ext4: Fix BUG_ON at fs/buffer.c:652 in no journal mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob7a4466613503bd28865fe99b13acc40080bedc55
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 if (err)
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1029 ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032 if (count > blocks_to_boundary)
1033 set_buffer_boundary(bh_result);
1034 err = count;
1035 /* Clean up and exit */
1036 partial = chain + depth - 1; /* the whole chain */
1037 cleanup:
1038 while (partial > chain) {
1039 BUFFER_TRACE(partial->bh, "call brelse");
1040 brelse(partial->bh);
1041 partial--;
1043 BUFFER_TRACE(bh_result, "returned");
1044 out:
1045 return err;
1048 #ifdef CONFIG_QUOTA
1049 qsize_t *ext4_get_reserved_space(struct inode *inode)
1051 return &EXT4_I(inode)->i_reserved_quota;
1053 #endif
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate a new block at @lblocks for non extent file based file
1059 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1060 sector_t lblock)
1062 struct ext4_inode_info *ei = EXT4_I(inode);
1063 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1064 int blk_bits;
1066 if (lblock < EXT4_NDIR_BLOCKS)
1067 return 0;
1069 lblock -= EXT4_NDIR_BLOCKS;
1071 if (ei->i_da_metadata_calc_len &&
1072 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1073 ei->i_da_metadata_calc_len++;
1074 return 0;
1076 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1077 ei->i_da_metadata_calc_len = 1;
1078 blk_bits = roundup_pow_of_two(lblock + 1);
1079 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1083 * Calculate the number of metadata blocks need to reserve
1084 * to allocate a block located at @lblock
1086 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1088 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1089 return ext4_ext_calc_metadata_amount(inode, lblock);
1091 return ext4_indirect_calc_metadata_amount(inode, lblock);
1095 * Called with i_data_sem down, which is important since we can call
1096 * ext4_discard_preallocations() from here.
1098 void ext4_da_update_reserve_space(struct inode *inode,
1099 int used, int quota_claim)
1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 struct ext4_inode_info *ei = EXT4_I(inode);
1103 int mdb_free = 0, allocated_meta_blocks = 0;
1105 spin_lock(&ei->i_block_reservation_lock);
1106 if (unlikely(used > ei->i_reserved_data_blocks)) {
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1108 "with only %d reserved data blocks\n",
1109 __func__, inode->i_ino, used,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 used = ei->i_reserved_data_blocks;
1115 /* Update per-inode reservations */
1116 ei->i_reserved_data_blocks -= used;
1117 used += ei->i_allocated_meta_blocks;
1118 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1119 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1120 ei->i_allocated_meta_blocks = 0;
1121 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1123 if (ei->i_reserved_data_blocks == 0) {
1125 * We can release all of the reserved metadata blocks
1126 * only when we have written all of the delayed
1127 * allocation blocks.
1129 mdb_free = ei->i_reserved_meta_blocks;
1130 ei->i_reserved_meta_blocks = 0;
1131 ei->i_da_metadata_calc_len = 0;
1132 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1134 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1136 /* Update quota subsystem */
1137 if (quota_claim) {
1138 vfs_dq_claim_block(inode, used);
1139 if (mdb_free)
1140 vfs_dq_release_reservation_block(inode, mdb_free);
1141 } else {
1143 * We did fallocate with an offset that is already delayed
1144 * allocated. So on delayed allocated writeback we should
1145 * not update the quota for allocated blocks. But then
1146 * converting an fallocate region to initialized region would
1147 * have caused a metadata allocation. So claim quota for
1148 * that
1150 if (allocated_meta_blocks)
1151 vfs_dq_claim_block(inode, allocated_meta_blocks);
1152 vfs_dq_release_reservation_block(inode, mdb_free + used);
1156 * If we have done all the pending block allocations and if
1157 * there aren't any writers on the inode, we can discard the
1158 * inode's preallocations.
1160 if ((ei->i_reserved_data_blocks == 0) &&
1161 (atomic_read(&inode->i_writecount) == 0))
1162 ext4_discard_preallocations(inode);
1165 static int check_block_validity(struct inode *inode, const char *msg,
1166 sector_t logical, sector_t phys, int len)
1168 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1169 ext4_error(inode->i_sb, msg,
1170 "inode #%lu logical block %llu mapped to %llu "
1171 "(size %d)", inode->i_ino,
1172 (unsigned long long) logical,
1173 (unsigned long long) phys, len);
1174 return -EIO;
1176 return 0;
1180 * Return the number of contiguous dirty pages in a given inode
1181 * starting at page frame idx.
1183 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1184 unsigned int max_pages)
1186 struct address_space *mapping = inode->i_mapping;
1187 pgoff_t index;
1188 struct pagevec pvec;
1189 pgoff_t num = 0;
1190 int i, nr_pages, done = 0;
1192 if (max_pages == 0)
1193 return 0;
1194 pagevec_init(&pvec, 0);
1195 while (!done) {
1196 index = idx;
1197 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1198 PAGECACHE_TAG_DIRTY,
1199 (pgoff_t)PAGEVEC_SIZE);
1200 if (nr_pages == 0)
1201 break;
1202 for (i = 0; i < nr_pages; i++) {
1203 struct page *page = pvec.pages[i];
1204 struct buffer_head *bh, *head;
1206 lock_page(page);
1207 if (unlikely(page->mapping != mapping) ||
1208 !PageDirty(page) ||
1209 PageWriteback(page) ||
1210 page->index != idx) {
1211 done = 1;
1212 unlock_page(page);
1213 break;
1215 if (page_has_buffers(page)) {
1216 bh = head = page_buffers(page);
1217 do {
1218 if (!buffer_delay(bh) &&
1219 !buffer_unwritten(bh))
1220 done = 1;
1221 bh = bh->b_this_page;
1222 } while (!done && (bh != head));
1224 unlock_page(page);
1225 if (done)
1226 break;
1227 idx++;
1228 num++;
1229 if (num >= max_pages)
1230 break;
1232 pagevec_release(&pvec);
1234 return num;
1238 * The ext4_get_blocks() function tries to look up the requested blocks,
1239 * and returns if the blocks are already mapped.
1241 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1242 * and store the allocated blocks in the result buffer head and mark it
1243 * mapped.
1245 * If file type is extents based, it will call ext4_ext_get_blocks(),
1246 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1247 * based files
1249 * On success, it returns the number of blocks being mapped or allocate.
1250 * if create==0 and the blocks are pre-allocated and uninitialized block,
1251 * the result buffer head is unmapped. If the create ==1, it will make sure
1252 * the buffer head is mapped.
1254 * It returns 0 if plain look up failed (blocks have not been allocated), in
1255 * that casem, buffer head is unmapped
1257 * It returns the error in case of allocation failure.
1259 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1260 unsigned int max_blocks, struct buffer_head *bh,
1261 int flags)
1263 int retval;
1265 clear_buffer_mapped(bh);
1266 clear_buffer_unwritten(bh);
1268 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1269 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1270 (unsigned long)block);
1272 * Try to see if we can get the block without requesting a new
1273 * file system block.
1275 down_read((&EXT4_I(inode)->i_data_sem));
1276 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1277 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1278 bh, 0);
1279 } else {
1280 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1281 bh, 0);
1283 up_read((&EXT4_I(inode)->i_data_sem));
1285 if (retval > 0 && buffer_mapped(bh)) {
1286 int ret = check_block_validity(inode, "file system corruption",
1287 block, bh->b_blocknr, retval);
1288 if (ret != 0)
1289 return ret;
1292 /* If it is only a block(s) look up */
1293 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1294 return retval;
1297 * Returns if the blocks have already allocated
1299 * Note that if blocks have been preallocated
1300 * ext4_ext_get_block() returns th create = 0
1301 * with buffer head unmapped.
1303 if (retval > 0 && buffer_mapped(bh))
1304 return retval;
1307 * When we call get_blocks without the create flag, the
1308 * BH_Unwritten flag could have gotten set if the blocks
1309 * requested were part of a uninitialized extent. We need to
1310 * clear this flag now that we are committed to convert all or
1311 * part of the uninitialized extent to be an initialized
1312 * extent. This is because we need to avoid the combination
1313 * of BH_Unwritten and BH_Mapped flags being simultaneously
1314 * set on the buffer_head.
1316 clear_buffer_unwritten(bh);
1319 * New blocks allocate and/or writing to uninitialized extent
1320 * will possibly result in updating i_data, so we take
1321 * the write lock of i_data_sem, and call get_blocks()
1322 * with create == 1 flag.
1324 down_write((&EXT4_I(inode)->i_data_sem));
1327 * if the caller is from delayed allocation writeout path
1328 * we have already reserved fs blocks for allocation
1329 * let the underlying get_block() function know to
1330 * avoid double accounting
1332 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1333 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1335 * We need to check for EXT4 here because migrate
1336 * could have changed the inode type in between
1338 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1339 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1340 bh, flags);
1341 } else {
1342 retval = ext4_ind_get_blocks(handle, inode, block,
1343 max_blocks, bh, flags);
1345 if (retval > 0 && buffer_new(bh)) {
1347 * We allocated new blocks which will result in
1348 * i_data's format changing. Force the migrate
1349 * to fail by clearing migrate flags
1351 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1355 * Update reserved blocks/metadata blocks after successful
1356 * block allocation which had been deferred till now. We don't
1357 * support fallocate for non extent files. So we can update
1358 * reserve space here.
1360 if ((retval > 0) &&
1361 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1362 ext4_da_update_reserve_space(inode, retval, 1);
1364 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1365 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1367 up_write((&EXT4_I(inode)->i_data_sem));
1368 if (retval > 0 && buffer_mapped(bh)) {
1369 int ret = check_block_validity(inode, "file system "
1370 "corruption after allocation",
1371 block, bh->b_blocknr, retval);
1372 if (ret != 0)
1373 return ret;
1375 return retval;
1378 /* Maximum number of blocks we map for direct IO at once. */
1379 #define DIO_MAX_BLOCKS 4096
1381 int ext4_get_block(struct inode *inode, sector_t iblock,
1382 struct buffer_head *bh_result, int create)
1384 handle_t *handle = ext4_journal_current_handle();
1385 int ret = 0, started = 0;
1386 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1387 int dio_credits;
1389 if (create && !handle) {
1390 /* Direct IO write... */
1391 if (max_blocks > DIO_MAX_BLOCKS)
1392 max_blocks = DIO_MAX_BLOCKS;
1393 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1394 handle = ext4_journal_start(inode, dio_credits);
1395 if (IS_ERR(handle)) {
1396 ret = PTR_ERR(handle);
1397 goto out;
1399 started = 1;
1402 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1403 create ? EXT4_GET_BLOCKS_CREATE : 0);
1404 if (ret > 0) {
1405 bh_result->b_size = (ret << inode->i_blkbits);
1406 ret = 0;
1408 if (started)
1409 ext4_journal_stop(handle);
1410 out:
1411 return ret;
1415 * `handle' can be NULL if create is zero
1417 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1418 ext4_lblk_t block, int create, int *errp)
1420 struct buffer_head dummy;
1421 int fatal = 0, err;
1422 int flags = 0;
1424 J_ASSERT(handle != NULL || create == 0);
1426 dummy.b_state = 0;
1427 dummy.b_blocknr = -1000;
1428 buffer_trace_init(&dummy.b_history);
1429 if (create)
1430 flags |= EXT4_GET_BLOCKS_CREATE;
1431 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1433 * ext4_get_blocks() returns number of blocks mapped. 0 in
1434 * case of a HOLE.
1436 if (err > 0) {
1437 if (err > 1)
1438 WARN_ON(1);
1439 err = 0;
1441 *errp = err;
1442 if (!err && buffer_mapped(&dummy)) {
1443 struct buffer_head *bh;
1444 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1445 if (!bh) {
1446 *errp = -EIO;
1447 goto err;
1449 if (buffer_new(&dummy)) {
1450 J_ASSERT(create != 0);
1451 J_ASSERT(handle != NULL);
1454 * Now that we do not always journal data, we should
1455 * keep in mind whether this should always journal the
1456 * new buffer as metadata. For now, regular file
1457 * writes use ext4_get_block instead, so it's not a
1458 * problem.
1460 lock_buffer(bh);
1461 BUFFER_TRACE(bh, "call get_create_access");
1462 fatal = ext4_journal_get_create_access(handle, bh);
1463 if (!fatal && !buffer_uptodate(bh)) {
1464 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1465 set_buffer_uptodate(bh);
1467 unlock_buffer(bh);
1468 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1469 err = ext4_handle_dirty_metadata(handle, inode, bh);
1470 if (!fatal)
1471 fatal = err;
1472 } else {
1473 BUFFER_TRACE(bh, "not a new buffer");
1475 if (fatal) {
1476 *errp = fatal;
1477 brelse(bh);
1478 bh = NULL;
1480 return bh;
1482 err:
1483 return NULL;
1486 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1487 ext4_lblk_t block, int create, int *err)
1489 struct buffer_head *bh;
1491 bh = ext4_getblk(handle, inode, block, create, err);
1492 if (!bh)
1493 return bh;
1494 if (buffer_uptodate(bh))
1495 return bh;
1496 ll_rw_block(READ_META, 1, &bh);
1497 wait_on_buffer(bh);
1498 if (buffer_uptodate(bh))
1499 return bh;
1500 put_bh(bh);
1501 *err = -EIO;
1502 return NULL;
1505 static int walk_page_buffers(handle_t *handle,
1506 struct buffer_head *head,
1507 unsigned from,
1508 unsigned to,
1509 int *partial,
1510 int (*fn)(handle_t *handle,
1511 struct buffer_head *bh))
1513 struct buffer_head *bh;
1514 unsigned block_start, block_end;
1515 unsigned blocksize = head->b_size;
1516 int err, ret = 0;
1517 struct buffer_head *next;
1519 for (bh = head, block_start = 0;
1520 ret == 0 && (bh != head || !block_start);
1521 block_start = block_end, bh = next) {
1522 next = bh->b_this_page;
1523 block_end = block_start + blocksize;
1524 if (block_end <= from || block_start >= to) {
1525 if (partial && !buffer_uptodate(bh))
1526 *partial = 1;
1527 continue;
1529 err = (*fn)(handle, bh);
1530 if (!ret)
1531 ret = err;
1533 return ret;
1537 * To preserve ordering, it is essential that the hole instantiation and
1538 * the data write be encapsulated in a single transaction. We cannot
1539 * close off a transaction and start a new one between the ext4_get_block()
1540 * and the commit_write(). So doing the jbd2_journal_start at the start of
1541 * prepare_write() is the right place.
1543 * Also, this function can nest inside ext4_writepage() ->
1544 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1545 * has generated enough buffer credits to do the whole page. So we won't
1546 * block on the journal in that case, which is good, because the caller may
1547 * be PF_MEMALLOC.
1549 * By accident, ext4 can be reentered when a transaction is open via
1550 * quota file writes. If we were to commit the transaction while thus
1551 * reentered, there can be a deadlock - we would be holding a quota
1552 * lock, and the commit would never complete if another thread had a
1553 * transaction open and was blocking on the quota lock - a ranking
1554 * violation.
1556 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1557 * will _not_ run commit under these circumstances because handle->h_ref
1558 * is elevated. We'll still have enough credits for the tiny quotafile
1559 * write.
1561 static int do_journal_get_write_access(handle_t *handle,
1562 struct buffer_head *bh)
1564 if (!buffer_mapped(bh) || buffer_freed(bh))
1565 return 0;
1566 return ext4_journal_get_write_access(handle, bh);
1570 * Truncate blocks that were not used by write. We have to truncate the
1571 * pagecache as well so that corresponding buffers get properly unmapped.
1573 static void ext4_truncate_failed_write(struct inode *inode)
1575 truncate_inode_pages(inode->i_mapping, inode->i_size);
1576 ext4_truncate(inode);
1579 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1580 loff_t pos, unsigned len, unsigned flags,
1581 struct page **pagep, void **fsdata)
1583 struct inode *inode = mapping->host;
1584 int ret, needed_blocks;
1585 handle_t *handle;
1586 int retries = 0;
1587 struct page *page;
1588 pgoff_t index;
1589 unsigned from, to;
1591 trace_ext4_write_begin(inode, pos, len, flags);
1593 * Reserve one block more for addition to orphan list in case
1594 * we allocate blocks but write fails for some reason
1596 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1597 index = pos >> PAGE_CACHE_SHIFT;
1598 from = pos & (PAGE_CACHE_SIZE - 1);
1599 to = from + len;
1601 retry:
1602 handle = ext4_journal_start(inode, needed_blocks);
1603 if (IS_ERR(handle)) {
1604 ret = PTR_ERR(handle);
1605 goto out;
1608 /* We cannot recurse into the filesystem as the transaction is already
1609 * started */
1610 flags |= AOP_FLAG_NOFS;
1612 page = grab_cache_page_write_begin(mapping, index, flags);
1613 if (!page) {
1614 ext4_journal_stop(handle);
1615 ret = -ENOMEM;
1616 goto out;
1618 *pagep = page;
1620 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1621 ext4_get_block);
1623 if (!ret && ext4_should_journal_data(inode)) {
1624 ret = walk_page_buffers(handle, page_buffers(page),
1625 from, to, NULL, do_journal_get_write_access);
1628 if (ret) {
1629 unlock_page(page);
1630 page_cache_release(page);
1632 * block_write_begin may have instantiated a few blocks
1633 * outside i_size. Trim these off again. Don't need
1634 * i_size_read because we hold i_mutex.
1636 * Add inode to orphan list in case we crash before
1637 * truncate finishes
1639 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1640 ext4_orphan_add(handle, inode);
1642 ext4_journal_stop(handle);
1643 if (pos + len > inode->i_size) {
1644 ext4_truncate_failed_write(inode);
1646 * If truncate failed early the inode might
1647 * still be on the orphan list; we need to
1648 * make sure the inode is removed from the
1649 * orphan list in that case.
