ACPI: thinkpad-acpi: prepare for device model conversion
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob0280fe661cd75e0456448b1fd278dad86b00b141
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
17 * tunables
19 static const int cfq_quantum = 4; /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
29 #define CFQ_IDLE_GRACE (HZ / 10)
30 #define CFQ_SLICE_SCALE (5)
32 #define CFQ_KEY_ASYNC (0)
35 * for the hash of cfqq inside the cfqd
37 #define CFQ_QHASH_SHIFT 6
38 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
39 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
41 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
43 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
44 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
52 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
53 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56 #define ASYNC (0)
57 #define SYNC (1)
59 #define cfq_cfqq_dispatched(cfqq) \
60 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
62 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
64 #define cfq_cfqq_sync(cfqq) \
65 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
67 #define sample_valid(samples) ((samples) > 80)
70 * Per block device queue structure
72 struct cfq_data {
73 request_queue_t *queue;
76 * rr list of queues with requests and the count of them
78 struct list_head rr_list[CFQ_PRIO_LISTS];
79 struct list_head busy_rr;
80 struct list_head cur_rr;
81 struct list_head idle_rr;
82 unsigned int busy_queues;
85 * cfqq lookup hash
87 struct hlist_head *cfq_hash;
89 int rq_in_driver;
90 int hw_tag;
93 * idle window management
95 struct timer_list idle_slice_timer;
96 struct work_struct unplug_work;
98 struct cfq_queue *active_queue;
99 struct cfq_io_context *active_cic;
100 int cur_prio, cur_end_prio;
101 unsigned int dispatch_slice;
103 struct timer_list idle_class_timer;
105 sector_t last_sector;
106 unsigned long last_end_request;
109 * tunables, see top of file
111 unsigned int cfq_quantum;
112 unsigned int cfq_fifo_expire[2];
113 unsigned int cfq_back_penalty;
114 unsigned int cfq_back_max;
115 unsigned int cfq_slice[2];
116 unsigned int cfq_slice_async_rq;
117 unsigned int cfq_slice_idle;
119 struct list_head cic_list;
123 * Per process-grouping structure
125 struct cfq_queue {
126 /* reference count */
127 atomic_t ref;
128 /* parent cfq_data */
129 struct cfq_data *cfqd;
130 /* cfqq lookup hash */
131 struct hlist_node cfq_hash;
132 /* hash key */
133 unsigned int key;
134 /* member of the rr/busy/cur/idle cfqd list */
135 struct list_head cfq_list;
136 /* sorted list of pending requests */
137 struct rb_root sort_list;
138 /* if fifo isn't expired, next request to serve */
139 struct request *next_rq;
140 /* requests queued in sort_list */
141 int queued[2];
142 /* currently allocated requests */
143 int allocated[2];
144 /* pending metadata requests */
145 int meta_pending;
146 /* fifo list of requests in sort_list */
147 struct list_head fifo;
149 unsigned long slice_start;
150 unsigned long slice_end;
151 unsigned long slice_left;
153 /* number of requests that are on the dispatch list */
154 int on_dispatch[2];
156 /* io prio of this group */
157 unsigned short ioprio, org_ioprio;
158 unsigned short ioprio_class, org_ioprio_class;
160 /* various state flags, see below */
161 unsigned int flags;
164 enum cfqq_state_flags {
165 CFQ_CFQQ_FLAG_on_rr = 0,
166 CFQ_CFQQ_FLAG_wait_request,
167 CFQ_CFQQ_FLAG_must_alloc,
168 CFQ_CFQQ_FLAG_must_alloc_slice,
169 CFQ_CFQQ_FLAG_must_dispatch,
170 CFQ_CFQQ_FLAG_fifo_expire,
171 CFQ_CFQQ_FLAG_idle_window,
172 CFQ_CFQQ_FLAG_prio_changed,
173 CFQ_CFQQ_FLAG_queue_new,
176 #define CFQ_CFQQ_FNS(name) \
177 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
179 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
181 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
183 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
185 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
187 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
190 CFQ_CFQQ_FNS(on_rr);
191 CFQ_CFQQ_FNS(wait_request);
192 CFQ_CFQQ_FNS(must_alloc);
193 CFQ_CFQQ_FNS(must_alloc_slice);
194 CFQ_CFQQ_FNS(must_dispatch);
195 CFQ_CFQQ_FNS(fifo_expire);
196 CFQ_CFQQ_FNS(idle_window);
197 CFQ_CFQQ_FNS(prio_changed);
198 CFQ_CFQQ_FNS(queue_new);
199 #undef CFQ_CFQQ_FNS
201 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202 static void cfq_dispatch_insert(request_queue_t *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
209 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
211 if (cfqd->busy_queues)
212 kblockd_schedule_work(&cfqd->unplug_work);
215 static int cfq_queue_empty(request_queue_t *q)
217 struct cfq_data *cfqd = q->elevator->elevator_data;
219 return !cfqd->busy_queues;
222 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225 * Use the per-process queue, for read requests and syncronous writes
227 if (!(rw & REQ_RW) || is_sync)
228 return task->pid;
230 return CFQ_KEY_ASYNC;
234 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
235 * We choose the request that is closest to the head right now. Distance
236 * behind the head is penalized and only allowed to a certain extent.
238 static struct request *
239 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
241 sector_t last, s1, s2, d1 = 0, d2 = 0;
242 unsigned long back_max;
243 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
244 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
245 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
247 if (rq1 == NULL || rq1 == rq2)
248 return rq2;
249 if (rq2 == NULL)
250 return rq1;
252 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
253 return rq1;
254 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
255 return rq2;
256 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
257 return rq1;
258 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
259 return rq2;
261 s1 = rq1->sector;
262 s2 = rq2->sector;
264 last = cfqd->last_sector;
267 * by definition, 1KiB is 2 sectors
269 back_max = cfqd->cfq_back_max * 2;
272 * Strict one way elevator _except_ in the case where we allow
273 * short backward seeks which are biased as twice the cost of a
274 * similar forward seek.
276 if (s1 >= last)
277 d1 = s1 - last;
278 else if (s1 + back_max >= last)
279 d1 = (last - s1) * cfqd->cfq_back_penalty;
280 else
281 wrap |= CFQ_RQ1_WRAP;
283 if (s2 >= last)
284 d2 = s2 - last;
285 else if (s2 + back_max >= last)
286 d2 = (last - s2) * cfqd->cfq_back_penalty;
287 else
288 wrap |= CFQ_RQ2_WRAP;
290 /* Found required data */
293 * By doing switch() on the bit mask "wrap" we avoid having to
294 * check two variables for all permutations: --> faster!
