[PATCH] gfs2: ->readpages() fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ieee1394 / eth1394.c
blob31e5cc49d61a01899cea3e6d5220809f2b889be7
1 /*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 /* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
44 #include <linux/module.h>
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/slab.h>
49 #include <linux/errno.h>
50 #include <linux/types.h>
51 #include <linux/delay.h>
52 #include <linux/init.h>
54 #include <linux/netdevice.h>
55 #include <linux/inetdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/if_arp.h>
58 #include <linux/if_ether.h>
59 #include <linux/ip.h>
60 #include <linux/in.h>
61 #include <linux/tcp.h>
62 #include <linux/skbuff.h>
63 #include <linux/bitops.h>
64 #include <linux/ethtool.h>
65 #include <asm/uaccess.h>
66 #include <asm/delay.h>
67 #include <asm/unaligned.h>
68 #include <net/arp.h>
70 #include "config_roms.h"
71 #include "csr1212.h"
72 #include "eth1394.h"
73 #include "highlevel.h"
74 #include "ieee1394.h"
75 #include "ieee1394_core.h"
76 #include "ieee1394_hotplug.h"
77 #include "ieee1394_transactions.h"
78 #include "ieee1394_types.h"
79 #include "iso.h"
80 #include "nodemgr.h"
82 #define ETH1394_PRINT_G(level, fmt, args...) \
83 printk(level "%s: " fmt, driver_name, ## args)
85 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
86 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
88 #define DEBUG(fmt, args...) \
89 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
90 #define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
92 struct fragment_info {
93 struct list_head list;
94 int offset;
95 int len;
98 struct partial_datagram {
99 struct list_head list;
100 u16 dgl;
101 u16 dg_size;
102 u16 ether_type;
103 struct sk_buff *skb;
104 char *pbuf;
105 struct list_head frag_info;
108 struct pdg_list {
109 struct list_head list; /* partial datagram list per node */
110 unsigned int sz; /* partial datagram list size per node */
111 spinlock_t lock; /* partial datagram lock */
114 struct eth1394_host_info {
115 struct hpsb_host *host;
116 struct net_device *dev;
119 struct eth1394_node_ref {
120 struct unit_directory *ud;
121 struct list_head list;
124 struct eth1394_node_info {
125 u16 maxpayload; /* Max payload */
126 u8 sspd; /* Max speed */
127 u64 fifo; /* FIFO address */
128 struct pdg_list pdg; /* partial RX datagram lists */
129 int dgl; /* Outgoing datagram label */
132 /* Our ieee1394 highlevel driver */
133 #define ETH1394_DRIVER_NAME "eth1394"
134 static const char driver_name[] = ETH1394_DRIVER_NAME;
136 static kmem_cache_t *packet_task_cache;
138 static struct hpsb_highlevel eth1394_highlevel;
140 /* Use common.lf to determine header len */
141 static const int hdr_type_len[] = {
142 sizeof (struct eth1394_uf_hdr),
143 sizeof (struct eth1394_ff_hdr),
144 sizeof (struct eth1394_sf_hdr),
145 sizeof (struct eth1394_sf_hdr)
148 /* Change this to IEEE1394_SPEED_S100 to make testing easier */
149 #define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
151 /* For now, this needs to be 1500, so that XP works with us */
152 #define ETH1394_DATA_LEN ETH_DATA_LEN
154 static const u16 eth1394_speedto_maxpayload[] = {
155 /* S100, S200, S400, S800, S1600, S3200 */
156 512, 1024, 2048, 4096, 4096, 4096
159 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
160 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
161 MODULE_LICENSE("GPL");
163 /* The max_partial_datagrams parameter is the maximum number of fragmented
164 * datagrams per node that eth1394 will keep in memory. Providing an upper
165 * bound allows us to limit the amount of memory that partial datagrams
166 * consume in the event that some partial datagrams are never completed.
168 static int max_partial_datagrams = 25;
169 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
170 MODULE_PARM_DESC(max_partial_datagrams,
171 "Maximum number of partially received fragmented datagrams "
172 "(default = 25).");
175 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
176 unsigned short type, void *daddr, void *saddr,
177 unsigned len);
178 static int ether1394_rebuild_header(struct sk_buff *skb);
179 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
180 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
181 static void ether1394_header_cache_update(struct hh_cache *hh,
182 struct net_device *dev,
183 unsigned char * haddr);
184 static int ether1394_mac_addr(struct net_device *dev, void *p);
186 static void purge_partial_datagram(struct list_head *old);
187 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
188 static void ether1394_iso(struct hpsb_iso *iso);
190 static struct ethtool_ops ethtool_ops;
192 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
193 quadlet_t *data, u64 addr, size_t len, u16 flags);
194 static void ether1394_add_host (struct hpsb_host *host);
195 static void ether1394_remove_host (struct hpsb_host *host);
196 static void ether1394_host_reset (struct hpsb_host *host);
198 /* Function for incoming 1394 packets */
199 static struct hpsb_address_ops addr_ops = {
200 .write = ether1394_write,
203 /* Ieee1394 highlevel driver functions */
204 static struct hpsb_highlevel eth1394_highlevel = {
205 .name = driver_name,
206 .add_host = ether1394_add_host,
207 .remove_host = ether1394_remove_host,
208 .host_reset = ether1394_host_reset,
212 /* This is called after an "ifup" */
213 static int ether1394_open (struct net_device *dev)
215 struct eth1394_priv *priv = netdev_priv(dev);
216 int ret = 0;
218 /* Something bad happened, don't even try */
219 if (priv->bc_state == ETHER1394_BC_ERROR) {
220 /* we'll try again */
221 priv->iso = hpsb_iso_recv_init(priv->host,
222 ETHER1394_ISO_BUF_SIZE,
223 ETHER1394_GASP_BUFFERS,
224 priv->broadcast_channel,
225 HPSB_ISO_DMA_PACKET_PER_BUFFER,
226 1, ether1394_iso);
227 if (priv->iso == NULL) {
228 ETH1394_PRINT(KERN_ERR, dev->name,
229 "Could not allocate isochronous receive "
230 "context for the broadcast channel\n");
231 priv->bc_state = ETHER1394_BC_ERROR;
232 ret = -EAGAIN;
233 } else {
234 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
235 priv->bc_state = ETHER1394_BC_STOPPED;
236 else
237 priv->bc_state = ETHER1394_BC_RUNNING;
241 if (ret)
242 return ret;
244 netif_start_queue (dev);