1651 if (inode->i_nlink)
1652 ext4_orphan_del(NULL, inode);
1656 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1657 goto retry;
1658 out:
1659 return ret;
1662 /* For write_end() in data=journal mode */
1663 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1665 if (!buffer_mapped(bh) || buffer_freed(bh))
1666 return 0;
1667 set_buffer_uptodate(bh);
1668 return ext4_handle_dirty_metadata(handle, NULL, bh);
1671 static int ext4_generic_write_end(struct file *file,
1672 struct address_space *mapping,
1673 loff_t pos, unsigned len, unsigned copied,
1674 struct page *page, void *fsdata)
1676 int i_size_changed = 0;
1677 struct inode *inode = mapping->host;
1678 handle_t *handle = ext4_journal_current_handle();
1680 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1683 * No need to use i_size_read() here, the i_size
1684 * cannot change under us because we hold i_mutex.
1686 * But it's important to update i_size while still holding page lock:
1687 * page writeout could otherwise come in and zero beyond i_size.
1689 if (pos + copied > inode->i_size) {
1690 i_size_write(inode, pos + copied);
1691 i_size_changed = 1;
1694 if (pos + copied > EXT4_I(inode)->i_disksize) {
1695 /* We need to mark inode dirty even if
1696 * new_i_size is less that inode->i_size
1697 * bu greater than i_disksize.(hint delalloc)
1699 ext4_update_i_disksize(inode, (pos + copied));
1700 i_size_changed = 1;
1702 unlock_page(page);
1703 page_cache_release(page);
1706 * Don't mark the inode dirty under page lock. First, it unnecessarily
1707 * makes the holding time of page lock longer. Second, it forces lock
1708 * ordering of page lock and transaction start for journaling
1709 * filesystems.
1711 if (i_size_changed)
1712 ext4_mark_inode_dirty(handle, inode);
1714 return copied;
1718 * We need to pick up the new inode size which generic_commit_write gave us
1719 * `file' can be NULL - eg, when called from page_symlink().
1721 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1722 * buffers are managed internally.
1724 static int ext4_ordered_write_end(struct file *file,
1725 struct address_space *mapping,
1726 loff_t pos, unsigned len, unsigned copied,
1727 struct page *page, void *fsdata)
1729 handle_t *handle = ext4_journal_current_handle();
1730 struct inode *inode = mapping->host;
1731 int ret = 0, ret2;
1733 trace_ext4_ordered_write_end(inode, pos, len, copied);
1734 ret = ext4_jbd2_file_inode(handle, inode);
1736 if (ret == 0) {
1737 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1738 page, fsdata);
1739 copied = ret2;
1740 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1741 /* if we have allocated more blocks and copied
1742 * less. We will have blocks allocated outside
1743 * inode->i_size. So truncate them
1745 ext4_orphan_add(handle, inode);
1746 if (ret2 < 0)
1747 ret = ret2;
1749 ret2 = ext4_journal_stop(handle);
1750 if (!ret)
1751 ret = ret2;
1753 if (pos + len > inode->i_size) {
1754 ext4_truncate_failed_write(inode);
1756 * If truncate failed early the inode might still be
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1765 return ret ? ret : copied;
1768 static int ext4_writeback_write_end(struct file *file,
1769 struct address_space *mapping,
1770 loff_t pos, unsigned len, unsigned copied,
1771 struct page *page, void *fsdata)
1773 handle_t *handle = ext4_journal_current_handle();
1774 struct inode *inode = mapping->host;
1775 int ret = 0, ret2;
1777 trace_ext4_writeback_write_end(inode, pos, len, copied);
1778 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1779 page, fsdata);
1780 copied = ret2;
1781 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1782 /* if we have allocated more blocks and copied
1783 * less. We will have blocks allocated outside
1784 * inode->i_size. So truncate them
1786 ext4_orphan_add(handle, inode);
1788 if (ret2 < 0)
1789 ret = ret2;
1791 ret2 = ext4_journal_stop(handle);
1792 if (!ret)
1793 ret = ret2;
1795 if (pos + len > inode->i_size) {
1796 ext4_truncate_failed_write(inode);
1798 * If truncate failed early the inode might still be
1799 * on the orphan list; we need to make sure the inode
1800 * is removed from the orphan list in that case.
1802 if (inode->i_nlink)
1803 ext4_orphan_del(NULL, inode);
1806 return ret ? ret : copied;
1809 static int ext4_journalled_write_end(struct file *file,
1810 struct address_space *mapping,
1811 loff_t pos, unsigned len, unsigned copied,
1812 struct page *page, void *fsdata)
1814 handle_t *handle = ext4_journal_current_handle();
1815 struct inode *inode = mapping->host;
1816 int ret = 0, ret2;
1817 int partial = 0;
1818 unsigned from, to;
1819 loff_t new_i_size;
1821 trace_ext4_journalled_write_end(inode, pos, len, copied);
1822 from = pos & (PAGE_CACHE_SIZE - 1);
1823 to = from + len;
1825 if (copied < len) {
1826 if (!PageUptodate(page))
1827 copied = 0;
1828 page_zero_new_buffers(page, from+copied, to);
1831 ret = walk_page_buffers(handle, page_buffers(page), from,
1832 to, &partial, write_end_fn);
1833 if (!partial)
1834 SetPageUptodate(page);
1835 new_i_size = pos + copied;
1836 if (new_i_size > inode->i_size)
1837 i_size_write(inode, pos+copied);
1838 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1839 if (new_i_size > EXT4_I(inode)->i_disksize) {
1840 ext4_update_i_disksize(inode, new_i_size);
1841 ret2 = ext4_mark_inode_dirty(handle, inode);
1842 if (!ret)
1843 ret = ret2;
1846 unlock_page(page);
1847 page_cache_release(page);
1848 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1849 /* if we have allocated more blocks and copied
1850 * less. We will have blocks allocated outside
1851 * inode->i_size. So truncate them
1853 ext4_orphan_add(handle, inode);
1855 ret2 = ext4_journal_stop(handle);
1856 if (!ret)
1857 ret = ret2;
1858 if (pos + len > inode->i_size) {
1859 ext4_truncate_failed_write(inode);
1861 * If truncate failed early the inode might still be
1862 * on the orphan list; we need to make sure the inode
1863 * is removed from the orphan list in that case.
1865 if (inode->i_nlink)
1866 ext4_orphan_del(NULL, inode);
1869 return ret ? ret : copied;
1873 * Reserve a single block located at lblock
1875 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1877 int retries = 0;
1878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879 struct ext4_inode_info *ei = EXT4_I(inode);
1880 unsigned long md_needed, md_reserved;
1883 * recalculate the amount of metadata blocks to reserve
1884 * in order to allocate nrblocks
1885 * worse case is one extent per block
1887 repeat:
1888 spin_lock(&ei->i_block_reservation_lock);
1889 md_reserved = ei->i_reserved_meta_blocks;
1890 md_needed = ext4_calc_metadata_amount(inode, lblock);
1891 spin_unlock(&ei->i_block_reservation_lock);
1894 * Make quota reservation here to prevent quota overflow
1895 * later. Real quota accounting is done at pages writeout
1896 * time.
1898 if (vfs_dq_reserve_block(inode, md_needed + 1))
1899 return -EDQUOT;
1901 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1902 vfs_dq_release_reservation_block(inode, md_needed + 1);
1903 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1904 yield();
1905 goto repeat;
1907 return -ENOSPC;
1909 spin_lock(&ei->i_block_reservation_lock);
1910 ei->i_reserved_data_blocks++;
1911 ei->i_reserved_meta_blocks += md_needed;
1912 spin_unlock(&ei->i_block_reservation_lock);
1914 return 0; /* success */
1917 static void ext4_da_release_space(struct inode *inode, int to_free)
1919 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1920 struct ext4_inode_info *ei = EXT4_I(inode);
1922 if (!to_free)
1923 return; /* Nothing to release, exit */
1925 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1927 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1929 * if there aren't enough reserved blocks, then the
1930 * counter is messed up somewhere. Since this
1931 * function is called from invalidate page, it's
1932 * harmless to return without any action.
1934 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1935 "ino %lu, to_free %d with only %d reserved "
1936 "data blocks\n", inode->i_ino, to_free,
1937 ei->i_reserved_data_blocks);
1938 WARN_ON(1);
1939 to_free = ei->i_reserved_data_blocks;
1941 ei->i_reserved_data_blocks -= to_free;
1943 if (ei->i_reserved_data_blocks == 0) {
1945 * We can release all of the reserved metadata blocks
1946 * only when we have written all of the delayed
1947 * allocation blocks.
1949 to_free += ei->i_reserved_meta_blocks;
1950 ei->i_reserved_meta_blocks = 0;
1951 ei->i_da_metadata_calc_len = 0;
1954 /* update fs dirty blocks counter */
1955 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1957 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1959 vfs_dq_release_reservation_block(inode, to_free);
1962 static void ext4_da_page_release_reservation(struct page *page,
1963 unsigned long offset)
1965 int to_release = 0;
1966 struct buffer_head *head, *bh;
1967 unsigned int curr_off = 0;
1969 head = page_buffers(page);
1970 bh = head;
1971 do {
1972 unsigned int next_off = curr_off + bh->b_size;
1974 if ((offset <= curr_off) && (buffer_delay(bh))) {
1975 to_release++;
1976 clear_buffer_delay(bh);
1978 curr_off = next_off;
1979 } while ((bh = bh->b_this_page) != head);
1980 ext4_da_release_space(page->mapping->host, to_release);
1984 * Delayed allocation stuff
1988 * mpage_da_submit_io - walks through extent of pages and try to write
1989 * them with writepage() call back
1991 * @mpd->inode: inode
1992 * @mpd->first_page: first page of the extent
1993 * @mpd->next_page: page after the last page of the extent
1995 * By the time mpage_da_submit_io() is called we expect all blocks
1996 * to be allocated. this may be wrong if allocation failed.
1998 * As pages are already locked by write_cache_pages(), we can't use it
2000 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2002 long pages_skipped;
2003 struct pagevec pvec;
2004 unsigned long index, end;
2005 int ret = 0, err, nr_pages, i;
2006 struct inode *inode = mpd->inode;
2007 struct address_space *mapping = inode->i_mapping;
2009 BUG_ON(mpd->next_page <= mpd->first_page);
2011 * We need to start from the first_page to the next_page - 1
2012 * to make sure we also write the mapped dirty buffer_heads.
2013 * If we look at mpd->b_blocknr we would only be looking
2014 * at the currently mapped buffer_heads.
2016 index = mpd->first_page;
2017 end = mpd->next_page - 1;
2019 pagevec_init(&pvec, 0);
2020 while (index <= end) {
2021 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2022 if (nr_pages == 0)
2023 break;
2024 for (i = 0; i < nr_pages; i++) {
2025 struct page *page = pvec.pages[i];
2027 index = page->index;
2028 if (index > end)
2029 break;
2030 index++;
2032 BUG_ON(!PageLocked(page));
2033 BUG_ON(PageWriteback(page));
2035 pages_skipped = mpd->wbc->pages_skipped;
2036 err = mapping->a_ops->writepage(page, mpd->wbc);
2037 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2039 * have successfully written the page
2040 * without skipping the same
2042 mpd->pages_written++;
2044 * In error case, we have to continue because
2045 * remaining pages are still locked
2046 * XXX: unlock and re-dirty them?
2048 if (ret == 0)
2049 ret = err;
2051 pagevec_release(&pvec);
2053 return ret;
2057 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2059 * @mpd->inode - inode to walk through
2060 * @exbh->b_blocknr - first block on a disk
2061 * @exbh->b_size - amount of space in bytes
2062 * @logical - first logical block to start assignment with
2064 * the function goes through all passed space and put actual disk
2065 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2067 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2068 struct buffer_head *exbh)
2070 struct inode *inode = mpd->inode;
2071 struct address_space *mapping = inode->i_mapping;
2072 int blocks = exbh->b_size >> inode->i_blkbits;
2073 sector_t pblock = exbh->b_blocknr, cur_logical;
2074 struct buffer_head *head, *bh;
2075 pgoff_t index, end;
2076 struct pagevec pvec;
2077 int nr_pages, i;
2079 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2081 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2083 pagevec_init(&pvec, 0);
2085 while (index <= end) {
2086 /* XXX: optimize tail */
2087 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2088 if (nr_pages == 0)
2089 break;
2090 for (i = 0; i < nr_pages; i++) {
2091 struct page *page = pvec.pages[i];
2093 index = page->index;
2094 if (index > end)
2095 break;
2096 index++;
2098 BUG_ON(!PageLocked(page));
2099 BUG_ON(PageWriteback(page));
2100 BUG_ON(!page_has_buffers(page));
2102 bh = page_buffers(page);
2103 head = bh;
2105 /* skip blocks out of the range */
2106 do {
2107 if (cur_logical >= logical)
2108 break;
2109 cur_logical++;
2110 } while ((bh = bh->b_this_page) != head);
2112 do {
2113 if (cur_logical >= logical + blocks)
2114 break;
2116 if (buffer_delay(bh) ||
2117 buffer_unwritten(bh)) {
2119 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2121 if (buffer_delay(bh)) {
2122 clear_buffer_delay(bh);
2123 bh->b_blocknr = pblock;
2124 } else {
2126 * unwritten already should have
2127 * blocknr assigned. Verify that
2129 clear_buffer_unwritten(bh);
2130 BUG_ON(bh->b_blocknr != pblock);
2133 } else if (buffer_mapped(bh))
2134 BUG_ON(bh->b_blocknr != pblock);
2136 cur_logical++;
2137 pblock++;
2138 } while ((bh = bh->b_this_page) != head);
2140 pagevec_release(&pvec);
2146 * __unmap_underlying_blocks - just a helper function to unmap
2147 * set of blocks described by @bh
2149 static inline void __unmap_underlying_blocks(struct inode *inode,
2150 struct buffer_head *bh)
2152 struct block_device *bdev = inode->i_sb->s_bdev;
2153 int blocks, i;
2155 blocks = bh->b_size >> inode->i_blkbits;
2156 for (i = 0; i < blocks; i++)
2157 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2160 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2161 sector_t logical, long blk_cnt)
2163 int nr_pages, i;
2164 pgoff_t index, end;
2165 struct pagevec pvec;
2166 struct inode *inode = mpd->inode;
2167 struct address_space *mapping = inode->i_mapping;
2169 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2170 end = (logical + blk_cnt - 1) >>
2171 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2172 while (index <= end) {
2173 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2174 if (nr_pages == 0)
2175 break;
2176 for (i = 0; i < nr_pages; i++) {
2177 struct page *page = pvec.pages[i];
2178 index = page->index;
2179 if (index > end)
2180 break;
2181 index++;
2183 BUG_ON(!PageLocked(page));
2184 BUG_ON(PageWriteback(page));
2185 block_invalidatepage(page, 0);
2186 ClearPageUptodate(page);
2187 unlock_page(page);
2190 return;
2193 static void ext4_print_free_blocks(struct inode *inode)
2195 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2196 printk(KERN_CRIT "Total free blocks count %lld\n",
2197 ext4_count_free_blocks(inode->i_sb));
2198 printk(KERN_CRIT "Free/Dirty block details\n");
2199 printk(KERN_CRIT "free_blocks=%lld\n",
2200 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2201 printk(KERN_CRIT "dirty_blocks=%lld\n",
2202 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2203 printk(KERN_CRIT "Block reservation details\n");
2204 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2205 EXT4_I(inode)->i_reserved_data_blocks);
2206 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2207 EXT4_I(inode)->i_reserved_meta_blocks);
2208 return;
2212 * mpage_da_map_blocks - go through given space
2214 * @mpd - bh describing space
2216 * The function skips space we know is already mapped to disk blocks.
2219 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2221 int err, blks, get_blocks_flags;
2222 struct buffer_head new;
2223 sector_t next = mpd->b_blocknr;
2224 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2225 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2226 handle_t *handle = NULL;
2229 * We consider only non-mapped and non-allocated blocks
2231 if ((mpd->b_state & (1 << BH_Mapped)) &&
2232 !(mpd->b_state & (1 << BH_Delay)) &&
2233 !(mpd->b_state & (1 << BH_Unwritten)))
2234 return 0;
2237 * If we didn't accumulate anything to write simply return
2239 if (!mpd->b_size)
2240 return 0;
2242 handle = ext4_journal_current_handle();
2243 BUG_ON(!handle);
2246 * Call ext4_get_blocks() to allocate any delayed allocation
2247 * blocks, or to convert an uninitialized extent to be
2248 * initialized (in the case where we have written into
2249 * one or more preallocated blocks).
2251 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2252 * indicate that we are on the delayed allocation path. This
2253 * affects functions in many different parts of the allocation
2254 * call path. This flag exists primarily because we don't
2255 * want to change *many* call functions, so ext4_get_blocks()
2256 * will set the magic i_delalloc_reserved_flag once the
2257 * inode's allocation semaphore is taken.
2259 * If the blocks in questions were delalloc blocks, set
2260 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2261 * variables are updated after the blocks have been allocated.
2263 new.b_state = 0;
2264 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2265 if (mpd->b_state & (1 << BH_Delay))
2266 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2268 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2269 &new, get_blocks_flags);
2270 if (blks < 0) {
2271 err = blks;
2273 * If get block returns with error we simply
2274 * return. Later writepage will redirty the page and
2275 * writepages will find the dirty page again
2277 if (err == -EAGAIN)
2278 return 0;
2280 if (err == -ENOSPC &&
2281 ext4_count_free_blocks(mpd->inode->i_sb)) {
2282 mpd->retval = err;
2283 return 0;
2287 * get block failure will cause us to loop in
2288 * writepages, because a_ops->writepage won't be able
2289 * to make progress. The page will be redirtied by
2290 * writepage and writepages will again try to write
2291 * the same.