296 switch (wrap) {
297 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
298 if (d1 < d2)
299 return rq1;
300 else if (d2 < d1)
301 return rq2;
302 else {
303 if (s1 >= s2)
304 return rq1;
305 else
306 return rq2;
309 case CFQ_RQ2_WRAP:
310 return rq1;
311 case CFQ_RQ1_WRAP:
312 return rq2;
313 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
314 default:
316 * Since both rqs are wrapped,
317 * start with the one that's further behind head
318 * (--> only *one* back seek required),
319 * since back seek takes more time than forward.
321 if (s1 <= s2)
322 return rq1;
323 else
324 return rq2;
329 * would be nice to take fifo expire time into account as well
331 static struct request *
332 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
333 struct request *last)
335 struct rb_node *rbnext = rb_next(&last->rb_node);
336 struct rb_node *rbprev = rb_prev(&last->rb_node);
337 struct request *next = NULL, *prev = NULL;
339 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
341 if (rbprev)
342 prev = rb_entry_rq(rbprev);
344 if (rbnext)
345 next = rb_entry_rq(rbnext);
346 else {
347 rbnext = rb_first(&cfqq->sort_list);
348 if (rbnext && rbnext != &last->rb_node)
349 next = rb_entry_rq(rbnext);
352 return cfq_choose_req(cfqd, next, prev);
355 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
357 struct cfq_data *cfqd = cfqq->cfqd;
358 struct list_head *list;
360 BUG_ON(!cfq_cfqq_on_rr(cfqq));
362 list_del(&cfqq->cfq_list);
364 if (cfq_class_rt(cfqq))
365 list = &cfqd->cur_rr;
366 else if (cfq_class_idle(cfqq))
367 list = &cfqd->idle_rr;
368 else {
370 * if cfqq has requests in flight, don't allow it to be
371 * found in cfq_set_active_queue before it has finished them.
372 * this is done to increase fairness between a process that
373 * has lots of io pending vs one that only generates one
374 * sporadically or synchronously
376 if (cfq_cfqq_dispatched(cfqq))
377 list = &cfqd->busy_rr;
378 else
379 list = &cfqd->rr_list[cfqq->ioprio];
383 * If this queue was preempted or is new (never been serviced), let
384 * it be added first for fairness but beind other new queues.
385 * Otherwise, just add to the back of the list.
387 if (preempted || cfq_cfqq_queue_new(cfqq)) {
388 struct list_head *n = list;
389 struct cfq_queue *__cfqq;
391 while (n->next != list) {
392 __cfqq = list_entry_cfqq(n->next);
393 if (!cfq_cfqq_queue_new(__cfqq))
394 break;
396 n = n->next;
399 list = n;
402 list_add_tail(&cfqq->cfq_list, list);
406 * add to busy list of queues for service, trying to be fair in ordering
407 * the pending list according to last request service
409 static inline void
410 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
412 BUG_ON(cfq_cfqq_on_rr(cfqq));
413 cfq_mark_cfqq_on_rr(cfqq);
414 cfqd->busy_queues++;
416 cfq_resort_rr_list(cfqq, 0);
419 static inline void
420 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
422 BUG_ON(!cfq_cfqq_on_rr(cfqq));
423 cfq_clear_cfqq_on_rr(cfqq);
424 list_del_init(&cfqq->cfq_list);
426 BUG_ON(!cfqd->busy_queues);
427 cfqd->busy_queues--;
431 * rb tree support functions
433 static inline void cfq_del_rq_rb(struct request *rq)
435 struct cfq_queue *cfqq = RQ_CFQQ(rq);
436 struct cfq_data *cfqd = cfqq->cfqd;
437 const int sync = rq_is_sync(rq);
439 BUG_ON(!cfqq->queued[sync]);
440 cfqq->queued[sync]--;
442 elv_rb_del(&cfqq->sort_list, rq);
444 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
445 cfq_del_cfqq_rr(cfqd, cfqq);
448 static void cfq_add_rq_rb(struct request *rq)
450 struct cfq_queue *cfqq = RQ_CFQQ(rq);
451 struct cfq_data *cfqd = cfqq->cfqd;
452 struct request *__alias;
454 cfqq->queued[rq_is_sync(rq)]++;
457 * looks a little odd, but the first insert might return an alias.
458 * if that happens, put the alias on the dispatch list
460 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
461 cfq_dispatch_insert(cfqd->queue, __alias);
463 if (!cfq_cfqq_on_rr(cfqq))
464 cfq_add_cfqq_rr(cfqd, cfqq);
467 * check if this request is a better next-serve candidate
469 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
470 BUG_ON(!cfqq->next_rq);
473 static inline void
474 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
476 elv_rb_del(&cfqq->sort_list, rq);
477 cfqq->queued[rq_is_sync(rq)]--;
478 cfq_add_rq_rb(rq);
481 static struct request *
482 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
484 struct task_struct *tsk = current;
485 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
486 struct cfq_queue *cfqq;
488 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
489 if (cfqq) {
490 sector_t sector = bio->bi_sector + bio_sectors(bio);
492 return elv_rb_find(&cfqq->sort_list, sector);
495 return NULL;
498 static void cfq_activate_request(request_queue_t *q, struct request *rq)
500 struct cfq_data *cfqd = q->elevator->elevator_data;
502 cfqd->rq_in_driver++;
505 * If the depth is larger 1, it really could be queueing. But lets
506 * make the mark a little higher - idling could still be good for
507 * low queueing, and a low queueing number could also just indicate
508 * a SCSI mid layer like behaviour where limit+1 is often seen.
510 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
511 cfqd->hw_tag = 1;
514 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
516 struct cfq_data *cfqd = q->elevator->elevator_data;
518 WARN_ON(!cfqd->rq_in_driver);
519 cfqd->rq_in_driver--;
522 static void cfq_remove_request(struct request *rq)
524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
526 if (cfqq->next_rq == rq)
527 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
529 list_del_init(&rq->queuelist);
530 cfq_del_rq_rb(rq);
532 if (rq_is_meta(rq)) {
533 WARN_ON(!cfqq->meta_pending);
534 cfqq->meta_pending--;
538 static int
539 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
541 struct cfq_data *cfqd = q->elevator->elevator_data;
542 struct request *__rq;
544 __rq = cfq_find_rq_fmerge(cfqd, bio);
545 if (__rq && elv_rq_merge_ok(__rq, bio)) {
546 *req = __rq;
547 return ELEVATOR_FRONT_MERGE;
550 return ELEVATOR_NO_MERGE;
553 static void cfq_merged_request(request_queue_t *q, struct request *req,
554 int type)
556 if (type == ELEVATOR_FRONT_MERGE) {
557 struct cfq_queue *cfqq = RQ_CFQQ(req);
559 cfq_reposition_rq_rb(cfqq, req);
563 static void
564 cfq_merged_requests(request_queue_t *q, struct request *rq,
565 struct request *next)
568 * reposition in fifo if next is older than rq
570 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
571 time_before(next->start_time, rq->start_time))
572 list_move(&rq->queuelist, &next->queuelist);
574 cfq_remove_request(next);
577 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
578 struct bio *bio)
580 struct cfq_data *cfqd = q->elevator->elevator_data;
581 const int rw = bio_data_dir(bio);
582 struct cfq_queue *cfqq;
583 pid_t key;
586 * Disallow merge of a sync bio into an async request.