245 return 0;
248 /* This is called after an "ifdown" */
249 static int ether1394_stop (struct net_device *dev)
251 netif_stop_queue (dev);
252 return 0;
255 /* Return statistics to the caller */
256 static struct net_device_stats *ether1394_stats (struct net_device *dev)
258 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
261 /* What to do if we timeout. I think a host reset is probably in order, so
262 * that's what we do. Should we increment the stat counters too? */
263 static void ether1394_tx_timeout (struct net_device *dev)
265 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
266 ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
268 highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
270 netif_wake_queue (dev);
273 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
275 struct eth1394_priv *priv = netdev_priv(dev);
277 if ((new_mtu < 68) ||
278 (new_mtu > min(ETH1394_DATA_LEN,
279 (int)((1 << (priv->host->csr.max_rec + 1)) -
280 (sizeof(union eth1394_hdr) +
281 ETHER1394_GASP_OVERHEAD)))))
282 return -EINVAL;
283 dev->mtu = new_mtu;
284 return 0;
287 static void purge_partial_datagram(struct list_head *old)
289 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
290 struct list_head *lh, *n;
292 list_for_each_safe(lh, n, &pd->frag_info) {
293 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
294 list_del(lh);
295 kfree(fi);
297 list_del(old);
298 kfree_skb(pd->skb);
299 kfree(pd);
302 /******************************************
303 * 1394 bus activity functions
304 ******************************************/
306 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
307 struct unit_directory *ud)
309 struct eth1394_node_ref *node;
311 list_for_each_entry(node, inl, list)
312 if (node->ud == ud)
313 return node;
315 return NULL;
318 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
319 u64 guid)
321 struct eth1394_node_ref *node;
323 list_for_each_entry(node, inl, list)
324 if (node->ud->ne->guid == guid)
325 return node;
327 return NULL;
330 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
331 nodeid_t nodeid)
333 struct eth1394_node_ref *node;
334 list_for_each_entry(node, inl, list) {
335 if (node->ud->ne->nodeid == nodeid)
336 return node;
339 return NULL;
342 static int eth1394_probe(struct device *dev)
344 struct unit_directory *ud;
345 struct eth1394_host_info *hi;
346 struct eth1394_priv *priv;
347 struct eth1394_node_ref *new_node;
348 struct eth1394_node_info *node_info;
350 ud = container_of(dev, struct unit_directory, device);
352 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
353 if (!hi)
354 return -ENOENT;
356 new_node = kmalloc(sizeof(*new_node),
357 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
358 if (!new_node)
359 return -ENOMEM;
361 node_info = kmalloc(sizeof(*node_info),
362 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
363 if (!node_info) {
364 kfree(new_node);
365 return -ENOMEM;
368 spin_lock_init(&node_info->pdg.lock);
369 INIT_LIST_HEAD(&node_info->pdg.list);
370 node_info->pdg.sz = 0;
371 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
373 ud->device.driver_data = node_info;
374 new_node->ud = ud;
376 priv = netdev_priv(hi->dev);
377 list_add_tail(&new_node->list, &priv->ip_node_list);
379 return 0;
382 static int eth1394_remove(struct device *dev)
384 struct unit_directory *ud;
385 struct eth1394_host_info *hi;
386 struct eth1394_priv *priv;
387 struct eth1394_node_ref *old_node;
388 struct eth1394_node_info *node_info;
389 struct list_head *lh, *n;
390 unsigned long flags;
392 ud = container_of(dev, struct unit_directory, device);
393 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
394 if (!hi)
395 return -ENOENT;
397 priv = netdev_priv(hi->dev);
399 old_node = eth1394_find_node(&priv->ip_node_list, ud);
401 if (old_node) {
402 list_del(&old_node->list);
403 kfree(old_node);
405 node_info = (struct eth1394_node_info*)ud->device.driver_data;
407 spin_lock_irqsave(&node_info->pdg.lock, flags);
408 /* The partial datagram list should be empty, but we'll just
409 * make sure anyway... */
410 list_for_each_safe(lh, n, &node_info->pdg.list) {
411 purge_partial_datagram(lh);
413 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
415 kfree(node_info);
416 ud->device.driver_data = NULL;
418 return 0;
421 static int eth1394_update(struct unit_directory *ud)
423 struct eth1394_host_info *hi;
424 struct eth1394_priv *priv;
425 struct eth1394_node_ref *node;
426 struct eth1394_node_info *node_info;
428 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
429 if (!hi)
430 return -ENOENT;
432 priv = netdev_priv(hi->dev);
434 node = eth1394_find_node(&priv->ip_node_list, ud);
436 if (!node) {
437 node = kmalloc(sizeof(*node),
438 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
439 if (!node)
440 return -ENOMEM;
442 node_info = kmalloc(sizeof(*node_info),
443 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
444 if (!node_info) {
445 kfree(node);
446 return -ENOMEM;
449 spin_lock_init(&node_info->pdg.lock);
450 INIT_LIST_HEAD(&node_info->pdg.list);
451 node_info->pdg.sz = 0;
453 ud->device.driver_data = node_info;
454 node->ud = ud;
456 priv = netdev_priv(hi->dev);
457 list_add_tail(&node->list, &priv->ip_node_list);
460 return 0;
464 static struct ieee1394_device_id eth1394_id_table[] = {
466 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
467 IEEE1394_MATCH_VERSION),
468 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
469 .version = ETHER1394_GASP_VERSION,
474 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
476 static struct hpsb_protocol_driver eth1394_proto_driver = {
477 .name = "IPv4 over 1394 Driver",
478 .id_table = eth1394_id_table,
479 .update = eth1394_update,
480 .driver = {
481 .name = ETH1394_DRIVER_NAME,
482 .bus = &ieee1394_bus_type,
483 .probe = eth1394_probe,
484 .remove = eth1394_remove,
489 static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
491 unsigned long flags;
492 int i;
493 struct eth1394_priv *priv = netdev_priv(dev);
494 struct hpsb_host *host = priv->host;
495 u64 guid = get_unaligned((u64*)&(host->csr.rom->bus_info_data[3]));
496 u16 maxpayload = 1 << (host->csr.max_rec + 1);
497 int max_speed = IEEE1394_SPEED_MAX;
499 spin_lock_irqsave (&priv->lock, flags);