2293 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2294 "delayed block allocation failed for inode %lu at "
2295 "logical offset %llu with max blocks %zd with "
2296 "error %d\n", mpd->inode->i_ino,
2297 (unsigned long long) next,
2298 mpd->b_size >> mpd->inode->i_blkbits, err);
2299 printk(KERN_CRIT "This should not happen!! "
2300 "Data will be lost\n");
2301 if (err == -ENOSPC) {
2302 ext4_print_free_blocks(mpd->inode);
2304 /* invalidate all the pages */
2305 ext4_da_block_invalidatepages(mpd, next,
2306 mpd->b_size >> mpd->inode->i_blkbits);
2307 return err;
2309 BUG_ON(blks == 0);
2311 new.b_size = (blks << mpd->inode->i_blkbits);
2313 if (buffer_new(&new))
2314 __unmap_underlying_blocks(mpd->inode, &new);
2317 * If blocks are delayed marked, we need to
2318 * put actual blocknr and drop delayed bit
2320 if ((mpd->b_state & (1 << BH_Delay)) ||
2321 (mpd->b_state & (1 << BH_Unwritten)))
2322 mpage_put_bnr_to_bhs(mpd, next, &new);
2324 if (ext4_should_order_data(mpd->inode)) {
2325 err = ext4_jbd2_file_inode(handle, mpd->inode);
2326 if (err)
2327 return err;
2331 * Update on-disk size along with block allocation.
2333 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2334 if (disksize > i_size_read(mpd->inode))
2335 disksize = i_size_read(mpd->inode);
2336 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2337 ext4_update_i_disksize(mpd->inode, disksize);
2338 return ext4_mark_inode_dirty(handle, mpd->inode);
2341 return 0;
2344 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2345 (1 << BH_Delay) | (1 << BH_Unwritten))
2348 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2350 * @mpd->lbh - extent of blocks
2351 * @logical - logical number of the block in the file
2352 * @bh - bh of the block (used to access block's state)
2354 * the function is used to collect contig. blocks in same state
2356 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2357 sector_t logical, size_t b_size,
2358 unsigned long b_state)
2360 sector_t next;
2361 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2363 /* check if thereserved journal credits might overflow */
2364 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2365 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2367 * With non-extent format we are limited by the journal
2368 * credit available. Total credit needed to insert
2369 * nrblocks contiguous blocks is dependent on the
2370 * nrblocks. So limit nrblocks.
2372 goto flush_it;
2373 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2374 EXT4_MAX_TRANS_DATA) {
2376 * Adding the new buffer_head would make it cross the
2377 * allowed limit for which we have journal credit
2378 * reserved. So limit the new bh->b_size
2380 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2381 mpd->inode->i_blkbits;
2382 /* we will do mpage_da_submit_io in the next loop */
2386 * First block in the extent
2388 if (mpd->b_size == 0) {
2389 mpd->b_blocknr = logical;
2390 mpd->b_size = b_size;
2391 mpd->b_state = b_state & BH_FLAGS;
2392 return;
2395 next = mpd->b_blocknr + nrblocks;
2397 * Can we merge the block to our big extent?
2399 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2400 mpd->b_size += b_size;
2401 return;
2404 flush_it:
2406 * We couldn't merge the block to our extent, so we
2407 * need to flush current extent and start new one
2409 if (mpage_da_map_blocks(mpd) == 0)
2410 mpage_da_submit_io(mpd);
2411 mpd->io_done = 1;
2412 return;
2415 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2417 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2421 * __mpage_da_writepage - finds extent of pages and blocks
2423 * @page: page to consider
2424 * @wbc: not used, we just follow rules
2425 * @data: context
2427 * The function finds extents of pages and scan them for all blocks.
2429 static int __mpage_da_writepage(struct page *page,
2430 struct writeback_control *wbc, void *data)
2432 struct mpage_da_data *mpd = data;
2433 struct inode *inode = mpd->inode;
2434 struct buffer_head *bh, *head;
2435 sector_t logical;
2437 if (mpd->io_done) {
2439 * Rest of the page in the page_vec
2440 * redirty then and skip then. We will
2441 * try to write them again after
2442 * starting a new transaction
2444 redirty_page_for_writepage(wbc, page);
2445 unlock_page(page);
2446 return MPAGE_DA_EXTENT_TAIL;
2449 * Can we merge this page to current extent?
2451 if (mpd->next_page != page->index) {
2453 * Nope, we can't. So, we map non-allocated blocks
2454 * and start IO on them using writepage()
2456 if (mpd->next_page != mpd->first_page) {
2457 if (mpage_da_map_blocks(mpd) == 0)
2458 mpage_da_submit_io(mpd);
2460 * skip rest of the page in the page_vec
2462 mpd->io_done = 1;
2463 redirty_page_for_writepage(wbc, page);
2464 unlock_page(page);
2465 return MPAGE_DA_EXTENT_TAIL;
2469 * Start next extent of pages ...
2471 mpd->first_page = page->index;
2474 * ... and blocks
2476 mpd->b_size = 0;
2477 mpd->b_state = 0;
2478 mpd->b_blocknr = 0;
2481 mpd->next_page = page->index + 1;
2482 logical = (sector_t) page->index <<
2483 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2485 if (!page_has_buffers(page)) {
2486 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2487 (1 << BH_Dirty) | (1 << BH_Uptodate));
2488 if (mpd->io_done)
2489 return MPAGE_DA_EXTENT_TAIL;
2490 } else {
2492 * Page with regular buffer heads, just add all dirty ones
2494 head = page_buffers(page);
2495 bh = head;
2496 do {
2497 BUG_ON(buffer_locked(bh));
2499 * We need to try to allocate
2500 * unmapped blocks in the same page.
2501 * Otherwise we won't make progress
2502 * with the page in ext4_writepage
2504 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2505 mpage_add_bh_to_extent(mpd, logical,
2506 bh->b_size,
2507 bh->b_state);
2508 if (mpd->io_done)
2509 return MPAGE_DA_EXTENT_TAIL;
2510 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2512 * mapped dirty buffer. We need to update
2513 * the b_state because we look at
2514 * b_state in mpage_da_map_blocks. We don't
2515 * update b_size because if we find an
2516 * unmapped buffer_head later we need to
2517 * use the b_state flag of that buffer_head.
2519 if (mpd->b_size == 0)
2520 mpd->b_state = bh->b_state & BH_FLAGS;
2522 logical++;
2523 } while ((bh = bh->b_this_page) != head);
2526 return 0;
2530 * This is a special get_blocks_t callback which is used by
2531 * ext4_da_write_begin(). It will either return mapped block or
2532 * reserve space for a single block.
2534 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2535 * We also have b_blocknr = -1 and b_bdev initialized properly
2537 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2538 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2539 * initialized properly.
2541 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2542 struct buffer_head *bh_result, int create)
2544 int ret = 0;
2545 sector_t invalid_block = ~((sector_t) 0xffff);
2547 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2548 invalid_block = ~0;
2550 BUG_ON(create == 0);
2551 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2554 * first, we need to know whether the block is allocated already
2555 * preallocated blocks are unmapped but should treated
2556 * the same as allocated blocks.
2558 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2559 if ((ret == 0) && !buffer_delay(bh_result)) {
2560 /* the block isn't (pre)allocated yet, let's reserve space */
2562 * XXX: __block_prepare_write() unmaps passed block,
2563 * is it OK?
2565 ret = ext4_da_reserve_space(inode, iblock);
2566 if (ret)
2567 /* not enough space to reserve */
2568 return ret;
2570 map_bh(bh_result, inode->i_sb, invalid_block);
2571 set_buffer_new(bh_result);
2572 set_buffer_delay(bh_result);
2573 } else if (ret > 0) {
2574 bh_result->b_size = (ret << inode->i_blkbits);
2575 if (buffer_unwritten(bh_result)) {
2576 /* A delayed write to unwritten bh should
2577 * be marked new and mapped. Mapped ensures
2578 * that we don't do get_block multiple times
2579 * when we write to the same offset and new
2580 * ensures that we do proper zero out for
2581 * partial write.
2583 set_buffer_new(bh_result);
2584 set_buffer_mapped(bh_result);
2586 ret = 0;
2589 return ret;
2593 * This function is used as a standard get_block_t calback function
2594 * when there is no desire to allocate any blocks. It is used as a
2595 * callback function for block_prepare_write(), nobh_writepage(), and
2596 * block_write_full_page(). These functions should only try to map a
2597 * single block at a time.
2599 * Since this function doesn't do block allocations even if the caller
2600 * requests it by passing in create=1, it is critically important that
2601 * any caller checks to make sure that any buffer heads are returned
2602 * by this function are either all already mapped or marked for
2603 * delayed allocation before calling nobh_writepage() or
2604 * block_write_full_page(). Otherwise, b_blocknr could be left
2605 * unitialized, and the page write functions will be taken by
2606 * surprise.
2608 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2609 struct buffer_head *bh_result, int create)
2611 int ret = 0;
2612 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2614 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2617 * we don't want to do block allocation in writepage
2618 * so call get_block_wrap with create = 0
2620 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2621 if (ret > 0) {
2622 bh_result->b_size = (ret << inode->i_blkbits);
2623 ret = 0;
2625 return ret;
2628 static int bget_one(handle_t *handle, struct buffer_head *bh)
2630 get_bh(bh);
2631 return 0;
2634 static int bput_one(handle_t *handle, struct buffer_head *bh)
2636 put_bh(bh);
2637 return 0;
2640 static int __ext4_journalled_writepage(struct page *page,
2641 struct writeback_control *wbc,
2642 unsigned int len)
2644 struct address_space *mapping = page->mapping;
2645 struct inode *inode = mapping->host;
2646 struct buffer_head *page_bufs;
2647 handle_t *handle = NULL;
2648 int ret = 0;
2649 int err;
2651 page_bufs = page_buffers(page);
2652 BUG_ON(!page_bufs);
2653 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2654 /* As soon as we unlock the page, it can go away, but we have
2655 * references to buffers so we are safe */
2656 unlock_page(page);
2658 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2659 if (IS_ERR(handle)) {
2660 ret = PTR_ERR(handle);
2661 goto out;
2664 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2665 do_journal_get_write_access);
2667 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2668 write_end_fn);
2669 if (ret == 0)
2670 ret = err;
2671 err = ext4_journal_stop(handle);
2672 if (!ret)
2673 ret = err;
2675 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2676 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2677 out:
2678 return ret;
2682 * Note that we don't need to start a transaction unless we're journaling data
2683 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2684 * need to file the inode to the transaction's list in ordered mode because if
2685 * we are writing back data added by write(), the inode is already there and if
2686 * we are writing back data modified via mmap(), noone guarantees in which
2687 * transaction the data will hit the disk. In case we are journaling data, we
2688 * cannot start transaction directly because transaction start ranks above page
2689 * lock so we have to do some magic.
2691 * This function can get called via...
2692 * - ext4_da_writepages after taking page lock (have journal handle)
2693 * - journal_submit_inode_data_buffers (no journal handle)
2694 * - shrink_page_list via pdflush (no journal handle)
2695 * - grab_page_cache when doing write_begin (have journal handle)
2697 * We don't do any block allocation in this function. If we have page with
2698 * multiple blocks we need to write those buffer_heads that are mapped. This
2699 * is important for mmaped based write. So if we do with blocksize 1K
2700 * truncate(f, 1024);
2701 * a = mmap(f, 0, 4096);
2702 * a[0] = 'a';
2703 * truncate(f, 4096);
2704 * we have in the page first buffer_head mapped via page_mkwrite call back
2705 * but other bufer_heads would be unmapped but dirty(dirty done via the
2706 * do_wp_page). So writepage should write the first block. If we modify
2707 * the mmap area beyond 1024 we will again get a page_fault and the
2708 * page_mkwrite callback will do the block allocation and mark the
2709 * buffer_heads mapped.
2711 * We redirty the page if we have any buffer_heads that is either delay or
2712 * unwritten in the page.
2714 * We can get recursively called as show below.
2716 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2717 * ext4_writepage()
2719 * But since we don't do any block allocation we should not deadlock.
2720 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2722 static int ext4_writepage(struct page *page,
2723 struct writeback_control *wbc)
2725 int ret = 0;
2726 loff_t size;
2727 unsigned int len;
2728 struct buffer_head *page_bufs;
2729 struct inode *inode = page->mapping->host;
2731 trace_ext4_writepage(inode, page);
2732 size = i_size_read(inode);
2733 if (page->index == size >> PAGE_CACHE_SHIFT)
2734 len = size & ~PAGE_CACHE_MASK;
2735 else
2736 len = PAGE_CACHE_SIZE;
2738 if (page_has_buffers(page)) {
2739 page_bufs = page_buffers(page);
2740 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2741 ext4_bh_delay_or_unwritten)) {
2743 * We don't want to do block allocation
2744 * So redirty the page and return
2745 * We may reach here when we do a journal commit
2746 * via journal_submit_inode_data_buffers.
2747 * If we don't have mapping block we just ignore
2748 * them. We can also reach here via shrink_page_list
2750 redirty_page_for_writepage(wbc, page);
2751 unlock_page(page);
2752 return 0;
2754 } else {
2756 * The test for page_has_buffers() is subtle:
2757 * We know the page is dirty but it lost buffers. That means
2758 * that at some moment in time after write_begin()/write_end()
2759 * has been called all buffers have been clean and thus they
2760 * must have been written at least once. So they are all
2761 * mapped and we can happily proceed with mapping them
2762 * and writing the page.
2764 * Try to initialize the buffer_heads and check whether
2765 * all are mapped and non delay. We don't want to
2766 * do block allocation here.
2768 ret = block_prepare_write(page, 0, len,
2769 noalloc_get_block_write);
2770 if (!ret) {
2771 page_bufs = page_buffers(page);
2772 /* check whether all are mapped and non delay */
2773 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2774 ext4_bh_delay_or_unwritten)) {
2775 redirty_page_for_writepage(wbc, page);
2776 unlock_page(page);
2777 return 0;
2779 } else {
2781 * We can't do block allocation here
2782 * so just redity the page and unlock
2783 * and return
2785 redirty_page_for_writepage(wbc, page);
2786 unlock_page(page);
2787 return 0;
2789 /* now mark the buffer_heads as dirty and uptodate */
2790 block_commit_write(page, 0, len);
2793 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2795 * It's mmapped pagecache. Add buffers and journal it. There
2796 * doesn't seem much point in redirtying the page here.
2798 ClearPageChecked(page);
2799 return __ext4_journalled_writepage(page, wbc, len);
2802 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2803 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2804 else
2805 ret = block_write_full_page(page, noalloc_get_block_write,
2806 wbc);
2808 return ret;
2812 * This is called via ext4_da_writepages() to
2813 * calulate the total number of credits to reserve to fit
2814 * a single extent allocation into a single transaction,
2815 * ext4_da_writpeages() will loop calling this before
2816 * the block allocation.
2819 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2821 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2824 * With non-extent format the journal credit needed to
2825 * insert nrblocks contiguous block is dependent on
2826 * number of contiguous block. So we will limit
2827 * number of contiguous block to a sane value
2829 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2830 (max_blocks > EXT4_MAX_TRANS_DATA))
2831 max_blocks = EXT4_MAX_TRANS_DATA;
2833 return ext4_chunk_trans_blocks(inode, max_blocks);
2836 static int ext4_da_writepages(struct address_space *mapping,
2837 struct writeback_control *wbc)
2839 pgoff_t index;
2840 int range_whole = 0;
2841 handle_t *handle = NULL;
2842 struct mpage_da_data mpd;
2843 struct inode *inode = mapping->host;
2844 int no_nrwrite_index_update;
2845 int pages_written = 0;
2846 long pages_skipped;
2847 unsigned int max_pages;
2848 int range_cyclic, cycled = 1, io_done = 0;
2849 int needed_blocks, ret = 0;
2850 long desired_nr_to_write, nr_to_writebump = 0;
2851 loff_t range_start = wbc->range_start;
2852 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2854 trace_ext4_da_writepages(inode, wbc);
2857 * No pages to write? This is mainly a kludge to avoid starting
2858 * a transaction for special inodes like journal inode on last iput()
2859 * because that could violate lock ordering on umount
2861 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2862 return 0;
2865 * If the filesystem has aborted, it is read-only, so return
2866 * right away instead of dumping stack traces later on that
2867 * will obscure the real source of the problem. We test
2868 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2869 * the latter could be true if the filesystem is mounted
2870 * read-only, and in that case, ext4_da_writepages should
2871 * *never* be called, so if that ever happens, we would want
2872 * the stack trace.
2874 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2875 return -EROFS;
2877 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2878 range_whole = 1;
2880 range_cyclic = wbc->range_cyclic;
2881 if (wbc->range_cyclic) {
2882 index = mapping->writeback_index;
2883 if (index)
2884 cycled = 0;
2885 wbc->range_start = index << PAGE_CACHE_SHIFT;
2886 wbc->range_end = LLONG_MAX;
2887 wbc->range_cyclic = 0;
2888 } else
2889 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2892 * This works around two forms of stupidity. The first is in
2893 * the writeback code, which caps the maximum number of pages
2894 * written to be 1024 pages. This is wrong on multiple
2895 * levels; different architectues have a different page size,
2896 * which changes the maximum amount of data which gets
2897 * written. Secondly, 4 megabytes is way too small. XFS
2898 * forces this value to be 16 megabytes by multiplying
2899 * nr_to_write parameter by four, and then relies on its
2900 * allocator to allocate larger extents to make them
2901 * contiguous. Unfortunately this brings us to the second
2902 * stupidity, which is that ext4's mballoc code only allocates
2903 * at most 2048 blocks. So we force contiguous writes up to
2904 * the number of dirty blocks in the inode, or
2905 * sbi->max_writeback_mb_bump whichever is smaller.
