[PATCH] gfs2: ->readpages() fixes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / istallion.c
blobffdf9df1a67a3cb92a48bd5ce53596a69bc4fde4
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cdk.h>
36 #include <linux/comstats.h>
37 #include <linux/istallion.h>
38 #include <linux/ioport.h>
39 #include <linux/delay.h>
40 #include <linux/init.h>
41 #include <linux/device.h>
42 #include <linux/wait.h>
43 #include <linux/eisa.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
48 #include <linux/pci.h>
50 /*****************************************************************************/
53 * Define different board types. Not all of the following board types
54 * are supported by this driver. But I will use the standard "assigned"
55 * board numbers. Currently supported boards are abbreviated as:
56 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
57 * STAL = Stallion.
59 #define BRD_UNKNOWN 0
60 #define BRD_STALLION 1
61 #define BRD_BRUMBY4 2
62 #define BRD_ONBOARD2 3
63 #define BRD_ONBOARD 4
64 #define BRD_BRUMBY8 5
65 #define BRD_BRUMBY16 6
66 #define BRD_ONBOARDE 7
67 #define BRD_ONBOARD32 9
68 #define BRD_ONBOARD2_32 10
69 #define BRD_ONBOARDRS 11
70 #define BRD_EASYIO 20
71 #define BRD_ECH 21
72 #define BRD_ECHMC 22
73 #define BRD_ECP 23
74 #define BRD_ECPE 24
75 #define BRD_ECPMC 25
76 #define BRD_ECHPCI 26
77 #define BRD_ECH64PCI 27
78 #define BRD_EASYIOPCI 28
79 #define BRD_ECPPCI 29
81 #define BRD_BRUMBY BRD_BRUMBY4
84 * Define a configuration structure to hold the board configuration.
85 * Need to set this up in the code (for now) with the boards that are
86 * to be configured into the system. This is what needs to be modified
87 * when adding/removing/modifying boards. Each line entry in the
88 * stli_brdconf[] array is a board. Each line contains io/irq/memory
89 * ranges for that board (as well as what type of board it is).
90 * Some examples:
91 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
92 * This line will configure an EasyConnection 8/64 at io address 2a0,
93 * and shared memory address of cc000. Multiple EasyConnection 8/64
94 * boards can share the same shared memory address space. No interrupt
95 * is required for this board type.
96 * Another example:
97 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
98 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
99 * shared memory address of 0x80000000 (2 GByte). Multiple
100 * EasyConnection 8/64 EISA boards can share the same shared memory
101 * address space. No interrupt is required for this board type.
102 * Another example:
103 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
104 * This line will configure an ONboard (ISA type) at io address 240,
105 * and shared memory address of d0000. Multiple ONboards can share
106 * the same shared memory address space. No interrupt required.
107 * Another example:
108 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
109 * This line will configure a Brumby board (any number of ports!) at
110 * io address 360 and shared memory address of c8000. All Brumby boards
111 * configured into a system must have their own separate io and memory
112 * addresses. No interrupt is required.
113 * Another example:
114 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
115 * This line will configure an original Stallion board at io address 330
116 * and shared memory address d0000 (this would only be valid for a "V4.0"
117 * or Rev.O Stallion board). All Stallion boards configured into the
118 * system must have their own separate io and memory addresses. No
119 * interrupt is required.
122 typedef struct {
123 int brdtype;
124 int ioaddr1;
125 int ioaddr2;
126 unsigned long memaddr;
127 int irq;
128 int irqtype;
129 } stlconf_t;
131 static stlconf_t stli_brdconf[] = {
132 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
135 static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
137 /* stli_lock must NOT be taken holding brd_lock */
138 static spinlock_t stli_lock; /* TTY logic lock */
139 static spinlock_t brd_lock; /* Board logic lock */
142 * There is some experimental EISA board detection code in this driver.
143 * By default it is disabled, but for those that want to try it out,
144 * then set the define below to be 1.
146 #define STLI_EISAPROBE 0
148 /*****************************************************************************/
151 * Define some important driver characteristics. Device major numbers
152 * allocated as per Linux Device Registry.
154 #ifndef STL_SIOMEMMAJOR
155 #define STL_SIOMEMMAJOR 28
156 #endif
157 #ifndef STL_SERIALMAJOR
158 #define STL_SERIALMAJOR 24
159 #endif
160 #ifndef STL_CALLOUTMAJOR
161 #define STL_CALLOUTMAJOR 25
162 #endif
164 /*****************************************************************************/
167 * Define our local driver identity first. Set up stuff to deal with
168 * all the local structures required by a serial tty driver.
170 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
171 static char *stli_drvname = "istallion";
172 static char *stli_drvversion = "5.6.0";
173 static char *stli_serialname = "ttyE";
175 static struct tty_driver *stli_serial;
178 #define STLI_TXBUFSIZE 4096
181 * Use a fast local buffer for cooked characters. Typically a whole
182 * bunch of cooked characters come in for a port, 1 at a time. So we
183 * save those up into a local buffer, then write out the whole lot
184 * with a large memcpy. Just use 1 buffer for all ports, since its
185 * use it is only need for short periods of time by each port.
