
840 __get_cpu_var(reap_node) = node;
843 static void next_reap_node(void)
845 int node = __get_cpu_var(reap_node);
848 * Also drain per cpu pages on remote zones
850 if (node != numa_node_id())
851 drain_node_pages(node);
853 node = next_node(node, node_online_map);
854 if (unlikely(node >= MAX_NUMNODES))
855 node = first_node(node_online_map);
856 __get_cpu_var(reap_node) = node;
859 #else
860 #define init_reap_node(cpu) do { } while (0)
861 #define next_reap_node(void) do { } while (0)
862 #endif
865 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
866 * via the workqueue/eventd.
867 * Add the CPU number into the expiration time to minimize the possibility of
868 * the CPUs getting into lockstep and contending for the global cache chain
869 * lock.
871 static void __devinit start_cpu_timer(int cpu)
873 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
876 * When this gets called from do_initcalls via cpucache_init(),
877 * init_workqueues() has already run, so keventd will be setup
878 * at that time.
880 if (keventd_up() && reap_work->func == NULL) {
881 init_reap_node(cpu);
882 INIT_WORK(reap_work, cache_reap, NULL);
883 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
887 static struct array_cache *alloc_arraycache(int node, int entries,
888 int batchcount)
890 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
891 struct array_cache *nc = NULL;
893 nc = kmalloc_node(memsize, GFP_KERNEL, node);
894 if (nc) {
895 nc->avail = 0;
896 nc->limit = entries;
897 nc->batchcount = batchcount;
898 nc->touched = 0;
899 spin_lock_init(&nc->lock);
901 return nc;
905 * Transfer objects in one arraycache to another.
906 * Locking must be handled by the caller.
908 * Return the number of entries transferred.
910 static int transfer_objects(struct array_cache *to,
911 struct array_cache *from, unsigned int max)
913 /* Figure out how many entries to transfer */
914 int nr = min(min(from->avail, max), to->limit - to->avail);
916 if (!nr)
917 return 0;
919 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
920 sizeof(void *) *nr);
922 from->avail -= nr;
923 to->avail += nr;
924 to->touched = 1;
925 return nr;
928 #ifdef CONFIG_NUMA
929 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
930 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
932 static struct array_cache **alloc_alien_cache(int node, int limit)
934 struct array_cache **ac_ptr;
935 int memsize = sizeof(void *) * MAX_NUMNODES;
936 int i;
938 if (limit > 1)
939 limit = 12;
940 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
941 if (ac_ptr) {
942 for_each_node(i) {
943 if (i == node || !node_online(i)) {
944 ac_ptr[i] = NULL;
945 continue;
947 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
948 if (!ac_ptr[i]) {
949 for (i--; i <= 0; i--)
950 kfree(ac_ptr[i]);
951 kfree(ac_ptr);
952 return NULL;
956 return ac_ptr;
959 static void free_alien_cache(struct array_cache **ac_ptr)
961 int i;
963 if (!ac_ptr)
964 return;
965 for_each_node(i)
966 kfree(ac_ptr[i]);
967 kfree(ac_ptr);
970 static void __drain_alien_cache(struct kmem_cache *cachep,
971 struct array_cache *ac, int node)
973 struct kmem_list3 *rl3 = cachep->nodelists[node];
975 if (ac->avail) {
976 spin_lock(&rl3->list_lock);
978 * Stuff objects into the remote nodes shared array first.
979 * That way we could avoid the overhead of putting the objects
980 * into the free lists and getting them back later.
982 if (rl3->shared)
983 transfer_objects(rl3->shared, ac, ac->limit);
985 free_block(cachep, ac->entry, ac->avail, node);
986 ac->avail = 0;
987 spin_unlock(&rl3->list_lock);
992 * Called from cache_reap() to regularly drain alien caches round robin.
994 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
996 int node = __get_cpu_var(reap_node);
998 if (l3->alien) {
999 struct array_cache *ac = l3->alien[node];
1001 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1002 __drain_alien_cache(cachep, ac, node);
1003 spin_unlock_irq(&ac->lock);
1008 static void drain_alien_cache(struct kmem_cache *cachep,
1009 struct array_cache **alien)
1011 int i = 0;
1012 struct array_cache *ac;
1013 unsigned long flags;
1015 for_each_online_node(i) {
1016 ac = alien[i];
1017 if (ac) {
1018 spin_lock_irqsave(&ac->lock, flags);
1019 __drain_alien_cache(cachep, ac, i);
1020 spin_unlock_irqrestore(&ac->lock, flags);
1024 #else
1026 #define drain_alien_cache(cachep, alien) do { } while (0)
1027 #define reap_alien(cachep, l3) do { } while (0)
1029 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1031 return (struct array_cache **) 0x01020304ul;
1034 static inline void free_alien_cache(struct array_cache **ac_ptr)
1038 #endif
1040 static int cpuup_callback(struct notifier_block *nfb,
1041 unsigned long action, void *hcpu)
1043 long cpu = (long)hcpu;
1044 struct kmem_cache *cachep;
1045 struct kmem_list3 *l3 = NULL;
1046 int node = cpu_to_node(cpu);
1047 int memsize = sizeof(struct kmem_list3);
1049 switch (action) {
1050 case CPU_UP_PREPARE:
1051 mutex_lock(&cache_chain_mutex);
1053 * We need to do this right in the beginning since
1054 * alloc_arraycache's are going to use this list.
1055 * kmalloc_node allows us to add the slab to the right
1056 * kmem_list3 and not this cpu's kmem_list3
1059 list_for_each_entry(cachep, &cache_chain, next) {
1061 * Set up the size64 kmemlist for cpu before we can
1062 * begin anything. Make sure some other cpu on this
1063 * node has not already allocated this
1065 if (!cachep->nodelists[node]) {
1066 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1067 if (!l3)
1068 goto bad;
1069 kmem_list3_init(l3);
1070 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1071 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1074 * The l3s don't come and go as CPUs come and
1075 * go. cache_chain_mutex is sufficient
1076 * protection here.
1078 cachep->nodelists[node] = l3;
1081 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1082 cachep->nodelists[node]->free_limit =
1083 (1 + nr_cpus_node(node)) *
1084 cachep->batchcount + cachep->num;
1085 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1089 * Now we can go ahead with allocating the shared arrays and
1090 * array caches
1092 list_for_each_entry(cachep, &cache_chain, next) {
1093 struct array_cache *nc;
1094 struct array_cache *shared;
1095 struct array_cache **alien;
1097 nc = alloc_arraycache(node, cachep->limit,
1098 cachep->batchcount);
1099 if (!nc)
1100 goto bad;
1101 shared = alloc_arraycache(node,
1102 cachep->shared * cachep->batchcount,
1103 0xbaadf00d);
1104 if (!shared)
1105 goto bad;
1107 alien = alloc_alien_cache(node, cachep->limit);
1108 if (!alien)
1109 goto bad;
1110 cachep->array[cpu] = nc;
1111 l3 = cachep->nodelists[node];
1112 BUG_ON(!l3);
1114 spin_lock_irq(&l3->list_lock);
1115 if (!l3->shared) {
1117 * We are serialised from CPU_DEAD or
1118 * CPU_UP_CANCELLED by the cpucontrol lock
1120 l3->shared = shared;
1121 shared = NULL;
1123 #ifdef CONFIG_NUMA
1124 if (!l3->alien) {
1125 l3->alien = alien;
1126 alien = NULL;
1128 #endif
1129 spin_unlock_irq(&l3->list_lock);
1130 kfree(shared);
1131 free_alien_cache(alien);
1133 mutex_unlock(&cache_chain_mutex);
1134 break;
1135 case CPU_ONLINE:
1136 start_cpu_timer(cpu);
1137 break;
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 case CPU_DEAD:
1141 * Even if all the cpus of a node are down, we don't free the
1142 * kmem_list3 of any cache. This to avoid a race between
1143 * cpu_down, and a kmalloc allocation from another cpu for
1144 * memory from the node of the cpu going down. The list3
1145 * structure is usually allocated from kmem_cache_create() and
1146 * gets destroyed at kmem_cache_destroy().
1148 /* fall thru */
1149 case CPU_UP_CANCELED:
1150 mutex_lock(&cache_chain_mutex);
1151 list_for_each_entry(cachep, &cache_chain, next) {
1152 struct array_cache *nc;
1153 struct array_cache *shared;
1154 struct array_cache **alien;
1155 cpumask_t mask;
1157 mask = node_to_cpumask(node);
1158 /* cpu is dead; no one can alloc from it. */
1159 nc = cachep->array[cpu];
1160 cachep->array[cpu] = NULL;
1161 l3 = cachep->nodelists[node];
1163 if (!l3)
1164 goto free_array_cache;
1166 spin_lock_irq(&l3->list_lock);
1168 /* Free limit for this kmem_list3 */
1169 l3->free_limit -= cachep->batchcount;
1170 if (nc)
1171 free_block(cachep, nc->entry, nc->avail, node);
1173 if (!cpus_empty(mask)) {
1174 spin_unlock_irq(&l3->list_lock);
1175 goto free_array_cache;
1178 shared = l3->shared;
1179 if (shared) {
1180 free_block(cachep, l3->shared->entry,
1181 l3->shared->avail, node);
1182 l3->shared = NULL;
1185 alien = l3->alien;
1186 l3->alien = NULL;
1188 spin_unlock_irq(&l3->list_lock);
1190 kfree(shared);
1191 if (alien) {
1192 drain_alien_cache(cachep, alien);
1193 free_alien_cache(alien);
1195 free_array_cache:
1196 kfree(nc);
1199 * In the previous loop, all the objects were freed to
1200 * the respective cache's slabs, now we can go ahead and
1201 * shrink each nodelist to its limit.
1203 list_for_each_entry(cachep, &cache_chain, next) {
1204 l3 = cachep->nodelists[node];
1205 if (!l3)
1206 continue;
1207 spin_lock_irq(&l3->list_lock);
1208 /* free slabs belonging to this node */
1209 __node_shrink(cachep, node);
1210 spin_unlock_irq(&l3->list_lock);
1212 mutex_unlock(&cache_chain_mutex);
1213 break;
1214 #endif
1216 return NOTIFY_OK;
1217 bad:
1218 mutex_unlock(&cache_chain_mutex);
1219 return NOTIFY_BAD;
1222 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1225 * swap the static kmem_list3 with kmalloced memory
1227 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1228 int nodeid)
1230 struct kmem_list3 *ptr;
1232 BUG_ON(cachep->nodelists[nodeid] != list);
1233 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1234 BUG_ON(!ptr);
1236 local_irq_disable();
1237 memcpy(ptr, list, sizeof(struct kmem_list3));
1238 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1239 cachep->nodelists[nodeid] = ptr;
1240 local_irq_enable();
1244 * Initialisation. Called after the page allocator have been initialised and
1245 * before smp_init().
1247 void __init kmem_cache_init(void)
1249 size_t left_over;
1250 struct cache_sizes *sizes;
1251 struct cache_names *names;
1252 int i;
1253 int order;
1255 for (i = 0; i < NUM_INIT_LISTS; i++) {
1256 kmem_list3_init(&initkmem_list3[i]);
1257 if (i < MAX_NUMNODES)
1258 cache_cache.nodelists[i] = NULL;
1262 * Fragmentation resistance on low memory - only use bigger
1263 * page orders on machines with more than 32MB of memory.
1265 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1266 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1268 /* Bootstrap is tricky, because several objects are allocated
1269 * from caches that do not exist yet:
1270 * 1) initialize the cache_cache cache: it contains the struct
1271 * kmem_cache structures of all caches, except cache_cache itself:
1272 * cache_cache is statically allocated.