2907 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2908 if (!range_cyclic && range_whole)
2909 desired_nr_to_write = wbc->nr_to_write * 8;
2910 else
2911 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2912 max_pages);
2913 if (desired_nr_to_write > max_pages)
2914 desired_nr_to_write = max_pages;
2916 if (wbc->nr_to_write < desired_nr_to_write) {
2917 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2918 wbc->nr_to_write = desired_nr_to_write;
2921 mpd.wbc = wbc;
2922 mpd.inode = mapping->host;
2925 * we don't want write_cache_pages to update
2926 * nr_to_write and writeback_index
2928 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2929 wbc->no_nrwrite_index_update = 1;
2930 pages_skipped = wbc->pages_skipped;
2932 retry:
2933 while (!ret && wbc->nr_to_write > 0) {
2936 * we insert one extent at a time. So we need
2937 * credit needed for single extent allocation.
2938 * journalled mode is currently not supported
2939 * by delalloc
2941 BUG_ON(ext4_should_journal_data(inode));
2942 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2944 /* start a new transaction*/
2945 handle = ext4_journal_start(inode, needed_blocks);
2946 if (IS_ERR(handle)) {
2947 ret = PTR_ERR(handle);
2948 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2949 "%ld pages, ino %lu; err %d\n", __func__,
2950 wbc->nr_to_write, inode->i_ino, ret);
2951 goto out_writepages;
2955 * Now call __mpage_da_writepage to find the next
2956 * contiguous region of logical blocks that need
2957 * blocks to be allocated by ext4. We don't actually
2958 * submit the blocks for I/O here, even though
2959 * write_cache_pages thinks it will, and will set the
2960 * pages as clean for write before calling
2961 * __mpage_da_writepage().
2963 mpd.b_size = 0;
2964 mpd.b_state = 0;
2965 mpd.b_blocknr = 0;
2966 mpd.first_page = 0;
2967 mpd.next_page = 0;
2968 mpd.io_done = 0;
2969 mpd.pages_written = 0;
2970 mpd.retval = 0;
2971 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2972 &mpd);
2974 * If we have a contigous extent of pages and we
2975 * haven't done the I/O yet, map the blocks and submit
2976 * them for I/O.
2978 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2979 if (mpage_da_map_blocks(&mpd) == 0)
2980 mpage_da_submit_io(&mpd);
2981 mpd.io_done = 1;
2982 ret = MPAGE_DA_EXTENT_TAIL;
2984 trace_ext4_da_write_pages(inode, &mpd);
2985 wbc->nr_to_write -= mpd.pages_written;
2987 ext4_journal_stop(handle);
2989 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2990 /* commit the transaction which would
2991 * free blocks released in the transaction
2992 * and try again
2994 jbd2_journal_force_commit_nested(sbi->s_journal);
2995 wbc->pages_skipped = pages_skipped;
2996 ret = 0;
2997 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2999 * got one extent now try with
3000 * rest of the pages
3002 pages_written += mpd.pages_written;
3003 wbc->pages_skipped = pages_skipped;
3004 ret = 0;
3005 io_done = 1;
3006 } else if (wbc->nr_to_write)
3008 * There is no more writeout needed
3009 * or we requested for a noblocking writeout
3010 * and we found the device congested
3012 break;
3014 if (!io_done && !cycled) {
3015 cycled = 1;
3016 index = 0;
3017 wbc->range_start = index << PAGE_CACHE_SHIFT;
3018 wbc->range_end = mapping->writeback_index - 1;
3019 goto retry;
3021 if (pages_skipped != wbc->pages_skipped)
3022 ext4_msg(inode->i_sb, KERN_CRIT,
3023 "This should not happen leaving %s "
3024 "with nr_to_write = %ld ret = %d\n",
3025 __func__, wbc->nr_to_write, ret);
3027 /* Update index */
3028 index += pages_written;
3029 wbc->range_cyclic = range_cyclic;
3030 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3032 * set the writeback_index so that range_cyclic
3033 * mode will write it back later
3035 mapping->writeback_index = index;
3037 out_writepages:
3038 if (!no_nrwrite_index_update)
3039 wbc->no_nrwrite_index_update = 0;
3040 wbc->nr_to_write -= nr_to_writebump;
3041 wbc->range_start = range_start;
3042 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3043 return ret;
3046 #define FALL_BACK_TO_NONDELALLOC 1
3047 static int ext4_nonda_switch(struct super_block *sb)
3049 s64 free_blocks, dirty_blocks;
3050 struct ext4_sb_info *sbi = EXT4_SB(sb);
3053 * switch to non delalloc mode if we are running low
3054 * on free block. The free block accounting via percpu
3055 * counters can get slightly wrong with percpu_counter_batch getting
3056 * accumulated on each CPU without updating global counters
3057 * Delalloc need an accurate free block accounting. So switch
3058 * to non delalloc when we are near to error range.
3060 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3061 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3062 if (2 * free_blocks < 3 * dirty_blocks ||
3063 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3065 * free block count is less than 150% of dirty blocks
3066 * or free blocks is less than watermark
3068 return 1;
3071 * Even if we don't switch but are nearing capacity,
3072 * start pushing delalloc when 1/2 of free blocks are dirty.
3074 if (free_blocks < 2 * dirty_blocks)
3075 writeback_inodes_sb_if_idle(sb);
3077 return 0;
3080 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3081 loff_t pos, unsigned len, unsigned flags,
3082 struct page **pagep, void **fsdata)
3084 int ret, retries = 0, quota_retries = 0;
3085 struct page *page;
3086 pgoff_t index;
3087 unsigned from, to;
3088 struct inode *inode = mapping->host;
3089 handle_t *handle;
3091 index = pos >> PAGE_CACHE_SHIFT;
3092 from = pos & (PAGE_CACHE_SIZE - 1);
3093 to = from + len;
3095 if (ext4_nonda_switch(inode->i_sb)) {
3096 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3097 return ext4_write_begin(file, mapping, pos,
3098 len, flags, pagep, fsdata);
3100 *fsdata = (void *)0;
3101 trace_ext4_da_write_begin(inode, pos, len, flags);
3102 retry:
3104 * With delayed allocation, we don't log the i_disksize update
3105 * if there is delayed block allocation. But we still need
3106 * to journalling the i_disksize update if writes to the end
3107 * of file which has an already mapped buffer.
3109 handle = ext4_journal_start(inode, 1);
3110 if (IS_ERR(handle)) {
3111 ret = PTR_ERR(handle);
3112 goto out;
3114 /* We cannot recurse into the filesystem as the transaction is already
3115 * started */
3116 flags |= AOP_FLAG_NOFS;
3118 page = grab_cache_page_write_begin(mapping, index, flags);
3119 if (!page) {
3120 ext4_journal_stop(handle);
3121 ret = -ENOMEM;
3122 goto out;
3124 *pagep = page;
3126 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3127 ext4_da_get_block_prep);
3128 if (ret < 0) {
3129 unlock_page(page);
3130 ext4_journal_stop(handle);
3131 page_cache_release(page);
3133 * block_write_begin may have instantiated a few blocks
3134 * outside i_size. Trim these off again. Don't need
3135 * i_size_read because we hold i_mutex.
3137 if (pos + len > inode->i_size)
3138 ext4_truncate_failed_write(inode);
3141 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3142 goto retry;
3144 if ((ret == -EDQUOT) &&
3145 EXT4_I(inode)->i_reserved_meta_blocks &&
3146 (quota_retries++ < 3)) {
3148 * Since we often over-estimate the number of meta
3149 * data blocks required, we may sometimes get a
3150 * spurios out of quota error even though there would
3151 * be enough space once we write the data blocks and
3152 * find out how many meta data blocks were _really_
3153 * required. So try forcing the inode write to see if
3154 * that helps.
3156 write_inode_now(inode, (quota_retries == 3));
3157 goto retry;
3159 out:
3160 return ret;
3164 * Check if we should update i_disksize
3165 * when write to the end of file but not require block allocation
3167 static int ext4_da_should_update_i_disksize(struct page *page,
3168 unsigned long offset)
3170 struct buffer_head *bh;
3171 struct inode *inode = page->mapping->host;
3172 unsigned int idx;
3173 int i;
3175 bh = page_buffers(page);
3176 idx = offset >> inode->i_blkbits;
3178 for (i = 0; i < idx; i++)
3179 bh = bh->b_this_page;
3181 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3182 return 0;
3183 return 1;
3186 static int ext4_da_write_end(struct file *file,
3187 struct address_space *mapping,
3188 loff_t pos, unsigned len, unsigned copied,
3189 struct page *page, void *fsdata)
3191 struct inode *inode = mapping->host;
3192 int ret = 0, ret2;
3193 handle_t *handle = ext4_journal_current_handle();
3194 loff_t new_i_size;
3195 unsigned long start, end;
3196 int write_mode = (int)(unsigned long)fsdata;
3198 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3199 if (ext4_should_order_data(inode)) {
3200 return ext4_ordered_write_end(file, mapping, pos,
3201 len, copied, page, fsdata);
3202 } else if (ext4_should_writeback_data(inode)) {
3203 return ext4_writeback_write_end(file, mapping, pos,
3204 len, copied, page, fsdata);
3205 } else {
3206 BUG();
3210 trace_ext4_da_write_end(inode, pos, len, copied);
3211 start = pos & (PAGE_CACHE_SIZE - 1);
3212 end = start + copied - 1;
3215 * generic_write_end() will run mark_inode_dirty() if i_size
3216 * changes. So let's piggyback the i_disksize mark_inode_dirty
3217 * into that.
3220 new_i_size = pos + copied;
3221 if (new_i_size > EXT4_I(inode)->i_disksize) {
3222 if (ext4_da_should_update_i_disksize(page, end)) {
3223 down_write(&EXT4_I(inode)->i_data_sem);
3224 if (new_i_size > EXT4_I(inode)->i_disksize) {
3226 * Updating i_disksize when extending file
3227 * without needing block allocation
3229 if (ext4_should_order_data(inode))
3230 ret = ext4_jbd2_file_inode(handle,
3231 inode);
3233 EXT4_I(inode)->i_disksize = new_i_size;
3235 up_write(&EXT4_I(inode)->i_data_sem);
3236 /* We need to mark inode dirty even if
3237 * new_i_size is less that inode->i_size
3238 * bu greater than i_disksize.(hint delalloc)
3240 ext4_mark_inode_dirty(handle, inode);
3243 ret2 = generic_write_end(file, mapping, pos, len, copied,
3244 page, fsdata);
3245 copied = ret2;
3246 if (ret2 < 0)
3247 ret = ret2;
3248 ret2 = ext4_journal_stop(handle);
3249 if (!ret)
3250 ret = ret2;
3252 return ret ? ret : copied;
3255 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3258 * Drop reserved blocks
3260 BUG_ON(!PageLocked(page));
3261 if (!page_has_buffers(page))
3262 goto out;
3264 ext4_da_page_release_reservation(page, offset);
3266 out:
3267 ext4_invalidatepage(page, offset);
3269 return;
3273 * Force all delayed allocation blocks to be allocated for a given inode.
3275 int ext4_alloc_da_blocks(struct inode *inode)
3277 trace_ext4_alloc_da_blocks(inode);
3279 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3280 !EXT4_I(inode)->i_reserved_meta_blocks)
3281 return 0;
3284 * We do something simple for now. The filemap_flush() will
3285 * also start triggering a write of the data blocks, which is
3286 * not strictly speaking necessary (and for users of
3287 * laptop_mode, not even desirable). However, to do otherwise
3288 * would require replicating code paths in:
3290 * ext4_da_writepages() ->
3291 * write_cache_pages() ---> (via passed in callback function)
3292 * __mpage_da_writepage() -->
3293 * mpage_add_bh_to_extent()
3294 * mpage_da_map_blocks()
3296 * The problem is that write_cache_pages(), located in
3297 * mm/page-writeback.c, marks pages clean in preparation for
3298 * doing I/O, which is not desirable if we're not planning on
3299 * doing I/O at all.
3301 * We could call write_cache_pages(), and then redirty all of
3302 * the pages by calling redirty_page_for_writeback() but that
3303 * would be ugly in the extreme. So instead we would need to
3304 * replicate parts of the code in the above functions,
3305 * simplifying them becuase we wouldn't actually intend to
3306 * write out the pages, but rather only collect contiguous
3307 * logical block extents, call the multi-block allocator, and
3308 * then update the buffer heads with the block allocations.
3310 * For now, though, we'll cheat by calling filemap_flush(),
3311 * which will map the blocks, and start the I/O, but not
3312 * actually wait for the I/O to complete.
3314 return filemap_flush(inode->i_mapping);
3318 * bmap() is special. It gets used by applications such as lilo and by
3319 * the swapper to find the on-disk block of a specific piece of data.
3321 * Naturally, this is dangerous if the block concerned is still in the
3322 * journal. If somebody makes a swapfile on an ext4 data-journaling
3323 * filesystem and enables swap, then they may get a nasty shock when the
3324 * data getting swapped to that swapfile suddenly gets overwritten by
3325 * the original zero's written out previously to the journal and
3326 * awaiting writeback in the kernel's buffer cache.
3328 * So, if we see any bmap calls here on a modified, data-journaled file,
3329 * take extra steps to flush any blocks which might be in the cache.
3331 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3333 struct inode *inode = mapping->host;
3334 journal_t *journal;
3335 int err;
3337 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3338 test_opt(inode->i_sb, DELALLOC)) {
3340 * With delalloc we want to sync the file
3341 * so that we can make sure we allocate
3342 * blocks for file
3344 filemap_write_and_wait(mapping);
3347 if (EXT4_JOURNAL(inode) &&
3348 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3350 * This is a REALLY heavyweight approach, but the use of
3351 * bmap on dirty files is expected to be extremely rare:
3352 * only if we run lilo or swapon on a freshly made file
3353 * do we expect this to happen.
3355 * (bmap requires CAP_SYS_RAWIO so this does not
3356 * represent an unprivileged user DOS attack --- we'd be
3357 * in trouble if mortal users could trigger this path at
3358 * will.)
3360 * NB. EXT4_STATE_JDATA is not set on files other than
3361 * regular files. If somebody wants to bmap a directory
3362 * or symlink and gets confused because the buffer
3363 * hasn't yet been flushed to disk, they deserve
3364 * everything they get.
3367 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3368 journal = EXT4_JOURNAL(inode);
3369 jbd2_journal_lock_updates(journal);
3370 err = jbd2_journal_flush(journal);
3371 jbd2_journal_unlock_updates(journal);
3373 if (err)
3374 return 0;
3377 return generic_block_bmap(mapping, block, ext4_get_block);
3380 static int ext4_readpage(struct file *file, struct page *page)
3382 return mpage_readpage(page, ext4_get_block);
3385 static int
3386 ext4_readpages(struct file *file, struct address_space *mapping,
3387 struct list_head *pages, unsigned nr_pages)
3389 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3392 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3394 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3397 * If it's a full truncate we just forget about the pending dirtying
3399 if (offset == 0)
3400 ClearPageChecked(page);
3402 if (journal)
3403 jbd2_journal_invalidatepage(journal, page, offset);
3404 else
3405 block_invalidatepage(page, offset);
3408 static int ext4_releasepage(struct page *page, gfp_t wait)
3410 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3412 WARN_ON(PageChecked(page));
3413 if (!page_has_buffers(page))
3414 return 0;
3415 if (journal)
3416 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3417 else
3418 return try_to_free_buffers(page);
3422 * O_DIRECT for ext3 (or indirect map) based files
3424 * If the O_DIRECT write will extend the file then add this inode to the
3425 * orphan list. So recovery will truncate it back to the original size
3426 * if the machine crashes during the write.
3428 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3429 * crashes then stale disk data _may_ be exposed inside the file. But current
3430 * VFS code falls back into buffered path in that case so we are safe.
3432 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3433 const struct iovec *iov, loff_t offset,
3434 unsigned long nr_segs)
3436 struct file *file = iocb->ki_filp;
3437 struct inode *inode = file->f_mapping->host;
3438 struct ext4_inode_info *ei = EXT4_I(inode);
3439 handle_t *handle;
3440 ssize_t ret;
3441 int orphan = 0;
3442 size_t count = iov_length(iov, nr_segs);
3443 int retries = 0;
3445 if (rw == WRITE) {
3446 loff_t final_size = offset + count;
3448 if (final_size > inode->i_size) {
3449 /* Credits for sb + inode write */
3450 handle = ext4_journal_start(inode, 2);
3451 if (IS_ERR(handle)) {
3452 ret = PTR_ERR(handle);
3453 goto out;
3455 ret = ext4_orphan_add(handle, inode);
3456 if (ret) {
3457 ext4_journal_stop(handle);
3458 goto out;
3460 orphan = 1;
3461 ei->i_disksize = inode->i_size;
3462 ext4_journal_stop(handle);
3466 retry:
3467 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3468 offset, nr_segs,
3469 ext4_get_block, NULL);
3470 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3471 goto retry;
3473 if (orphan) {
3474 int err;
3476 /* Credits for sb + inode write */
3477 handle = ext4_journal_start(inode, 2);
3478 if (IS_ERR(handle)) {
3479 /* This is really bad luck. We've written the data
3480 * but cannot extend i_size. Bail out and pretend
3481 * the write failed... */
3482 ret = PTR_ERR(handle);
3483 goto out;
3485 if (inode->i_nlink)
3486 ext4_orphan_del(handle, inode);
3487 if (ret > 0) {
3488 loff_t end = offset + ret;
3489 if (end > inode->i_size) {
3490 ei->i_disksize = end;
3491 i_size_write(inode, end);
3493 * We're going to return a positive `ret'
3494 * here due to non-zero-length I/O, so there's
3495 * no way of reporting error returns from
3496 * ext4_mark_inode_dirty() to userspace. So
3497 * ignore it.