187 static char *stli_txcookbuf;
188 static int stli_txcooksize;
189 static int stli_txcookrealsize;
190 static struct tty_struct *stli_txcooktty;
193 * Define a local default termios struct. All ports will be created
194 * with this termios initially. Basically all it defines is a raw port
195 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
197 static struct termios stli_deftermios = {
198 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
199 .c_cc = INIT_C_CC,
203 * Define global stats structures. Not used often, and can be
204 * re-used for each stats call.
206 static comstats_t stli_comstats;
207 static combrd_t stli_brdstats;
208 static asystats_t stli_cdkstats;
209 static stlibrd_t stli_dummybrd;
210 static stliport_t stli_dummyport;
212 /*****************************************************************************/
214 static stlibrd_t *stli_brds[STL_MAXBRDS];
216 static int stli_shared;
219 * Per board state flags. Used with the state field of the board struct.
220 * Not really much here... All we need to do is keep track of whether
221 * the board has been detected, and whether it is actually running a slave
222 * or not.
224 #define BST_FOUND 0x1
225 #define BST_STARTED 0x2
228 * Define the set of port state flags. These are marked for internal
229 * state purposes only, usually to do with the state of communications
230 * with the slave. Most of them need to be updated atomically, so always
231 * use the bit setting operations (unless protected by cli/sti).
233 #define ST_INITIALIZING 1
234 #define ST_OPENING 2
235 #define ST_CLOSING 3
236 #define ST_CMDING 4
237 #define ST_TXBUSY 5
238 #define ST_RXING 6
239 #define ST_DOFLUSHRX 7
240 #define ST_DOFLUSHTX 8
241 #define ST_DOSIGS 9
242 #define ST_RXSTOP 10
243 #define ST_GETSIGS 11
246 * Define an array of board names as printable strings. Handy for
247 * referencing boards when printing trace and stuff.
249 static char *stli_brdnames[] = {
250 "Unknown",
251 "Stallion",
252 "Brumby",
253 "ONboard-MC",
254 "ONboard",
255 "Brumby",
256 "Brumby",
257 "ONboard-EI",
258 (char *) NULL,
259 "ONboard",
260 "ONboard-MC",
261 "ONboard-MC",
262 (char *) NULL,
263 (char *) NULL,
264 (char *) NULL,
265 (char *) NULL,
266 (char *) NULL,
267 (char *) NULL,
268 (char *) NULL,
269 (char *) NULL,
270 "EasyIO",
271 "EC8/32-AT",
272 "EC8/32-MC",
273 "EC8/64-AT",
274 "EC8/64-EI",
275 "EC8/64-MC",
276 "EC8/32-PCI",
277 "EC8/64-PCI",
278 "EasyIO-PCI",
279 "EC/RA-PCI",
282 /*****************************************************************************/
285 * Define some string labels for arguments passed from the module
286 * load line. These allow for easy board definitions, and easy
287 * modification of the io, memory and irq resoucres.
290 static char *board0[8];
291 static char *board1[8];
292 static char *board2[8];
293 static char *board3[8];
295 static char **stli_brdsp[] = {
296 (char **) &board0,
297 (char **) &board1,
298 (char **) &board2,
299 (char **) &board3
303 * Define a set of common board names, and types. This is used to
304 * parse any module arguments.
307 typedef struct stlibrdtype {
308 char *name;
309 int type;
310 } stlibrdtype_t;
312 static stlibrdtype_t stli_brdstr[] = {
313 { "stallion", BRD_STALLION },
314 { "1", BRD_STALLION },
315 { "brumby", BRD_BRUMBY },
316 { "brumby4", BRD_BRUMBY },
317 { "brumby/4", BRD_BRUMBY },
318 { "brumby-4", BRD_BRUMBY },
319 { "brumby8", BRD_BRUMBY },
320 { "brumby/8", BRD_BRUMBY },
321 { "brumby-8", BRD_BRUMBY },
322 { "brumby16", BRD_BRUMBY },
323 { "brumby/16", BRD_BRUMBY },
324 { "brumby-16", BRD_BRUMBY },
325 { "2", BRD_BRUMBY },
326 { "onboard2", BRD_ONBOARD2 },
327 { "onboard-2", BRD_ONBOARD2 },
328 { "onboard/2", BRD_ONBOARD2 },
329 { "onboard-mc", BRD_ONBOARD2 },
330 { "onboard/mc", BRD_ONBOARD2 },
331 { "onboard-mca", BRD_ONBOARD2 },
332 { "onboard/mca", BRD_ONBOARD2 },
333 { "3", BRD_ONBOARD2 },
334 { "onboard", BRD_ONBOARD },
335 { "onboardat", BRD_ONBOARD },
336 { "4", BRD_ONBOARD },
337 { "onboarde", BRD_ONBOARDE },
338 { "onboard-e", BRD_ONBOARDE },
339 { "onboard/e", BRD_ONBOARDE },
340 { "onboard-ei", BRD_ONBOARDE },
341 { "onboard/ei", BRD_ONBOARDE },
342 { "7", BRD_ONBOARDE },
343 { "ecp", BRD_ECP },
344 { "ecpat", BRD_ECP },
345 { "ec8/64", BRD_ECP },
346 { "ec8/64-at", BRD_ECP },
347 { "ec8/64-isa", BRD_ECP },
348 { "23", BRD_ECP },
349 { "ecpe", BRD_ECPE },
350 { "ecpei", BRD_ECPE },
351 { "ec8/64-e", BRD_ECPE },
352 { "ec8/64-ei", BRD_ECPE },
353 { "24", BRD_ECPE },
354 { "ecpmc", BRD_ECPMC },
355 { "ec8/64-mc", BRD_ECPMC },
356 { "ec8/64-mca", BRD_ECPMC },
357 { "25", BRD_ECPMC },
358 { "ecppci", BRD_ECPPCI },
359 { "ec/ra", BRD_ECPPCI },
360 { "ec/ra-pc", BRD_ECPPCI },
361 { "ec/ra-pci", BRD_ECPPCI },
362 { "29", BRD_ECPPCI },
366 * Define the module agruments.