501 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
502 priv->bc_maxpayload = 512;
504 /* Determine speed limit */
505 for (i = 0; i < host->node_count; i++)
506 if (max_speed > host->speed[i])
507 max_speed = host->speed[i];
508 priv->bc_sspd = max_speed;
510 /* We'll use our maxpayload as the default mtu */
511 if (set_mtu) {
512 dev->mtu = min(ETH1394_DATA_LEN,
513 (int)(maxpayload -
514 (sizeof(union eth1394_hdr) +
515 ETHER1394_GASP_OVERHEAD)));
517 /* Set our hardware address while we're at it */
518 memcpy(dev->dev_addr, &guid, sizeof(u64));
519 memset(dev->broadcast, 0xff, sizeof(u64));
522 spin_unlock_irqrestore (&priv->lock, flags);
525 /* This function is called right before register_netdev */
526 static void ether1394_init_dev (struct net_device *dev)
528 /* Our functions */
529 dev->open = ether1394_open;
530 dev->stop = ether1394_stop;
531 dev->hard_start_xmit = ether1394_tx;
532 dev->get_stats = ether1394_stats;
533 dev->tx_timeout = ether1394_tx_timeout;
534 dev->change_mtu = ether1394_change_mtu;
536 dev->hard_header = ether1394_header;
537 dev->rebuild_header = ether1394_rebuild_header;
538 dev->hard_header_cache = ether1394_header_cache;
539 dev->header_cache_update= ether1394_header_cache_update;
540 dev->hard_header_parse = ether1394_header_parse;
541 dev->set_mac_address = ether1394_mac_addr;
542 SET_ETHTOOL_OPS(dev, &ethtool_ops);
544 /* Some constants */
545 dev->watchdog_timeo = ETHER1394_TIMEOUT;
546 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
547 dev->features = NETIF_F_HIGHDMA;
548 dev->addr_len = ETH1394_ALEN;
549 dev->hard_header_len = ETH1394_HLEN;
550 dev->type = ARPHRD_IEEE1394;
552 ether1394_reset_priv (dev, 1);
556 * This function is called every time a card is found. It is generally called
557 * when the module is installed. This is where we add all of our ethernet
558 * devices. One for each host.
560 static void ether1394_add_host (struct hpsb_host *host)
562 struct eth1394_host_info *hi = NULL;
563 struct net_device *dev = NULL;
564 struct eth1394_priv *priv;
565 u64 fifo_addr;
567 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
568 return;
570 fifo_addr = hpsb_allocate_and_register_addrspace(
571 &eth1394_highlevel, host, &addr_ops,
572 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
573 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
574 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE)
575 goto out;
577 /* We should really have our own alloc_hpsbdev() function in
578 * net_init.c instead of calling the one for ethernet then hijacking
579 * it for ourselves. That way we'd be a real networking device. */
580 dev = alloc_etherdev(sizeof (struct eth1394_priv));
582 if (dev == NULL) {
583 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
584 "etherdevice for IEEE 1394 device %s-%d\n",
585 host->driver->name, host->id);
586 goto out;
589 SET_MODULE_OWNER(dev);
590 SET_NETDEV_DEV(dev, &host->device);
592 priv = netdev_priv(dev);
594 INIT_LIST_HEAD(&priv->ip_node_list);
596 spin_lock_init(&priv->lock);
597 priv->host = host;
598 priv->local_fifo = fifo_addr;
600 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
602 if (hi == NULL) {
603 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
604 "hostinfo for IEEE 1394 device %s-%d\n",
605 host->driver->name, host->id);
606 goto out;
609 ether1394_init_dev(dev);
611 if (register_netdev (dev)) {
612 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
613 goto out;
616 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
617 host->id);
619 hi->host = host;
620 hi->dev = dev;
622 /* Ignore validity in hopes that it will be set in the future. It'll
623 * be checked when the eth device is opened. */
624 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
626 priv->iso = hpsb_iso_recv_init(host,
627 ETHER1394_ISO_BUF_SIZE,
628 ETHER1394_GASP_BUFFERS,
629 priv->broadcast_channel,
630 HPSB_ISO_DMA_PACKET_PER_BUFFER,
631 1, ether1394_iso);
632 if (priv->iso == NULL) {
633 ETH1394_PRINT(KERN_ERR, dev->name,
634 "Could not allocate isochronous receive context "
635 "for the broadcast channel\n");
636 priv->bc_state = ETHER1394_BC_ERROR;
637 } else {
638 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
639 priv->bc_state = ETHER1394_BC_STOPPED;
640 else
641 priv->bc_state = ETHER1394_BC_RUNNING;
644 return;
646 out:
647 if (dev != NULL)
648 free_netdev(dev);
649 if (hi)
650 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
652 return;
655 /* Remove a card from our list */
656 static void ether1394_remove_host (struct hpsb_host *host)
658 struct eth1394_host_info *hi;
660 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
661 if (hi != NULL) {
662 struct eth1394_priv *priv = netdev_priv(hi->dev);
664 hpsb_unregister_addrspace(&eth1394_highlevel, host,
665 priv->local_fifo);
667 if (priv->iso != NULL)
668 hpsb_iso_shutdown(priv->iso);
670 if (hi->dev) {
671 unregister_netdev (hi->dev);
672 free_netdev(hi->dev);
676 return;
679 /* A reset has just arisen */
680 static void ether1394_host_reset (struct hpsb_host *host)
682 struct eth1394_host_info *hi;
683 struct eth1394_priv *priv;
684 struct net_device *dev;
685 struct list_head *lh, *n;
686 struct eth1394_node_ref *node;
687 struct eth1394_node_info *node_info;
688 unsigned long flags;
690 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
692 /* This can happen for hosts that we don't use */
693 if (hi == NULL)
694 return;
696 dev = hi->dev;
697 priv = (struct eth1394_priv *)netdev_priv(dev);
699 /* Reset our private host data, but not our mtu */
700 netif_stop_queue (dev);
701 ether1394_reset_priv (dev, 0);
703 list_for_each_entry(node, &priv->ip_node_list, list) {
704 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
706 spin_lock_irqsave(&node_info->pdg.lock, flags);
708 list_for_each_safe(lh, n, &node_info->pdg.list) {
709 purge_partial_datagram(lh);
712 INIT_LIST_HEAD(&(node_info->pdg.list));
713 node_info->pdg.sz = 0;
715 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
718 netif_wake_queue (dev);
721 /******************************************
722 * HW Header net device functions
723 ******************************************/
724 /* These functions have been adapted from net/ethernet/eth.c */
727 /* Create a fake MAC header for an arbitrary protocol layer.