3499 ext4_mark_inode_dirty(handle, inode);
3502 err = ext4_journal_stop(handle);
3503 if (ret == 0)
3504 ret = err;
3506 out:
3507 return ret;
3510 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3511 struct buffer_head *bh_result, int create)
3513 handle_t *handle = NULL;
3514 int ret = 0;
3515 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3516 int dio_credits;
3518 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3519 inode->i_ino, create);
3521 * DIO VFS code passes create = 0 flag for write to
3522 * the middle of file. It does this to avoid block
3523 * allocation for holes, to prevent expose stale data
3524 * out when there is parallel buffered read (which does
3525 * not hold the i_mutex lock) while direct IO write has
3526 * not completed. DIO request on holes finally falls back
3527 * to buffered IO for this reason.
3529 * For ext4 extent based file, since we support fallocate,
3530 * new allocated extent as uninitialized, for holes, we
3531 * could fallocate blocks for holes, thus parallel
3532 * buffered IO read will zero out the page when read on
3533 * a hole while parallel DIO write to the hole has not completed.
3535 * when we come here, we know it's a direct IO write to
3536 * to the middle of file (<i_size)
3537 * so it's safe to override the create flag from VFS.
3539 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3541 if (max_blocks > DIO_MAX_BLOCKS)
3542 max_blocks = DIO_MAX_BLOCKS;
3543 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3544 handle = ext4_journal_start(inode, dio_credits);
3545 if (IS_ERR(handle)) {
3546 ret = PTR_ERR(handle);
3547 goto out;
3549 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3550 create);
3551 if (ret > 0) {
3552 bh_result->b_size = (ret << inode->i_blkbits);
3553 ret = 0;
3555 ext4_journal_stop(handle);
3556 out:
3557 return ret;
3560 static void ext4_free_io_end(ext4_io_end_t *io)
3562 BUG_ON(!io);
3563 iput(io->inode);
3564 kfree(io);
3566 static void dump_aio_dio_list(struct inode * inode)
3568 #ifdef EXT4_DEBUG
3569 struct list_head *cur, *before, *after;
3570 ext4_io_end_t *io, *io0, *io1;
3572 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3573 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3574 return;
3577 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3578 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3579 cur = &io->list;
3580 before = cur->prev;
3581 io0 = container_of(before, ext4_io_end_t, list);
3582 after = cur->next;
3583 io1 = container_of(after, ext4_io_end_t, list);
3585 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3586 io, inode->i_ino, io0, io1);
3588 #endif
3592 * check a range of space and convert unwritten extents to written.
3594 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3596 struct inode *inode = io->inode;
3597 loff_t offset = io->offset;
3598 ssize_t size = io->size;
3599 int ret = 0;
3601 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3602 "list->prev 0x%p\n",
3603 io, inode->i_ino, io->list.next, io->list.prev);
3605 if (list_empty(&io->list))
3606 return ret;
3608 if (io->flag != DIO_AIO_UNWRITTEN)
3609 return ret;
3611 if (offset + size <= i_size_read(inode))
3612 ret = ext4_convert_unwritten_extents(inode, offset, size);
3614 if (ret < 0) {
3615 printk(KERN_EMERG "%s: failed to convert unwritten"
3616 "extents to written extents, error is %d"
3617 " io is still on inode %lu aio dio list\n",
3618 __func__, ret, inode->i_ino);
3619 return ret;
3622 /* clear the DIO AIO unwritten flag */
3623 io->flag = 0;
3624 return ret;
3627 * work on completed aio dio IO, to convert unwritten extents to extents
3629 static void ext4_end_aio_dio_work(struct work_struct *work)
3631 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3632 struct inode *inode = io->inode;
3633 int ret = 0;
3635 mutex_lock(&inode->i_mutex);
3636 ret = ext4_end_aio_dio_nolock(io);
3637 if (ret >= 0) {
3638 if (!list_empty(&io->list))
3639 list_del_init(&io->list);
3640 ext4_free_io_end(io);
3642 mutex_unlock(&inode->i_mutex);
3645 * This function is called from ext4_sync_file().
3647 * When AIO DIO IO is completed, the work to convert unwritten
3648 * extents to written is queued on workqueue but may not get immediately
3649 * scheduled. When fsync is called, we need to ensure the
3650 * conversion is complete before fsync returns.
3651 * The inode keeps track of a list of completed AIO from DIO path
3652 * that might needs to do the conversion. This function walks through
3653 * the list and convert the related unwritten extents to written.
3655 int flush_aio_dio_completed_IO(struct inode *inode)
3657 ext4_io_end_t *io;
3658 int ret = 0;
3659 int ret2 = 0;
3661 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3662 return ret;
3664 dump_aio_dio_list(inode);
3665 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3666 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3667 ext4_io_end_t, list);
3669 * Calling ext4_end_aio_dio_nolock() to convert completed
3670 * IO to written.
3672 * When ext4_sync_file() is called, run_queue() may already
3673 * about to flush the work corresponding to this io structure.
3674 * It will be upset if it founds the io structure related
3675 * to the work-to-be schedule is freed.
3677 * Thus we need to keep the io structure still valid here after
3678 * convertion finished. The io structure has a flag to
3679 * avoid double converting from both fsync and background work
3680 * queue work.
3682 ret = ext4_end_aio_dio_nolock(io);
3683 if (ret < 0)
3684 ret2 = ret;
3685 else
3686 list_del_init(&io->list);
3688 return (ret2 < 0) ? ret2 : 0;
3691 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3693 ext4_io_end_t *io = NULL;
3695 io = kmalloc(sizeof(*io), GFP_NOFS);
3697 if (io) {
3698 igrab(inode);
3699 io->inode = inode;
3700 io->flag = 0;
3701 io->offset = 0;
3702 io->size = 0;
3703 io->error = 0;
3704 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3705 INIT_LIST_HEAD(&io->list);
3708 return io;
3711 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3712 ssize_t size, void *private)
3714 ext4_io_end_t *io_end = iocb->private;
3715 struct workqueue_struct *wq;
3717 /* if not async direct IO or dio with 0 bytes write, just return */
3718 if (!io_end || !size)
3719 return;
3721 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3722 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3723 iocb->private, io_end->inode->i_ino, iocb, offset,
3724 size);
3726 /* if not aio dio with unwritten extents, just free io and return */
3727 if (io_end->flag != DIO_AIO_UNWRITTEN){
3728 ext4_free_io_end(io_end);
3729 iocb->private = NULL;
3730 return;
3733 io_end->offset = offset;
3734 io_end->size = size;
3735 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3737 /* queue the work to convert unwritten extents to written */
3738 queue_work(wq, &io_end->work);
3740 /* Add the io_end to per-inode completed aio dio list*/
3741 list_add_tail(&io_end->list,
3742 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3743 iocb->private = NULL;
3746 * For ext4 extent files, ext4 will do direct-io write to holes,
3747 * preallocated extents, and those write extend the file, no need to
3748 * fall back to buffered IO.
3750 * For holes, we fallocate those blocks, mark them as unintialized
3751 * If those blocks were preallocated, we mark sure they are splited, but
3752 * still keep the range to write as unintialized.
3754 * The unwrritten extents will be converted to written when DIO is completed.
3755 * For async direct IO, since the IO may still pending when return, we
3756 * set up an end_io call back function, which will do the convertion
3757 * when async direct IO completed.
3759 * If the O_DIRECT write will extend the file then add this inode to the
3760 * orphan list. So recovery will truncate it back to the original size
3761 * if the machine crashes during the write.
3764 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3765 const struct iovec *iov, loff_t offset,
3766 unsigned long nr_segs)
3768 struct file *file = iocb->ki_filp;
3769 struct inode *inode = file->f_mapping->host;
3770 ssize_t ret;
3771 size_t count = iov_length(iov, nr_segs);
3773 loff_t final_size = offset + count;
3774 if (rw == WRITE && final_size <= inode->i_size) {
3776 * We could direct write to holes and fallocate.
3778 * Allocated blocks to fill the hole are marked as uninitialized
3779 * to prevent paralel buffered read to expose the stale data
3780 * before DIO complete the data IO.
3782 * As to previously fallocated extents, ext4 get_block
3783 * will just simply mark the buffer mapped but still
3784 * keep the extents uninitialized.
3786 * for non AIO case, we will convert those unwritten extents
3787 * to written after return back from blockdev_direct_IO.
3789 * for async DIO, the conversion needs to be defered when
3790 * the IO is completed. The ext4 end_io callback function
3791 * will be called to take care of the conversion work.
3792 * Here for async case, we allocate an io_end structure to
3793 * hook to the iocb.
3795 iocb->private = NULL;
3796 EXT4_I(inode)->cur_aio_dio = NULL;
3797 if (!is_sync_kiocb(iocb)) {
3798 iocb->private = ext4_init_io_end(inode);
3799 if (!iocb->private)
3800 return -ENOMEM;
3802 * we save the io structure for current async
3803 * direct IO, so that later ext4_get_blocks()
3804 * could flag the io structure whether there
3805 * is a unwritten extents needs to be converted
3806 * when IO is completed.
3808 EXT4_I(inode)->cur_aio_dio = iocb->private;
3811 ret = blockdev_direct_IO(rw, iocb, inode,
3812 inode->i_sb->s_bdev, iov,
3813 offset, nr_segs,
3814 ext4_get_block_dio_write,
3815 ext4_end_io_dio);
3816 if (iocb->private)
3817 EXT4_I(inode)->cur_aio_dio = NULL;
3819 * The io_end structure takes a reference to the inode,
3820 * that structure needs to be destroyed and the
3821 * reference to the inode need to be dropped, when IO is
3822 * complete, even with 0 byte write, or failed.
3824 * In the successful AIO DIO case, the io_end structure will be
3825 * desctroyed and the reference to the inode will be dropped
3826 * after the end_io call back function is called.
3828 * In the case there is 0 byte write, or error case, since
3829 * VFS direct IO won't invoke the end_io call back function,
3830 * we need to free the end_io structure here.
3832 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3833 ext4_free_io_end(iocb->private);
3834 iocb->private = NULL;
3835 } else if (ret > 0 && ext4_test_inode_state(inode,
3836 EXT4_STATE_DIO_UNWRITTEN)) {
3837 int err;
3839 * for non AIO case, since the IO is already
3840 * completed, we could do the convertion right here
3842 err = ext4_convert_unwritten_extents(inode,
3843 offset, ret);
3844 if (err < 0)
3845 ret = err;
3846 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3848 return ret;
3851 /* for write the the end of file case, we fall back to old way */
3852 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3855 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3856 const struct iovec *iov, loff_t offset,
3857 unsigned long nr_segs)
3859 struct file *file = iocb->ki_filp;
3860 struct inode *inode = file->f_mapping->host;
3862 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3863 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3865 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3869 * Pages can be marked dirty completely asynchronously from ext4's journalling
3870 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3871 * much here because ->set_page_dirty is called under VFS locks. The page is
3872 * not necessarily locked.
3874 * We cannot just dirty the page and leave attached buffers clean, because the
3875 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3876 * or jbddirty because all the journalling code will explode.
3878 * So what we do is to mark the page "pending dirty" and next time writepage
3879 * is called, propagate that into the buffers appropriately.
3881 static int ext4_journalled_set_page_dirty(struct page *page)
3883 SetPageChecked(page);
3884 return __set_page_dirty_nobuffers(page);
3887 static const struct address_space_operations ext4_ordered_aops = {
3888 .readpage = ext4_readpage,
3889 .readpages = ext4_readpages,
3890 .writepage = ext4_writepage,
3891 .sync_page = block_sync_page,
3892 .write_begin = ext4_write_begin,
3893 .write_end = ext4_ordered_write_end,
3894 .bmap = ext4_bmap,
3895 .invalidatepage = ext4_invalidatepage,
3896 .releasepage = ext4_releasepage,
3897 .direct_IO = ext4_direct_IO,
3898 .migratepage = buffer_migrate_page,
3899 .is_partially_uptodate = block_is_partially_uptodate,
3900 .error_remove_page = generic_error_remove_page,
3903 static const struct address_space_operations ext4_writeback_aops = {
3904 .readpage = ext4_readpage,
3905 .readpages = ext4_readpages,
3906 .writepage = ext4_writepage,
3907 .sync_page = block_sync_page,
3908 .write_begin = ext4_write_begin,
3909 .write_end = ext4_writeback_write_end,
3910 .bmap = ext4_bmap,
3911 .invalidatepage = ext4_invalidatepage,
3912 .releasepage = ext4_releasepage,
3913 .direct_IO = ext4_direct_IO,
3914 .migratepage = buffer_migrate_page,
3915 .is_partially_uptodate = block_is_partially_uptodate,
3916 .error_remove_page = generic_error_remove_page,
3919 static const struct address_space_operations ext4_journalled_aops = {
3920 .readpage = ext4_readpage,
3921 .readpages = ext4_readpages,
3922 .writepage = ext4_writepage,
3923 .sync_page = block_sync_page,
3924 .write_begin = ext4_write_begin,
3925 .write_end = ext4_journalled_write_end,
3926 .set_page_dirty = ext4_journalled_set_page_dirty,
3927 .bmap = ext4_bmap,
3928 .invalidatepage = ext4_invalidatepage,
3929 .releasepage = ext4_releasepage,
3930 .is_partially_uptodate = block_is_partially_uptodate,
3931 .error_remove_page = generic_error_remove_page,
3934 static const struct address_space_operations ext4_da_aops = {
3935 .readpage = ext4_readpage,
3936 .readpages = ext4_readpages,
3937 .writepage = ext4_writepage,
3938 .writepages = ext4_da_writepages,
3939 .sync_page = block_sync_page,
3940 .write_begin = ext4_da_write_begin,
3941 .write_end = ext4_da_write_end,
3942 .bmap = ext4_bmap,
3943 .invalidatepage = ext4_da_invalidatepage,
3944 .releasepage = ext4_releasepage,
3945 .direct_IO = ext4_direct_IO,
3946 .migratepage = buffer_migrate_page,
3947 .is_partially_uptodate = block_is_partially_uptodate,
3948 .error_remove_page = generic_error_remove_page,
3951 void ext4_set_aops(struct inode *inode)
3953 if (ext4_should_order_data(inode) &&
3954 test_opt(inode->i_sb, DELALLOC))
3955 inode->i_mapping->a_ops = &ext4_da_aops;
3956 else if (ext4_should_order_data(inode))
3957 inode->i_mapping->a_ops = &ext4_ordered_aops;
3958 else if (ext4_should_writeback_data(inode) &&
3959 test_opt(inode->i_sb, DELALLOC))
3960 inode->i_mapping->a_ops = &ext4_da_aops;
3961 else if (ext4_should_writeback_data(inode))
3962 inode->i_mapping->a_ops = &ext4_writeback_aops;
3963 else
3964 inode->i_mapping->a_ops = &ext4_journalled_aops;
3968 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3969 * up to the end of the block which corresponds to `from'.
3970 * This required during truncate. We need to physically zero the tail end
3971 * of that block so it doesn't yield old data if the file is later grown.
3973 int ext4_block_truncate_page(handle_t *handle,
3974 struct address_space *mapping, loff_t from)
3976 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3977 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3978 unsigned blocksize, length, pos;
3979 ext4_lblk_t iblock;
3980 struct inode *inode = mapping->host;
3981 struct buffer_head *bh;
3982 struct page *page;
3983 int err = 0;
3985 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3986 mapping_gfp_mask(mapping) & ~__GFP_FS);
3987 if (!page)
3988 return -EINVAL;
3990 blocksize = inode->i_sb->s_blocksize;
3991 length = blocksize - (offset & (blocksize - 1));
3992 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3995 * For "nobh" option, we can only work if we don't need to
3996 * read-in the page - otherwise we create buffers to do the IO.
3998 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3999 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4000 zero_user(page, offset, length);
4001 set_page_dirty(page);
4002 goto unlock;
4005 if (!page_has_buffers(page))
4006 create_empty_buffers(page, blocksize, 0);
4008 /* Find the buffer that contains "offset" */
4009 bh = page_buffers(page);
4010 pos = blocksize;
4011 while (offset >= pos) {
4012 bh = bh->b_this_page;
4013 iblock++;
4014 pos += blocksize;
4017 err = 0;
4018 if (buffer_freed(bh)) {
4019 BUFFER_TRACE(bh, "freed: skip");
4020 goto unlock;
4023 if (!buffer_mapped(bh)) {
4024 BUFFER_TRACE(bh, "unmapped");
4025 ext4_get_block(inode, iblock, bh, 0);
4026 /* unmapped? It's a hole - nothing to do */
4027 if (!buffer_mapped(bh)) {
4028 BUFFER_TRACE(bh, "still unmapped");
4029 goto unlock;
4033 /* Ok, it's mapped. Make sure it's up-to-date */
4034 if (PageUptodate(page))
4035 set_buffer_uptodate(bh);
4037 if (!buffer_uptodate(bh)) {
4038 err = -EIO;
4039 ll_rw_block(READ, 1, &bh);
4040 wait_on_buffer(bh);
4041 /* Uhhuh. Read error. Complain and punt. */
4042 if (!buffer_uptodate(bh))
4043 goto unlock;
4046 if (ext4_should_journal_data(inode)) {
4047 BUFFER_TRACE(bh, "get write access");
4048 err = ext4_journal_get_write_access(handle, bh);
4049 if (err)
4050 goto unlock;
4053 zero_user(page, offset, length);
4055 BUFFER_TRACE(bh, "zeroed end of block");
4057 err = 0;
4058 if (ext4_should_journal_data(inode)) {
4059 err = ext4_handle_dirty_metadata(handle, inode, bh);
4060 } else {
4061 if (ext4_should_order_data(inode))
4062 err = ext4_jbd2_file_inode(handle, inode);
4063 mark_buffer_dirty(bh);
4066 unlock:
4067 unlock_page(page);
4068 page_cache_release(page);
4069 return err;
4073 * Probably it should be a library function... search for first non-zero word
4074 * or memcmp with zero_page, whatever is better for particular architecture.