368 MODULE_AUTHOR("Greg Ungerer");
369 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
370 MODULE_LICENSE("GPL");
373 module_param_array(board0, charp, NULL, 0);
374 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
375 module_param_array(board1, charp, NULL, 0);
376 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
377 module_param_array(board2, charp, NULL, 0);
378 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
379 module_param_array(board3, charp, NULL, 0);
380 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
383 * Set up a default memory address table for EISA board probing.
384 * The default addresses are all bellow 1Mbyte, which has to be the
385 * case anyway. They should be safe, since we only read values from
386 * them, and interrupts are disabled while we do it. If the higher
387 * memory support is compiled in then we also try probing around
388 * the 1Gb, 2Gb and 3Gb areas as well...
390 static unsigned long stli_eisamemprobeaddrs[] = {
391 0xc0000, 0xd0000, 0xe0000, 0xf0000,
392 0x80000000, 0x80010000, 0x80020000, 0x80030000,
393 0x40000000, 0x40010000, 0x40020000, 0x40030000,
394 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
395 0xff000000, 0xff010000, 0xff020000, 0xff030000,
398 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
401 * Define the Stallion PCI vendor and device IDs.
403 #ifdef CONFIG_PCI
404 #ifndef PCI_VENDOR_ID_STALLION
405 #define PCI_VENDOR_ID_STALLION 0x124d
406 #endif
407 #ifndef PCI_DEVICE_ID_ECRA
408 #define PCI_DEVICE_ID_ECRA 0x0004
409 #endif
411 static struct pci_device_id istallion_pci_tbl[] = {
412 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
413 { 0 }
415 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
417 #endif /* CONFIG_PCI */
419 /*****************************************************************************/
422 * Hardware configuration info for ECP boards. These defines apply
423 * to the directly accessible io ports of the ECP. There is a set of
424 * defines for each ECP board type, ISA, EISA, MCA and PCI.
426 #define ECP_IOSIZE 4
428 #define ECP_MEMSIZE (128 * 1024)
429 #define ECP_PCIMEMSIZE (256 * 1024)
431 #define ECP_ATPAGESIZE (4 * 1024)
432 #define ECP_MCPAGESIZE (4 * 1024)
433 #define ECP_EIPAGESIZE (64 * 1024)
434 #define ECP_PCIPAGESIZE (64 * 1024)
436 #define STL_EISAID 0x8c4e
439 * Important defines for the ISA class of ECP board.
441 #define ECP_ATIREG 0
442 #define ECP_ATCONFR 1
443 #define ECP_ATMEMAR 2
444 #define ECP_ATMEMPR 3
445 #define ECP_ATSTOP 0x1
446 #define ECP_ATINTENAB 0x10
447 #define ECP_ATENABLE 0x20
448 #define ECP_ATDISABLE 0x00
449 #define ECP_ATADDRMASK 0x3f000
450 #define ECP_ATADDRSHFT 12
453 * Important defines for the EISA class of ECP board.
455 #define ECP_EIIREG 0
456 #define ECP_EIMEMARL 1
457 #define ECP_EICONFR 2
458 #define ECP_EIMEMARH 3
459 #define ECP_EIENABLE 0x1
460 #define ECP_EIDISABLE 0x0
461 #define ECP_EISTOP 0x4
462 #define ECP_EIEDGE 0x00
463 #define ECP_EILEVEL 0x80
464 #define ECP_EIADDRMASKL 0x00ff0000
465 #define ECP_EIADDRSHFTL 16
466 #define ECP_EIADDRMASKH 0xff000000
467 #define ECP_EIADDRSHFTH 24
468 #define ECP_EIBRDENAB 0xc84
470 #define ECP_EISAID 0x4
473 * Important defines for the Micro-channel class of ECP board.
474 * (It has a lot in common with the ISA boards.)
476 #define ECP_MCIREG 0
477 #define ECP_MCCONFR 1
478 #define ECP_MCSTOP 0x20
479 #define ECP_MCENABLE 0x80
480 #define ECP_MCDISABLE 0x00
483 * Important defines for the PCI class of ECP board.
484 * (It has a lot in common with the other ECP boards.)
486 #define ECP_PCIIREG 0
487 #define ECP_PCICONFR 1
488 #define ECP_PCISTOP 0x01
491 * Hardware configuration info for ONboard and Brumby boards. These
492 * defines apply to the directly accessible io ports of these boards.