1273 * Initially an __init data area is used for the head array and the
1274 * kmem_list3 structures, it's replaced with a kmalloc allocated
1275 * array at the end of the bootstrap.
1276 * 2) Create the first kmalloc cache.
1277 * The struct kmem_cache for the new cache is allocated normally.
1278 * An __init data area is used for the head array.
1279 * 3) Create the remaining kmalloc caches, with minimally sized
1280 * head arrays.
1281 * 4) Replace the __init data head arrays for cache_cache and the first
1282 * kmalloc cache with kmalloc allocated arrays.
1283 * 5) Replace the __init data for kmem_list3 for cache_cache and
1284 * the other cache's with kmalloc allocated memory.
1285 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1288 /* 1) create the cache_cache */
1289 INIT_LIST_HEAD(&cache_chain);
1290 list_add(&cache_cache.next, &cache_chain);
1291 cache_cache.colour_off = cache_line_size();
1292 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1293 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1295 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1296 cache_line_size());
1298 for (order = 0; order < MAX_ORDER; order++) {
1299 cache_estimate(order, cache_cache.buffer_size,
1300 cache_line_size(), 0, &left_over, &cache_cache.num);
1301 if (cache_cache.num)
1302 break;
1304 BUG_ON(!cache_cache.num);
1305 cache_cache.gfporder = order;
1306 cache_cache.colour = left_over / cache_cache.colour_off;
1307 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1308 sizeof(struct slab), cache_line_size());
1310 /* 2+3) create the kmalloc caches */
1311 sizes = malloc_sizes;
1312 names = cache_names;
1315 * Initialize the caches that provide memory for the array cache and the
1316 * kmem_list3 structures first. Without this, further allocations will
1317 * bug.
1320 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1321 sizes[INDEX_AC].cs_size,
1322 ARCH_KMALLOC_MINALIGN,
1323 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1324 NULL, NULL);
1326 if (INDEX_AC != INDEX_L3) {
1327 sizes[INDEX_L3].cs_cachep =
1328 kmem_cache_create(names[INDEX_L3].name,
1329 sizes[INDEX_L3].cs_size,
1330 ARCH_KMALLOC_MINALIGN,
1331 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1332 NULL, NULL);
1335 while (sizes->cs_size != ULONG_MAX) {
1337 * For performance, all the general caches are L1 aligned.
1338 * This should be particularly beneficial on SMP boxes, as it
1339 * eliminates "false sharing".
1340 * Note for systems short on memory removing the alignment will
1341 * allow tighter packing of the smaller caches.
1343 if (!sizes->cs_cachep) {
1344 sizes->cs_cachep = kmem_cache_create(names->name,
1345 sizes->cs_size,
1346 ARCH_KMALLOC_MINALIGN,
1347 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1348 NULL, NULL);
1351 /* Inc off-slab bufctl limit until the ceiling is hit. */
1352 if (!(OFF_SLAB(sizes->cs_cachep))) {
1353 offslab_limit = sizes->cs_size - sizeof(struct slab);
1354 offslab_limit /= sizeof(kmem_bufctl_t);
1357 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1358 sizes->cs_size,
1359 ARCH_KMALLOC_MINALIGN,
1360 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1361 SLAB_PANIC,
1362 NULL, NULL);
1363 sizes++;
1364 names++;
1366 /* 4) Replace the bootstrap head arrays */
1368 void *ptr;
1370 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1372 local_irq_disable();
1373 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1374 memcpy(ptr, cpu_cache_get(&cache_cache),
1375 sizeof(struct arraycache_init));
1376 cache_cache.array[smp_processor_id()] = ptr;
1377 local_irq_enable();
1379 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1381 local_irq_disable();
1382 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1383 != &initarray_generic.cache);
1384 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1385 sizeof(struct arraycache_init));
1386 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1387 ptr;
1388 local_irq_enable();
1390 /* 5) Replace the bootstrap kmem_list3's */
1392 int node;
1393 /* Replace the static kmem_list3 structures for the boot cpu */
1394 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1395 numa_node_id());
1397 for_each_online_node(node) {
1398 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1399 &initkmem_list3[SIZE_AC + node], node);
1401 if (INDEX_AC != INDEX_L3) {
1402 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1403 &initkmem_list3[SIZE_L3 + node],
1404 node);
1409 /* 6) resize the head arrays to their final sizes */
1411 struct kmem_cache *cachep;
1412 mutex_lock(&cache_chain_mutex);
1413 list_for_each_entry(cachep, &cache_chain, next)
1414 enable_cpucache(cachep);
1415 mutex_unlock(&cache_chain_mutex);
1418 /* Done! */
1419 g_cpucache_up = FULL;
1422 * Register a cpu startup notifier callback that initializes
1423 * cpu_cache_get for all new cpus
1425 register_cpu_notifier(&cpucache_notifier);
1428 * The reap timers are started later, with a module init call: That part
1429 * of the kernel is not yet operational.
1433 static int __init cpucache_init(void)
1435 int cpu;
1438 * Register the timers that return unneeded pages to the page allocator
1440 for_each_online_cpu(cpu)
1441 start_cpu_timer(cpu);
1442 return 0;
1444 __initcall(cpucache_init);
1447 * Interface to system's page allocator. No need to hold the cache-lock.
1449 * If we requested dmaable memory, we will get it. Even if we
1450 * did not request dmaable memory, we might get it, but that
1451 * would be relatively rare and ignorable.
1453 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1455 struct page *page;
1456 void *addr;
1457 int i;
1459 flags |= cachep->gfpflags;
1460 #ifndef CONFIG_MMU
1461 /* nommu uses slab's for process anonymous memory allocations, so
1462 * requires __GFP_COMP to properly refcount higher order allocations"
1464 page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
1465 #else
1466 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1467 #endif
1468 if (!page)
1469 return NULL;
1470 addr = page_address(page);
1472 i = (1 << cachep->gfporder);
1473 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1474 atomic_add(i, &slab_reclaim_pages);
1475 add_page_state(nr_slab, i);
1476 while (i--) {
1477 __SetPageSlab(page);
1478 page++;
1480 return addr;
1484 * Interface to system's page release.
1486 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1488 unsigned long i = (1 << cachep->gfporder);
1489 struct page *page = virt_to_page(addr);
1490 const unsigned long nr_freed = i;
1492 while (i--) {
1493 BUG_ON(!PageSlab(page));
1494 __ClearPageSlab(page);
1495 page++;
1497 sub_page_state(nr_slab, nr_freed);
1498 if (current->reclaim_state)
1499 current->reclaim_state->reclaimed_slab += nr_freed;
1500 free_pages((unsigned long)addr, cachep->gfporder);
1501 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1502 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1505 static void kmem_rcu_free(struct rcu_head *head)
1507 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1508 struct kmem_cache *cachep = slab_rcu->cachep;
1510 kmem_freepages(cachep, slab_rcu->addr);
1511 if (OFF_SLAB(cachep))
1512 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1515 #if DEBUG
1517 #ifdef CONFIG_DEBUG_PAGEALLOC
1518 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1519 unsigned long caller)
1521 int size = obj_size(cachep);
1523 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1525 if (size < 5 * sizeof(unsigned long))
1526 return;
1528 *addr++ = 0x12345678;
1529 *addr++ = caller;
1530 *addr++ = smp_processor_id();
1531 size -= 3 * sizeof(unsigned long);
1533 unsigned long *sptr = &caller;
1534 unsigned long svalue;
1536 while (!kstack_end(sptr)) {
1537 svalue = *sptr++;
1538 if (kernel_text_address(svalue)) {
1539 *addr++ = svalue;
1540 size -= sizeof(unsigned long);
1541 if (size <= sizeof(unsigned long))
1542 break;
1547 *addr++ = 0x87654321;
1549 #endif
1551 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1553 int size = obj_size(cachep);
1554 addr = &((char *)addr)[obj_offset(cachep)];
1556 memset(addr, val, size);
1557 *(unsigned char *)(addr + size - 1) = POISON_END;
1560 static void dump_line(char *data, int offset, int limit)
1562 int i;
1563 printk(KERN_ERR "%03x:", offset);
1564 for (i = 0; i < limit; i++)
1565 printk(" %02x", (unsigned char)data[offset + i]);
1566 printk("\n");
1568 #endif
1570 #if DEBUG
1572 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1574 int i, size;
1575 char *realobj;
1577 if (cachep->flags & SLAB_RED_ZONE) {
1578 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1579 *dbg_redzone1(cachep, objp),
1580 *dbg_redzone2(cachep, objp));
1583 if (cachep->flags & SLAB_STORE_USER) {
1584 printk(KERN_ERR "Last user: [<%p>]",
1585 *dbg_userword(cachep, objp));
1586 print_symbol("(%s)",
1587 (unsigned long)*dbg_userword(cachep, objp));
1588 printk("\n");
1590 realobj = (char *)objp + obj_offset(cachep);
1591 size = obj_size(cachep);
1592 for (i = 0; i < size && lines; i += 16, lines--) {
1593 int limit;
1594 limit = 16;
1595 if (i + limit > size)
1596 limit = size - i;
1597 dump_line(realobj, i, limit);
1601 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1603 char *realobj;
1604 int size, i;
1605 int lines = 0;
1607 realobj = (char *)objp + obj_offset(cachep);
1608 size = obj_size(cachep);
1610 for (i = 0; i < size; i++) {
1611 char exp = POISON_FREE;
1612 if (i == size - 1)
1613 exp = POISON_END;
1614 if (realobj[i] != exp) {
1615 int limit;
1616 /* Mismatch ! */
1617 /* Print header */
1618 if (lines == 0) {
1619 printk(KERN_ERR
1620 "Slab corruption: start=%p, len=%d\n",
1621 realobj, size);
1622 print_objinfo(cachep, objp, 0);
1624 /* Hexdump the affected line */
1625 i = (i / 16) * 16;
1626 limit = 16;
1627 if (i + limit > size)
1628 limit = size - i;
1629 dump_line(realobj, i, limit);
1630 i += 16;
1631 lines++;
1632 /* Limit to 5 lines */
1633 if (lines > 5)
1634 break;
1637 if (lines != 0) {
1638 /* Print some data about the neighboring objects, if they
1639 * exist:
1641 struct slab *slabp = virt_to_slab(objp);
1642 unsigned int objnr;
1644 objnr = obj_to_index(cachep, slabp, objp);
1645 if (objnr) {
1646 objp = index_to_obj(cachep, slabp, objnr - 1);
1647 realobj = (char *)objp + obj_offset(cachep);
1648 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1649 realobj, size);
1650 print_objinfo(cachep, objp, 2);
1652 if (objnr + 1 < cachep->num) {
1653 objp = index_to_obj(cachep, slabp, objnr + 1);
1654 realobj = (char *)objp + obj_offset(cachep);
1655 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1656 realobj, size);
1657 print_objinfo(cachep, objp, 2);
1661 #endif
1663 #if DEBUG
1665 * slab_destroy_objs - destroy a slab and its objects
1666 * @cachep: cache pointer being destroyed
1667 * @slabp: slab pointer being destroyed
1669 * Call the registered destructor for each object in a slab that is being
1670 * destroyed.