728 * saddr=NULL means use device source address
729 * daddr=NULL means leave destination address (eg unresolved arp). */
730 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
731 unsigned short type, void *daddr, void *saddr,
732 unsigned len)
734 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
736 eth->h_proto = htons(type);
738 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
739 memset(eth->h_dest, 0, dev->addr_len);
740 return(dev->hard_header_len);
743 if (daddr) {
744 memcpy(eth->h_dest,daddr,dev->addr_len);
745 return dev->hard_header_len;
748 return -dev->hard_header_len;
753 /* Rebuild the faked MAC header. This is called after an ARP
754 * (or in future other address resolution) has completed on this
755 * sk_buff. We now let ARP fill in the other fields.
757 * This routine CANNOT use cached dst->neigh!
758 * Really, it is used only when dst->neigh is wrong.
760 static int ether1394_rebuild_header(struct sk_buff *skb)
762 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
763 struct net_device *dev = skb->dev;
765 switch (eth->h_proto) {
767 #ifdef CONFIG_INET
768 case __constant_htons(ETH_P_IP):
769 return arp_find((unsigned char*)&eth->h_dest, skb);
770 #endif
771 default:
772 ETH1394_PRINT(KERN_DEBUG, dev->name,
773 "unable to resolve type %04x addresses.\n",
774 ntohs(eth->h_proto));
775 break;
778 return 0;
781 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
783 struct net_device *dev = skb->dev;
784 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
785 return ETH1394_ALEN;
789 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
791 unsigned short type = hh->hh_type;
792 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
793 (16 - ETH1394_HLEN));
794 struct net_device *dev = neigh->dev;
796 if (type == htons(ETH_P_802_3))
797 return -1;
799 eth->h_proto = type;
800 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
802 hh->hh_len = ETH1394_HLEN;
803 return 0;
806 /* Called by Address Resolution module to notify changes in address. */
807 static void ether1394_header_cache_update(struct hh_cache *hh,
808 struct net_device *dev,
809 unsigned char * haddr)
811 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
814 static int ether1394_mac_addr(struct net_device *dev, void *p)
816 if (netif_running(dev))
817 return -EBUSY;
819 /* Not going to allow setting the MAC address, we really need to use
820 * the real one supplied by the hardware */
821 return -EINVAL;
826 /******************************************
827 * Datagram reception code
828 ******************************************/
830 /* Copied from net/ethernet/eth.c */
831 static inline u16 ether1394_type_trans(struct sk_buff *skb,
832 struct net_device *dev)
834 struct eth1394hdr *eth;
835 unsigned char *rawp;
837 skb->mac.raw = skb->data;
838 skb_pull (skb, ETH1394_HLEN);
839 eth = eth1394_hdr(skb);
841 if (*eth->h_dest & 1) {
842 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
843 skb->pkt_type = PACKET_BROADCAST;
844 #if 0
845 else
846 skb->pkt_type = PACKET_MULTICAST;
847 #endif
848 } else {
849 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
850 skb->pkt_type = PACKET_OTHERHOST;
853 if (ntohs (eth->h_proto) >= 1536)
854 return eth->h_proto;
856 rawp = skb->data;
858 if (*(unsigned short *)rawp == 0xFFFF)
859 return htons (ETH_P_802_3);
861 return htons (ETH_P_802_2);
864 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
865 * We also perform ARP translation here, if need be. */
866 static inline u16 ether1394_parse_encap(struct sk_buff *skb,
867 struct net_device *dev,
868 nodeid_t srcid, nodeid_t destid,
869 u16 ether_type)
871 struct eth1394_priv *priv = netdev_priv(dev);
872 u64 dest_hw;
873 unsigned short ret = 0;
875 /* Setup our hw addresses. We use these to build the
876 * ethernet header. */
877 if (destid == (LOCAL_BUS | ALL_NODES))
878 dest_hw = ~0ULL; /* broadcast */
879 else
880 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
881 priv->host->csr.guid_lo);
883 /* If this is an ARP packet, convert it. First, we want to make
884 * use of some of the fields, since they tell us a little bit
885 * about the sending machine. */
886 if (ether_type == htons(ETH_P_ARP)) {
887 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
888 struct arphdr *arp = (struct arphdr *)skb->data;
889 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
890 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
891 ntohl(arp1394->fifo_lo);
892 u8 max_rec = min(priv->host->csr.max_rec,
893 (u8)(arp1394->max_rec));
894 int sspd = arp1394->sspd;
895 u16 maxpayload;
896 struct eth1394_node_ref *node;
897 struct eth1394_node_info *node_info;
898 __be64 guid;
900 /* Sanity check. MacOSX seems to be sending us 131 in this
901 * field (atleast on my Panther G5). Not sure why. */
902 if (sspd > 5 || sspd < 0)
903 sspd = 0;
905 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
907 guid = get_unaligned(&arp1394->s_uniq_id);
908 node = eth1394_find_node_guid(&priv->ip_node_list,
909 be64_to_cpu(guid));
910 if (!node) {
911 return 0;
914 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
916 /* Update our speed/payload/fifo_offset table */
917 node_info->maxpayload = maxpayload;
918 node_info->sspd = sspd;
919 node_info->fifo = fifo_addr;
921 /* Now that we're done with the 1394 specific stuff, we'll
922 * need to alter some of the data. Believe it or not, all
923 * that needs to be done is sender_IP_address needs to be
924 * moved, the destination hardware address get stuffed
925 * in and the hardware address length set to 8.