588 if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
589 return 0;
592 * Lookup the cfqq that this bio will be queued with. Allow
593 * merge only if rq is queued there.
595 key = cfq_queue_pid(current, rw, bio_sync(bio));
596 cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
598 if (cfqq == RQ_CFQQ(rq))
599 return 1;
601 return 0;
604 static inline void
605 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
607 if (cfqq) {
609 * stop potential idle class queues waiting service
611 del_timer(&cfqd->idle_class_timer);
613 cfqq->slice_start = jiffies;
614 cfqq->slice_end = 0;
615 cfqq->slice_left = 0;
616 cfq_clear_cfqq_must_alloc_slice(cfqq);
617 cfq_clear_cfqq_fifo_expire(cfqq);
620 cfqd->active_queue = cfqq;
624 * current cfqq expired its slice (or was too idle), select new one
626 static void
627 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
628 int preempted)
630 unsigned long now = jiffies;
632 if (cfq_cfqq_wait_request(cfqq))
633 del_timer(&cfqd->idle_slice_timer);
635 if (!preempted && !cfq_cfqq_dispatched(cfqq))
636 cfq_schedule_dispatch(cfqd);
638 cfq_clear_cfqq_must_dispatch(cfqq);
639 cfq_clear_cfqq_wait_request(cfqq);
640 cfq_clear_cfqq_queue_new(cfqq);
643 * store what was left of this slice, if the queue idled out
644 * or was preempted
646 if (time_after(cfqq->slice_end, now))
647 cfqq->slice_left = cfqq->slice_end - now;
648 else
649 cfqq->slice_left = 0;
651 if (cfq_cfqq_on_rr(cfqq))
652 cfq_resort_rr_list(cfqq, preempted);
654 if (cfqq == cfqd->active_queue)
655 cfqd->active_queue = NULL;
657 if (cfqd->active_cic) {
658 put_io_context(cfqd->active_cic->ioc);
659 cfqd->active_cic = NULL;
662 cfqd->dispatch_slice = 0;
665 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
667 struct cfq_queue *cfqq = cfqd->active_queue;
669 if (cfqq)
670 __cfq_slice_expired(cfqd, cfqq, preempted);
675 * 0,1
676 * 0,1,2
677 * 0,1,2,3
678 * 0,1,2,3,4
679 * 0,1,2,3,4,5
680 * 0,1,2,3,4,5,6
681 * 0,1,2,3,4,5,6,7
683 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
685 int prio, wrap;
687 prio = -1;
688 wrap = 0;
689 do {
690 int p;
692 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
693 if (!list_empty(&cfqd->rr_list[p])) {
694 prio = p;
695 break;
699 if (prio != -1)
700 break;
701 cfqd->cur_prio = 0;
702 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
703 cfqd->cur_end_prio = 0;
704 if (wrap)
705 break;
706 wrap = 1;
708 } while (1);
710 if (unlikely(prio == -1))
711 return -1;
713 BUG_ON(prio >= CFQ_PRIO_LISTS);
715 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
717 cfqd->cur_prio = prio + 1;
718 if (cfqd->cur_prio > cfqd->cur_end_prio) {
719 cfqd->cur_end_prio = cfqd->cur_prio;
720 cfqd->cur_prio = 0;
722 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
723 cfqd->cur_prio = 0;
724 cfqd->cur_end_prio = 0;
727 return prio;
730 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
732 struct cfq_queue *cfqq = NULL;
734 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
736 * if current list is non-empty, grab first entry. if it is
737 * empty, get next prio level and grab first entry then if any
738 * are spliced
740 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
741 } else if (!list_empty(&cfqd->busy_rr)) {
743 * If no new queues are available, check if the busy list has
744 * some before falling back to idle io.
746 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
747 } else if (!list_empty(&cfqd->idle_rr)) {
749 * if we have idle queues and no rt or be queues had pending
750 * requests, either allow immediate service if the grace period
751 * has passed or arm the idle grace timer
753 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
755 if (time_after_eq(jiffies, end))
756 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
757 else
758 mod_timer(&cfqd->idle_class_timer, end);
761 __cfq_set_active_queue(cfqd, cfqq);
762 return cfqq;
765 #define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
767 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
770 struct cfq_io_context *cic;
771 unsigned long sl;
773 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
774 WARN_ON(cfqq != cfqd->active_queue);
777 * idle is disabled, either manually or by past process history
779 if (!cfqd->cfq_slice_idle)
780 return 0;
781 if (!cfq_cfqq_idle_window(cfqq))
782 return 0;
784 * task has exited, don't wait
786 cic = cfqd->active_cic;
787 if (!cic || !cic->ioc->task)
788 return 0;
790 cfq_mark_cfqq_must_dispatch(cfqq);
791 cfq_mark_cfqq_wait_request(cfqq);
793 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
796 * we don't want to idle for seeks, but we do want to allow
797 * fair distribution of slice time for a process doing back-to-back
798 * seeks. so allow a little bit of time for him to submit a new rq
800 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
801 sl = min(sl, msecs_to_jiffies(2));
803 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
804 return 1;
807 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
809 struct cfq_data *cfqd = q->elevator->elevator_data;
810 struct cfq_queue *cfqq = RQ_CFQQ(rq);
812 cfq_remove_request(rq);
813 cfqq->on_dispatch[rq_is_sync(rq)]++;
814 elv_dispatch_sort(q, rq);
816 rq = list_entry(q->queue_head.prev, struct request, queuelist);
817 cfqd->last_sector = rq->sector + rq->nr_sectors;
821 * return expired entry, or NULL to just start from scratch in rbtree
823 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
825 struct cfq_data *cfqd = cfqq->cfqd;
826 struct request *rq;
827 int fifo;
829 if (cfq_cfqq_fifo_expire(cfqq))
830 return NULL;
831 if (list_empty(&cfqq->fifo))
832 return NULL;
834 fifo = cfq_cfqq_class_sync(cfqq);
835 rq = rq_entry_fifo(cfqq->fifo.next);
837 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
838 cfq_mark_cfqq_fifo_expire(cfqq);
839 return rq;
842 return NULL;
846 * Scale schedule slice based on io priority. Use the sync time slice only
847 * if a queue is marked sync and has sync io queued. A sync queue with async
848 * io only, should not get full sync slice length.