1672 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1674 int i;
1675 for (i = 0; i < cachep->num; i++) {
1676 void *objp = index_to_obj(cachep, slabp, i);
1678 if (cachep->flags & SLAB_POISON) {
1679 #ifdef CONFIG_DEBUG_PAGEALLOC
1680 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1681 OFF_SLAB(cachep))
1682 kernel_map_pages(virt_to_page(objp),
1683 cachep->buffer_size / PAGE_SIZE, 1);
1684 else
1685 check_poison_obj(cachep, objp);
1686 #else
1687 check_poison_obj(cachep, objp);
1688 #endif
1690 if (cachep->flags & SLAB_RED_ZONE) {
1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692 slab_error(cachep, "start of a freed object "
1693 "was overwritten");
1694 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1695 slab_error(cachep, "end of a freed object "
1696 "was overwritten");
1698 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1699 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1702 #else
1703 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1705 if (cachep->dtor) {
1706 int i;
1707 for (i = 0; i < cachep->num; i++) {
1708 void *objp = index_to_obj(cachep, slabp, i);
1709 (cachep->dtor) (objp, cachep, 0);
1713 #endif
1716 * slab_destroy - destroy and release all objects in a slab
1717 * @cachep: cache pointer being destroyed
1718 * @slabp: slab pointer being destroyed
1720 * Destroy all the objs in a slab, and release the mem back to the system.
1721 * Before calling the slab must have been unlinked from the cache. The
1722 * cache-lock is not held/needed.
1724 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1726 void *addr = slabp->s_mem - slabp->colouroff;
1728 slab_destroy_objs(cachep, slabp);
1729 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1730 struct slab_rcu *slab_rcu;
1732 slab_rcu = (struct slab_rcu *)slabp;
1733 slab_rcu->cachep = cachep;
1734 slab_rcu->addr = addr;
1735 call_rcu(&slab_rcu->head, kmem_rcu_free);
1736 } else {
1737 kmem_freepages(cachep, addr);
1738 if (OFF_SLAB(cachep))
1739 kmem_cache_free(cachep->slabp_cache, slabp);
1744 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1745 * size of kmem_list3.
1747 static void set_up_list3s(struct kmem_cache *cachep, int index)
1749 int node;
1751 for_each_online_node(node) {
1752 cachep->nodelists[node] = &initkmem_list3[index + node];
1753 cachep->nodelists[node]->next_reap = jiffies +
1754 REAPTIMEOUT_LIST3 +
1755 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1760 * calculate_slab_order - calculate size (page order) of slabs
1761 * @cachep: pointer to the cache that is being created
1762 * @size: size of objects to be created in this cache.
1763 * @align: required alignment for the objects.
1764 * @flags: slab allocation flags
1766 * Also calculates the number of objects per slab.
1768 * This could be made much more intelligent. For now, try to avoid using
1769 * high order pages for slabs. When the gfp() functions are more friendly
1770 * towards high-order requests, this should be changed.
1772 static size_t calculate_slab_order(struct kmem_cache *cachep,
1773 size_t size, size_t align, unsigned long flags)
1775 size_t left_over = 0;
1776 int gfporder;
1778 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1779 unsigned int num;
1780 size_t remainder;
1782 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1783 if (!num)
1784 continue;
1786 /* More than offslab_limit objects will cause problems */
1787 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1788 break;
1790 /* Found something acceptable - save it away */
1791 cachep->num = num;
1792 cachep->gfporder = gfporder;
1793 left_over = remainder;
1796 * A VFS-reclaimable slab tends to have most allocations
1797 * as GFP_NOFS and we really don't want to have to be allocating
1798 * higher-order pages when we are unable to shrink dcache.
1800 if (flags & SLAB_RECLAIM_ACCOUNT)
1801 break;
1804 * Large number of objects is good, but very large slabs are
1805 * currently bad for the gfp()s.
1807 if (gfporder >= slab_break_gfp_order)
1808 break;
1811 * Acceptable internal fragmentation?
1813 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1814 break;
1816 return left_over;
1819 static void setup_cpu_cache(struct kmem_cache *cachep)
1821 if (g_cpucache_up == FULL) {
1822 enable_cpucache(cachep);
1823 return;
1825 if (g_cpucache_up == NONE) {
1827 * Note: the first kmem_cache_create must create the cache
1828 * that's used by kmalloc(24), otherwise the creation of
1829 * further caches will BUG().
1831 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1834 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1835 * the first cache, then we need to set up all its list3s,
1836 * otherwise the creation of further caches will BUG().
1838 set_up_list3s(cachep, SIZE_AC);
1839 if (INDEX_AC == INDEX_L3)
1840 g_cpucache_up = PARTIAL_L3;
1841 else
1842 g_cpucache_up = PARTIAL_AC;
1843 } else {
1844 cachep->array[smp_processor_id()] =
1845 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1847 if (g_cpucache_up == PARTIAL_AC) {
1848 set_up_list3s(cachep, SIZE_L3);
1849 g_cpucache_up = PARTIAL_L3;
1850 } else {
1851 int node;
1852 for_each_online_node(node) {
1853 cachep->nodelists[node] =
1854 kmalloc_node(sizeof(struct kmem_list3),
1855 GFP_KERNEL, node);
1856 BUG_ON(!cachep->nodelists[node]);
1857 kmem_list3_init(cachep->nodelists[node]);
1861 cachep->nodelists[numa_node_id()]->next_reap =
1862 jiffies + REAPTIMEOUT_LIST3 +
1863 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1865 cpu_cache_get(cachep)->avail = 0;
1866 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1867 cpu_cache_get(cachep)->batchcount = 1;
1868 cpu_cache_get(cachep)->touched = 0;
1869 cachep->batchcount = 1;
1870 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1874 * kmem_cache_create - Create a cache.
1875 * @name: A string which is used in /proc/slabinfo to identify this cache.
1876 * @size: The size of objects to be created in this cache.
1877 * @align: The required alignment for the objects.
1878 * @flags: SLAB flags
1879 * @ctor: A constructor for the objects.
1880 * @dtor: A destructor for the objects.
1882 * Returns a ptr to the cache on success, NULL on failure.
1883 * Cannot be called within a int, but can be interrupted.
1884 * The @ctor is run when new pages are allocated by the cache
1885 * and the @dtor is run before the pages are handed back.
1887 * @name must be valid until the cache is destroyed. This implies that
1888 * the module calling this has to destroy the cache before getting unloaded.
1890 * The flags are
1892 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1893 * to catch references to uninitialised memory.
1895 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1896 * for buffer overruns.
1898 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1899 * cacheline. This can be beneficial if you're counting cycles as closely
1900 * as davem.
1902 struct kmem_cache *
1903 kmem_cache_create (const char *name, size_t size, size_t align,
1904 unsigned long flags,
1905 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1906 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1908 size_t left_over, slab_size, ralign;
1909 struct kmem_cache *cachep = NULL;
1910 struct list_head *p;
1913 * Sanity checks... these are all serious usage bugs.
1915 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1916 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1917 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1918 name);
1919 BUG();
1923 * Prevent CPUs from coming and going.
1924 * lock_cpu_hotplug() nests outside cache_chain_mutex
1926 lock_cpu_hotplug();
1928 mutex_lock(&cache_chain_mutex);
1930 list_for_each(p, &cache_chain) {
1931 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1932 mm_segment_t old_fs = get_fs();
1933 char tmp;
1934 int res;
1937 * This happens when the module gets unloaded and doesn't
1938 * destroy its slab cache and no-one else reuses the vmalloc
1939 * area of the module. Print a warning.
1941 set_fs(KERNEL_DS);
1942 res = __get_user(tmp, pc->name);
1943 set_fs(old_fs);
1944 if (res) {
1945 printk("SLAB: cache with size %d has lost its name\n",
1946 pc->buffer_size);
1947 continue;
1950 if (!strcmp(pc->name, name)) {
1951 printk("kmem_cache_create: duplicate cache %s\n", name);
1952 dump_stack();
1953 goto oops;
1957 #if DEBUG
1958 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1959 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1960 /* No constructor, but inital state check requested */
1961 printk(KERN_ERR "%s: No con, but init state check "
1962 "requested - %s\n", __FUNCTION__, name);
1963 flags &= ~SLAB_DEBUG_INITIAL;
1965 #if FORCED_DEBUG
1967 * Enable redzoning and last user accounting, except for caches with
1968 * large objects, if the increased size would increase the object size
1969 * above the next power of two: caches with object sizes just above a
1970 * power of two have a significant amount of internal fragmentation.
1972 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1973 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1974 if (!(flags & SLAB_DESTROY_BY_RCU))
1975 flags |= SLAB_POISON;
1976 #endif
1977 if (flags & SLAB_DESTROY_BY_RCU)
1978 BUG_ON(flags & SLAB_POISON);
1979 #endif
1980 if (flags & SLAB_DESTROY_BY_RCU)
1981 BUG_ON(dtor);
1984 * Always checks flags, a caller might be expecting debug support which
1985 * isn't available.
1987 BUG_ON(flags & ~CREATE_MASK);
1990 * Check that size is in terms of words. This is needed to avoid
1991 * unaligned accesses for some archs when redzoning is used, and makes
1992 * sure any on-slab bufctl's are also correctly aligned.
1994 if (size & (BYTES_PER_WORD - 1)) {
1995 size += (BYTES_PER_WORD - 1);
1996 size &= ~(BYTES_PER_WORD - 1);
1999 /* calculate the final buffer alignment: */
2001 /* 1) arch recommendation: can be overridden for debug */
2002 if (flags & SLAB_HWCACHE_ALIGN) {
2004 * Default alignment: as specified by the arch code. Except if
2005 * an object is really small, then squeeze multiple objects into
2006 * one cacheline.
2008 ralign = cache_line_size();
2009 while (size <= ralign / 2)
2010 ralign /= 2;
2011 } else {
2012 ralign = BYTES_PER_WORD;
2014 /* 2) arch mandated alignment: disables debug if necessary */
2015 if (ralign < ARCH_SLAB_MINALIGN) {
2016 ralign = ARCH_SLAB_MINALIGN;
2017 if (ralign > BYTES_PER_WORD)
2018 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2020 /* 3) caller mandated alignment: disables debug if necessary */
2021 if (ralign < align) {
2022 ralign = align;
2023 if (ralign > BYTES_PER_WORD)
2024 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2027 * 4) Store it. Note that the debug code below can reduce
2028 * the alignment to BYTES_PER_WORD.
2030 align = ralign;
2032 /* Get cache's description obj. */
2033 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
2034 if (!cachep)
2035 goto oops;
2037 #if DEBUG
2038 cachep->obj_size = size;
2040 if (flags & SLAB_RED_ZONE) {
2041 /* redzoning only works with word aligned caches */
2042 align = BYTES_PER_WORD;
2044 /* add space for red zone words */
2045 cachep->obj_offset += BYTES_PER_WORD;
2046 size += 2 * BYTES_PER_WORD;
2048 if (flags & SLAB_STORE_USER) {
2049 /* user store requires word alignment and
2050 * one word storage behind the end of the real
2051 * object.
2053 align = BYTES_PER_WORD;
2054 size += BYTES_PER_WORD;
2056 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2057 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2058 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2059 cachep->obj_offset += PAGE_SIZE - size;
2060 size = PAGE_SIZE;
2062 #endif
2063 #endif
2065 /* Determine if the slab management is 'on' or 'off' slab. */
2066 if (size >= (PAGE_SIZE >> 3))
2068 * Size is large, assume best to place the slab management obj
2069 * off-slab (should allow better packing of objs).
2071 flags |= CFLGS_OFF_SLAB;
2073 size = ALIGN(size, align);
2075 left_over = calculate_slab_order(cachep, size, align, flags);
2077 if (!cachep->num) {
2078 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2079 kmem_cache_free(&cache_cache, cachep);
2080 cachep = NULL;
2081 goto oops;
2083 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2084 + sizeof(struct slab), align);
2087 * If the slab has been placed off-slab, and we have enough space then
2088 * move it on-slab. This is at the expense of any extra colouring.