494 #define ONB_IOSIZE 16
495 #define ONB_MEMSIZE (64 * 1024)
496 #define ONB_ATPAGESIZE (64 * 1024)
497 #define ONB_MCPAGESIZE (64 * 1024)
498 #define ONB_EIMEMSIZE (128 * 1024)
499 #define ONB_EIPAGESIZE (64 * 1024)
502 * Important defines for the ISA class of ONboard board.
504 #define ONB_ATIREG 0
505 #define ONB_ATMEMAR 1
506 #define ONB_ATCONFR 2
507 #define ONB_ATSTOP 0x4
508 #define ONB_ATENABLE 0x01
509 #define ONB_ATDISABLE 0x00
510 #define ONB_ATADDRMASK 0xff0000
511 #define ONB_ATADDRSHFT 16
513 #define ONB_MEMENABLO 0
514 #define ONB_MEMENABHI 0x02
517 * Important defines for the EISA class of ONboard board.
519 #define ONB_EIIREG 0
520 #define ONB_EIMEMARL 1
521 #define ONB_EICONFR 2
522 #define ONB_EIMEMARH 3
523 #define ONB_EIENABLE 0x1
524 #define ONB_EIDISABLE 0x0
525 #define ONB_EISTOP 0x4
526 #define ONB_EIEDGE 0x00
527 #define ONB_EILEVEL 0x80
528 #define ONB_EIADDRMASKL 0x00ff0000
529 #define ONB_EIADDRSHFTL 16
530 #define ONB_EIADDRMASKH 0xff000000
531 #define ONB_EIADDRSHFTH 24
532 #define ONB_EIBRDENAB 0xc84
534 #define ONB_EISAID 0x1
537 * Important defines for the Brumby boards. They are pretty simple,
538 * there is not much that is programmably configurable.
540 #define BBY_IOSIZE 16
541 #define BBY_MEMSIZE (64 * 1024)
542 #define BBY_PAGESIZE (16 * 1024)
544 #define BBY_ATIREG 0
545 #define BBY_ATCONFR 1
546 #define BBY_ATSTOP 0x4
549 * Important defines for the Stallion boards. They are pretty simple,
550 * there is not much that is programmably configurable.
552 #define STAL_IOSIZE 16
553 #define STAL_MEMSIZE (64 * 1024)
554 #define STAL_PAGESIZE (64 * 1024)
557 * Define the set of status register values for EasyConnection panels.
558 * The signature will return with the status value for each panel. From
559 * this we can determine what is attached to the board - before we have
560 * actually down loaded any code to it.
562 #define ECH_PNLSTATUS 2
563 #define ECH_PNL16PORT 0x20
564 #define ECH_PNLIDMASK 0x07
565 #define ECH_PNLXPID 0x40
566 #define ECH_PNLINTRPEND 0x80
569 * Define some macros to do things to the board. Even those these boards
570 * are somewhat related there is often significantly different ways of
571 * doing some operation on it (like enable, paging, reset, etc). So each
572 * board class has a set of functions which do the commonly required
573 * operations. The macros below basically just call these functions,
574 * generally checking for a NULL function - which means that the board
575 * needs nothing done to it to achieve this operation!
577 #define EBRDINIT(brdp) \
578 if (brdp->init != NULL) \
579 (* brdp->init)(brdp)
581 #define EBRDENABLE(brdp) \
582 if (brdp->enable != NULL) \
583 (* brdp->enable)(brdp);
585 #define EBRDDISABLE(brdp) \
586 if (brdp->disable != NULL) \
587 (* brdp->disable)(brdp);
589 #define EBRDINTR(brdp) \
590 if (brdp->intr != NULL) \
591 (* brdp->intr)(brdp);
593 #define EBRDRESET(brdp) \
594 if (brdp->reset != NULL) \
595 (* brdp->reset)(brdp);
597 #define EBRDGETMEMPTR(brdp,offset) \
598 (* brdp->getmemptr)(brdp, offset, __LINE__)
601 * Define the maximal baud rate, and the default baud base for ports.
603 #define STL_MAXBAUD 460800
604 #define STL_BAUDBASE 115200
605 #define STL_CLOSEDELAY (5 * HZ / 10)
607 /*****************************************************************************/
610 * Define macros to extract a brd or port number from a minor number.
612 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
613 #define MINOR2PORT(min) ((min) & 0x3f)
615 /*****************************************************************************/
618 * Define some handy local macros...
620 #undef MIN
621 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
623 #undef TOLOWER
624 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
626 /*****************************************************************************/
629 * Prototype all functions in this driver!