850 static inline int
851 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
853 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
855 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
857 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
860 static inline void
861 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
863 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
866 static inline int
867 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
869 const int base_rq = cfqd->cfq_slice_async_rq;
871 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
873 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
877 * get next queue for service
879 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
881 unsigned long now = jiffies;
882 struct cfq_queue *cfqq;
884 cfqq = cfqd->active_queue;
885 if (!cfqq)
886 goto new_queue;
889 * slice has expired
891 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
892 goto expire;
895 * if queue has requests, dispatch one. if not, check if
896 * enough slice is left to wait for one
898 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
899 goto keep_queue;
900 else if (cfq_cfqq_dispatched(cfqq)) {
901 cfqq = NULL;
902 goto keep_queue;
903 } else if (cfq_cfqq_class_sync(cfqq)) {
904 if (cfq_arm_slice_timer(cfqd, cfqq))
905 return NULL;
908 expire:
909 cfq_slice_expired(cfqd, 0);
910 new_queue:
911 cfqq = cfq_set_active_queue(cfqd);
912 keep_queue:
913 return cfqq;
916 static int
917 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
918 int max_dispatch)
920 int dispatched = 0;
922 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
924 do {
925 struct request *rq;
928 * follow expired path, else get first next available
930 if ((rq = cfq_check_fifo(cfqq)) == NULL)
931 rq = cfqq->next_rq;
934 * finally, insert request into driver dispatch list
936 cfq_dispatch_insert(cfqd->queue, rq);
938 cfqd->dispatch_slice++;
939 dispatched++;
941 if (!cfqd->active_cic) {
942 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
943 cfqd->active_cic = RQ_CIC(rq);
946 if (RB_EMPTY_ROOT(&cfqq->sort_list))
947 break;
949 } while (dispatched < max_dispatch);
952 * if slice end isn't set yet, set it.
954 if (!cfqq->slice_end)
955 cfq_set_prio_slice(cfqd, cfqq);
958 * expire an async queue immediately if it has used up its slice. idle
959 * queue always expire after 1 dispatch round.
961 if ((!cfq_cfqq_sync(cfqq) &&
962 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
963 cfq_class_idle(cfqq) ||
964 !cfq_cfqq_idle_window(cfqq))
965 cfq_slice_expired(cfqd, 0);
967 return dispatched;
970 static int
971 cfq_forced_dispatch_cfqqs(struct list_head *list)
973 struct cfq_queue *cfqq, *next;
974 int dispatched;
976 dispatched = 0;
977 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
978 while (cfqq->next_rq) {
979 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
980 dispatched++;
982 BUG_ON(!list_empty(&cfqq->fifo));
985 return dispatched;
988 static int
989 cfq_forced_dispatch(struct cfq_data *cfqd)
991 int i, dispatched = 0;
993 for (i = 0; i < CFQ_PRIO_LISTS; i++)
994 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
996 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
997 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
998 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1000 cfq_slice_expired(cfqd, 0);
1002 BUG_ON(cfqd->busy_queues);
1004 return dispatched;
1007 static int
1008 cfq_dispatch_requests(request_queue_t *q, int force)
1010 struct cfq_data *cfqd = q->elevator->elevator_data;
1011 struct cfq_queue *cfqq, *prev_cfqq;
1012 int dispatched;
1014 if (!cfqd->busy_queues)
1015 return 0;
1017 if (unlikely(force))
1018 return cfq_forced_dispatch(cfqd);
1020 dispatched = 0;
1021 prev_cfqq = NULL;
1022 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1023 int max_dispatch;
1026 * Don't repeat dispatch from the previous queue.
1028 if (prev_cfqq == cfqq)
1029 break;
1031 cfq_clear_cfqq_must_dispatch(cfqq);
1032 cfq_clear_cfqq_wait_request(cfqq);
1033 del_timer(&cfqd->idle_slice_timer);
1035 max_dispatch = cfqd->cfq_quantum;
1036 if (cfq_class_idle(cfqq))
1037 max_dispatch = 1;
1039 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1042 * If the dispatch cfqq has idling enabled and is still
1043 * the active queue, break out.
1045 if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1046 break;
1048 prev_cfqq = cfqq;
1051 return dispatched;
1055 * task holds one reference to the queue, dropped when task exits. each rq
1056 * in-flight on this queue also holds a reference, dropped when rq is freed.
1058 * queue lock must be held here.
1060 static void cfq_put_queue(struct cfq_queue *cfqq)
1062 struct cfq_data *cfqd = cfqq->cfqd;
1064 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1066 if (!atomic_dec_and_test(&cfqq->ref))
1067 return;
1069 BUG_ON(rb_first(&cfqq->sort_list));
1070 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1071 BUG_ON(cfq_cfqq_on_rr(cfqq));
1073 if (unlikely(cfqd->active_queue == cfqq))
1074 __cfq_slice_expired(cfqd, cfqq, 0);
1077 * it's on the empty list and still hashed
1079 list_del(&cfqq->cfq_list);
1080 hlist_del(&cfqq->cfq_hash);
1081 kmem_cache_free(cfq_pool, cfqq);
1084 static struct cfq_queue *
1085 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1086 const int hashval)
1088 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1089 struct hlist_node *entry;
1090 struct cfq_queue *__cfqq;
1092 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1093 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1095 if (__cfqq->key == key && (__p == prio || !prio))
1096 return __cfqq;
1099 return NULL;
1102 static struct cfq_queue *
1103 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1105 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1108 static void cfq_free_io_context(struct io_context *ioc)
1110 struct cfq_io_context *__cic;
1111 struct rb_node *n;
1112 int freed = 0;
1114 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1115 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1116 rb_erase(&__cic->rb_node, &ioc->cic_root);
1117 kmem_cache_free(cfq_ioc_pool, __cic);
1118 freed++;
1121 elv_ioc_count_mod(ioc_count, -freed);
1123 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1124 complete(ioc_gone);
1127 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1129 if (unlikely(cfqq == cfqd->active_queue))
1130 __cfq_slice_expired(cfqd, cfqq, 0);
1132 cfq_put_queue(cfqq);
1135 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1136 struct cfq_io_context *cic)
1138 list_del_init(&cic->queue_list);
1139 smp_wmb();
1140 cic->key = NULL;
1142 if (cic->cfqq[ASYNC]) {
1143 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1144 cic->cfqq[ASYNC] = NULL;
1147 if (cic->cfqq[SYNC]) {
1148 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1149 cic->cfqq[SYNC] = NULL;
1155 * Called with interrupts disabled
1157 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1159 struct cfq_data *cfqd = cic->key;