2090 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2091 flags &= ~CFLGS_OFF_SLAB;
2092 left_over -= slab_size;
2095 if (flags & CFLGS_OFF_SLAB) {
2096 /* really off slab. No need for manual alignment */
2097 slab_size =
2098 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2101 cachep->colour_off = cache_line_size();
2102 /* Offset must be a multiple of the alignment. */
2103 if (cachep->colour_off < align)
2104 cachep->colour_off = align;
2105 cachep->colour = left_over / cachep->colour_off;
2106 cachep->slab_size = slab_size;
2107 cachep->flags = flags;
2108 cachep->gfpflags = 0;
2109 if (flags & SLAB_CACHE_DMA)
2110 cachep->gfpflags |= GFP_DMA;
2111 cachep->buffer_size = size;
2113 if (flags & CFLGS_OFF_SLAB)
2114 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2115 cachep->ctor = ctor;
2116 cachep->dtor = dtor;
2117 cachep->name = name;
2120 setup_cpu_cache(cachep);
2122 /* cache setup completed, link it into the list */
2123 list_add(&cachep->next, &cache_chain);
2124 oops:
2125 if (!cachep && (flags & SLAB_PANIC))
2126 panic("kmem_cache_create(): failed to create slab `%s'\n",
2127 name);
2128 mutex_unlock(&cache_chain_mutex);
2129 unlock_cpu_hotplug();
2130 return cachep;
2132 EXPORT_SYMBOL(kmem_cache_create);
2134 #if DEBUG
2135 static void check_irq_off(void)
2137 BUG_ON(!irqs_disabled());
2140 static void check_irq_on(void)
2142 BUG_ON(irqs_disabled());
2145 static void check_spinlock_acquired(struct kmem_cache *cachep)
2147 #ifdef CONFIG_SMP
2148 check_irq_off();
2149 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2150 #endif
2153 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2155 #ifdef CONFIG_SMP
2156 check_irq_off();
2157 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2158 #endif
2161 #else
2162 #define check_irq_off() do { } while(0)
2163 #define check_irq_on() do { } while(0)
2164 #define check_spinlock_acquired(x) do { } while(0)
2165 #define check_spinlock_acquired_node(x, y) do { } while(0)
2166 #endif
2168 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2169 struct array_cache *ac,
2170 int force, int node);
2172 static void do_drain(void *arg)
2174 struct kmem_cache *cachep = arg;
2175 struct array_cache *ac;
2176 int node = numa_node_id();
2178 check_irq_off();
2179 ac = cpu_cache_get(cachep);
2180 spin_lock(&cachep->nodelists[node]->list_lock);
2181 free_block(cachep, ac->entry, ac->avail, node);
2182 spin_unlock(&cachep->nodelists[node]->list_lock);
2183 ac->avail = 0;
2186 static void drain_cpu_caches(struct kmem_cache *cachep)
2188 struct kmem_list3 *l3;
2189 int node;
2191 on_each_cpu(do_drain, cachep, 1, 1);
2192 check_irq_on();
2193 for_each_online_node(node) {
2194 l3 = cachep->nodelists[node];
2195 if (l3) {
2196 drain_array(cachep, l3, l3->shared, 1, node);
2197 if (l3->alien)
2198 drain_alien_cache(cachep, l3->alien);
2203 static int __node_shrink(struct kmem_cache *cachep, int node)
2205 struct slab *slabp;
2206 struct kmem_list3 *l3 = cachep->nodelists[node];
2207 int ret;
2209 for (;;) {
2210 struct list_head *p;
2212 p = l3->slabs_free.prev;
2213 if (p == &l3->slabs_free)
2214 break;
2216 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2217 #if DEBUG
2218 BUG_ON(slabp->inuse);
2219 #endif
2220 list_del(&slabp->list);
2222 l3->free_objects -= cachep->num;
2223 spin_unlock_irq(&l3->list_lock);
2224 slab_destroy(cachep, slabp);
2225 spin_lock_irq(&l3->list_lock);
2227 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2228 return ret;
2231 static int __cache_shrink(struct kmem_cache *cachep)
2233 int ret = 0, i = 0;
2234 struct kmem_list3 *l3;
2236 drain_cpu_caches(cachep);
2238 check_irq_on();
2239 for_each_online_node(i) {
2240 l3 = cachep->nodelists[i];
2241 if (l3) {
2242 spin_lock_irq(&l3->list_lock);
2243 ret += __node_shrink(cachep, i);
2244 spin_unlock_irq(&l3->list_lock);
2247 return (ret ? 1 : 0);
2251 * kmem_cache_shrink - Shrink a cache.
2252 * @cachep: The cache to shrink.
2254 * Releases as many slabs as possible for a cache.
2255 * To help debugging, a zero exit status indicates all slabs were released.
2257 int kmem_cache_shrink(struct kmem_cache *cachep)
2259 BUG_ON(!cachep || in_interrupt());
2261 return __cache_shrink(cachep);
2263 EXPORT_SYMBOL(kmem_cache_shrink);
2266 * kmem_cache_destroy - delete a cache
2267 * @cachep: the cache to destroy
2269 * Remove a struct kmem_cache object from the slab cache.
2270 * Returns 0 on success.
2272 * It is expected this function will be called by a module when it is
2273 * unloaded. This will remove the cache completely, and avoid a duplicate
2274 * cache being allocated each time a module is loaded and unloaded, if the
2275 * module doesn't have persistent in-kernel storage across loads and unloads.
2277 * The cache must be empty before calling this function.
2279 * The caller must guarantee that noone will allocate memory from the cache
2280 * during the kmem_cache_destroy().
2282 int kmem_cache_destroy(struct kmem_cache *cachep)
2284 int i;
2285 struct kmem_list3 *l3;
2287 BUG_ON(!cachep || in_interrupt());
2289 /* Don't let CPUs to come and go */
2290 lock_cpu_hotplug();
2292 /* Find the cache in the chain of caches. */
2293 mutex_lock(&cache_chain_mutex);
2295 * the chain is never empty, cache_cache is never destroyed
2297 list_del(&cachep->next);
2298 mutex_unlock(&cache_chain_mutex);
2300 if (__cache_shrink(cachep)) {
2301 slab_error(cachep, "Can't free all objects");
2302 mutex_lock(&cache_chain_mutex);
2303 list_add(&cachep->next, &cache_chain);
2304 mutex_unlock(&cache_chain_mutex);
2305 unlock_cpu_hotplug();
2306 return 1;
2309 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2310 synchronize_rcu();
2312 for_each_online_cpu(i)
2313 kfree(cachep->array[i]);
2315 /* NUMA: free the list3 structures */
2316 for_each_online_node(i) {
2317 l3 = cachep->nodelists[i];
2318 if (l3) {
2319 kfree(l3->shared);
2320 free_alien_cache(l3->alien);
2321 kfree(l3);
2324 kmem_cache_free(&cache_cache, cachep);
2325 unlock_cpu_hotplug();
2326 return 0;
2328 EXPORT_SYMBOL(kmem_cache_destroy);
2330 /* Get the memory for a slab management obj. */
2331 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2332 int colour_off, gfp_t local_flags,
2333 int nodeid)
2335 struct slab *slabp;
2337 if (OFF_SLAB(cachep)) {
2338 /* Slab management obj is off-slab. */
2339 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2340 local_flags, nodeid);
2341 if (!slabp)
2342 return NULL;
2343 } else {
2344 slabp = objp + colour_off;
2345 colour_off += cachep->slab_size;
2347 slabp->inuse = 0;
2348 slabp->colouroff = colour_off;
2349 slabp->s_mem = objp + colour_off;
2350 slabp->nodeid = nodeid;
2351 return slabp;
2354 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2356 return (kmem_bufctl_t *) (slabp + 1);
2359 static void cache_init_objs(struct kmem_cache *cachep,
2360 struct slab *slabp, unsigned long ctor_flags)
2362 int i;
2364 for (i = 0; i < cachep->num; i++) {
2365 void *objp = index_to_obj(cachep, slabp, i);
2366 #if DEBUG
2367 /* need to poison the objs? */
2368 if (cachep->flags & SLAB_POISON)
2369 poison_obj(cachep, objp, POISON_FREE);
2370 if (cachep->flags & SLAB_STORE_USER)
2371 *dbg_userword(cachep, objp) = NULL;
2373 if (cachep->flags & SLAB_RED_ZONE) {
2374 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2375 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2378 * Constructors are not allowed to allocate memory from the same
2379 * cache which they are a constructor for. Otherwise, deadlock.
2380 * They must also be threaded.
2382 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2383 cachep->ctor(objp + obj_offset(cachep), cachep,
2384 ctor_flags);
2386 if (cachep->flags & SLAB_RED_ZONE) {
2387 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2388 slab_error(cachep, "constructor overwrote the"
2389 " end of an object");
2390 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2391 slab_error(cachep, "constructor overwrote the"
2392 " start of an object");
2394 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2395 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2396 kernel_map_pages(virt_to_page(objp),
2397 cachep->buffer_size / PAGE_SIZE, 0);
2398 #else
2399 if (cachep->ctor)
2400 cachep->ctor(objp, cachep, ctor_flags);
2401 #endif
2402 slab_bufctl(slabp)[i] = i + 1;
2404 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2405 slabp->free = 0;
2408 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2410 if (flags & SLAB_DMA)
2411 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2412 else
2413 BUG_ON(cachep->gfpflags & GFP_DMA);
2416 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2417 int nodeid)
2419 void *objp = index_to_obj(cachep, slabp, slabp->free);
2420 kmem_bufctl_t next;
2422 slabp->inuse++;
2423 next = slab_bufctl(slabp)[slabp->free];
2424 #if DEBUG
2425 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2426 WARN_ON(slabp->nodeid != nodeid);
2427 #endif
2428 slabp->free = next;
2430 return objp;
2433 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2434 void *objp, int nodeid)
2436 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2438 #if DEBUG
2439 /* Verify that the slab belongs to the intended node */
2440 WARN_ON(slabp->nodeid != nodeid);
2442 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2443 printk(KERN_ERR "slab: double free detected in cache "
2444 "'%s', objp %p\n", cachep->name, objp);
2445 BUG();
2447 #endif
2448 slab_bufctl(slabp)[objnr] = slabp->free;
2449 slabp->free = objnr;
2450 slabp->inuse--;
2453 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2454 void *objp)
2456 int i;
2457 struct page *page;
2459 /* Nasty!!!!!! I hope this is OK. */
2460 page = virt_to_page(objp);
2462 i = 1;
2463 if (likely(!PageCompound(page)))
2464 i <<= cachep->gfporder;
2465 do {
2466 page_set_cache(page, cachep);
2467 page_set_slab(page, slabp);
2468 page++;
2469 } while (--i);
2473 * Grow (by 1) the number of slabs within a cache. This is called by
2474 * kmem_cache_alloc() when there are no active objs left in a cache.
2476 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2478 struct slab *slabp;
2479 void *objp;
2480 size_t offset;
2481 gfp_t local_flags;
2482 unsigned long ctor_flags;
2483 struct kmem_list3 *l3;
2486 * Be lazy and only check for valid flags here, keeping it out of the
2487 * critical path in kmem_cache_alloc().
2489 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
2490 if (flags & SLAB_NO_GROW)
2491 return 0;
2493 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2494 local_flags = (flags & SLAB_LEVEL_MASK);
2495 if (!(local_flags & __GFP_WAIT))
2497 * Not allowed to sleep. Need to tell a constructor about
2498 * this - it might need to know...