632 static int stli_parsebrd(stlconf_t *confp, char **argp);
633 static int stli_init(void);
634 static int stli_open(struct tty_struct *tty, struct file *filp);
635 static void stli_close(struct tty_struct *tty, struct file *filp);
636 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
637 static void stli_putchar(struct tty_struct *tty, unsigned char ch);
638 static void stli_flushchars(struct tty_struct *tty);
639 static int stli_writeroom(struct tty_struct *tty);
640 static int stli_charsinbuffer(struct tty_struct *tty);
641 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
642 static void stli_settermios(struct tty_struct *tty, struct termios *old);
643 static void stli_throttle(struct tty_struct *tty);
644 static void stli_unthrottle(struct tty_struct *tty);
645 static void stli_stop(struct tty_struct *tty);
646 static void stli_start(struct tty_struct *tty);
647 static void stli_flushbuffer(struct tty_struct *tty);
648 static void stli_breakctl(struct tty_struct *tty, int state);
649 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
650 static void stli_sendxchar(struct tty_struct *tty, char ch);
651 static void stli_hangup(struct tty_struct *tty);
652 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
654 static int stli_brdinit(stlibrd_t *brdp);
655 static int stli_startbrd(stlibrd_t *brdp);
656 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
657 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
658 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
659 static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp);
660 static void stli_poll(unsigned long arg);
661 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
662 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
663 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
664 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
665 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
666 static void stli_dohangup(void *arg);
667 static int stli_setport(stliport_t *portp);
668 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
669 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
670 static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
671 static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp);
672 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
673 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
674 static long stli_mktiocm(unsigned long sigvalue);
675 static void stli_read(stlibrd_t *brdp, stliport_t *portp);
676 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
677 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
678 static int stli_getbrdstats(combrd_t __user *bp);
679 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
680 static int stli_portcmdstats(stliport_t *portp);
681 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
682 static int stli_getportstruct(stliport_t __user *arg);
683 static int stli_getbrdstruct(stlibrd_t __user *arg);
684 static stlibrd_t *stli_allocbrd(void);
686 static void stli_ecpinit(stlibrd_t *brdp);
687 static void stli_ecpenable(stlibrd_t *brdp);
688 static void stli_ecpdisable(stlibrd_t *brdp);
689 static void __iomem *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
690 static void stli_ecpreset(stlibrd_t *brdp);
691 static void stli_ecpintr(stlibrd_t *brdp);
692 static void stli_ecpeiinit(stlibrd_t *brdp);
693 static void stli_ecpeienable(stlibrd_t *brdp);
694 static void stli_ecpeidisable(stlibrd_t *brdp);
695 static void __iomem *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
696 static void stli_ecpeireset(stlibrd_t *brdp);
697 static void stli_ecpmcenable(stlibrd_t *brdp);
698 static void stli_ecpmcdisable(stlibrd_t *brdp);
699 static void __iomem *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
700 static void stli_ecpmcreset(stlibrd_t *brdp);
701 static void stli_ecppciinit(stlibrd_t *brdp);
702 static void __iomem *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
703 static void stli_ecppcireset(stlibrd_t *brdp);
705 static void stli_onbinit(stlibrd_t *brdp);
706 static void stli_onbenable(stlibrd_t *brdp);
707 static void stli_onbdisable(stlibrd_t *brdp);
708 static void __iomem *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
709 static void stli_onbreset(stlibrd_t *brdp);
710 static void stli_onbeinit(stlibrd_t *brdp);
711 static void stli_onbeenable(stlibrd_t *brdp);
712 static void stli_onbedisable(stlibrd_t *brdp);
713 static void __iomem *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
714 static void stli_onbereset(stlibrd_t *brdp);
715 static void stli_bbyinit(stlibrd_t *brdp);
716 static void __iomem *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
717 static void stli_bbyreset(stlibrd_t *brdp);
718 static void stli_stalinit(stlibrd_t *brdp);
719 static void __iomem *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
720 static void stli_stalreset(stlibrd_t *brdp);
722 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
724 static int stli_initecp(stlibrd_t *brdp);
725 static int stli_initonb(stlibrd_t *brdp);
726 static int stli_eisamemprobe(stlibrd_t *brdp);
727 static int stli_initports(stlibrd_t *brdp);
729 #ifdef CONFIG_PCI
730 static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
731 #endif
733 /*****************************************************************************/
736 * Define the driver info for a user level shared memory device. This
737 * device will work sort of like the /dev/kmem device - except that it
738 * will give access to the shared memory on the Stallion intelligent
739 * board. This is also a very useful debugging tool.
741 static const struct file_operations stli_fsiomem = {
742 .owner = THIS_MODULE,
743 .read = stli_memread,
744 .write = stli_memwrite,
745 .ioctl = stli_memioctl,
748 /*****************************************************************************/
751 * Define a timer_list entry for our poll routine. The slave board
752 * is polled every so often to see if anything needs doing. This is
753 * much cheaper on host cpu than using interrupts. It turns out to
754 * not increase character latency by much either...
756 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
758 static int stli_timeron;
761 * Define the calculation for the timeout routine.
763 #define STLI_TIMEOUT (jiffies + 1)
765 /*****************************************************************************/
767 static struct class *istallion_class;
770 * Loadable module initialization stuff.
773 static int __init istallion_module_init(void)
775 stli_init();
776 return 0;
779 /*****************************************************************************/
781 static void __exit istallion_module_exit(void)
783 stlibrd_t *brdp;
784 stliport_t *portp;
785 int i, j;
787 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
788 stli_drvversion);
791 * Free up all allocated resources used by the ports. This includes
792 * memory and interrupts.