1161 if (cfqd) {
1162 request_queue_t *q = cfqd->queue;
1164 spin_lock_irq(q->queue_lock);
1165 __cfq_exit_single_io_context(cfqd, cic);
1166 spin_unlock_irq(q->queue_lock);
1170 static void cfq_exit_io_context(struct io_context *ioc)
1172 struct cfq_io_context *__cic;
1173 struct rb_node *n;
1176 * put the reference this task is holding to the various queues
1179 n = rb_first(&ioc->cic_root);
1180 while (n != NULL) {
1181 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1183 cfq_exit_single_io_context(__cic);
1184 n = rb_next(n);
1188 static struct cfq_io_context *
1189 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1191 struct cfq_io_context *cic;
1193 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1194 if (cic) {
1195 memset(cic, 0, sizeof(*cic));
1196 cic->last_end_request = jiffies;
1197 INIT_LIST_HEAD(&cic->queue_list);
1198 cic->dtor = cfq_free_io_context;
1199 cic->exit = cfq_exit_io_context;
1200 elv_ioc_count_inc(ioc_count);
1203 return cic;
1206 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1208 struct task_struct *tsk = current;
1209 int ioprio_class;
1211 if (!cfq_cfqq_prio_changed(cfqq))
1212 return;
1214 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1215 switch (ioprio_class) {
1216 default:
1217 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1218 case IOPRIO_CLASS_NONE:
1220 * no prio set, place us in the middle of the BE classes
1222 cfqq->ioprio = task_nice_ioprio(tsk);
1223 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1224 break;
1225 case IOPRIO_CLASS_RT:
1226 cfqq->ioprio = task_ioprio(tsk);
1227 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1228 break;
1229 case IOPRIO_CLASS_BE:
1230 cfqq->ioprio = task_ioprio(tsk);
1231 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1232 break;
1233 case IOPRIO_CLASS_IDLE:
1234 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1235 cfqq->ioprio = 7;
1236 cfq_clear_cfqq_idle_window(cfqq);
1237 break;
1241 * keep track of original prio settings in case we have to temporarily
1242 * elevate the priority of this queue
1244 cfqq->org_ioprio = cfqq->ioprio;
1245 cfqq->org_ioprio_class = cfqq->ioprio_class;
1247 if (cfq_cfqq_on_rr(cfqq))
1248 cfq_resort_rr_list(cfqq, 0);
1250 cfq_clear_cfqq_prio_changed(cfqq);
1253 static inline void changed_ioprio(struct cfq_io_context *cic)
1255 struct cfq_data *cfqd = cic->key;
1256 struct cfq_queue *cfqq;
1257 unsigned long flags;
1259 if (unlikely(!cfqd))
1260 return;
1262 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1264 cfqq = cic->cfqq[ASYNC];
1265 if (cfqq) {
1266 struct cfq_queue *new_cfqq;
1267 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1268 GFP_ATOMIC);
1269 if (new_cfqq) {
1270 cic->cfqq[ASYNC] = new_cfqq;
1271 cfq_put_queue(cfqq);
1275 cfqq = cic->cfqq[SYNC];
1276 if (cfqq)
1277 cfq_mark_cfqq_prio_changed(cfqq);
1279 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1282 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1284 struct cfq_io_context *cic;
1285 struct rb_node *n;
1287 ioc->ioprio_changed = 0;
1289 n = rb_first(&ioc->cic_root);
1290 while (n != NULL) {
1291 cic = rb_entry(n, struct cfq_io_context, rb_node);
1293 changed_ioprio(cic);
1294 n = rb_next(n);
1298 static struct cfq_queue *
1299 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1300 gfp_t gfp_mask)
1302 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1303 struct cfq_queue *cfqq, *new_cfqq = NULL;
1304 unsigned short ioprio;
1306 retry:
1307 ioprio = tsk->ioprio;
1308 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1310 if (!cfqq) {
1311 if (new_cfqq) {
1312 cfqq = new_cfqq;
1313 new_cfqq = NULL;
1314 } else if (gfp_mask & __GFP_WAIT) {
1316 * Inform the allocator of the fact that we will
1317 * just repeat this allocation if it fails, to allow
1318 * the allocator to do whatever it needs to attempt to
1319 * free memory.
1321 spin_unlock_irq(cfqd->queue->queue_lock);
1322 new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1323 spin_lock_irq(cfqd->queue->queue_lock);
1324 goto retry;
1325 } else {
1326 cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1327 if (!cfqq)
1328 goto out;
1331 memset(cfqq, 0, sizeof(*cfqq));
1333 INIT_HLIST_NODE(&cfqq->cfq_hash);
1334 INIT_LIST_HEAD(&cfqq->cfq_list);
1335 INIT_LIST_HEAD(&cfqq->fifo);
1337 cfqq->key = key;
1338 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1339 atomic_set(&cfqq->ref, 0);
1340 cfqq->cfqd = cfqd;
1342 * set ->slice_left to allow preemption for a new process
1344 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1345 cfq_mark_cfqq_idle_window(cfqq);
1346 cfq_mark_cfqq_prio_changed(cfqq);
1347 cfq_mark_cfqq_queue_new(cfqq);
1348 cfq_init_prio_data(cfqq);
1351 if (new_cfqq)
1352 kmem_cache_free(cfq_pool, new_cfqq);
1354 atomic_inc(&cfqq->ref);
1355 out:
1356 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1357 return cfqq;
1360 static void
1361 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1363 WARN_ON(!list_empty(&cic->queue_list));
1364 rb_erase(&cic->rb_node, &ioc->cic_root);
1365 kmem_cache_free(cfq_ioc_pool, cic);
1366 elv_ioc_count_dec(ioc_count);
1369 static struct cfq_io_context *
1370 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1372 struct rb_node *n;
1373 struct cfq_io_context *cic;
1374 void *k, *key = cfqd;
1376 restart:
1377 n = ioc->cic_root.rb_node;
1378 while (n) {
1379 cic = rb_entry(n, struct cfq_io_context, rb_node);
1380 /* ->key must be copied to avoid race with cfq_exit_queue() */
1381 k = cic->key;
1382 if (unlikely(!k)) {
1383 cfq_drop_dead_cic(ioc, cic);
1384 goto restart;
1387 if (key < k)
1388 n = n->rb_left;
1389 else if (key > k)
1390 n = n->rb_right;
1391 else
1392 return cic;
1395 return NULL;
1398 static inline void
1399 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1400 struct cfq_io_context *cic)
1402 struct rb_node **p;
1403 struct rb_node *parent;
1404 struct cfq_io_context *__cic;
1405 unsigned long flags;
1406 void *k;
1408 cic->ioc = ioc;
1409 cic->key = cfqd;
1411 restart:
1412 parent = NULL;
1413 p = &ioc->cic_root.rb_node;
1414 while (*p) {
1415 parent = *p;
1416 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1417 /* ->key must be copied to avoid race with cfq_exit_queue() */
1418 k = __cic->key;
1419 if (unlikely(!k)) {
1420 cfq_drop_dead_cic(ioc, __cic);
1421 goto restart;
1424 if (cic->key < k)
1425 p = &(*p)->rb_left;
1426 else if (cic->key > k)
1427 p = &(*p)->rb_right;
1428 else
1429 BUG();
1432 rb_link_node(&cic->rb_node, parent, p);
1433 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1435 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1436 list_add(&cic->queue_list, &cfqd->cic_list);
1437 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1441 * Setup general io context and cfq io context. There can be several cfq
1442 * io contexts per general io context, if this process is doing io to more
1443 * than one device managed by cfq.