2500 ctor_flags |= SLAB_CTOR_ATOMIC;
2502 /* Take the l3 list lock to change the colour_next on this node */
2503 check_irq_off();
2504 l3 = cachep->nodelists[nodeid];
2505 spin_lock(&l3->list_lock);
2507 /* Get colour for the slab, and cal the next value. */
2508 offset = l3->colour_next;
2509 l3->colour_next++;
2510 if (l3->colour_next >= cachep->colour)
2511 l3->colour_next = 0;
2512 spin_unlock(&l3->list_lock);
2514 offset *= cachep->colour_off;
2516 if (local_flags & __GFP_WAIT)
2517 local_irq_enable();
2520 * The test for missing atomic flag is performed here, rather than
2521 * the more obvious place, simply to reduce the critical path length
2522 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2523 * will eventually be caught here (where it matters).
2525 kmem_flagcheck(cachep, flags);
2528 * Get mem for the objs. Attempt to allocate a physical page from
2529 * 'nodeid'.
2531 objp = kmem_getpages(cachep, flags, nodeid);
2532 if (!objp)
2533 goto failed;
2535 /* Get slab management. */
2536 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
2537 if (!slabp)
2538 goto opps1;
2540 slabp->nodeid = nodeid;
2541 set_slab_attr(cachep, slabp, objp);
2543 cache_init_objs(cachep, slabp, ctor_flags);
2545 if (local_flags & __GFP_WAIT)
2546 local_irq_disable();
2547 check_irq_off();
2548 spin_lock(&l3->list_lock);
2550 /* Make slab active. */
2551 list_add_tail(&slabp->list, &(l3->slabs_free));
2552 STATS_INC_GROWN(cachep);
2553 l3->free_objects += cachep->num;
2554 spin_unlock(&l3->list_lock);
2555 return 1;
2556 opps1:
2557 kmem_freepages(cachep, objp);
2558 failed:
2559 if (local_flags & __GFP_WAIT)
2560 local_irq_disable();
2561 return 0;
2564 #if DEBUG
2567 * Perform extra freeing checks:
2568 * - detect bad pointers.
2569 * - POISON/RED_ZONE checking
2570 * - destructor calls, for caches with POISON+dtor
2572 static void kfree_debugcheck(const void *objp)
2574 struct page *page;
2576 if (!virt_addr_valid(objp)) {
2577 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2578 (unsigned long)objp);
2579 BUG();
2581 page = virt_to_page(objp);
2582 if (!PageSlab(page)) {
2583 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2584 (unsigned long)objp);
2585 BUG();
2589 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2590 void *caller)
2592 struct page *page;
2593 unsigned int objnr;
2594 struct slab *slabp;
2596 objp -= obj_offset(cachep);
2597 kfree_debugcheck(objp);
2598 page = virt_to_page(objp);
2600 if (page_get_cache(page) != cachep) {
2601 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2602 "cache %p, got %p\n",
2603 page_get_cache(page), cachep);
2604 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2605 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2606 page_get_cache(page)->name);
2607 WARN_ON(1);
2609 slabp = page_get_slab(page);
2611 if (cachep->flags & SLAB_RED_ZONE) {
2612 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2613 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2614 slab_error(cachep, "double free, or memory outside"
2615 " object was overwritten");
2616 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2617 "redzone 2:0x%lx.\n",
2618 objp, *dbg_redzone1(cachep, objp),
2619 *dbg_redzone2(cachep, objp));
2621 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2622 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2624 if (cachep->flags & SLAB_STORE_USER)
2625 *dbg_userword(cachep, objp) = caller;
2627 objnr = obj_to_index(cachep, slabp, objp);
2629 BUG_ON(objnr >= cachep->num);
2630 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2632 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2634 * Need to call the slab's constructor so the caller can
2635 * perform a verify of its state (debugging). Called without
2636 * the cache-lock held.
2638 cachep->ctor(objp + obj_offset(cachep),
2639 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2641 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2642 /* we want to cache poison the object,
2643 * call the destruction callback
2645 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2647 #ifdef CONFIG_DEBUG_SLAB_LEAK
2648 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2649 #endif
2650 if (cachep->flags & SLAB_POISON) {
2651 #ifdef CONFIG_DEBUG_PAGEALLOC
2652 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2653 store_stackinfo(cachep, objp, (unsigned long)caller);
2654 kernel_map_pages(virt_to_page(objp),
2655 cachep->buffer_size / PAGE_SIZE, 0);
2656 } else {
2657 poison_obj(cachep, objp, POISON_FREE);
2659 #else
2660 poison_obj(cachep, objp, POISON_FREE);
2661 #endif
2663 return objp;
2666 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2668 kmem_bufctl_t i;
2669 int entries = 0;
2671 /* Check slab's freelist to see if this obj is there. */
2672 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2673 entries++;
2674 if (entries > cachep->num || i >= cachep->num)
2675 goto bad;
2677 if (entries != cachep->num - slabp->inuse) {
2678 bad:
2679 printk(KERN_ERR "slab: Internal list corruption detected in "
2680 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2681 cachep->name, cachep->num, slabp, slabp->inuse);
2682 for (i = 0;
2683 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2684 i++) {
2685 if (i % 16 == 0)
2686 printk("\n%03x:", i);
2687 printk(" %02x", ((unsigned char *)slabp)[i]);
2689 printk("\n");
2690 BUG();
2693 #else
2694 #define kfree_debugcheck(x) do { } while(0)
2695 #define cache_free_debugcheck(x,objp,z) (objp)
2696 #define check_slabp(x,y) do { } while(0)
2697 #endif
2699 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2701 int batchcount;
2702 struct kmem_list3 *l3;
2703 struct array_cache *ac;
2705 check_irq_off();
2706 ac = cpu_cache_get(cachep);
2707 retry:
2708 batchcount = ac->batchcount;
2709 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2711 * If there was little recent activity on this cache, then
2712 * perform only a partial refill. Otherwise we could generate
2713 * refill bouncing.
2715 batchcount = BATCHREFILL_LIMIT;
2717 l3 = cachep->nodelists[numa_node_id()];
2719 BUG_ON(ac->avail > 0 || !l3);
2720 spin_lock(&l3->list_lock);
2722 /* See if we can refill from the shared array */
2723 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2724 goto alloc_done;
2726 while (batchcount > 0) {
2727 struct list_head *entry;
2728 struct slab *slabp;
2729 /* Get slab alloc is to come from. */
2730 entry = l3->slabs_partial.next;
2731 if (entry == &l3->slabs_partial) {
2732 l3->free_touched = 1;
2733 entry = l3->slabs_free.next;
2734 if (entry == &l3->slabs_free)
2735 goto must_grow;
2738 slabp = list_entry(entry, struct slab, list);
2739 check_slabp(cachep, slabp);
2740 check_spinlock_acquired(cachep);
2741 while (slabp->inuse < cachep->num && batchcount--) {
2742 STATS_INC_ALLOCED(cachep);
2743 STATS_INC_ACTIVE(cachep);
2744 STATS_SET_HIGH(cachep);
2746 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2747 numa_node_id());
2749 check_slabp(cachep, slabp);
2751 /* move slabp to correct slabp list: */
2752 list_del(&slabp->list);
2753 if (slabp->free == BUFCTL_END)
2754 list_add(&slabp->list, &l3->slabs_full);
2755 else
2756 list_add(&slabp->list, &l3->slabs_partial);
2759 must_grow:
2760 l3->free_objects -= ac->avail;
2761 alloc_done:
2762 spin_unlock(&l3->list_lock);
2764 if (unlikely(!ac->avail)) {
2765 int x;
2766 x = cache_grow(cachep, flags, numa_node_id());
2768 /* cache_grow can reenable interrupts, then ac could change. */
2769 ac = cpu_cache_get(cachep);
2770 if (!x && ac->avail == 0) /* no objects in sight? abort */
2771 return NULL;
2773 if (!ac->avail) /* objects refilled by interrupt? */
2774 goto retry;
2776 ac->touched = 1;
2777 return ac->entry[--ac->avail];
2780 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2781 gfp_t flags)
2783 might_sleep_if(flags & __GFP_WAIT);
2784 #if DEBUG
2785 kmem_flagcheck(cachep, flags);
2786 #endif
2789 #if DEBUG
2790 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2791 gfp_t flags, void *objp, void *caller)
2793 if (!objp)
2794 return objp;
2795 if (cachep->flags & SLAB_POISON) {
2796 #ifdef CONFIG_DEBUG_PAGEALLOC
2797 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2798 kernel_map_pages(virt_to_page(objp),
2799 cachep->buffer_size / PAGE_SIZE, 1);
2800 else
2801 check_poison_obj(cachep, objp);
2802 #else
2803 check_poison_obj(cachep, objp);
2804 #endif
2805 poison_obj(cachep, objp, POISON_INUSE);
2807 if (cachep->flags & SLAB_STORE_USER)
2808 *dbg_userword(cachep, objp) = caller;
2810 if (cachep->flags & SLAB_RED_ZONE) {
2811 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2812 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2813 slab_error(cachep, "double free, or memory outside"
2814 " object was overwritten");
2815 printk(KERN_ERR
2816 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2817 objp, *dbg_redzone1(cachep, objp),
2818 *dbg_redzone2(cachep, objp));
2820 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2821 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2823 #ifdef CONFIG_DEBUG_SLAB_LEAK
2825 struct slab *slabp;
2826 unsigned objnr;
2828 slabp = page_get_slab(virt_to_page(objp));
2829 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2830 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2832 #endif
2833 objp += obj_offset(cachep);
2834 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2835 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2837 if (!(flags & __GFP_WAIT))
2838 ctor_flags |= SLAB_CTOR_ATOMIC;
2840 cachep->ctor(objp, cachep, ctor_flags);
2842 return objp;
2844 #else
2845 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2846 #endif
2848 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2850 void *objp;
2851 struct array_cache *ac;
2853 #ifdef CONFIG_NUMA
2854 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2855 objp = alternate_node_alloc(cachep, flags);
2856 if (objp != NULL)
2857 return objp;
2859 #endif
2861 check_irq_off();
2862 ac = cpu_cache_get(cachep);
2863 if (likely(ac->avail)) {
2864 STATS_INC_ALLOCHIT(cachep);
2865 ac->touched = 1;
2866 objp = ac->entry[--ac->avail];
2867 } else {
2868 STATS_INC_ALLOCMISS(cachep);
2869 objp = cache_alloc_refill(cachep, flags);
2871 return objp;
2874 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2875 gfp_t flags, void *caller)
2877 unsigned long save_flags;
2878 void *objp;
2880 cache_alloc_debugcheck_before(cachep, flags);
2882 local_irq_save(save_flags);
2883 objp = ____cache_alloc(cachep, flags);
2884 local_irq_restore(save_flags);
2885 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2886 caller);
2887 prefetchw(objp);
2888 return objp;
2891 #ifdef CONFIG_NUMA
2893 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2895 * If we are in_interrupt, then process context, including cpusets and
2896 * mempolicy, may not apply and should not be used for allocation policy.