794 if (stli_timeron) {
795 stli_timeron = 0;
796 del_timer_sync(&stli_timerlist);
799 i = tty_unregister_driver(stli_serial);
800 if (i) {
801 printk("STALLION: failed to un-register tty driver, "
802 "errno=%d\n", -i);
803 return;
805 put_tty_driver(stli_serial);
806 for (i = 0; i < 4; i++)
807 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
808 class_destroy(istallion_class);
809 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
810 printk("STALLION: failed to un-register serial memory device, "
811 "errno=%d\n", -i);
813 kfree(stli_txcookbuf);
815 for (i = 0; (i < stli_nrbrds); i++) {
816 if ((brdp = stli_brds[i]) == NULL)
817 continue;
818 for (j = 0; (j < STL_MAXPORTS); j++) {
819 portp = brdp->ports[j];
820 if (portp != NULL) {
821 if (portp->tty != NULL)
822 tty_hangup(portp->tty);
823 kfree(portp);
827 iounmap(brdp->membase);
828 if (brdp->iosize > 0)
829 release_region(brdp->iobase, brdp->iosize);
830 kfree(brdp);
831 stli_brds[i] = NULL;
835 module_init(istallion_module_init);
836 module_exit(istallion_module_exit);
838 /*****************************************************************************/
841 * Check for any arguments passed in on the module load command line.
844 static void stli_argbrds(void)
846 stlconf_t conf;
847 stlibrd_t *brdp;
848 int i;
850 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
851 memset(&conf, 0, sizeof(conf));
852 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
853 continue;
854 if ((brdp = stli_allocbrd()) == NULL)
855 continue;
856 stli_nrbrds = i + 1;
857 brdp->brdnr = i;
858 brdp->brdtype = conf.brdtype;
859 brdp->iobase = conf.ioaddr1;
860 brdp->memaddr = conf.memaddr;
861 stli_brdinit(brdp);
865 /*****************************************************************************/
868 * Convert an ascii string number into an unsigned long.
871 static unsigned long stli_atol(char *str)
873 unsigned long val;
874 int base, c;
875 char *sp;
877 val = 0;
878 sp = str;
879 if ((*sp == '0') && (*(sp+1) == 'x')) {
880 base = 16;
881 sp += 2;
882 } else if (*sp == '0') {
883 base = 8;
884 sp++;
885 } else {
886 base = 10;
889 for (; (*sp != 0); sp++) {
890 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
891 if ((c < 0) || (c >= base)) {
892 printk("STALLION: invalid argument %s\n", str);
893 val = 0;
894 break;
896 val = (val * base) + c;
898 return(val);
901 /*****************************************************************************/
904 * Parse the supplied argument string, into the board conf struct.
907 static int stli_parsebrd(stlconf_t *confp, char **argp)
909 char *sp;
910 int i;
912 if (argp[0] == NULL || *argp[0] == 0)
913 return 0;
915 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
916 *sp = TOLOWER(*sp);
918 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
919 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
920 break;
922 if (i == ARRAY_SIZE(stli_brdstr)) {
923 printk("STALLION: unknown board name, %s?\n", argp[0]);
924 return 0;
927 confp->brdtype = stli_brdstr[i].type;
928 if (argp[1] != NULL && *argp[1] != 0)
929 confp->ioaddr1 = stli_atol(argp[1]);
930 if (argp[2] != NULL && *argp[2] != 0)
931 confp->memaddr = stli_atol(argp[2]);
932 return(1);
935 /*****************************************************************************/
937 static int stli_open(struct tty_struct *tty, struct file *filp)
939 stlibrd_t *brdp;
940 stliport_t *portp;
941 unsigned int minordev;
942 int brdnr, portnr, rc;
944 minordev = tty->index;
945 brdnr = MINOR2BRD(minordev);
946 if (brdnr >= stli_nrbrds)
947 return -ENODEV;
948 brdp = stli_brds[brdnr];
949 if (brdp == NULL)
950 return -ENODEV;
951 if ((brdp->state & BST_STARTED) == 0)
952 return -ENODEV;
953 portnr = MINOR2PORT(minordev);
954 if ((portnr < 0) || (portnr > brdp->nrports))
955 return -ENODEV;
957 portp = brdp->ports[portnr];
958 if (portp == NULL)
959 return -ENODEV;
960 if (portp->devnr < 1)
961 return -ENODEV;
965 * Check if this port is in the middle of closing. If so then wait
966 * until it is closed then return error status based on flag settings.
967 * The sleep here does not need interrupt protection since the wakeup
968 * for it is done with the same context.
970 if (portp->flags & ASYNC_CLOSING) {
971 interruptible_sleep_on(&portp->close_wait);
972 if (portp->flags & ASYNC_HUP_NOTIFY)
973 return -EAGAIN;
974 return -ERESTARTSYS;
978 * On the first open of the device setup the port hardware, and
979 * initialize the per port data structure. Since initializing the port
980 * requires several commands to the board we will need to wait for any
981 * other open that is already initializing the port.
983 portp->tty = tty;
984 tty->driver_data = portp;
985 portp->refcount++;
987 wait_event_interruptible(portp->raw_wait,
988 !test_bit(ST_INITIALIZING, &portp->state));
989 if (signal_pending(current))
990 return -ERESTARTSYS;
992 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
993 set_bit(ST_INITIALIZING, &portp->state);
994 if ((rc = stli_initopen(brdp, portp)) >= 0) {
995 portp->flags |= ASYNC_INITIALIZED;
996 clear_bit(TTY_IO_ERROR, &tty->flags);
998 clear_bit(ST_INITIALIZING, &portp->state);
999 wake_up_interruptible(&portp->raw_wait);
1000 if (rc < 0)
1001 return rc;
1005 * Check if this port is in the middle of closing. If so then wait
1006 * until it is closed then return error status, based on flag settings.