927 * IMPORTANT: The code below overwrites 1394 specific data
928 * needed above so keep the munging of the data for the
929 * higher level IP stack last. */
931 arp->ar_hln = 8;
932 arp_ptr += arp->ar_hln; /* skip over sender unique id */
933 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
934 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
936 if (arp->ar_op == htons(ARPOP_REQUEST))
937 memset(arp_ptr, 0, sizeof(u64));
938 else
939 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
942 /* Now add the ethernet header. */
943 if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
944 skb->len) >= 0)
945 ret = ether1394_type_trans(skb, dev);
947 return ret;
950 static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
952 struct fragment_info *fi;
954 list_for_each_entry(fi, frag_list, list) {
955 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
956 ((offset + len - 1) < fi->offset)))
957 return 1;
959 return 0;
962 static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
964 struct partial_datagram *pd;
966 list_for_each_entry(pd, pdgl, list) {
967 if (pd->dgl == dgl)
968 return &pd->list;
970 return NULL;
973 /* Assumes that new fragment does not overlap any existing fragments */
974 static inline int new_fragment(struct list_head *frag_info, int offset, int len)
976 struct list_head *lh;
977 struct fragment_info *fi, *fi2, *new;
979 list_for_each(lh, frag_info) {
980 fi = list_entry(lh, struct fragment_info, list);
981 if ((fi->offset + fi->len) == offset) {
982 /* The new fragment can be tacked on to the end */
983 fi->len += len;
984 /* Did the new fragment plug a hole? */
985 fi2 = list_entry(lh->next, struct fragment_info, list);
986 if ((fi->offset + fi->len) == fi2->offset) {
987 /* glue fragments together */
988 fi->len += fi2->len;
989 list_del(lh->next);
990 kfree(fi2);
992 return 0;
993 } else if ((offset + len) == fi->offset) {
994 /* The new fragment can be tacked on to the beginning */
995 fi->offset = offset;
996 fi->len += len;
997 /* Did the new fragment plug a hole? */
998 fi2 = list_entry(lh->prev, struct fragment_info, list);
999 if ((fi2->offset + fi2->len) == fi->offset) {
1000 /* glue fragments together */
1001 fi2->len += fi->len;
1002 list_del(lh);
1003 kfree(fi);
1005 return 0;
1006 } else if (offset > (fi->offset + fi->len)) {
1007 break;
1008 } else if ((offset + len) < fi->offset) {
1009 lh = lh->prev;
1010 break;
1014 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1015 if (!new)
1016 return -ENOMEM;
1018 new->offset = offset;
1019 new->len = len;
1021 list_add(&new->list, lh);
1023 return 0;
1026 static inline int new_partial_datagram(struct net_device *dev,
1027 struct list_head *pdgl, int dgl,
1028 int dg_size, char *frag_buf,
1029 int frag_off, int frag_len)
1031 struct partial_datagram *new;
1033 new = kmalloc(sizeof(*new), GFP_ATOMIC);
1034 if (!new)
1035 return -ENOMEM;
1037 INIT_LIST_HEAD(&new->frag_info);
1039 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1040 kfree(new);
1041 return -ENOMEM;
1044 new->dgl = dgl;
1045 new->dg_size = dg_size;
1047 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1048 if (!new->skb) {
1049 struct fragment_info *fi = list_entry(new->frag_info.next,
1050 struct fragment_info,
1051 list);
1052 kfree(fi);
1053 kfree(new);
1054 return -ENOMEM;
1057 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1058 new->pbuf = skb_put(new->skb, dg_size);
1059 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1061 list_add(&new->list, pdgl);
1063 return 0;
1066 static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1067 char *frag_buf, int frag_off, int frag_len)
1069 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1071 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1072 return -ENOMEM;
1075 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1077 /* Move list entry to beginnig of list so that oldest partial
1078 * datagrams percolate to the end of the list */
1079 list_move(lh, pdgl);
1081 return 0;
1084 static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1086 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1087 struct fragment_info *fi = list_entry(pd->frag_info.next,
1088 struct fragment_info, list);
1090 return (fi->len == dg_size);
1093 /* Packet reception. We convert the IP1394 encapsulation header to an
1094 * ethernet header, and fill it with some of our other fields. This is
1095 * an incoming packet from the 1394 bus. */
1096 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1097 char *buf, int len)
1099 struct sk_buff *skb;
1100 unsigned long flags;
1101 struct eth1394_priv *priv = netdev_priv(dev);
1102 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1103 u16 ether_type = 0; /* initialized to clear warning */
1104 int hdr_len;
1105 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1106 struct eth1394_node_info *node_info;
1108 if (!ud) {
1109 struct eth1394_node_ref *node;
1110 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1111 if (!node) {
1112 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1113 "lookup failure: " NODE_BUS_FMT,
1114 NODE_BUS_ARGS(priv->host, srcid));
1115 priv->stats.rx_dropped++;
1116 return -1;
1118 ud = node->ud;
1120 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1123 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1125 /* First, did we receive a fragmented or unfragmented datagram? */
1126 hdr->words.word1 = ntohs(hdr->words.word1);
1128 hdr_len = hdr_type_len[hdr->common.lf];
1130 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1131 /* An unfragmented datagram has been received by the ieee1394
1132 * bus. Build an skbuff around it so we can pass it to the
1133 * high level network layer. */
1135 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1136 if (!skb) {
1137 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1138 priv->stats.rx_dropped++;
1139 return -1;
1141 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1142 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1143 ether_type = hdr->uf.ether_type;
1144 } else {
1145 /* A datagram fragment has been received, now the fun begins. */