2898 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2900 int nid_alloc, nid_here;
2902 if (in_interrupt())
2903 return NULL;
2904 nid_alloc = nid_here = numa_node_id();
2905 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2906 nid_alloc = cpuset_mem_spread_node();
2907 else if (current->mempolicy)
2908 nid_alloc = slab_node(current->mempolicy);
2909 if (nid_alloc != nid_here)
2910 return __cache_alloc_node(cachep, flags, nid_alloc);
2911 return NULL;
2915 * A interface to enable slab creation on nodeid
2917 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2918 int nodeid)
2920 struct list_head *entry;
2921 struct slab *slabp;
2922 struct kmem_list3 *l3;
2923 void *obj;
2924 int x;
2926 l3 = cachep->nodelists[nodeid];
2927 BUG_ON(!l3);
2929 retry:
2930 check_irq_off();
2931 spin_lock(&l3->list_lock);
2932 entry = l3->slabs_partial.next;
2933 if (entry == &l3->slabs_partial) {
2934 l3->free_touched = 1;
2935 entry = l3->slabs_free.next;
2936 if (entry == &l3->slabs_free)
2937 goto must_grow;
2940 slabp = list_entry(entry, struct slab, list);
2941 check_spinlock_acquired_node(cachep, nodeid);
2942 check_slabp(cachep, slabp);
2944 STATS_INC_NODEALLOCS(cachep);
2945 STATS_INC_ACTIVE(cachep);
2946 STATS_SET_HIGH(cachep);
2948 BUG_ON(slabp->inuse == cachep->num);
2950 obj = slab_get_obj(cachep, slabp, nodeid);
2951 check_slabp(cachep, slabp);
2952 l3->free_objects--;
2953 /* move slabp to correct slabp list: */
2954 list_del(&slabp->list);
2956 if (slabp->free == BUFCTL_END)
2957 list_add(&slabp->list, &l3->slabs_full);
2958 else
2959 list_add(&slabp->list, &l3->slabs_partial);
2961 spin_unlock(&l3->list_lock);
2962 goto done;
2964 must_grow:
2965 spin_unlock(&l3->list_lock);
2966 x = cache_grow(cachep, flags, nodeid);
2968 if (!x)
2969 return NULL;
2971 goto retry;
2972 done:
2973 return obj;
2975 #endif
2978 * Caller needs to acquire correct kmem_list's list_lock
2980 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2981 int node)
2983 int i;
2984 struct kmem_list3 *l3;
2986 for (i = 0; i < nr_objects; i++) {
2987 void *objp = objpp[i];
2988 struct slab *slabp;
2990 slabp = virt_to_slab(objp);
2991 l3 = cachep->nodelists[node];
2992 list_del(&slabp->list);
2993 check_spinlock_acquired_node(cachep, node);
2994 check_slabp(cachep, slabp);
2995 slab_put_obj(cachep, slabp, objp, node);
2996 STATS_DEC_ACTIVE(cachep);
2997 l3->free_objects++;
2998 check_slabp(cachep, slabp);
3000 /* fixup slab chains */
3001 if (slabp->inuse == 0) {
3002 if (l3->free_objects > l3->free_limit) {
3003 l3->free_objects -= cachep->num;
3004 slab_destroy(cachep, slabp);
3005 } else {
3006 list_add(&slabp->list, &l3->slabs_free);
3008 } else {
3009 /* Unconditionally move a slab to the end of the
3010 * partial list on free - maximum time for the
3011 * other objects to be freed, too.
3013 list_add_tail(&slabp->list, &l3->slabs_partial);
3018 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3020 int batchcount;
3021 struct kmem_list3 *l3;
3022 int node = numa_node_id();
3024 batchcount = ac->batchcount;
3025 #if DEBUG
3026 BUG_ON(!batchcount || batchcount > ac->avail);
3027 #endif
3028 check_irq_off();
3029 l3 = cachep->nodelists[node];
3030 spin_lock(&l3->list_lock);
3031 if (l3->shared) {
3032 struct array_cache *shared_array = l3->shared;
3033 int max = shared_array->limit - shared_array->avail;
3034 if (max) {
3035 if (batchcount > max)
3036 batchcount = max;
3037 memcpy(&(shared_array->entry[shared_array->avail]),
3038 ac->entry, sizeof(void *) * batchcount);
3039 shared_array->avail += batchcount;
3040 goto free_done;
3044 free_block(cachep, ac->entry, batchcount, node);
3045 free_done:
3046 #if STATS
3048 int i = 0;
3049 struct list_head *p;
3051 p = l3->slabs_free.next;
3052 while (p != &(l3->slabs_free)) {
3053 struct slab *slabp;
3055 slabp = list_entry(p, struct slab, list);
3056 BUG_ON(slabp->inuse);
3058 i++;
3059 p = p->next;
3061 STATS_SET_FREEABLE(cachep, i);
3063 #endif
3064 spin_unlock(&l3->list_lock);
3065 ac->avail -= batchcount;
3066 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3070 * Release an obj back to its cache. If the obj has a constructed state, it must
3071 * be in this state _before_ it is released. Called with disabled ints.
3073 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3075 struct array_cache *ac = cpu_cache_get(cachep);
3077 check_irq_off();
3078 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3080 /* Make sure we are not freeing a object from another
3081 * node to the array cache on this cpu.
3083 #ifdef CONFIG_NUMA
3085 struct slab *slabp;
3086 slabp = virt_to_slab(objp);
3087 if (unlikely(slabp->nodeid != numa_node_id())) {
3088 struct array_cache *alien = NULL;
3089 int nodeid = slabp->nodeid;
3090 struct kmem_list3 *l3;
3092 l3 = cachep->nodelists[numa_node_id()];
3093 STATS_INC_NODEFREES(cachep);
3094 if (l3->alien && l3->alien[nodeid]) {
3095 alien = l3->alien[nodeid];
3096 spin_lock(&alien->lock);
3097 if (unlikely(alien->avail == alien->limit)) {
3098 STATS_INC_ACOVERFLOW(cachep);
3099 __drain_alien_cache(cachep,
3100 alien, nodeid);
3102 alien->entry[alien->avail++] = objp;
3103 spin_unlock(&alien->lock);
3104 } else {
3105 spin_lock(&(cachep->nodelists[nodeid])->
3106 list_lock);
3107 free_block(cachep, &objp, 1, nodeid);
3108 spin_unlock(&(cachep->nodelists[nodeid])->
3109 list_lock);
3111 return;
3114 #endif
3115 if (likely(ac->avail < ac->limit)) {
3116 STATS_INC_FREEHIT(cachep);
3117 ac->entry[ac->avail++] = objp;
3118 return;
3119 } else {
3120 STATS_INC_FREEMISS(cachep);
3121 cache_flusharray(cachep, ac);
3122 ac->entry[ac->avail++] = objp;
3127 * kmem_cache_alloc - Allocate an object
3128 * @cachep: The cache to allocate from.
3129 * @flags: See kmalloc().
3131 * Allocate an object from this cache. The flags are only relevant
3132 * if the cache has no available objects.
3134 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3136 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3138 EXPORT_SYMBOL(kmem_cache_alloc);
3141 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
3142 * @cache: The cache to allocate from.
3143 * @flags: See kmalloc().
3145 * Allocate an object from this cache and set the allocated memory to zero.
3146 * The flags are only relevant if the cache has no available objects.
3148 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3150 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3151 if (ret)
3152 memset(ret, 0, obj_size(cache));
3153 return ret;
3155 EXPORT_SYMBOL(kmem_cache_zalloc);
3158 * kmem_ptr_validate - check if an untrusted pointer might
3159 * be a slab entry.
3160 * @cachep: the cache we're checking against
3161 * @ptr: pointer to validate
3163 * This verifies that the untrusted pointer looks sane:
3164 * it is _not_ a guarantee that the pointer is actually
3165 * part of the slab cache in question, but it at least
3166 * validates that the pointer can be dereferenced and
3167 * looks half-way sane.
3169 * Currently only used for dentry validation.
3171 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3173 unsigned long addr = (unsigned long)ptr;
3174 unsigned long min_addr = PAGE_OFFSET;
3175 unsigned long align_mask = BYTES_PER_WORD - 1;
3176 unsigned long size = cachep->buffer_size;
3177 struct page *page;
3179 if (unlikely(addr < min_addr))
3180 goto out;
3181 if (unlikely(addr > (unsigned long)high_memory - size))
3182 goto out;
3183 if (unlikely(addr & align_mask))
3184 goto out;
3185 if (unlikely(!kern_addr_valid(addr)))
3186 goto out;
3187 if (unlikely(!kern_addr_valid(addr + size - 1)))
3188 goto out;
3189 page = virt_to_page(ptr);
3190 if (unlikely(!PageSlab(page)))
3191 goto out;
3192 if (unlikely(page_get_cache(page) != cachep))
3193 goto out;
3194 return 1;
3195 out:
3196 return 0;
3199 #ifdef CONFIG_NUMA
3201 * kmem_cache_alloc_node - Allocate an object on the specified node
3202 * @cachep: The cache to allocate from.
3203 * @flags: See kmalloc().
3204 * @nodeid: node number of the target node.
3206 * Identical to kmem_cache_alloc, except that this function is slow
3207 * and can sleep. And it will allocate memory on the given node, which
3208 * can improve the performance for cpu bound structures.
3209 * New and improved: it will now make sure that the object gets
3210 * put on the correct node list so that there is no false sharing.
3212 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3214 unsigned long save_flags;
3215 void *ptr;
3217 cache_alloc_debugcheck_before(cachep, flags);
3218 local_irq_save(save_flags);
3220 if (nodeid == -1 || nodeid == numa_node_id() ||
3221 !cachep->nodelists[nodeid])
3222 ptr = ____cache_alloc(cachep, flags);
3223 else
3224 ptr = __cache_alloc_node(cachep, flags, nodeid);
3225 local_irq_restore(save_flags);
3227 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3228 __builtin_return_address(0));
3230 return ptr;
3232 EXPORT_SYMBOL(kmem_cache_alloc_node);
3234 void *kmalloc_node(size_t size, gfp_t flags, int node)
3236 struct kmem_cache *cachep;
3238 cachep = kmem_find_general_cachep(size, flags);
3239 if (unlikely(cachep == NULL))
3240 return NULL;
3241 return kmem_cache_alloc_node(cachep, flags, node);
3243 EXPORT_SYMBOL(kmalloc_node);
3244 #endif
3247 * kmalloc - allocate memory
3248 * @size: how many bytes of memory are required.
3249 * @flags: the type of memory to allocate.
3250 * @caller: function caller for debug tracking of the caller
3252 * kmalloc is the normal method of allocating memory
3253 * in the kernel.
3255 * The @flags argument may be one of:
3257 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3259 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3261 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3263 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3264 * must be suitable for DMA. This can mean different things on different
3265 * platforms. For example, on i386, it means that the memory must come
3266 * from the first 16MB.
3268 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3269 void *caller)
3271 struct kmem_cache *cachep;
3273 /* If you want to save a few bytes .text space: replace
3274 * __ with kmem_.
3275 * Then kmalloc uses the uninlined functions instead of the inline
3276 * functions.
3278 cachep = __find_general_cachep(size, flags);
3279 if (unlikely(cachep == NULL))
3280 return NULL;
3281 return __cache_alloc(cachep, flags, caller);
3285 void *__kmalloc(size_t size, gfp_t flags)
3287 #ifndef CONFIG_DEBUG_SLAB
3288 return __do_kmalloc(size, flags, NULL);
3289 #else
3290 return __do_kmalloc(size, flags, __builtin_return_address(0));
3291 #endif
3293 EXPORT_SYMBOL(__kmalloc);
3295 #ifdef CONFIG_DEBUG_SLAB
3296 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3298 return __do_kmalloc(size, flags, caller);
3300 EXPORT_SYMBOL(__kmalloc_track_caller);
3301 #endif
3303 #ifdef CONFIG_SMP
3305 * __alloc_percpu - allocate one copy of the object for every present
3306 * cpu in the system, zeroing them.