1445 static struct cfq_io_context *
1446 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1448 struct io_context *ioc = NULL;
1449 struct cfq_io_context *cic;
1451 might_sleep_if(gfp_mask & __GFP_WAIT);
1453 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1454 if (!ioc)
1455 return NULL;
1457 cic = cfq_cic_rb_lookup(cfqd, ioc);
1458 if (cic)
1459 goto out;
1461 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1462 if (cic == NULL)
1463 goto err;
1465 cfq_cic_link(cfqd, ioc, cic);
1466 out:
1467 smp_read_barrier_depends();
1468 if (unlikely(ioc->ioprio_changed))
1469 cfq_ioc_set_ioprio(ioc);
1471 return cic;
1472 err:
1473 put_io_context(ioc);
1474 return NULL;
1477 static void
1478 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1480 unsigned long elapsed, ttime;
1483 * if this context already has stuff queued, thinktime is from
1484 * last queue not last end
1486 #if 0
1487 if (time_after(cic->last_end_request, cic->last_queue))
1488 elapsed = jiffies - cic->last_end_request;
1489 else
1490 elapsed = jiffies - cic->last_queue;
1491 #else
1492 elapsed = jiffies - cic->last_end_request;
1493 #endif
1495 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1497 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1498 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1499 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1502 static void
1503 cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1505 sector_t sdist;
1506 u64 total;
1508 if (cic->last_request_pos < rq->sector)
1509 sdist = rq->sector - cic->last_request_pos;
1510 else
1511 sdist = cic->last_request_pos - rq->sector;
1514 * Don't allow the seek distance to get too large from the
1515 * odd fragment, pagein, etc
1517 if (cic->seek_samples <= 60) /* second&third seek */
1518 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1519 else
1520 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1522 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1523 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1524 total = cic->seek_total + (cic->seek_samples/2);
1525 do_div(total, cic->seek_samples);
1526 cic->seek_mean = (sector_t)total;
1530 * Disable idle window if the process thinks too long or seeks so much that
1531 * it doesn't matter
1533 static void
1534 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1535 struct cfq_io_context *cic)
1537 int enable_idle = cfq_cfqq_idle_window(cfqq);
1539 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1540 (cfqd->hw_tag && CIC_SEEKY(cic)))
1541 enable_idle = 0;
1542 else if (sample_valid(cic->ttime_samples)) {
1543 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1544 enable_idle = 0;
1545 else
1546 enable_idle = 1;
1549 if (enable_idle)
1550 cfq_mark_cfqq_idle_window(cfqq);
1551 else
1552 cfq_clear_cfqq_idle_window(cfqq);
1557 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1558 * no or if we aren't sure, a 1 will cause a preempt.
1560 static int
1561 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1562 struct request *rq)
1564 struct cfq_queue *cfqq = cfqd->active_queue;
1566 if (cfq_class_idle(new_cfqq))
1567 return 0;
1569 if (!cfqq)
1570 return 0;
1572 if (cfq_class_idle(cfqq))
1573 return 1;
1574 if (!cfq_cfqq_wait_request(new_cfqq))
1575 return 0;
1577 * if it doesn't have slice left, forget it
1579 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1580 return 0;
1582 * if the new request is sync, but the currently running queue is
1583 * not, let the sync request have priority.
1585 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1586 return 1;
1588 * So both queues are sync. Let the new request get disk time if
1589 * it's a metadata request and the current queue is doing regular IO.
1591 if (rq_is_meta(rq) && !cfqq->meta_pending)
1592 return 1;
1594 return 0;
1598 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1599 * let it have half of its nominal slice.
1601 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1603 cfq_slice_expired(cfqd, 1);
1605 if (!cfqq->slice_left)
1606 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1609 * Put the new queue at the front of the of the current list,
1610 * so we know that it will be selected next.
1612 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1613 list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1615 cfqq->slice_end = cfqq->slice_left + jiffies;
1619 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1620 * something we should do about it
1622 static void
1623 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1624 struct request *rq)
1626 struct cfq_io_context *cic = RQ_CIC(rq);
1628 if (rq_is_meta(rq))
1629 cfqq->meta_pending++;
1632 * we never wait for an async request and we don't allow preemption
1633 * of an async request. so just return early
1635 if (!rq_is_sync(rq)) {
1637 * sync process issued an async request, if it's waiting
1638 * then expire it and kick rq handling.
1640 if (cic == cfqd->active_cic &&
1641 del_timer(&cfqd->idle_slice_timer)) {
1642 cfq_slice_expired(cfqd, 0);
1643 blk_start_queueing(cfqd->queue);
1645 return;
1648 cfq_update_io_thinktime(cfqd, cic);
1649 cfq_update_io_seektime(cic, rq);
1650 cfq_update_idle_window(cfqd, cfqq, cic);
1652 cic->last_queue = jiffies;
1653 cic->last_request_pos = rq->sector + rq->nr_sectors;
1655 if (cfqq == cfqd->active_queue) {
1657 * if we are waiting for a request for this queue, let it rip
1658 * immediately and flag that we must not expire this queue
1659 * just now
1661 if (cfq_cfqq_wait_request(cfqq)) {
1662 cfq_mark_cfqq_must_dispatch(cfqq);
1663 del_timer(&cfqd->idle_slice_timer);
1664 blk_start_queueing(cfqd->queue);
1666 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1668 * not the active queue - expire current slice if it is
1669 * idle and has expired it's mean thinktime or this new queue
1670 * has some old slice time left and is of higher priority
1672 cfq_preempt_queue(cfqd, cfqq);
1673 cfq_mark_cfqq_must_dispatch(cfqq);
1674 blk_start_queueing(cfqd->queue);
1678 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1680 struct cfq_data *cfqd = q->elevator->elevator_data;
1681 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1683 cfq_init_prio_data(cfqq);
1685 cfq_add_rq_rb(rq);
1687 list_add_tail(&rq->queuelist, &cfqq->fifo);
1689 cfq_rq_enqueued(cfqd, cfqq, rq);
1692 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1694 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1695 struct cfq_data *cfqd = cfqq->cfqd;
1696 const int sync = rq_is_sync(rq);
1697 unsigned long now;
1699 now = jiffies;
1701 WARN_ON(!cfqd->rq_in_driver);
1702 WARN_ON(!cfqq->on_dispatch[sync]);
1703 cfqd->rq_in_driver--;
1704 cfqq->on_dispatch[sync]--;
1706 if (!cfq_class_idle(cfqq))
1707 cfqd->last_end_request = now;
1709 if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1710 cfq_resort_rr_list(cfqq, 0);
1712 if (sync)
1713 RQ_CIC(rq)->last_end_request = now;
1716 * If this is the active queue, check if it needs to be expired,
1717 * or if we want to idle in case it has no pending requests.