1007 * The sleep here does not need interrupt protection since the wakeup
1008 * for it is done with the same context.
1010 if (portp->flags & ASYNC_CLOSING) {
1011 interruptible_sleep_on(&portp->close_wait);
1012 if (portp->flags & ASYNC_HUP_NOTIFY)
1013 return -EAGAIN;
1014 return -ERESTARTSYS;
1018 * Based on type of open being done check if it can overlap with any
1019 * previous opens still in effect. If we are a normal serial device
1020 * then also we might have to wait for carrier.
1022 if (!(filp->f_flags & O_NONBLOCK)) {
1023 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1024 return rc;
1026 portp->flags |= ASYNC_NORMAL_ACTIVE;
1027 return 0;
1030 /*****************************************************************************/
1032 static void stli_close(struct tty_struct *tty, struct file *filp)
1034 stlibrd_t *brdp;
1035 stliport_t *portp;
1036 unsigned long flags;
1038 portp = tty->driver_data;
1039 if (portp == NULL)
1040 return;
1042 spin_lock_irqsave(&stli_lock, flags);
1043 if (tty_hung_up_p(filp)) {
1044 spin_unlock_irqrestore(&stli_lock, flags);
1045 return;
1047 if ((tty->count == 1) && (portp->refcount != 1))
1048 portp->refcount = 1;
1049 if (portp->refcount-- > 1) {
1050 spin_unlock_irqrestore(&stli_lock, flags);
1051 return;
1054 portp->flags |= ASYNC_CLOSING;
1057 * May want to wait for data to drain before closing. The BUSY flag
1058 * keeps track of whether we are still transmitting or not. It is
1059 * updated by messages from the slave - indicating when all chars
1060 * really have drained.
1062 if (tty == stli_txcooktty)
1063 stli_flushchars(tty);
1064 tty->closing = 1;
1065 spin_unlock_irqrestore(&stli_lock, flags);
1067 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1068 tty_wait_until_sent(tty, portp->closing_wait);
1070 portp->flags &= ~ASYNC_INITIALIZED;
1071 brdp = stli_brds[portp->brdnr];
1072 stli_rawclose(brdp, portp, 0, 0);
1073 if (tty->termios->c_cflag & HUPCL) {
1074 stli_mkasysigs(&portp->asig, 0, 0);
1075 if (test_bit(ST_CMDING, &portp->state))
1076 set_bit(ST_DOSIGS, &portp->state);
1077 else
1078 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1079 sizeof(asysigs_t), 0);
1081 clear_bit(ST_TXBUSY, &portp->state);
1082 clear_bit(ST_RXSTOP, &portp->state);
1083 set_bit(TTY_IO_ERROR, &tty->flags);
1084 if (tty->ldisc.flush_buffer)
1085 (tty->ldisc.flush_buffer)(tty);
1086 set_bit(ST_DOFLUSHRX, &portp->state);
1087 stli_flushbuffer(tty);
1089 tty->closing = 0;
1090 portp->tty = NULL;
1092 if (portp->openwaitcnt) {
1093 if (portp->close_delay)
1094 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1095 wake_up_interruptible(&portp->open_wait);
1098 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1099 wake_up_interruptible(&portp->close_wait);
1102 /*****************************************************************************/
1105 * Carry out first open operations on a port. This involves a number of
1106 * commands to be sent to the slave. We need to open the port, set the
1107 * notification events, set the initial port settings, get and set the
1108 * initial signal values. We sleep and wait in between each one. But
1109 * this still all happens pretty quickly.
1112 static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1114 struct tty_struct *tty;
1115 asynotify_t nt;
1116 asyport_t aport;
1117 int rc;
1119 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1120 return rc;
1122 memset(&nt, 0, sizeof(asynotify_t));
1123 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1124 nt.signal = SG_DCD;
1125 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1126 sizeof(asynotify_t), 0)) < 0)
1127 return rc;
1129 tty = portp->tty;
1130 if (tty == NULL)
1131 return -ENODEV;
1132 stli_mkasyport(portp, &aport, tty->termios);
1133 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1134 sizeof(asyport_t), 0)) < 0)
1135 return rc;
1137 set_bit(ST_GETSIGS, &portp->state);
1138 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1139 sizeof(asysigs_t), 1)) < 0)
1140 return rc;
1141 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1142 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1143 stli_mkasysigs(&portp->asig, 1, 1);
1144 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1145 sizeof(asysigs_t), 0)) < 0)
1146 return rc;
1148 return 0;
1151 /*****************************************************************************/
1154 * Send an open message to the slave. This will sleep waiting for the
1155 * acknowledgement, so must have user context. We need to co-ordinate
1156 * with close events here, since we don't want open and close events
1157 * to overlap.
1160 static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1162 cdkhdr_t __iomem *hdrp;
1163 cdkctrl_t __iomem *cp;
1164 unsigned char __iomem *bits;
1165 unsigned long flags;
1166 int rc;
1169 * Send a message to the slave to open this port.
1173 * Slave is already closing this port. This can happen if a hangup
1174 * occurs on this port. So we must wait until it is complete. The
1175 * order of opens and closes may not be preserved across shared
1176 * memory, so we must wait until it is complete.