1147 struct list_head *pdgl, *lh;
1148 struct partial_datagram *pd;
1149 int fg_off;
1150 int fg_len = len - hdr_len;
1151 int dg_size;
1152 int dgl;
1153 int retval;
1154 struct pdg_list *pdg = &(node_info->pdg);
1156 hdr->words.word3 = ntohs(hdr->words.word3);
1157 /* The 4th header word is reserved so no need to do ntohs() */
1159 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1160 ether_type = hdr->ff.ether_type;
1161 dgl = hdr->ff.dgl;
1162 dg_size = hdr->ff.dg_size + 1;
1163 fg_off = 0;
1164 } else {
1165 hdr->words.word2 = ntohs(hdr->words.word2);
1166 dgl = hdr->sf.dgl;
1167 dg_size = hdr->sf.dg_size + 1;
1168 fg_off = hdr->sf.fg_off;
1170 spin_lock_irqsave(&pdg->lock, flags);
1172 pdgl = &(pdg->list);
1173 lh = find_partial_datagram(pdgl, dgl);
1175 if (lh == NULL) {
1176 while (pdg->sz >= max_partial_datagrams) {
1177 /* remove the oldest */
1178 purge_partial_datagram(pdgl->prev);
1179 pdg->sz--;
1182 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1183 buf + hdr_len, fg_off,
1184 fg_len);
1185 if (retval < 0) {
1186 spin_unlock_irqrestore(&pdg->lock, flags);
1187 goto bad_proto;
1189 pdg->sz++;
1190 lh = find_partial_datagram(pdgl, dgl);
1191 } else {
1192 struct partial_datagram *pd;
1194 pd = list_entry(lh, struct partial_datagram, list);
1196 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1197 /* Overlapping fragments, obliterate old
1198 * datagram and start new one. */
1199 purge_partial_datagram(lh);
1200 retval = new_partial_datagram(dev, pdgl, dgl,
1201 dg_size,
1202 buf + hdr_len,
1203 fg_off, fg_len);
1204 if (retval < 0) {
1205 pdg->sz--;
1206 spin_unlock_irqrestore(&pdg->lock, flags);
1207 goto bad_proto;
1209 } else {
1210 retval = update_partial_datagram(pdgl, lh,
1211 buf + hdr_len,
1212 fg_off, fg_len);
1213 if (retval < 0) {
1214 /* Couldn't save off fragment anyway
1215 * so might as well obliterate the
1216 * datagram now. */
1217 purge_partial_datagram(lh);
1218 pdg->sz--;
1219 spin_unlock_irqrestore(&pdg->lock, flags);
1220 goto bad_proto;
1222 } /* fragment overlap */
1223 } /* new datagram or add to existing one */
1225 pd = list_entry(lh, struct partial_datagram, list);
1227 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1228 pd->ether_type = ether_type;
1231 if (is_datagram_complete(lh, dg_size)) {
1232 ether_type = pd->ether_type;
1233 pdg->sz--;
1234 skb = skb_get(pd->skb);
1235 purge_partial_datagram(lh);
1236 spin_unlock_irqrestore(&pdg->lock, flags);
1237 } else {
1238 /* Datagram is not complete, we're done for the
1239 * moment. */
1240 spin_unlock_irqrestore(&pdg->lock, flags);
1241 return 0;
1243 } /* unframgented datagram or fragmented one */
1245 /* Write metadata, and then pass to the receive level */
1246 skb->dev = dev;
1247 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1249 /* Parse the encapsulation header. This actually does the job of
1250 * converting to an ethernet frame header, aswell as arp
1251 * conversion if needed. ARP conversion is easier in this
1252 * direction, since we are using ethernet as our backend. */
1253 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1254 ether_type);
1257 spin_lock_irqsave(&priv->lock, flags);
1258 if (!skb->protocol) {
1259 priv->stats.rx_errors++;
1260 priv->stats.rx_dropped++;
1261 dev_kfree_skb_any(skb);
1262 goto bad_proto;
1265 if (netif_rx(skb) == NET_RX_DROP) {
1266 priv->stats.rx_errors++;
1267 priv->stats.rx_dropped++;
1268 goto bad_proto;
1271 /* Statistics */
1272 priv->stats.rx_packets++;
1273 priv->stats.rx_bytes += skb->len;
1275 bad_proto:
1276 if (netif_queue_stopped(dev))
1277 netif_wake_queue(dev);
1278 spin_unlock_irqrestore(&priv->lock, flags);
1280 dev->last_rx = jiffies;
1282 return 0;
1285 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1286 quadlet_t *data, u64 addr, size_t len, u16 flags)
1288 struct eth1394_host_info *hi;
1290 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1291 if (hi == NULL) {
1292 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1293 host->driver->name);
1294 return RCODE_ADDRESS_ERROR;
1297 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1298 return RCODE_ADDRESS_ERROR;
1299 else
1300 return RCODE_COMPLETE;
1303 static void ether1394_iso(struct hpsb_iso *iso)
1305 quadlet_t *data;
1306 char *buf;
1307 struct eth1394_host_info *hi;
1308 struct net_device *dev;
1309 struct eth1394_priv *priv;
1310 unsigned int len;
1311 u32 specifier_id;
1312 u16 source_id;
1313 int i;
1314 int nready;
1316 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1317 if (hi == NULL) {
1318 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1319 iso->host->driver->name);
1320 return;
1323 dev = hi->dev;
1325 nready = hpsb_iso_n_ready(iso);
1326 for (i = 0; i < nready; i++) {
1327 struct hpsb_iso_packet_info *info =
1328 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1329 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1331 /* skip over GASP header */
1332 buf = (char *)data + 8;
1333 len = info->len - 8;
1335 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1336 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1337 source_id = be32_to_cpu(data[0]) >> 16;
1339 priv = netdev_priv(dev);
1341 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1342 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1343 /* This packet is not for us */
1344 continue;
1346 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1347 buf, len);
1350 hpsb_iso_recv_release_packets(iso, i);
1352 dev->last_rx = jiffies;
1355 /******************************************
1356 * Datagram transmission code
1357 ******************************************/
1359 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1360 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1361 * needs to be munged a bit. The remainder of the arphdr is formatted based
1362 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1363 * judge.
1365 * Now that the EUI is used for the hardware address all we need to do to make
1366 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1367 * speed, and unicast FIFO address information between the sender_unique_id
1368 * and the IP addresses.