1719 if (cfqd->active_queue == cfqq) {
1720 if (time_after(now, cfqq->slice_end))
1721 cfq_slice_expired(cfqd, 0);
1722 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1723 if (!cfq_arm_slice_timer(cfqd, cfqq))
1724 cfq_schedule_dispatch(cfqd);
1730 * we temporarily boost lower priority queues if they are holding fs exclusive
1731 * resources. they are boosted to normal prio (CLASS_BE/4)
1733 static void cfq_prio_boost(struct cfq_queue *cfqq)
1735 const int ioprio_class = cfqq->ioprio_class;
1736 const int ioprio = cfqq->ioprio;
1738 if (has_fs_excl()) {
1740 * boost idle prio on transactions that would lock out other
1741 * users of the filesystem
1743 if (cfq_class_idle(cfqq))
1744 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1745 if (cfqq->ioprio > IOPRIO_NORM)
1746 cfqq->ioprio = IOPRIO_NORM;
1747 } else {
1749 * check if we need to unboost the queue
1751 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1752 cfqq->ioprio_class = cfqq->org_ioprio_class;
1753 if (cfqq->ioprio != cfqq->org_ioprio)
1754 cfqq->ioprio = cfqq->org_ioprio;
1758 * refile between round-robin lists if we moved the priority class
1760 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1761 cfq_cfqq_on_rr(cfqq))
1762 cfq_resort_rr_list(cfqq, 0);
1765 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1767 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1768 !cfq_cfqq_must_alloc_slice(cfqq)) {
1769 cfq_mark_cfqq_must_alloc_slice(cfqq);
1770 return ELV_MQUEUE_MUST;
1773 return ELV_MQUEUE_MAY;
1776 static int cfq_may_queue(request_queue_t *q, int rw)
1778 struct cfq_data *cfqd = q->elevator->elevator_data;
1779 struct task_struct *tsk = current;
1780 struct cfq_queue *cfqq;
1781 unsigned int key;
1783 key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1786 * don't force setup of a queue from here, as a call to may_queue
1787 * does not necessarily imply that a request actually will be queued.
1788 * so just lookup a possibly existing queue, or return 'may queue'
1789 * if that fails
1791 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1792 if (cfqq) {
1793 cfq_init_prio_data(cfqq);
1794 cfq_prio_boost(cfqq);
1796 return __cfq_may_queue(cfqq);
1799 return ELV_MQUEUE_MAY;
1803 * queue lock held here
1805 static void cfq_put_request(struct request *rq)
1807 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1809 if (cfqq) {
1810 const int rw = rq_data_dir(rq);
1812 BUG_ON(!cfqq->allocated[rw]);
1813 cfqq->allocated[rw]--;
1815 put_io_context(RQ_CIC(rq)->ioc);
1817 rq->elevator_private = NULL;
1818 rq->elevator_private2 = NULL;
1820 cfq_put_queue(cfqq);
1825 * Allocate cfq data structures associated with this request.
1827 static int
1828 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1830 struct cfq_data *cfqd = q->elevator->elevator_data;
1831 struct task_struct *tsk = current;
1832 struct cfq_io_context *cic;
1833 const int rw = rq_data_dir(rq);
1834 const int is_sync = rq_is_sync(rq);
1835 pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1836 struct cfq_queue *cfqq;
1837 unsigned long flags;
1839 might_sleep_if(gfp_mask & __GFP_WAIT);
1841 cic = cfq_get_io_context(cfqd, gfp_mask);
1843 spin_lock_irqsave(q->queue_lock, flags);
1845 if (!cic)
1846 goto queue_fail;
1848 if (!cic->cfqq[is_sync]) {
1849 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1850 if (!cfqq)
1851 goto queue_fail;
1853 cic->cfqq[is_sync] = cfqq;
1854 } else
1855 cfqq = cic->cfqq[is_sync];
1857 cfqq->allocated[rw]++;
1858 cfq_clear_cfqq_must_alloc(cfqq);
1859 atomic_inc(&cfqq->ref);
1861 spin_unlock_irqrestore(q->queue_lock, flags);
1863 rq->elevator_private = cic;
1864 rq->elevator_private2 = cfqq;
1865 return 0;
1867 queue_fail:
1868 if (cic)
1869 put_io_context(cic->ioc);
1871 cfq_schedule_dispatch(cfqd);
1872 spin_unlock_irqrestore(q->queue_lock, flags);
1873 return 1;
1876 static void cfq_kick_queue(struct work_struct *work)
1878 struct cfq_data *cfqd =
1879 container_of(work, struct cfq_data, unplug_work);
1880 request_queue_t *q = cfqd->queue;
1881 unsigned long flags;
1883 spin_lock_irqsave(q->queue_lock, flags);
1884 blk_start_queueing(q);
1885 spin_unlock_irqrestore(q->queue_lock, flags);
1889 * Timer running if the active_queue is currently idling inside its time slice
1891 static void cfq_idle_slice_timer(unsigned long data)
1893 struct cfq_data *cfqd = (struct cfq_data *) data;
1894 struct cfq_queue *cfqq;
1895 unsigned long flags;
1897 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1899 if ((cfqq = cfqd->active_queue) != NULL) {
1900 unsigned long now = jiffies;
1903 * expired
1905 if (time_after(now, cfqq->slice_end))
1906 goto expire;
1909 * only expire and reinvoke request handler, if there are
1910 * other queues with pending requests
1912 if (!cfqd->busy_queues)
1913 goto out_cont;
1916 * not expired and it has a request pending, let it dispatch
1918 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1919 cfq_mark_cfqq_must_dispatch(cfqq);
1920 goto out_kick;
1923 expire:
1924 cfq_slice_expired(cfqd, 0);
1925 out_kick:
1926 cfq_schedule_dispatch(cfqd);
1927 out_cont:
1928 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1932 * Timer running if an idle class queue is waiting for service
1934 static void cfq_idle_class_timer(unsigned long data)
1936 struct cfq_data *cfqd = (struct cfq_data *) data;
1937 unsigned long flags, end;
1939 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1942 * race with a non-idle queue, reset timer
1944 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1945 if (!time_after_eq(jiffies, end))
1946 mod_timer(&cfqd->idle_class_timer, end);
1947 else
1948 cfq_schedule_dispatch(cfqd);
1950 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1953 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1955 del_timer_sync(&cfqd->idle_slice_timer);
1956 del_timer_sync(&cfqd->idle_class_timer);
1957 blk_sync_queue(cfqd->queue);
1960 static void cfq_exit_queue(elevator_t *e)
1962 struct cfq_data *cfqd = e->elevator_data;
1963 request_queue_t *q = cfqd->queue;
1965 cfq_shutdown_timer_wq(cfqd);
1967 spin_lock_irq(q->queue_lock);
1969 if (cfqd->active_queue)
1970 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1972 while (!list_empty(&cfqd->cic_list)) {
1973 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1974 struct cfq_io_context,
1975 queue_list);
1977 __cfq_exit_single_io_context(cfqd, cic);
1980 spin_unlock_irq(q->queue_lock);
1982 cfq_shutdown_timer_wq(cfqd);
1984 kfree(cfqd->cfq_hash);
1985 kfree(cfqd);
1988 static void *cfq_init_queue(request_queue_t *q)
1990 struct cfq_data *cfqd;