4075 * Linus?
4077 static inline int all_zeroes(__le32 *p, __le32 *q)
4079 while (p < q)
4080 if (*p++)
4081 return 0;
4082 return 1;
4086 * ext4_find_shared - find the indirect blocks for partial truncation.
4087 * @inode: inode in question
4088 * @depth: depth of the affected branch
4089 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4090 * @chain: place to store the pointers to partial indirect blocks
4091 * @top: place to the (detached) top of branch
4093 * This is a helper function used by ext4_truncate().
4095 * When we do truncate() we may have to clean the ends of several
4096 * indirect blocks but leave the blocks themselves alive. Block is
4097 * partially truncated if some data below the new i_size is refered
4098 * from it (and it is on the path to the first completely truncated
4099 * data block, indeed). We have to free the top of that path along
4100 * with everything to the right of the path. Since no allocation
4101 * past the truncation point is possible until ext4_truncate()
4102 * finishes, we may safely do the latter, but top of branch may
4103 * require special attention - pageout below the truncation point
4104 * might try to populate it.
4106 * We atomically detach the top of branch from the tree, store the
4107 * block number of its root in *@top, pointers to buffer_heads of
4108 * partially truncated blocks - in @chain[].bh and pointers to
4109 * their last elements that should not be removed - in
4110 * @chain[].p. Return value is the pointer to last filled element
4111 * of @chain.
4113 * The work left to caller to do the actual freeing of subtrees:
4114 * a) free the subtree starting from *@top
4115 * b) free the subtrees whose roots are stored in
4116 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4117 * c) free the subtrees growing from the inode past the @chain[0].
4118 * (no partially truncated stuff there). */
4120 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4121 ext4_lblk_t offsets[4], Indirect chain[4],
4122 __le32 *top)
4124 Indirect *partial, *p;
4125 int k, err;
4127 *top = 0;
4128 /* Make k index the deepest non-null offest + 1 */
4129 for (k = depth; k > 1 && !offsets[k-1]; k--)
4131 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4132 /* Writer: pointers */
4133 if (!partial)
4134 partial = chain + k-1;
4136 * If the branch acquired continuation since we've looked at it -
4137 * fine, it should all survive and (new) top doesn't belong to us.
4139 if (!partial->key && *partial->p)
4140 /* Writer: end */
4141 goto no_top;
4142 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4145 * OK, we've found the last block that must survive. The rest of our
4146 * branch should be detached before unlocking. However, if that rest
4147 * of branch is all ours and does not grow immediately from the inode
4148 * it's easier to cheat and just decrement partial->p.
4150 if (p == chain + k - 1 && p > chain) {
4151 p->p--;
4152 } else {
4153 *top = *p->p;
4154 /* Nope, don't do this in ext4. Must leave the tree intact */
4155 #if 0
4156 *p->p = 0;
4157 #endif
4159 /* Writer: end */
4161 while (partial > p) {
4162 brelse(partial->bh);
4163 partial--;
4165 no_top:
4166 return partial;
4170 * Zero a number of block pointers in either an inode or an indirect block.
4171 * If we restart the transaction we must again get write access to the
4172 * indirect block for further modification.
4174 * We release `count' blocks on disk, but (last - first) may be greater
4175 * than `count' because there can be holes in there.
4177 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4178 struct buffer_head *bh,
4179 ext4_fsblk_t block_to_free,
4180 unsigned long count, __le32 *first,
4181 __le32 *last)
4183 __le32 *p;
4184 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4186 if (try_to_extend_transaction(handle, inode)) {
4187 if (bh) {
4188 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4189 ext4_handle_dirty_metadata(handle, inode, bh);
4191 ext4_mark_inode_dirty(handle, inode);
4192 ext4_truncate_restart_trans(handle, inode,
4193 blocks_for_truncate(inode));
4194 if (bh) {
4195 BUFFER_TRACE(bh, "retaking write access");
4196 ext4_journal_get_write_access(handle, bh);
4201 * Any buffers which are on the journal will be in memory. We
4202 * find them on the hash table so jbd2_journal_revoke() will
4203 * run jbd2_journal_forget() on them. We've already detached
4204 * each block from the file, so bforget() in
4205 * jbd2_journal_forget() should be safe.
4207 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4209 for (p = first; p < last; p++) {
4210 u32 nr = le32_to_cpu(*p);
4211 if (nr) {
4212 struct buffer_head *tbh;
4214 *p = 0;
4215 tbh = sb_find_get_block(inode->i_sb, nr);
4216 ext4_forget(handle, is_metadata, inode, tbh, nr);
4220 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4224 * ext4_free_data - free a list of data blocks
4225 * @handle: handle for this transaction
4226 * @inode: inode we are dealing with
4227 * @this_bh: indirect buffer_head which contains *@first and *@last
4228 * @first: array of block numbers
4229 * @last: points immediately past the end of array
4231 * We are freeing all blocks refered from that array (numbers are stored as
4232 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4234 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4235 * blocks are contiguous then releasing them at one time will only affect one
4236 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4237 * actually use a lot of journal space.
4239 * @this_bh will be %NULL if @first and @last point into the inode's direct
4240 * block pointers.
4242 static void ext4_free_data(handle_t *handle, struct inode *inode,
4243 struct buffer_head *this_bh,
4244 __le32 *first, __le32 *last)
4246 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4247 unsigned long count = 0; /* Number of blocks in the run */
4248 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4249 corresponding to
4250 block_to_free */
4251 ext4_fsblk_t nr; /* Current block # */
4252 __le32 *p; /* Pointer into inode/ind
4253 for current block */
4254 int err;
4256 if (this_bh) { /* For indirect block */
4257 BUFFER_TRACE(this_bh, "get_write_access");
4258 err = ext4_journal_get_write_access(handle, this_bh);
4259 /* Important: if we can't update the indirect pointers
4260 * to the blocks, we can't free them. */
4261 if (err)
4262 return;
4265 for (p = first; p < last; p++) {
4266 nr = le32_to_cpu(*p);
4267 if (nr) {
4268 /* accumulate blocks to free if they're contiguous */
4269 if (count == 0) {
4270 block_to_free = nr;
4271 block_to_free_p = p;
4272 count = 1;
4273 } else if (nr == block_to_free + count) {
4274 count++;
4275 } else {
4276 ext4_clear_blocks(handle, inode, this_bh,
4277 block_to_free,
4278 count, block_to_free_p, p);
4279 block_to_free = nr;
4280 block_to_free_p = p;
4281 count = 1;
4286 if (count > 0)
4287 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4288 count, block_to_free_p, p);
4290 if (this_bh) {
4291 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4294 * The buffer head should have an attached journal head at this
4295 * point. However, if the data is corrupted and an indirect
4296 * block pointed to itself, it would have been detached when
4297 * the block was cleared. Check for this instead of OOPSing.
4299 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4300 ext4_handle_dirty_metadata(handle, inode, this_bh);
4301 else
4302 ext4_error(inode->i_sb, __func__,
4303 "circular indirect block detected, "
4304 "inode=%lu, block=%llu",
4305 inode->i_ino,
4306 (unsigned long long) this_bh->b_blocknr);
4311 * ext4_free_branches - free an array of branches
4312 * @handle: JBD handle for this transaction
4313 * @inode: inode we are dealing with
4314 * @parent_bh: the buffer_head which contains *@first and *@last
4315 * @first: array of block numbers
4316 * @last: pointer immediately past the end of array
4317 * @depth: depth of the branches to free
4319 * We are freeing all blocks refered from these branches (numbers are
4320 * stored as little-endian 32-bit) and updating @inode->i_blocks
4321 * appropriately.
4323 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4324 struct buffer_head *parent_bh,
4325 __le32 *first, __le32 *last, int depth)
4327 ext4_fsblk_t nr;
4328 __le32 *p;
4330 if (ext4_handle_is_aborted(handle))
4331 return;
4333 if (depth--) {
4334 struct buffer_head *bh;
4335 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4336 p = last;
4337 while (--p >= first) {
4338 nr = le32_to_cpu(*p);
4339 if (!nr)
4340 continue; /* A hole */
4342 /* Go read the buffer for the next level down */
4343 bh = sb_bread(inode->i_sb, nr);
4346 * A read failure? Report error and clear slot
4347 * (should be rare).
4349 if (!bh) {
4350 ext4_error(inode->i_sb, "ext4_free_branches",
4351 "Read failure, inode=%lu, block=%llu",
4352 inode->i_ino, nr);
4353 continue;
4356 /* This zaps the entire block. Bottom up. */
4357 BUFFER_TRACE(bh, "free child branches");
4358 ext4_free_branches(handle, inode, bh,
4359 (__le32 *) bh->b_data,
4360 (__le32 *) bh->b_data + addr_per_block,
4361 depth);
4364 * We've probably journalled the indirect block several
4365 * times during the truncate. But it's no longer
4366 * needed and we now drop it from the transaction via
4367 * jbd2_journal_revoke().
4369 * That's easy if it's exclusively part of this
4370 * transaction. But if it's part of the committing
4371 * transaction then jbd2_journal_forget() will simply
4372 * brelse() it. That means that if the underlying
4373 * block is reallocated in ext4_get_block(),
4374 * unmap_underlying_metadata() will find this block
4375 * and will try to get rid of it. damn, damn.
4377 * If this block has already been committed to the
4378 * journal, a revoke record will be written. And
4379 * revoke records must be emitted *before* clearing
4380 * this block's bit in the bitmaps.
4382 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4385 * Everything below this this pointer has been
4386 * released. Now let this top-of-subtree go.
4388 * We want the freeing of this indirect block to be
4389 * atomic in the journal with the updating of the
4390 * bitmap block which owns it. So make some room in
4391 * the journal.
4393 * We zero the parent pointer *after* freeing its
4394 * pointee in the bitmaps, so if extend_transaction()
4395 * for some reason fails to put the bitmap changes and
4396 * the release into the same transaction, recovery
4397 * will merely complain about releasing a free block,
4398 * rather than leaking blocks.
4400 if (ext4_handle_is_aborted(handle))
4401 return;
4402 if (try_to_extend_transaction(handle, inode)) {
4403 ext4_mark_inode_dirty(handle, inode);
4404 ext4_truncate_restart_trans(handle, inode,
4405 blocks_for_truncate(inode));
4408 ext4_free_blocks(handle, inode, nr, 1, 1);
4410 if (parent_bh) {
4412 * The block which we have just freed is
4413 * pointed to by an indirect block: journal it
4415 BUFFER_TRACE(parent_bh, "get_write_access");
4416 if (!ext4_journal_get_write_access(handle,
4417 parent_bh)){
4418 *p = 0;
4419 BUFFER_TRACE(parent_bh,
4420 "call ext4_handle_dirty_metadata");
4421 ext4_handle_dirty_metadata(handle,
4422 inode,
4423 parent_bh);
4427 } else {
4428 /* We have reached the bottom of the tree. */
4429 BUFFER_TRACE(parent_bh, "free data blocks");
4430 ext4_free_data(handle, inode, parent_bh, first, last);
4434 int ext4_can_truncate(struct inode *inode)
4436 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4437 return 0;
4438 if (S_ISREG(inode->i_mode))
4439 return 1;
4440 if (S_ISDIR(inode->i_mode))
4441 return 1;
4442 if (S_ISLNK(inode->i_mode))
4443 return !ext4_inode_is_fast_symlink(inode);
4444 return 0;
4448 * ext4_truncate()
4450 * We block out ext4_get_block() block instantiations across the entire
4451 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4452 * simultaneously on behalf of the same inode.
4454 * As we work through the truncate and commmit bits of it to the journal there
4455 * is one core, guiding principle: the file's tree must always be consistent on
4456 * disk. We must be able to restart the truncate after a crash.
4458 * The file's tree may be transiently inconsistent in memory (although it
4459 * probably isn't), but whenever we close off and commit a journal transaction,
4460 * the contents of (the filesystem + the journal) must be consistent and
4461 * restartable. It's pretty simple, really: bottom up, right to left (although
4462 * left-to-right works OK too).
4464 * Note that at recovery time, journal replay occurs *before* the restart of
4465 * truncate against the orphan inode list.
4467 * The committed inode has the new, desired i_size (which is the same as
4468 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4469 * that this inode's truncate did not complete and it will again call
4470 * ext4_truncate() to have another go. So there will be instantiated blocks
4471 * to the right of the truncation point in a crashed ext4 filesystem. But
4472 * that's fine - as long as they are linked from the inode, the post-crash
4473 * ext4_truncate() run will find them and release them.
4475 void ext4_truncate(struct inode *inode)
4477 handle_t *handle;
4478 struct ext4_inode_info *ei = EXT4_I(inode);
4479 __le32 *i_data = ei->i_data;
4480 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4481 struct address_space *mapping = inode->i_mapping;
4482 ext4_lblk_t offsets[4];
4483 Indirect chain[4];
4484 Indirect *partial;
4485 __le32 nr = 0;
4486 int n;
4487 ext4_lblk_t last_block;
4488 unsigned blocksize = inode->i_sb->s_blocksize;
4490 if (!ext4_can_truncate(inode))
4491 return;
4493 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4494 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4496 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4497 ext4_ext_truncate(inode);
4498 return;
4501 handle = start_transaction(inode);
4502 if (IS_ERR(handle))
4503 return; /* AKPM: return what? */
4505 last_block = (inode->i_size + blocksize-1)
4506 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4508 if (inode->i_size & (blocksize - 1))
4509 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4510 goto out_stop;
4512 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4513 if (n == 0)
4514 goto out_stop; /* error */
4517 * OK. This truncate is going to happen. We add the inode to the
4518 * orphan list, so that if this truncate spans multiple transactions,
4519 * and we crash, we will resume the truncate when the filesystem
4520 * recovers. It also marks the inode dirty, to catch the new size.
4522 * Implication: the file must always be in a sane, consistent
4523 * truncatable state while each transaction commits.
4525 if (ext4_orphan_add(handle, inode))
4526 goto out_stop;
4529 * From here we block out all ext4_get_block() callers who want to
4530 * modify the block allocation tree.
4532 down_write(&ei->i_data_sem);
4534 ext4_discard_preallocations(inode);
4537 * The orphan list entry will now protect us from any crash which
4538 * occurs before the truncate completes, so it is now safe to propagate
4539 * the new, shorter inode size (held for now in i_size) into the
4540 * on-disk inode. We do this via i_disksize, which is the value which
4541 * ext4 *really* writes onto the disk inode.
4543 ei->i_disksize = inode->i_size;
4545 if (n == 1) { /* direct blocks */
4546 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4547 i_data + EXT4_NDIR_BLOCKS);
4548 goto do_indirects;
4551 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4552 /* Kill the top of shared branch (not detached) */
4553 if (nr) {
4554 if (partial == chain) {
4555 /* Shared branch grows from the inode */
4556 ext4_free_branches(handle, inode, NULL,
4557 &nr, &nr+1, (chain+n-1) - partial);
4558 *partial->p = 0;
4560 * We mark the inode dirty prior to restart,
4561 * and prior to stop. No need for it here.
4563 } else {
4564 /* Shared branch grows from an indirect block */
4565 BUFFER_TRACE(partial->bh, "get_write_access");
4566 ext4_free_branches(handle, inode, partial->bh,
4567 partial->p,
4568 partial->p+1, (chain+n-1) - partial);
4571 /* Clear the ends of indirect blocks on the shared branch */
4572 while (partial > chain) {
4573 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4574 (__le32*)partial->bh->b_data+addr_per_block,
4575 (chain+n-1) - partial);
4576 BUFFER_TRACE(partial->bh, "call brelse");
4577 brelse(partial->bh);
4578 partial--;
4580 do_indirects:
4581 /* Kill the remaining (whole) subtrees */
4582 switch (offsets[0]) {
4583 default:
4584 nr = i_data[EXT4_IND_BLOCK];
4585 if (nr) {
4586 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4587 i_data[EXT4_IND_BLOCK] = 0;
4589 case EXT4_IND_BLOCK:
4590 nr = i_data[EXT4_DIND_BLOCK];
4591 if (nr) {
4592 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4593 i_data[EXT4_DIND_BLOCK] = 0;
4595 case EXT4_DIND_BLOCK:
4596 nr = i_data[EXT4_TIND_BLOCK];
4597 if (nr) {
4598 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4599 i_data[EXT4_TIND_BLOCK] = 0;
4601 case EXT4_TIND_BLOCK:
4605 up_write(&ei->i_data_sem);
4606 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4607 ext4_mark_inode_dirty(handle, inode);
4610 * In a multi-transaction truncate, we only make the final transaction
4611 * synchronous
4613 if (IS_SYNC(inode))
4614 ext4_handle_sync(handle);
4615 out_stop:
4617 * If this was a simple ftruncate(), and the file will remain alive
4618 * then we need to clear up the orphan record which we created above.
4619 * However, if this was a real unlink then we were called by
4620 * ext4_delete_inode(), and we allow that function to clean up the
4621 * orphan info for us.
4623 if (inode->i_nlink)
4624 ext4_orphan_del(handle, inode);
4626 ext4_journal_stop(handle);
4630 * ext4_get_inode_loc returns with an extra refcount against the inode's
4631 * underlying buffer_head on success. If 'in_mem' is true, we have all
4632 * data in memory that is needed to recreate the on-disk version of this
4633 * inode.