1370 static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1371 struct net_device *dev)
1373 struct eth1394_priv *priv = netdev_priv(dev);
1375 struct arphdr *arp = (struct arphdr *)skb->data;
1376 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1377 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1379 /* Believe it or not, all that need to happen is sender IP get moved
1380 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1381 arp1394->hw_addr_len = 16;
1382 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1383 arp1394->max_rec = priv->host->csr.max_rec;
1384 arp1394->sspd = priv->host->csr.lnk_spd;
1385 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1386 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1388 return;
1391 /* We need to encapsulate the standard header with our own. We use the
1392 * ethernet header's proto for our own. */
1393 static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1394 __be16 proto,
1395 union eth1394_hdr *hdr,
1396 u16 dg_size, u16 dgl)
1398 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1400 /* Does it all fit in one packet? */
1401 if (dg_size <= adj_max_payload) {
1402 hdr->uf.lf = ETH1394_HDR_LF_UF;
1403 hdr->uf.ether_type = proto;
1404 } else {
1405 hdr->ff.lf = ETH1394_HDR_LF_FF;
1406 hdr->ff.ether_type = proto;
1407 hdr->ff.dg_size = dg_size - 1;
1408 hdr->ff.dgl = dgl;
1409 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1411 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1414 static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1415 unsigned int max_payload,
1416 union eth1394_hdr *hdr)
1418 union eth1394_hdr *bufhdr;
1419 int ftype = hdr->common.lf;
1420 int hdrsz = hdr_type_len[ftype];
1421 unsigned int adj_max_payload = max_payload - hdrsz;
1423 switch(ftype) {
1424 case ETH1394_HDR_LF_UF:
1425 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1426 bufhdr->words.word1 = htons(hdr->words.word1);
1427 bufhdr->words.word2 = hdr->words.word2;
1428 break;
1430 case ETH1394_HDR_LF_FF:
1431 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1432 bufhdr->words.word1 = htons(hdr->words.word1);
1433 bufhdr->words.word2 = hdr->words.word2;
1434 bufhdr->words.word3 = htons(hdr->words.word3);
1435 bufhdr->words.word4 = 0;
1437 /* Set frag type here for future interior fragments */
1438 hdr->common.lf = ETH1394_HDR_LF_IF;
1439 hdr->sf.fg_off = 0;
1440 break;
1442 default:
1443 hdr->sf.fg_off += adj_max_payload;
1444 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1445 if (max_payload >= skb->len)
1446 hdr->common.lf = ETH1394_HDR_LF_LF;
1447 bufhdr->words.word1 = htons(hdr->words.word1);
1448 bufhdr->words.word2 = htons(hdr->words.word2);
1449 bufhdr->words.word3 = htons(hdr->words.word3);
1450 bufhdr->words.word4 = 0;
1453 return min(max_payload, skb->len);
1456 static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1458 struct hpsb_packet *p;
1460 p = hpsb_alloc_packet(0);
1461 if (p) {
1462 p->host = host;
1463 p->generation = get_hpsb_generation(host);
1464 p->type = hpsb_async;
1466 return p;
1469 static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1470 struct hpsb_host *host,
1471 nodeid_t node, u64 addr,
1472 void * data, int tx_len)
1474 p->node_id = node;
1475 p->data = NULL;
1477 p->tcode = TCODE_WRITEB;
1478 p->header[1] = (host->node_id << 16) | (addr >> 32);
1479 p->header[2] = addr & 0xffffffff;
1481 p->header_size = 16;
1482 p->expect_response = 1;
1484 if (hpsb_get_tlabel(p)) {
1485 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1486 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1487 return -1;
1489 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1490 | (1 << 8) | (TCODE_WRITEB << 4);
1492 p->header[3] = tx_len << 16;
1493 p->data_size = (tx_len + 3) & ~3;
1494 p->data = (quadlet_t*)data;
1496 return 0;
1499 static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1500 struct eth1394_priv *priv,
1501 struct sk_buff *skb, int length)
1503 p->header_size = 4;
1504 p->tcode = TCODE_STREAM_DATA;
1506 p->header[0] = (length << 16) | (3 << 14)
1507 | ((priv->broadcast_channel) << 8)
1508 | (TCODE_STREAM_DATA << 4);
1509 p->data_size = length;
1510 p->data = ((quadlet_t*)skb->data) - 2;
1511 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1512 ETHER1394_GASP_SPECIFIER_ID_HI);
1513 p->data[1] = cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1514 ETHER1394_GASP_VERSION);
1516 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1517 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1518 * value based on packet->node_id if packet->node_id is not set. */
1519 p->node_id = ALL_NODES;
1520 p->speed_code = priv->bc_sspd;
1523 static inline void ether1394_free_packet(struct hpsb_packet *packet)
1525 if (packet->tcode != TCODE_STREAM_DATA)
1526 hpsb_free_tlabel(packet);
1527 hpsb_free_packet(packet);
1530 static void ether1394_complete_cb(void *__ptask);
1532 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1534 struct eth1394_priv *priv = ptask->priv;
1535 struct hpsb_packet *packet = NULL;
1537 packet = ether1394_alloc_common_packet(priv->host);
1538 if (!packet)
1539 return -1;
1541 if (ptask->tx_type == ETH1394_GASP) {
1542 int length = tx_len + (2 * sizeof(quadlet_t));
1544 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1545 } else if (ether1394_prep_write_packet(packet, priv->host,
1546 ptask->dest_node,
1547 ptask->addr, ptask->skb->data,
1548 tx_len)) {
1549 hpsb_free_packet(packet);
1550 return -1;
1553 ptask->packet = packet;
1554 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1555 ptask);
1557 if (hpsb_send_packet(packet) < 0) {
1558 ether1394_free_packet(packet);
1559 return -1;
1562 return 0;
1566 /* Task function to be run when a datagram transmission is completed */
1567 static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1569 struct sk_buff *skb = ptask->skb;
1570 struct net_device *dev = skb->dev;
1571 struct eth1394_priv *priv = netdev_priv(dev);