3307 * Objects should be dereferenced using the per_cpu_ptr macro only.
3309 * @size: how many bytes of memory are required.
3311 void *__alloc_percpu(size_t size)
3313 int i;
3314 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3316 if (!pdata)
3317 return NULL;
3320 * Cannot use for_each_online_cpu since a cpu may come online
3321 * and we have no way of figuring out how to fix the array
3322 * that we have allocated then....
3324 for_each_possible_cpu(i) {
3325 int node = cpu_to_node(i);
3327 if (node_online(node))
3328 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3329 else
3330 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3332 if (!pdata->ptrs[i])
3333 goto unwind_oom;
3334 memset(pdata->ptrs[i], 0, size);
3337 /* Catch derefs w/o wrappers */
3338 return (void *)(~(unsigned long)pdata);
3340 unwind_oom:
3341 while (--i >= 0) {
3342 if (!cpu_possible(i))
3343 continue;
3344 kfree(pdata->ptrs[i]);
3346 kfree(pdata);
3347 return NULL;
3349 EXPORT_SYMBOL(__alloc_percpu);
3350 #endif
3353 * kmem_cache_free - Deallocate an object
3354 * @cachep: The cache the allocation was from.
3355 * @objp: The previously allocated object.
3357 * Free an object which was previously allocated from this
3358 * cache.
3360 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3362 unsigned long flags;
3364 local_irq_save(flags);
3365 __cache_free(cachep, objp);
3366 local_irq_restore(flags);
3368 EXPORT_SYMBOL(kmem_cache_free);
3371 * kfree - free previously allocated memory
3372 * @objp: pointer returned by kmalloc.
3374 * If @objp is NULL, no operation is performed.
3376 * Don't free memory not originally allocated by kmalloc()
3377 * or you will run into trouble.
3379 void kfree(const void *objp)
3381 struct kmem_cache *c;
3382 unsigned long flags;
3384 if (unlikely(!objp))
3385 return;
3386 local_irq_save(flags);
3387 kfree_debugcheck(objp);
3388 c = virt_to_cache(objp);
3389 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3390 __cache_free(c, (void *)objp);
3391 local_irq_restore(flags);
3393 EXPORT_SYMBOL(kfree);
3395 #ifdef CONFIG_SMP
3397 * free_percpu - free previously allocated percpu memory
3398 * @objp: pointer returned by alloc_percpu.
3400 * Don't free memory not originally allocated by alloc_percpu()
3401 * The complemented objp is to check for that.
3403 void free_percpu(const void *objp)
3405 int i;
3406 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3409 * We allocate for all cpus so we cannot use for online cpu here.
3411 for_each_possible_cpu(i)
3412 kfree(p->ptrs[i]);
3413 kfree(p);
3415 EXPORT_SYMBOL(free_percpu);
3416 #endif
3418 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3420 return obj_size(cachep);
3422 EXPORT_SYMBOL(kmem_cache_size);
3424 const char *kmem_cache_name(struct kmem_cache *cachep)
3426 return cachep->name;
3428 EXPORT_SYMBOL_GPL(kmem_cache_name);
3431 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3433 static int alloc_kmemlist(struct kmem_cache *cachep)
3435 int node;
3436 struct kmem_list3 *l3;
3437 struct array_cache *new_shared;
3438 struct array_cache **new_alien;
3440 for_each_online_node(node) {
3442 new_alien = alloc_alien_cache(node, cachep->limit);
3443 if (!new_alien)
3444 goto fail;
3446 new_shared = alloc_arraycache(node,
3447 cachep->shared*cachep->batchcount,
3448 0xbaadf00d);
3449 if (!new_shared) {
3450 free_alien_cache(new_alien);
3451 goto fail;
3454 l3 = cachep->nodelists[node];
3455 if (l3) {
3456 struct array_cache *shared = l3->shared;
3458 spin_lock_irq(&l3->list_lock);
3460 if (shared)
3461 free_block(cachep, shared->entry,
3462 shared->avail, node);
3464 l3->shared = new_shared;
3465 if (!l3->alien) {
3466 l3->alien = new_alien;
3467 new_alien = NULL;
3469 l3->free_limit = (1 + nr_cpus_node(node)) *
3470 cachep->batchcount + cachep->num;
3471 spin_unlock_irq(&l3->list_lock);
3472 kfree(shared);
3473 free_alien_cache(new_alien);
3474 continue;
3476 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3477 if (!l3) {
3478 free_alien_cache(new_alien);
3479 kfree(new_shared);
3480 goto fail;
3483 kmem_list3_init(l3);
3484 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3485 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3486 l3->shared = new_shared;
3487 l3->alien = new_alien;
3488 l3->free_limit = (1 + nr_cpus_node(node)) *
3489 cachep->batchcount + cachep->num;
3490 cachep->nodelists[node] = l3;
3492 return 0;
3494 fail:
3495 if (!cachep->next.next) {
3496 /* Cache is not active yet. Roll back what we did */
3497 node--;
3498 while (node >= 0) {
3499 if (cachep->nodelists[node]) {
3500 l3 = cachep->nodelists[node];
3502 kfree(l3->shared);
3503 free_alien_cache(l3->alien);
3504 kfree(l3);
3505 cachep->nodelists[node] = NULL;
3507 node--;
3510 return -ENOMEM;
3513 struct ccupdate_struct {
3514 struct kmem_cache *cachep;
3515 struct array_cache *new[NR_CPUS];
3518 static void do_ccupdate_local(void *info)
3520 struct ccupdate_struct *new = info;
3521 struct array_cache *old;
3523 check_irq_off();
3524 old = cpu_cache_get(new->cachep);
3526 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3527 new->new[smp_processor_id()] = old;
3530 /* Always called with the cache_chain_mutex held */
3531 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3532 int batchcount, int shared)
3534 struct ccupdate_struct new;
3535 int i, err;
3537 memset(&new.new, 0, sizeof(new.new));
3538 for_each_online_cpu(i) {
3539 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3540 batchcount);
3541 if (!new.new[i]) {
3542 for (i--; i >= 0; i--)
3543 kfree(new.new[i]);
3544 return -ENOMEM;
3547 new.cachep = cachep;
3549 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3551 check_irq_on();
3552 cachep->batchcount = batchcount;
3553 cachep->limit = limit;
3554 cachep->shared = shared;
3556 for_each_online_cpu(i) {
3557 struct array_cache *ccold = new.new[i];
3558 if (!ccold)
3559 continue;
3560 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3561 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3562 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3563 kfree(ccold);
3566 err = alloc_kmemlist(cachep);
3567 if (err) {
3568 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3569 cachep->name, -err);
3570 BUG();
3572 return 0;
3575 /* Called with cache_chain_mutex held always */
3576 static void enable_cpucache(struct kmem_cache *cachep)
3578 int err;
3579 int limit, shared;
3582 * The head array serves three purposes:
3583 * - create a LIFO ordering, i.e. return objects that are cache-warm
3584 * - reduce the number of spinlock operations.
3585 * - reduce the number of linked list operations on the slab and
3586 * bufctl chains: array operations are cheaper.
3587 * The numbers are guessed, we should auto-tune as described by
3588 * Bonwick.
3590 if (cachep->buffer_size > 131072)
3591 limit = 1;
3592 else if (cachep->buffer_size > PAGE_SIZE)
3593 limit = 8;
3594 else if (cachep->buffer_size > 1024)
3595 limit = 24;
3596 else if (cachep->buffer_size > 256)
3597 limit = 54;
3598 else
3599 limit = 120;
3602 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3603 * allocation behaviour: Most allocs on one cpu, most free operations
3604 * on another cpu. For these cases, an efficient object passing between
3605 * cpus is necessary. This is provided by a shared array. The array
3606 * replaces Bonwick's magazine layer.
3607 * On uniprocessor, it's functionally equivalent (but less efficient)
3608 * to a larger limit. Thus disabled by default.
3610 shared = 0;
3611 #ifdef CONFIG_SMP
3612 if (cachep->buffer_size <= PAGE_SIZE)
3613 shared = 8;
3614 #endif
3616 #if DEBUG
3618 * With debugging enabled, large batchcount lead to excessively long
3619 * periods with disabled local interrupts. Limit the batchcount
3621 if (limit > 32)
3622 limit = 32;
3623 #endif
3624 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3625 if (err)
3626 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3627 cachep->name, -err);
3631 * Drain an array if it contains any elements taking the l3 lock only if
3632 * necessary. Note that the l3 listlock also protects the array_cache
3633 * if drain_array() is used on the shared array.
3635 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3636 struct array_cache *ac, int force, int node)
3638 int tofree;
3640 if (!ac || !ac->avail)
3641 return;
3642 if (ac->touched && !force) {
3643 ac->touched = 0;
3644 } else {
3645 spin_lock_irq(&l3->list_lock);
3646 if (ac->avail) {
3647 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3648 if (tofree > ac->avail)
3649 tofree = (ac->avail + 1) / 2;
3650 free_block(cachep, ac->entry, tofree, node);
3651 ac->avail -= tofree;
3652 memmove(ac->entry, &(ac->entry[tofree]),
3653 sizeof(void *) * ac->avail);
3655 spin_unlock_irq(&l3->list_lock);
3660 * cache_reap - Reclaim memory from caches.
3661 * @unused: unused parameter
3663 * Called from workqueue/eventd every few seconds.
3664 * Purpose:
3665 * - clear the per-cpu caches for this CPU.
3666 * - return freeable pages to the main free memory pool.
3668 * If we cannot acquire the cache chain mutex then just give up - we'll try
3669 * again on the next iteration.
3671 static void cache_reap(void *unused)
3673 struct list_head *walk;
3674 struct kmem_list3 *l3;
3675 int node = numa_node_id();
3677 if (!mutex_trylock(&cache_chain_mutex)) {
3678 /* Give up. Setup the next iteration. */
3679 schedule_delayed_work(&__get_cpu_var(reap_work),
3680 REAPTIMEOUT_CPUC);
3681 return;
3684 list_for_each(walk, &cache_chain) {
3685 struct kmem_cache *searchp;
3686 struct list_head *p;
3687 int tofree;
3688 struct slab *slabp;
3690 searchp = list_entry(walk, struct kmem_cache, next);
3691 check_irq_on();
3694 * We only take the l3 lock if absolutely necessary and we
3695 * have established with reasonable certainty that
3696 * we can do some work if the lock was obtained.
3698 l3 = searchp->nodelists[node];
3700 reap_alien(searchp, l3);
3702 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
3705 * These are racy checks but it does not matter
3706 * if we skip one check or scan twice.
3708 if (time_after(l3->next_reap, jiffies))
3709 goto next;
3711 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3713 drain_array(searchp, l3, l3->shared, 0, node);
3715 if (l3->free_touched) {
3716 l3->free_touched = 0;
3717 goto next;
3720 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3721 (5 * searchp->num);
3722 do {
3724 * Do not lock if there are no free blocks.