4635 static int __ext4_get_inode_loc(struct inode *inode,
4636 struct ext4_iloc *iloc, int in_mem)
4638 struct ext4_group_desc *gdp;
4639 struct buffer_head *bh;
4640 struct super_block *sb = inode->i_sb;
4641 ext4_fsblk_t block;
4642 int inodes_per_block, inode_offset;
4644 iloc->bh = NULL;
4645 if (!ext4_valid_inum(sb, inode->i_ino))
4646 return -EIO;
4648 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4649 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4650 if (!gdp)
4651 return -EIO;
4654 * Figure out the offset within the block group inode table
4656 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4657 inode_offset = ((inode->i_ino - 1) %
4658 EXT4_INODES_PER_GROUP(sb));
4659 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4660 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4662 bh = sb_getblk(sb, block);
4663 if (!bh) {
4664 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4665 "inode block - inode=%lu, block=%llu",
4666 inode->i_ino, block);
4667 return -EIO;
4669 if (!buffer_uptodate(bh)) {
4670 lock_buffer(bh);
4673 * If the buffer has the write error flag, we have failed
4674 * to write out another inode in the same block. In this
4675 * case, we don't have to read the block because we may
4676 * read the old inode data successfully.
4678 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4679 set_buffer_uptodate(bh);
4681 if (buffer_uptodate(bh)) {
4682 /* someone brought it uptodate while we waited */
4683 unlock_buffer(bh);
4684 goto has_buffer;
4688 * If we have all information of the inode in memory and this
4689 * is the only valid inode in the block, we need not read the
4690 * block.
4692 if (in_mem) {
4693 struct buffer_head *bitmap_bh;
4694 int i, start;
4696 start = inode_offset & ~(inodes_per_block - 1);
4698 /* Is the inode bitmap in cache? */
4699 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4700 if (!bitmap_bh)
4701 goto make_io;
4704 * If the inode bitmap isn't in cache then the
4705 * optimisation may end up performing two reads instead
4706 * of one, so skip it.
4708 if (!buffer_uptodate(bitmap_bh)) {
4709 brelse(bitmap_bh);
4710 goto make_io;
4712 for (i = start; i < start + inodes_per_block; i++) {
4713 if (i == inode_offset)
4714 continue;
4715 if (ext4_test_bit(i, bitmap_bh->b_data))
4716 break;
4718 brelse(bitmap_bh);
4719 if (i == start + inodes_per_block) {
4720 /* all other inodes are free, so skip I/O */
4721 memset(bh->b_data, 0, bh->b_size);
4722 set_buffer_uptodate(bh);
4723 unlock_buffer(bh);
4724 goto has_buffer;
4728 make_io:
4730 * If we need to do any I/O, try to pre-readahead extra
4731 * blocks from the inode table.
4733 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4734 ext4_fsblk_t b, end, table;
4735 unsigned num;
4737 table = ext4_inode_table(sb, gdp);
4738 /* s_inode_readahead_blks is always a power of 2 */
4739 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4740 if (table > b)
4741 b = table;
4742 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4743 num = EXT4_INODES_PER_GROUP(sb);
4744 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4745 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4746 num -= ext4_itable_unused_count(sb, gdp);
4747 table += num / inodes_per_block;
4748 if (end > table)
4749 end = table;
4750 while (b <= end)
4751 sb_breadahead(sb, b++);
4755 * There are other valid inodes in the buffer, this inode
4756 * has in-inode xattrs, or we don't have this inode in memory.
4757 * Read the block from disk.
4759 get_bh(bh);
4760 bh->b_end_io = end_buffer_read_sync;
4761 submit_bh(READ_META, bh);
4762 wait_on_buffer(bh);
4763 if (!buffer_uptodate(bh)) {
4764 ext4_error(sb, __func__,
4765 "unable to read inode block - inode=%lu, "
4766 "block=%llu", inode->i_ino, block);
4767 brelse(bh);
4768 return -EIO;
4771 has_buffer:
4772 iloc->bh = bh;
4773 return 0;
4776 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4778 /* We have all inode data except xattrs in memory here. */
4779 return __ext4_get_inode_loc(inode, iloc,
4780 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4783 void ext4_set_inode_flags(struct inode *inode)
4785 unsigned int flags = EXT4_I(inode)->i_flags;
4787 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4788 if (flags & EXT4_SYNC_FL)
4789 inode->i_flags |= S_SYNC;
4790 if (flags & EXT4_APPEND_FL)
4791 inode->i_flags |= S_APPEND;
4792 if (flags & EXT4_IMMUTABLE_FL)
4793 inode->i_flags |= S_IMMUTABLE;
4794 if (flags & EXT4_NOATIME_FL)
4795 inode->i_flags |= S_NOATIME;
4796 if (flags & EXT4_DIRSYNC_FL)
4797 inode->i_flags |= S_DIRSYNC;
4800 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4801 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4803 unsigned int flags = ei->vfs_inode.i_flags;
4805 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4806 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4807 if (flags & S_SYNC)
4808 ei->i_flags |= EXT4_SYNC_FL;
4809 if (flags & S_APPEND)
4810 ei->i_flags |= EXT4_APPEND_FL;
4811 if (flags & S_IMMUTABLE)
4812 ei->i_flags |= EXT4_IMMUTABLE_FL;
4813 if (flags & S_NOATIME)
4814 ei->i_flags |= EXT4_NOATIME_FL;
4815 if (flags & S_DIRSYNC)
4816 ei->i_flags |= EXT4_DIRSYNC_FL;
4819 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4820 struct ext4_inode_info *ei)
4822 blkcnt_t i_blocks ;
4823 struct inode *inode = &(ei->vfs_inode);
4824 struct super_block *sb = inode->i_sb;
4826 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4827 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4828 /* we are using combined 48 bit field */
4829 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4830 le32_to_cpu(raw_inode->i_blocks_lo);
4831 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4832 /* i_blocks represent file system block size */
4833 return i_blocks << (inode->i_blkbits - 9);
4834 } else {
4835 return i_blocks;
4837 } else {
4838 return le32_to_cpu(raw_inode->i_blocks_lo);
4842 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4844 struct ext4_iloc iloc;
4845 struct ext4_inode *raw_inode;
4846 struct ext4_inode_info *ei;
4847 struct inode *inode;
4848 journal_t *journal = EXT4_SB(sb)->s_journal;
4849 long ret;
4850 int block;
4852 inode = iget_locked(sb, ino);
4853 if (!inode)
4854 return ERR_PTR(-ENOMEM);
4855 if (!(inode->i_state & I_NEW))
4856 return inode;
4858 ei = EXT4_I(inode);
4859 iloc.bh = 0;
4861 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4862 if (ret < 0)
4863 goto bad_inode;
4864 raw_inode = ext4_raw_inode(&iloc);
4865 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4866 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4867 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4868 if (!(test_opt(inode->i_sb, NO_UID32))) {
4869 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4870 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4872 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4874 ei->i_state_flags = 0;
4875 ei->i_dir_start_lookup = 0;
4876 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4877 /* We now have enough fields to check if the inode was active or not.
4878 * This is needed because nfsd might try to access dead inodes
4879 * the test is that same one that e2fsck uses
4880 * NeilBrown 1999oct15
4882 if (inode->i_nlink == 0) {
4883 if (inode->i_mode == 0 ||
4884 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4885 /* this inode is deleted */
4886 ret = -ESTALE;
4887 goto bad_inode;
4889 /* The only unlinked inodes we let through here have
4890 * valid i_mode and are being read by the orphan
4891 * recovery code: that's fine, we're about to complete
4892 * the process of deleting those. */
4894 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4895 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4896 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4897 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4898 ei->i_file_acl |=
4899 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4900 inode->i_size = ext4_isize(raw_inode);
4901 ei->i_disksize = inode->i_size;
4902 #ifdef CONFIG_QUOTA
4903 ei->i_reserved_quota = 0;
4904 #endif
4905 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4906 ei->i_block_group = iloc.block_group;
4907 ei->i_last_alloc_group = ~0;
4909 * NOTE! The in-memory inode i_data array is in little-endian order
4910 * even on big-endian machines: we do NOT byteswap the block numbers!
4912 for (block = 0; block < EXT4_N_BLOCKS; block++)
4913 ei->i_data[block] = raw_inode->i_block[block];
4914 INIT_LIST_HEAD(&ei->i_orphan);
4917 * Set transaction id's of transactions that have to be committed
4918 * to finish f[data]sync. We set them to currently running transaction
4919 * as we cannot be sure that the inode or some of its metadata isn't
4920 * part of the transaction - the inode could have been reclaimed and
4921 * now it is reread from disk.
4923 if (journal) {
4924 transaction_t *transaction;
4925 tid_t tid;
4927 spin_lock(&journal->j_state_lock);
4928 if (journal->j_running_transaction)
4929 transaction = journal->j_running_transaction;
4930 else
4931 transaction = journal->j_committing_transaction;
4932 if (transaction)
4933 tid = transaction->t_tid;
4934 else
4935 tid = journal->j_commit_sequence;
4936 spin_unlock(&journal->j_state_lock);
4937 ei->i_sync_tid = tid;
4938 ei->i_datasync_tid = tid;
4941 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4942 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4943 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4944 EXT4_INODE_SIZE(inode->i_sb)) {
4945 ret = -EIO;
4946 goto bad_inode;
4948 if (ei->i_extra_isize == 0) {
4949 /* The extra space is currently unused. Use it. */
4950 ei->i_extra_isize = sizeof(struct ext4_inode) -
4951 EXT4_GOOD_OLD_INODE_SIZE;
4952 } else {
4953 __le32 *magic = (void *)raw_inode +
4954 EXT4_GOOD_OLD_INODE_SIZE +
4955 ei->i_extra_isize;
4956 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4957 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4959 } else
4960 ei->i_extra_isize = 0;
4962 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4963 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4964 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4965 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4967 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4968 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4969 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4970 inode->i_version |=
4971 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4974 ret = 0;
4975 if (ei->i_file_acl &&
4976 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4977 ext4_error(sb, __func__,
4978 "bad extended attribute block %llu in inode #%lu",
4979 ei->i_file_acl, inode->i_ino);
4980 ret = -EIO;
4981 goto bad_inode;
4982 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4983 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4984 (S_ISLNK(inode->i_mode) &&
4985 !ext4_inode_is_fast_symlink(inode)))
4986 /* Validate extent which is part of inode */
4987 ret = ext4_ext_check_inode(inode);
4988 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4989 (S_ISLNK(inode->i_mode) &&
4990 !ext4_inode_is_fast_symlink(inode))) {
4991 /* Validate block references which are part of inode */
4992 ret = ext4_check_inode_blockref(inode);
4994 if (ret)
4995 goto bad_inode;
4997 if (S_ISREG(inode->i_mode)) {
4998 inode->i_op = &ext4_file_inode_operations;
4999 inode->i_fop = &ext4_file_operations;
5000 ext4_set_aops(inode);
5001 } else if (S_ISDIR(inode->i_mode)) {
5002 inode->i_op = &ext4_dir_inode_operations;
5003 inode->i_fop = &ext4_dir_operations;
5004 } else if (S_ISLNK(inode->i_mode)) {
5005 if (ext4_inode_is_fast_symlink(inode)) {
5006 inode->i_op = &ext4_fast_symlink_inode_operations;
5007 nd_terminate_link(ei->i_data, inode->i_size,
5008 sizeof(ei->i_data) - 1);
5009 } else {
5010 inode->i_op = &ext4_symlink_inode_operations;
5011 ext4_set_aops(inode);
5013 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5014 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5015 inode->i_op = &ext4_special_inode_operations;
5016 if (raw_inode->i_block[0])
5017 init_special_inode(inode, inode->i_mode,
5018 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5019 else
5020 init_special_inode(inode, inode->i_mode,
5021 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5022 } else {
5023 ret = -EIO;
5024 ext4_error(inode->i_sb, __func__,
5025 "bogus i_mode (%o) for inode=%lu",
5026 inode->i_mode, inode->i_ino);
5027 goto bad_inode;
5029 brelse(iloc.bh);
5030 ext4_set_inode_flags(inode);
5031 unlock_new_inode(inode);
5032 return inode;
5034 bad_inode:
5035 brelse(iloc.bh);
5036 iget_failed(inode);
5037 return ERR_PTR(ret);
5040 static int ext4_inode_blocks_set(handle_t *handle,
5041 struct ext4_inode *raw_inode,
5042 struct ext4_inode_info *ei)
5044 struct inode *inode = &(ei->vfs_inode);
5045 u64 i_blocks = inode->i_blocks;
5046 struct super_block *sb = inode->i_sb;
5048 if (i_blocks <= ~0U) {
5050 * i_blocks can be represnted in a 32 bit variable
5051 * as multiple of 512 bytes
5053 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5054 raw_inode->i_blocks_high = 0;
5055 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5056 return 0;
5058 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5059 return -EFBIG;
5061 if (i_blocks <= 0xffffffffffffULL) {
5063 * i_blocks can be represented in a 48 bit variable
5064 * as multiple of 512 bytes
5066 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5067 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5068 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5069 } else {
5070 ei->i_flags |= EXT4_HUGE_FILE_FL;
5071 /* i_block is stored in file system block size */
5072 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5073 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5074 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5076 return 0;
5080 * Post the struct inode info into an on-disk inode location in the
5081 * buffer-cache. This gobbles the caller's reference to the
5082 * buffer_head in the inode location struct.
5084 * The caller must have write access to iloc->bh.
5086 static int ext4_do_update_inode(handle_t *handle,
5087 struct inode *inode,
5088 struct ext4_iloc *iloc)
5090 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5091 struct ext4_inode_info *ei = EXT4_I(inode);
5092 struct buffer_head *bh = iloc->bh;
5093 int err = 0, rc, block;
5095 /* For fields not not tracking in the in-memory inode,
5096 * initialise them to zero for new inodes. */
5097 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5098 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5100 ext4_get_inode_flags(ei);
5101 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5102 if (!(test_opt(inode->i_sb, NO_UID32))) {
5103 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5104 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5106 * Fix up interoperability with old kernels. Otherwise, old inodes get
5107 * re-used with the upper 16 bits of the uid/gid intact
5109 if (!ei->i_dtime) {
5110 raw_inode->i_uid_high =
5111 cpu_to_le16(high_16_bits(inode->i_uid));
5112 raw_inode->i_gid_high =
5113 cpu_to_le16(high_16_bits(inode->i_gid));
5114 } else {
5115 raw_inode->i_uid_high = 0;
5116 raw_inode->i_gid_high = 0;
5118 } else {
5119 raw_inode->i_uid_low =
5120 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5121 raw_inode->i_gid_low =
5122 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5123 raw_inode->i_uid_high = 0;
5124 raw_inode->i_gid_high = 0;
5126 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5128 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5129 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5130 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5131 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5133 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5134 goto out_brelse;
5135 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5136 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5137 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5138 cpu_to_le32(EXT4_OS_HURD))
5139 raw_inode->i_file_acl_high =
5140 cpu_to_le16(ei->i_file_acl >> 32);
5141 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5142 ext4_isize_set(raw_inode, ei->i_disksize);
5143 if (ei->i_disksize > 0x7fffffffULL) {
5144 struct super_block *sb = inode->i_sb;
5145 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5146 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5147 EXT4_SB(sb)->s_es->s_rev_level ==
5148 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5149 /* If this is the first large file
5150 * created, add a flag to the superblock.
5152 err = ext4_journal_get_write_access(handle,
5153 EXT4_SB(sb)->s_sbh);
5154 if (err)
5155 goto out_brelse;
5156 ext4_update_dynamic_rev(sb);
5157 EXT4_SET_RO_COMPAT_FEATURE(sb,
5158 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5159 sb->s_dirt = 1;
5160 ext4_handle_sync(handle);
5161 err = ext4_handle_dirty_metadata(handle, NULL,
5162 EXT4_SB(sb)->s_sbh);
5165 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5166 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5167 if (old_valid_dev(inode->i_rdev)) {
5168 raw_inode->i_block[0] =
5169 cpu_to_le32(old_encode_dev(inode->i_rdev));
5170 raw_inode->i_block[1] = 0;
5171 } else {
5172 raw_inode->i_block[0] = 0;
5173 raw_inode->i_block[1] =
5174 cpu_to_le32(new_encode_dev(inode->i_rdev));
5175 raw_inode->i_block[2] = 0;
5177 } else
5178 for (block = 0; block < EXT4_N_BLOCKS; block++)
5179 raw_inode->i_block[block] = ei->i_data[block];
5181 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5182 if (ei->i_extra_isize) {
5183 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5184 raw_inode->i_version_hi =
5185 cpu_to_le32(inode->i_version >> 32);
5186 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5189 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5190 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5191 if (!err)
5192 err = rc;
5193 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5195 ext4_update_inode_fsync_trans(handle, inode, 0);
5196 out_brelse:
5197 brelse(bh);
5198 ext4_std_error(inode->i_sb, err);
5199 return err;
5203 * ext4_write_inode()
5205 * We are called from a few places:
5207 * - Within generic_file_write() for O_SYNC files.
5208 * Here, there will be no transaction running. We wait for any running
5209 * trasnaction to commit.
5211 * - Within sys_sync(), kupdate and such.
5212 * We wait on commit, if tol to.
5214 * - Within prune_icache() (PF_MEMALLOC == true)
5215 * Here we simply return. We can't afford to block kswapd on the
5216 * journal commit.
5218 * In all cases it is actually safe for us to return without doing anything,
5219 * because the inode has been copied into a raw inode buffer in
5220 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5221 * knfsd.
5223 * Note that we are absolutely dependent upon all inode dirtiers doing the
5224 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5225 * which we are interested.