1991 int i;
1993 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1994 if (!cfqd)
1995 return NULL;
1997 memset(cfqd, 0, sizeof(*cfqd));
1999 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2000 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2002 INIT_LIST_HEAD(&cfqd->busy_rr);
2003 INIT_LIST_HEAD(&cfqd->cur_rr);
2004 INIT_LIST_HEAD(&cfqd->idle_rr);
2005 INIT_LIST_HEAD(&cfqd->cic_list);
2007 cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2008 if (!cfqd->cfq_hash)
2009 goto out_free;
2011 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2012 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2014 cfqd->queue = q;
2016 init_timer(&cfqd->idle_slice_timer);
2017 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2018 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2020 init_timer(&cfqd->idle_class_timer);
2021 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2022 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2024 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2026 cfqd->cfq_quantum = cfq_quantum;
2027 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2028 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2029 cfqd->cfq_back_max = cfq_back_max;
2030 cfqd->cfq_back_penalty = cfq_back_penalty;
2031 cfqd->cfq_slice[0] = cfq_slice_async;
2032 cfqd->cfq_slice[1] = cfq_slice_sync;
2033 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2034 cfqd->cfq_slice_idle = cfq_slice_idle;
2036 return cfqd;
2037 out_free:
2038 kfree(cfqd);
2039 return NULL;
2042 static void cfq_slab_kill(void)
2044 if (cfq_pool)
2045 kmem_cache_destroy(cfq_pool);
2046 if (cfq_ioc_pool)
2047 kmem_cache_destroy(cfq_ioc_pool);
2050 static int __init cfq_slab_setup(void)
2052 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2053 NULL, NULL);
2054 if (!cfq_pool)
2055 goto fail;
2057 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2058 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2059 if (!cfq_ioc_pool)
2060 goto fail;
2062 return 0;
2063 fail:
2064 cfq_slab_kill();
2065 return -ENOMEM;
2069 * sysfs parts below -->
2072 static ssize_t
2073 cfq_var_show(unsigned int var, char *page)
2075 return sprintf(page, "%d\n", var);
2078 static ssize_t
2079 cfq_var_store(unsigned int *var, const char *page, size_t count)
2081 char *p = (char *) page;
2083 *var = simple_strtoul(p, &p, 10);
2084 return count;
2087 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2088 static ssize_t __FUNC(elevator_t *e, char *page) \
2090 struct cfq_data *cfqd = e->elevator_data; \
2091 unsigned int __data = __VAR; \
2092 if (__CONV) \
2093 __data = jiffies_to_msecs(__data); \
2094 return cfq_var_show(__data, (page)); \
2096 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2097 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2098 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2099 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2100 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2101 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2102 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2103 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2104 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2105 #undef SHOW_FUNCTION
2107 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2108 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2110 struct cfq_data *cfqd = e->elevator_data; \
2111 unsigned int __data; \
2112 int ret = cfq_var_store(&__data, (page), count); \
2113 if (__data < (MIN)) \
2114 __data = (MIN); \
2115 else if (__data > (MAX)) \
2116 __data = (MAX); \
2117 if (__CONV) \
2118 *(__PTR) = msecs_to_jiffies(__data); \
2119 else \
2120 *(__PTR) = __data; \
2121 return ret; \
2123 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2124 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2125 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2126 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2127 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2128 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2129 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2130 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2131 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2132 #undef STORE_FUNCTION
2134 #define CFQ_ATTR(name) \
2135 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2137 static struct elv_fs_entry cfq_attrs[] = {
2138 CFQ_ATTR(quantum),
2139 CFQ_ATTR(fifo_expire_sync),
2140 CFQ_ATTR(fifo_expire_async),
2141 CFQ_ATTR(back_seek_max),
2142 CFQ_ATTR(back_seek_penalty),
2143 CFQ_ATTR(slice_sync),
2144 CFQ_ATTR(slice_async),
2145 CFQ_ATTR(slice_async_rq),
2146 CFQ_ATTR(slice_idle),
2147 __ATTR_NULL
2150 static struct elevator_type iosched_cfq = {
2151 .ops = {
2152 .elevator_merge_fn = cfq_merge,
2153 .elevator_merged_fn = cfq_merged_request,
2154 .elevator_merge_req_fn = cfq_merged_requests,
2155 .elevator_allow_merge_fn = cfq_allow_merge,
2156 .elevator_dispatch_fn = cfq_dispatch_requests,
2157 .elevator_add_req_fn = cfq_insert_request,
2158 .elevator_activate_req_fn = cfq_activate_request,
2159 .elevator_deactivate_req_fn = cfq_deactivate_request,
2160 .elevator_queue_empty_fn = cfq_queue_empty,
2161 .elevator_completed_req_fn = cfq_completed_request,
2162 .elevator_former_req_fn = elv_rb_former_request,
2163 .elevator_latter_req_fn = elv_rb_latter_request,
2164 .elevator_set_req_fn = cfq_set_request,
2165 .elevator_put_req_fn = cfq_put_request,
2166 .elevator_may_queue_fn = cfq_may_queue,
2167 .elevator_init_fn = cfq_init_queue,
2168 .elevator_exit_fn = cfq_exit_queue,
2169 .trim = cfq_free_io_context,
2171 .elevator_attrs = cfq_attrs,
2172 .elevator_name = "cfq",
2173 .elevator_owner = THIS_MODULE,
2176 static int __init cfq_init(void)
2178 int ret;
2181 * could be 0 on HZ < 1000 setups
2183 if (!cfq_slice_async)
2184 cfq_slice_async = 1;
2185 if (!cfq_slice_idle)
2186 cfq_slice_idle = 1;
2188 if (cfq_slab_setup())
2189 return -ENOMEM;
2191 ret = elv_register(&iosched_cfq);
2192 if (ret)
2193 cfq_slab_kill();
2195 return ret;
2198 static void __exit cfq_exit(void)
2200 DECLARE_COMPLETION_ONSTACK(all_gone);
2201 elv_unregister(&iosched_cfq);
2202 ioc_gone = &all_gone;
2203 /* ioc_gone's update must be visible before reading ioc_count */
2204 smp_wmb();
2205 if (elv_ioc_count_read(ioc_count))
2206 wait_for_completion(ioc_gone);
2207 synchronize_rcu();
2208 cfq_slab_kill();
2211 module_init(cfq_init);
2212 module_exit(cfq_exit);
2214 MODULE_AUTHOR("Jens Axboe");
2215 MODULE_LICENSE("GPL");
2216 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");