1572 unsigned long flags;
1574 /* Statistics */
1575 spin_lock_irqsave(&priv->lock, flags);
1576 if (fail) {
1577 priv->stats.tx_dropped++;
1578 priv->stats.tx_errors++;
1579 } else {
1580 priv->stats.tx_bytes += skb->len;
1581 priv->stats.tx_packets++;
1583 spin_unlock_irqrestore(&priv->lock, flags);
1585 dev_kfree_skb_any(skb);
1586 kmem_cache_free(packet_task_cache, ptask);
1590 /* Callback for when a packet has been sent and the status of that packet is
1591 * known */
1592 static void ether1394_complete_cb(void *__ptask)
1594 struct packet_task *ptask = (struct packet_task *)__ptask;
1595 struct hpsb_packet *packet = ptask->packet;
1596 int fail = 0;
1598 if (packet->tcode != TCODE_STREAM_DATA)
1599 fail = hpsb_packet_success(packet);
1601 ether1394_free_packet(packet);
1603 ptask->outstanding_pkts--;
1604 if (ptask->outstanding_pkts > 0 && !fail) {
1605 int tx_len;
1607 /* Add the encapsulation header to the fragment */
1608 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1609 &ptask->hdr);
1610 if (ether1394_send_packet(ptask, tx_len))
1611 ether1394_dg_complete(ptask, 1);
1612 } else {
1613 ether1394_dg_complete(ptask, fail);
1619 /* Transmit a packet (called by kernel) */
1620 static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1622 gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1623 struct eth1394hdr *eth;
1624 struct eth1394_priv *priv = netdev_priv(dev);
1625 __be16 proto;
1626 unsigned long flags;
1627 nodeid_t dest_node;
1628 eth1394_tx_type tx_type;
1629 int ret = 0;
1630 unsigned int tx_len;
1631 unsigned int max_payload;
1632 u16 dg_size;
1633 u16 dgl;
1634 struct packet_task *ptask;
1635 struct eth1394_node_ref *node;
1636 struct eth1394_node_info *node_info = NULL;
1638 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1639 if (ptask == NULL) {
1640 ret = -ENOMEM;
1641 goto fail;
1644 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1645 * it does not set our validity bit. We need to compensate for
1646 * that somewhere else, but not in eth1394. */
1647 #if 0
1648 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1649 ret = -EAGAIN;
1650 goto fail;
1652 #endif
1654 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1655 ret = -ENOMEM;
1656 goto fail;
1659 /* Get rid of the fake eth1394 header, but save a pointer */
1660 eth = (struct eth1394hdr*)skb->data;
1661 skb_pull(skb, ETH1394_HLEN);
1663 proto = eth->h_proto;
1664 dg_size = skb->len;
1666 /* Set the transmission type for the packet. ARP packets and IP
1667 * broadcast packets are sent via GASP. */
1668 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1669 proto == htons(ETH_P_ARP) ||
1670 (proto == htons(ETH_P_IP) &&
1671 IN_MULTICAST(ntohl(skb->nh.iph->daddr)))) {
1672 tx_type = ETH1394_GASP;
1673 dest_node = LOCAL_BUS | ALL_NODES;
1674 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1675 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1676 dgl = priv->bc_dgl;
1677 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1678 priv->bc_dgl++;
1679 } else {
1680 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1682 node = eth1394_find_node_guid(&priv->ip_node_list,
1683 be64_to_cpu(guid));
1684 if (!node) {
1685 ret = -EAGAIN;
1686 goto fail;
1688 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1689 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1690 ret = -EAGAIN;
1691 goto fail;
1694 dest_node = node->ud->ne->nodeid;
1695 max_payload = node_info->maxpayload;
1696 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1698 dgl = node_info->dgl;
1699 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1700 node_info->dgl++;
1701 tx_type = ETH1394_WRREQ;
1704 /* If this is an ARP packet, convert it */
1705 if (proto == htons(ETH_P_ARP))
1706 ether1394_arp_to_1394arp (skb, dev);
1708 ptask->hdr.words.word1 = 0;
1709 ptask->hdr.words.word2 = 0;
1710 ptask->hdr.words.word3 = 0;
1711 ptask->hdr.words.word4 = 0;
1712 ptask->skb = skb;
1713 ptask->priv = priv;
1714 ptask->tx_type = tx_type;
1716 if (tx_type != ETH1394_GASP) {
1717 u64 addr;
1719 spin_lock_irqsave(&priv->lock, flags);
1720 addr = node_info->fifo;
1721 spin_unlock_irqrestore(&priv->lock, flags);
1723 ptask->addr = addr;
1724 ptask->dest_node = dest_node;
1727 ptask->tx_type = tx_type;
1728 ptask->max_payload = max_payload;
1729 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1730 &ptask->hdr, dg_size,
1731 dgl);
1733 /* Add the encapsulation header to the fragment */
1734 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1735 dev->trans_start = jiffies;
1736 if (ether1394_send_packet(ptask, tx_len))
1737 goto fail;
1739 netif_wake_queue(dev);
1740 return 0;
1741 fail:
1742 if (ptask)
1743 kmem_cache_free(packet_task_cache, ptask);
1745 if (skb != NULL)
1746 dev_kfree_skb(skb);
1748 spin_lock_irqsave (&priv->lock, flags);
1749 priv->stats.tx_dropped++;
1750 priv->stats.tx_errors++;
1751 spin_unlock_irqrestore (&priv->lock, flags);
1753 if (netif_queue_stopped(dev))
1754 netif_wake_queue(dev);
1756 return 0; /* returning non-zero causes serious problems */
1759 static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1761 strcpy (info->driver, driver_name);
1762 /* FIXME XXX provide sane businfo */
1763 strcpy (info->bus_info, "ieee1394");
1766 static struct ethtool_ops ethtool_ops = {
1767 .get_drvinfo = ether1394_get_drvinfo
1770 static int __init ether1394_init_module (void)
1772 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1773 0, 0, NULL, NULL);
1775 /* Register ourselves as a highlevel driver */
1776 hpsb_register_highlevel(&eth1394_highlevel);
1778 return hpsb_register_protocol(&eth1394_proto_driver);
1781 static void __exit ether1394_exit_module (void)
1783 hpsb_unregister_protocol(&eth1394_proto_driver);
1784 hpsb_unregister_highlevel(&eth1394_highlevel);
1785 kmem_cache_destroy(packet_task_cache);
1788 module_init(ether1394_init_module);
1789 module_exit(ether1394_exit_module);