5227 * It would be a bug for them to not do this. The code:
5229 * mark_inode_dirty(inode)
5230 * stuff();
5231 * inode->i_size = expr;
5233 * is in error because a kswapd-driven write_inode() could occur while
5234 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5235 * will no longer be on the superblock's dirty inode list.
5237 int ext4_write_inode(struct inode *inode, int wait)
5239 int err;
5241 if (current->flags & PF_MEMALLOC)
5242 return 0;
5244 if (EXT4_SB(inode->i_sb)->s_journal) {
5245 if (ext4_journal_current_handle()) {
5246 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5247 dump_stack();
5248 return -EIO;
5251 if (!wait)
5252 return 0;
5254 err = ext4_force_commit(inode->i_sb);
5255 } else {
5256 struct ext4_iloc iloc;
5258 err = ext4_get_inode_loc(inode, &iloc);
5259 if (err)
5260 return err;
5261 if (wait)
5262 sync_dirty_buffer(iloc.bh);
5263 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5264 ext4_error(inode->i_sb, __func__,
5265 "IO error syncing inode, "
5266 "inode=%lu, block=%llu",
5267 inode->i_ino,
5268 (unsigned long long)iloc.bh->b_blocknr);
5269 err = -EIO;
5272 return err;
5276 * ext4_setattr()
5278 * Called from notify_change.
5280 * We want to trap VFS attempts to truncate the file as soon as
5281 * possible. In particular, we want to make sure that when the VFS
5282 * shrinks i_size, we put the inode on the orphan list and modify
5283 * i_disksize immediately, so that during the subsequent flushing of
5284 * dirty pages and freeing of disk blocks, we can guarantee that any
5285 * commit will leave the blocks being flushed in an unused state on
5286 * disk. (On recovery, the inode will get truncated and the blocks will
5287 * be freed, so we have a strong guarantee that no future commit will
5288 * leave these blocks visible to the user.)
5290 * Another thing we have to assure is that if we are in ordered mode
5291 * and inode is still attached to the committing transaction, we must
5292 * we start writeout of all the dirty pages which are being truncated.
5293 * This way we are sure that all the data written in the previous
5294 * transaction are already on disk (truncate waits for pages under
5295 * writeback).
5297 * Called with inode->i_mutex down.
5299 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5301 struct inode *inode = dentry->d_inode;
5302 int error, rc = 0;
5303 const unsigned int ia_valid = attr->ia_valid;
5305 error = inode_change_ok(inode, attr);
5306 if (error)
5307 return error;
5309 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5310 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5311 handle_t *handle;
5313 /* (user+group)*(old+new) structure, inode write (sb,
5314 * inode block, ? - but truncate inode update has it) */
5315 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5316 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5317 if (IS_ERR(handle)) {
5318 error = PTR_ERR(handle);
5319 goto err_out;
5321 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5322 if (error) {
5323 ext4_journal_stop(handle);
5324 return error;
5326 /* Update corresponding info in inode so that everything is in
5327 * one transaction */
5328 if (attr->ia_valid & ATTR_UID)
5329 inode->i_uid = attr->ia_uid;
5330 if (attr->ia_valid & ATTR_GID)
5331 inode->i_gid = attr->ia_gid;
5332 error = ext4_mark_inode_dirty(handle, inode);
5333 ext4_journal_stop(handle);
5336 if (attr->ia_valid & ATTR_SIZE) {
5337 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5340 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5341 error = -EFBIG;
5342 goto err_out;
5347 if (S_ISREG(inode->i_mode) &&
5348 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5349 handle_t *handle;
5351 handle = ext4_journal_start(inode, 3);
5352 if (IS_ERR(handle)) {
5353 error = PTR_ERR(handle);
5354 goto err_out;
5357 error = ext4_orphan_add(handle, inode);
5358 EXT4_I(inode)->i_disksize = attr->ia_size;
5359 rc = ext4_mark_inode_dirty(handle, inode);
5360 if (!error)
5361 error = rc;
5362 ext4_journal_stop(handle);
5364 if (ext4_should_order_data(inode)) {
5365 error = ext4_begin_ordered_truncate(inode,
5366 attr->ia_size);
5367 if (error) {
5368 /* Do as much error cleanup as possible */
5369 handle = ext4_journal_start(inode, 3);
5370 if (IS_ERR(handle)) {
5371 ext4_orphan_del(NULL, inode);
5372 goto err_out;
5374 ext4_orphan_del(handle, inode);
5375 ext4_journal_stop(handle);
5376 goto err_out;
5381 rc = inode_setattr(inode, attr);
5383 /* If inode_setattr's call to ext4_truncate failed to get a
5384 * transaction handle at all, we need to clean up the in-core
5385 * orphan list manually. */
5386 if (inode->i_nlink)
5387 ext4_orphan_del(NULL, inode);
5389 if (!rc && (ia_valid & ATTR_MODE))
5390 rc = ext4_acl_chmod(inode);
5392 err_out:
5393 ext4_std_error(inode->i_sb, error);
5394 if (!error)
5395 error = rc;
5396 return error;
5399 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5400 struct kstat *stat)
5402 struct inode *inode;
5403 unsigned long delalloc_blocks;
5405 inode = dentry->d_inode;
5406 generic_fillattr(inode, stat);
5409 * We can't update i_blocks if the block allocation is delayed
5410 * otherwise in the case of system crash before the real block
5411 * allocation is done, we will have i_blocks inconsistent with
5412 * on-disk file blocks.
5413 * We always keep i_blocks updated together with real
5414 * allocation. But to not confuse with user, stat
5415 * will return the blocks that include the delayed allocation
5416 * blocks for this file.
5418 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5419 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5420 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5422 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5423 return 0;
5426 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5427 int chunk)
5429 int indirects;
5431 /* if nrblocks are contiguous */
5432 if (chunk) {
5434 * With N contiguous data blocks, it need at most
5435 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5436 * 2 dindirect blocks
5437 * 1 tindirect block
5439 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5440 return indirects + 3;
5443 * if nrblocks are not contiguous, worse case, each block touch
5444 * a indirect block, and each indirect block touch a double indirect
5445 * block, plus a triple indirect block
5447 indirects = nrblocks * 2 + 1;
5448 return indirects;
5451 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5453 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5454 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5455 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5459 * Account for index blocks, block groups bitmaps and block group
5460 * descriptor blocks if modify datablocks and index blocks
5461 * worse case, the indexs blocks spread over different block groups
5463 * If datablocks are discontiguous, they are possible to spread over
5464 * different block groups too. If they are contiugous, with flexbg,
5465 * they could still across block group boundary.
5467 * Also account for superblock, inode, quota and xattr blocks
5469 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5471 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5472 int gdpblocks;
5473 int idxblocks;
5474 int ret = 0;
5477 * How many index blocks need to touch to modify nrblocks?
5478 * The "Chunk" flag indicating whether the nrblocks is
5479 * physically contiguous on disk
5481 * For Direct IO and fallocate, they calls get_block to allocate
5482 * one single extent at a time, so they could set the "Chunk" flag
5484 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5486 ret = idxblocks;
5489 * Now let's see how many group bitmaps and group descriptors need
5490 * to account
5492 groups = idxblocks;
5493 if (chunk)
5494 groups += 1;
5495 else
5496 groups += nrblocks;
5498 gdpblocks = groups;
5499 if (groups > ngroups)
5500 groups = ngroups;
5501 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5502 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5504 /* bitmaps and block group descriptor blocks */
5505 ret += groups + gdpblocks;
5507 /* Blocks for super block, inode, quota and xattr blocks */
5508 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5510 return ret;
5514 * Calulate the total number of credits to reserve to fit
5515 * the modification of a single pages into a single transaction,
5516 * which may include multiple chunks of block allocations.
5518 * This could be called via ext4_write_begin()
5520 * We need to consider the worse case, when
5521 * one new block per extent.
5523 int ext4_writepage_trans_blocks(struct inode *inode)
5525 int bpp = ext4_journal_blocks_per_page(inode);
5526 int ret;
5528 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5530 /* Account for data blocks for journalled mode */
5531 if (ext4_should_journal_data(inode))
5532 ret += bpp;
5533 return ret;
5537 * Calculate the journal credits for a chunk of data modification.
5539 * This is called from DIO, fallocate or whoever calling
5540 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5542 * journal buffers for data blocks are not included here, as DIO
5543 * and fallocate do no need to journal data buffers.
5545 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5547 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5551 * The caller must have previously called ext4_reserve_inode_write().
5552 * Give this, we know that the caller already has write access to iloc->bh.
5554 int ext4_mark_iloc_dirty(handle_t *handle,
5555 struct inode *inode, struct ext4_iloc *iloc)
5557 int err = 0;
5559 if (test_opt(inode->i_sb, I_VERSION))
5560 inode_inc_iversion(inode);
5562 /* the do_update_inode consumes one bh->b_count */
5563 get_bh(iloc->bh);
5565 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5566 err = ext4_do_update_inode(handle, inode, iloc);
5567 put_bh(iloc->bh);
5568 return err;
5572 * On success, We end up with an outstanding reference count against
5573 * iloc->bh. This _must_ be cleaned up later.
5577 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5578 struct ext4_iloc *iloc)
5580 int err;
5582 err = ext4_get_inode_loc(inode, iloc);
5583 if (!err) {
5584 BUFFER_TRACE(iloc->bh, "get_write_access");
5585 err = ext4_journal_get_write_access(handle, iloc->bh);
5586 if (err) {
5587 brelse(iloc->bh);
5588 iloc->bh = NULL;
5591 ext4_std_error(inode->i_sb, err);
5592 return err;
5596 * Expand an inode by new_extra_isize bytes.
5597 * Returns 0 on success or negative error number on failure.
5599 static int ext4_expand_extra_isize(struct inode *inode,
5600 unsigned int new_extra_isize,
5601 struct ext4_iloc iloc,
5602 handle_t *handle)
5604 struct ext4_inode *raw_inode;
5605 struct ext4_xattr_ibody_header *header;
5606 struct ext4_xattr_entry *entry;
5608 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5609 return 0;
5611 raw_inode = ext4_raw_inode(&iloc);
5613 header = IHDR(inode, raw_inode);
5614 entry = IFIRST(header);
5616 /* No extended attributes present */
5617 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5618 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5619 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5620 new_extra_isize);
5621 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5622 return 0;
5625 /* try to expand with EAs present */
5626 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5627 raw_inode, handle);
5631 * What we do here is to mark the in-core inode as clean with respect to inode
5632 * dirtiness (it may still be data-dirty).
5633 * This means that the in-core inode may be reaped by prune_icache
5634 * without having to perform any I/O. This is a very good thing,
5635 * because *any* task may call prune_icache - even ones which
5636 * have a transaction open against a different journal.
5638 * Is this cheating? Not really. Sure, we haven't written the
5639 * inode out, but prune_icache isn't a user-visible syncing function.
5640 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5641 * we start and wait on commits.
5643 * Is this efficient/effective? Well, we're being nice to the system
5644 * by cleaning up our inodes proactively so they can be reaped
5645 * without I/O. But we are potentially leaving up to five seconds'
5646 * worth of inodes floating about which prune_icache wants us to
5647 * write out. One way to fix that would be to get prune_icache()
5648 * to do a write_super() to free up some memory. It has the desired
5649 * effect.
5651 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5653 struct ext4_iloc iloc;
5654 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5655 static unsigned int mnt_count;
5656 int err, ret;
5658 might_sleep();
5659 err = ext4_reserve_inode_write(handle, inode, &iloc);
5660 if (ext4_handle_valid(handle) &&
5661 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5662 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5664 * We need extra buffer credits since we may write into EA block
5665 * with this same handle. If journal_extend fails, then it will
5666 * only result in a minor loss of functionality for that inode.
5667 * If this is felt to be critical, then e2fsck should be run to
5668 * force a large enough s_min_extra_isize.
5670 if ((jbd2_journal_extend(handle,
5671 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5672 ret = ext4_expand_extra_isize(inode,
5673 sbi->s_want_extra_isize,
5674 iloc, handle);
5675 if (ret) {
5676 ext4_set_inode_state(inode,
5677 EXT4_STATE_NO_EXPAND);
5678 if (mnt_count !=
5679 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5680 ext4_warning(inode->i_sb, __func__,
5681 "Unable to expand inode %lu. Delete"
5682 " some EAs or run e2fsck.",
5683 inode->i_ino);
5684 mnt_count =
5685 le16_to_cpu(sbi->s_es->s_mnt_count);
5690 if (!err)
5691 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5692 return err;
5696 * ext4_dirty_inode() is called from __mark_inode_dirty()
5698 * We're really interested in the case where a file is being extended.
5699 * i_size has been changed by generic_commit_write() and we thus need
5700 * to include the updated inode in the current transaction.
5702 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5703 * are allocated to the file.
5705 * If the inode is marked synchronous, we don't honour that here - doing
5706 * so would cause a commit on atime updates, which we don't bother doing.
5707 * We handle synchronous inodes at the highest possible level.
5709 void ext4_dirty_inode(struct inode *inode)
5711 handle_t *handle;
5713 handle = ext4_journal_start(inode, 2);
5714 if (IS_ERR(handle))
5715 goto out;
5717 ext4_mark_inode_dirty(handle, inode);
5719 ext4_journal_stop(handle);
5720 out:
5721 return;
5724 #if 0
5726 * Bind an inode's backing buffer_head into this transaction, to prevent
5727 * it from being flushed to disk early. Unlike
5728 * ext4_reserve_inode_write, this leaves behind no bh reference and
5729 * returns no iloc structure, so the caller needs to repeat the iloc
5730 * lookup to mark the inode dirty later.
5732 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5734 struct ext4_iloc iloc;
5736 int err = 0;
5737 if (handle) {
5738 err = ext4_get_inode_loc(inode, &iloc);
5739 if (!err) {
5740 BUFFER_TRACE(iloc.bh, "get_write_access");
5741 err = jbd2_journal_get_write_access(handle, iloc.bh);
5742 if (!err)
5743 err = ext4_handle_dirty_metadata(handle,
5744 NULL,
5745 iloc.bh);
5746 brelse(iloc.bh);
5749 ext4_std_error(inode->i_sb, err);
5750 return err;
5752 #endif
5754 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5756 journal_t *journal;
5757 handle_t *handle;
5758 int err;
5761 * We have to be very careful here: changing a data block's
5762 * journaling status dynamically is dangerous. If we write a
5763 * data block to the journal, change the status and then delete
5764 * that block, we risk forgetting to revoke the old log record
5765 * from the journal and so a subsequent replay can corrupt data.
5766 * So, first we make sure that the journal is empty and that
5767 * nobody is changing anything.
5770 journal = EXT4_JOURNAL(inode);
5771 if (!journal)
5772 return 0;
5773 if (is_journal_aborted(journal))
5774 return -EROFS;
5776 jbd2_journal_lock_updates(journal);
5777 jbd2_journal_flush(journal);
5780 * OK, there are no updates running now, and all cached data is
5781 * synced to disk. We are now in a completely consistent state
5782 * which doesn't have anything in the journal, and we know that
5783 * no filesystem updates are running, so it is safe to modify
5784 * the inode's in-core data-journaling state flag now.
5787 if (val)
5788 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5789 else
5790 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5791 ext4_set_aops(inode);
5793 jbd2_journal_unlock_updates(journal);
5795 /* Finally we can mark the inode as dirty. */
5797 handle = ext4_journal_start(inode, 1);
5798 if (IS_ERR(handle))
5799 return PTR_ERR(handle);
5801 err = ext4_mark_inode_dirty(handle, inode);
5802 ext4_handle_sync(handle);
5803 ext4_journal_stop(handle);
5804 ext4_std_error(inode->i_sb, err);
5806 return err;
5809 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5811 return !buffer_mapped(bh);
5814 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5816 struct page *page = vmf->page;
5817 loff_t size;
5818 unsigned long len;
5819 int ret = -EINVAL;
5820 void *fsdata;
5821 struct file *file = vma->vm_file;
5822 struct inode *inode = file->f_path.dentry->d_inode;
5823 struct address_space *mapping = inode->i_mapping;
5826 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5827 * get i_mutex because we are already holding mmap_sem.
5829 down_read(&inode->i_alloc_sem);
5830 size = i_size_read(inode);
5831 if (page->mapping != mapping || size <= page_offset(page)
5832 || !PageUptodate(page)) {
5833 /* page got truncated from under us? */
5834 goto out_unlock;
5836 ret = 0;
5837 if (PageMappedToDisk(page))
5838 goto out_unlock;
5840 if (page->index == size >> PAGE_CACHE_SHIFT)
5841 len = size & ~PAGE_CACHE_MASK;
5842 else
5843 len = PAGE_CACHE_SIZE;
5845 lock_page(page);
5847 * return if we have all the buffers mapped. This avoid
5848 * the need to call write_begin/write_end which does a
5849 * journal_start/journal_stop which can block and take
5850 * long time
5852 if (page_has_buffers(page)) {
5853 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5854 ext4_bh_unmapped)) {
5855 unlock_page(page);
5856 goto out_unlock;
5859 unlock_page(page);
5861 * OK, we need to fill the hole... Do write_begin write_end
5862 * to do block allocation/reservation.We are not holding
5863 * inode.i__mutex here. That allow * parallel write_begin,
5864 * write_end call. lock_page prevent this from happening
5865 * on the same page though
5867 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5868 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5869 if (ret < 0)
5870 goto out_unlock;
5871 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5872 len, len, page, fsdata);
5873 if (ret < 0)
5874 goto out_unlock;
5875 ret = 0;
5876 out_unlock:
5877 if (ret)
5878 ret = VM_FAULT_SIGBUS;
5879 up_read(&inode->i_alloc_sem);
5880 return ret;