3726 if (list_empty(&l3->slabs_free))
3727 break;
3729 spin_lock_irq(&l3->list_lock);
3730 p = l3->slabs_free.next;
3731 if (p == &(l3->slabs_free)) {
3732 spin_unlock_irq(&l3->list_lock);
3733 break;
3736 slabp = list_entry(p, struct slab, list);
3737 BUG_ON(slabp->inuse);
3738 list_del(&slabp->list);
3739 STATS_INC_REAPED(searchp);
3742 * Safe to drop the lock. The slab is no longer linked
3743 * to the cache. searchp cannot disappear, we hold
3744 * cache_chain_lock
3746 l3->free_objects -= searchp->num;
3747 spin_unlock_irq(&l3->list_lock);
3748 slab_destroy(searchp, slabp);
3749 } while (--tofree > 0);
3750 next:
3751 cond_resched();
3753 check_irq_on();
3754 mutex_unlock(&cache_chain_mutex);
3755 next_reap_node();
3756 /* Set up the next iteration */
3757 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3760 #ifdef CONFIG_PROC_FS
3762 static void print_slabinfo_header(struct seq_file *m)
3765 * Output format version, so at least we can change it
3766 * without _too_ many complaints.
3768 #if STATS
3769 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3770 #else
3771 seq_puts(m, "slabinfo - version: 2.1\n");
3772 #endif
3773 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3774 "<objperslab> <pagesperslab>");
3775 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3776 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3777 #if STATS
3778 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3779 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3780 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3781 #endif
3782 seq_putc(m, '\n');
3785 static void *s_start(struct seq_file *m, loff_t *pos)
3787 loff_t n = *pos;
3788 struct list_head *p;
3790 mutex_lock(&cache_chain_mutex);
3791 if (!n)
3792 print_slabinfo_header(m);
3793 p = cache_chain.next;
3794 while (n--) {
3795 p = p->next;
3796 if (p == &cache_chain)
3797 return NULL;
3799 return list_entry(p, struct kmem_cache, next);
3802 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3804 struct kmem_cache *cachep = p;
3805 ++*pos;
3806 return cachep->next.next == &cache_chain ?
3807 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3810 static void s_stop(struct seq_file *m, void *p)
3812 mutex_unlock(&cache_chain_mutex);
3815 static int s_show(struct seq_file *m, void *p)
3817 struct kmem_cache *cachep = p;
3818 struct list_head *q;
3819 struct slab *slabp;
3820 unsigned long active_objs;
3821 unsigned long num_objs;
3822 unsigned long active_slabs = 0;
3823 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3824 const char *name;
3825 char *error = NULL;
3826 int node;
3827 struct kmem_list3 *l3;
3829 active_objs = 0;
3830 num_slabs = 0;
3831 for_each_online_node(node) {
3832 l3 = cachep->nodelists[node];
3833 if (!l3)
3834 continue;
3836 check_irq_on();
3837 spin_lock_irq(&l3->list_lock);
3839 list_for_each(q, &l3->slabs_full) {
3840 slabp = list_entry(q, struct slab, list);
3841 if (slabp->inuse != cachep->num && !error)
3842 error = "slabs_full accounting error";
3843 active_objs += cachep->num;
3844 active_slabs++;
3846 list_for_each(q, &l3->slabs_partial) {
3847 slabp = list_entry(q, struct slab, list);
3848 if (slabp->inuse == cachep->num && !error)
3849 error = "slabs_partial inuse accounting error";
3850 if (!slabp->inuse && !error)
3851 error = "slabs_partial/inuse accounting error";
3852 active_objs += slabp->inuse;
3853 active_slabs++;
3855 list_for_each(q, &l3->slabs_free) {
3856 slabp = list_entry(q, struct slab, list);
3857 if (slabp->inuse && !error)
3858 error = "slabs_free/inuse accounting error";
3859 num_slabs++;
3861 free_objects += l3->free_objects;
3862 if (l3->shared)
3863 shared_avail += l3->shared->avail;
3865 spin_unlock_irq(&l3->list_lock);
3867 num_slabs += active_slabs;
3868 num_objs = num_slabs * cachep->num;
3869 if (num_objs - active_objs != free_objects && !error)
3870 error = "free_objects accounting error";
3872 name = cachep->name;
3873 if (error)
3874 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3876 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3877 name, active_objs, num_objs, cachep->buffer_size,
3878 cachep->num, (1 << cachep->gfporder));
3879 seq_printf(m, " : tunables %4u %4u %4u",
3880 cachep->limit, cachep->batchcount, cachep->shared);
3881 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3882 active_slabs, num_slabs, shared_avail);
3883 #if STATS
3884 { /* list3 stats */
3885 unsigned long high = cachep->high_mark;
3886 unsigned long allocs = cachep->num_allocations;
3887 unsigned long grown = cachep->grown;
3888 unsigned long reaped = cachep->reaped;
3889 unsigned long errors = cachep->errors;
3890 unsigned long max_freeable = cachep->max_freeable;
3891 unsigned long node_allocs = cachep->node_allocs;
3892 unsigned long node_frees = cachep->node_frees;
3893 unsigned long overflows = cachep->node_overflow;
3895 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3896 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
3897 reaped, errors, max_freeable, node_allocs,
3898 node_frees, overflows);
3900 /* cpu stats */
3902 unsigned long allochit = atomic_read(&cachep->allochit);
3903 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3904 unsigned long freehit = atomic_read(&cachep->freehit);
3905 unsigned long freemiss = atomic_read(&cachep->freemiss);
3907 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3908 allochit, allocmiss, freehit, freemiss);
3910 #endif
3911 seq_putc(m, '\n');
3912 return 0;
3916 * slabinfo_op - iterator that generates /proc/slabinfo
3918 * Output layout:
3919 * cache-name
3920 * num-active-objs
3921 * total-objs
3922 * object size
3923 * num-active-slabs
3924 * total-slabs
3925 * num-pages-per-slab
3926 * + further values on SMP and with statistics enabled
3929 struct seq_operations slabinfo_op = {
3930 .start = s_start,
3931 .next = s_next,
3932 .stop = s_stop,
3933 .show = s_show,
3936 #define MAX_SLABINFO_WRITE 128
3938 * slabinfo_write - Tuning for the slab allocator
3939 * @file: unused
3940 * @buffer: user buffer
3941 * @count: data length
3942 * @ppos: unused
3944 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3945 size_t count, loff_t *ppos)
3947 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3948 int limit, batchcount, shared, res;
3949 struct list_head *p;
3951 if (count > MAX_SLABINFO_WRITE)
3952 return -EINVAL;
3953 if (copy_from_user(&kbuf, buffer, count))
3954 return -EFAULT;
3955 kbuf[MAX_SLABINFO_WRITE] = '\0';
3957 tmp = strchr(kbuf, ' ');
3958 if (!tmp)
3959 return -EINVAL;
3960 *tmp = '\0';
3961 tmp++;
3962 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3963 return -EINVAL;
3965 /* Find the cache in the chain of caches. */
3966 mutex_lock(&cache_chain_mutex);
3967 res = -EINVAL;
3968 list_for_each(p, &cache_chain) {
3969 struct kmem_cache *cachep;
3971 cachep = list_entry(p, struct kmem_cache, next);
3972 if (!strcmp(cachep->name, kbuf)) {
3973 if (limit < 1 || batchcount < 1 ||
3974 batchcount > limit || shared < 0) {
3975 res = 0;
3976 } else {
3977 res = do_tune_cpucache(cachep, limit,
3978 batchcount, shared);
3980 break;
3983 mutex_unlock(&cache_chain_mutex);
3984 if (res >= 0)
3985 res = count;
3986 return res;
3989 #ifdef CONFIG_DEBUG_SLAB_LEAK
3991 static void *leaks_start(struct seq_file *m, loff_t *pos)
3993 loff_t n = *pos;
3994 struct list_head *p;
3996 mutex_lock(&cache_chain_mutex);
3997 p = cache_chain.next;
3998 while (n--) {
3999 p = p->next;
4000 if (p == &cache_chain)
4001 return NULL;
4003 return list_entry(p, struct kmem_cache, next);
4006 static inline int add_caller(unsigned long *n, unsigned long v)
4008 unsigned long *p;
4009 int l;
4010 if (!v)
4011 return 1;
4012 l = n[1];
4013 p = n + 2;
4014 while (l) {
4015 int i = l/2;
4016 unsigned long *q = p + 2 * i;
4017 if (*q == v) {
4018 q[1]++;
4019 return 1;
4021 if (*q > v) {
4022 l = i;
4023 } else {
4024 p = q + 2;
4025 l -= i + 1;
4028 if (++n[1] == n[0])
4029 return 0;
4030 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4031 p[0] = v;
4032 p[1] = 1;
4033 return 1;
4036 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4038 void *p;
4039 int i;
4040 if (n[0] == n[1])
4041 return;
4042 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4043 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4044 continue;
4045 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4046 return;
4050 static void show_symbol(struct seq_file *m, unsigned long address)
4052 #ifdef CONFIG_KALLSYMS
4053 char *modname;
4054 const char *name;
4055 unsigned long offset, size;
4056 char namebuf[KSYM_NAME_LEN+1];
4058 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4060 if (name) {
4061 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4062 if (modname)
4063 seq_printf(m, " [%s]", modname);
4064 return;
4066 #endif
4067 seq_printf(m, "%p", (void *)address);
4070 static int leaks_show(struct seq_file *m, void *p)
4072 struct kmem_cache *cachep = p;
4073 struct list_head *q;
4074 struct slab *slabp;
4075 struct kmem_list3 *l3;
4076 const char *name;
4077 unsigned long *n = m->private;
4078 int node;
4079 int i;
4081 if (!(cachep->flags & SLAB_STORE_USER))
4082 return 0;
4083 if (!(cachep->flags & SLAB_RED_ZONE))
4084 return 0;
4086 /* OK, we can do it */
4088 n[1] = 0;
4090 for_each_online_node(node) {
4091 l3 = cachep->nodelists[node];
4092 if (!l3)
4093 continue;
4095 check_irq_on();
4096 spin_lock_irq(&l3->list_lock);
4098 list_for_each(q, &l3->slabs_full) {
4099 slabp = list_entry(q, struct slab, list);
4100 handle_slab(n, cachep, slabp);
4102 list_for_each(q, &l3->slabs_partial) {
4103 slabp = list_entry(q, struct slab, list);
4104 handle_slab(n, cachep, slabp);
4106 spin_unlock_irq(&l3->list_lock);
4108 name = cachep->name;
4109 if (n[0] == n[1]) {
4110 /* Increase the buffer size */
4111 mutex_unlock(&cache_chain_mutex);
4112 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4113 if (!m->private) {
4114 /* Too bad, we are really out */
4115 m->private = n;
4116 mutex_lock(&cache_chain_mutex);
4117 return -ENOMEM;
4119 *(unsigned long *)m->private = n[0] * 2;
4120 kfree(n);
4121 mutex_lock(&cache_chain_mutex);
4122 /* Now make sure this entry will be retried */
4123 m->count = m->size;
4124 return 0;
4126 for (i = 0; i < n[1]; i++) {
4127 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4128 show_symbol(m, n[2*i+2]);
4129 seq_putc(m, '\n');
4131 return 0;
4134 struct seq_operations slabstats_op = {
4135 .start = leaks_start,
4136 .next = s_next,
4137 .stop = s_stop,
4138 .show = leaks_show,
4140 #endif
4141 #endif
4144 * ksize - get the actual amount of memory allocated for a given object
4145 * @objp: Pointer to the object
4147 * kmalloc may internally round up allocations and return more memory
4148 * than requested. ksize() can be used to determine the actual amount of
4149 * memory allocated. The caller may use this additional memory, even though
4150 * a smaller amount of memory was initially specified with the kmalloc call.
4151 * The caller must guarantee that objp points to a valid object previously
4152 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4153 * must not be freed during the duration of the call.
4155 unsigned int ksize(const void *objp)
4157 if (unlikely(objp == NULL))
4158 return 0;
4160 return obj_size(virt_to_cache(objp));