1178 wait_event_interruptible(portp->raw_wait,
1179 !test_bit(ST_CLOSING, &portp->state));
1180 if (signal_pending(current)) {
1181 return -ERESTARTSYS;
1185 * Everything is ready now, so write the open message into shared
1186 * memory. Once the message is in set the service bits to say that
1187 * this port wants service.
1189 spin_lock_irqsave(&brd_lock, flags);
1190 EBRDENABLE(brdp);
1191 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1192 writel(arg, &cp->openarg);
1193 writeb(1, &cp->open);
1194 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1195 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1196 portp->portidx;
1197 writeb(readb(bits) | portp->portbit, bits);
1198 EBRDDISABLE(brdp);
1200 if (wait == 0) {
1201 spin_unlock_irqrestore(&brd_lock, flags);
1202 return 0;
1206 * Slave is in action, so now we must wait for the open acknowledgment
1207 * to come back.
1209 rc = 0;
1210 set_bit(ST_OPENING, &portp->state);
1211 spin_unlock_irqrestore(&brd_lock, flags);
1213 wait_event_interruptible(portp->raw_wait,
1214 !test_bit(ST_OPENING, &portp->state));
1215 if (signal_pending(current))
1216 rc = -ERESTARTSYS;
1218 if ((rc == 0) && (portp->rc != 0))
1219 rc = -EIO;
1220 return rc;
1223 /*****************************************************************************/
1226 * Send a close message to the slave. Normally this will sleep waiting
1227 * for the acknowledgement, but if wait parameter is 0 it will not. If
1228 * wait is true then must have user context (to sleep).
1231 static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1233 cdkhdr_t __iomem *hdrp;
1234 cdkctrl_t __iomem *cp;
1235 unsigned char __iomem *bits;
1236 unsigned long flags;
1237 int rc;
1240 * Slave is already closing this port. This can happen if a hangup
1241 * occurs on this port.
1243 if (wait) {
1244 wait_event_interruptible(portp->raw_wait,
1245 !test_bit(ST_CLOSING, &portp->state));
1246 if (signal_pending(current)) {
1247 return -ERESTARTSYS;
1252 * Write the close command into shared memory.
1254 spin_lock_irqsave(&brd_lock, flags);
1255 EBRDENABLE(brdp);
1256 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1257 writel(arg, &cp->closearg);
1258 writeb(1, &cp->close);
1259 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1260 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1261 portp->portidx;
1262 writeb(readb(bits) |portp->portbit, bits);
1263 EBRDDISABLE(brdp);
1265 set_bit(ST_CLOSING, &portp->state);
1266 spin_unlock_irqrestore(&brd_lock, flags);
1268 if (wait == 0)
1269 return 0;
1272 * Slave is in action, so now we must wait for the open acknowledgment
1273 * to come back.
1275 rc = 0;
1276 wait_event_interruptible(portp->raw_wait,
1277 !test_bit(ST_CLOSING, &portp->state));
1278 if (signal_pending(current))
1279 rc = -ERESTARTSYS;
1281 if ((rc == 0) && (portp->rc != 0))
1282 rc = -EIO;
1283 return rc;
1286 /*****************************************************************************/
1289 * Send a command to the slave and wait for the response. This must
1290 * have user context (it sleeps). This routine is generic in that it
1291 * can send any type of command. Its purpose is to wait for that command
1292 * to complete (as opposed to initiating the command then returning).
1295 static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1297 wait_event_interruptible(portp->raw_wait,
1298 !test_bit(ST_CMDING, &portp->state));
1299 if (signal_pending(current))
1300 return -ERESTARTSYS;
1302 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1304 wait_event_interruptible(portp->raw_wait,
1305 !test_bit(ST_CMDING, &portp->state));
1306 if (signal_pending(current))
1307 return -ERESTARTSYS;
1309 if (portp->rc != 0)
1310 return -EIO;
1311 return 0;
1314 /*****************************************************************************/
1317 * Send the termios settings for this port to the slave. This sleeps
1318 * waiting for the command to complete - so must have user context.
1321 static int stli_setport(stliport_t *portp)
1323 stlibrd_t *brdp;
1324 asyport_t aport;
1326 if (portp == NULL)
1327 return -ENODEV;
1328 if (portp->tty == NULL)
1329 return -ENODEV;
1330 if (portp->brdnr < 0 && portp->brdnr >= stli_nrbrds)
1331 return -ENODEV;
1332 brdp = stli_brds[portp->brdnr];
1333 if (brdp == NULL)
1334 return -ENODEV;
1336 stli_mkasyport(portp, &aport, portp->tty->termios);
1337 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1340 /*****************************************************************************/
1343 * Possibly need to wait for carrier (DCD signal) to come high. Say
1344 * maybe because if we are clocal then we don't need to wait...
1347 static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1349 unsigned long flags;
1350 int rc, doclocal;
1352 rc = 0;
1353 doclocal = 0;
1355 if (portp->tty->termios->c_cflag & CLOCAL)
1356 doclocal++;
1358 spin_lock_irqsave(&stli_lock, flags);
1359 portp->openwaitcnt++;
1360 if (! tty_hung_up_p(filp))
1361 portp->refcount--;
1362 spin_unlock_irqrestore(&stli_lock, flags);
1364 for (;;) {
1365 stli_mkasysigs(&portp->asig, 1, 1);
1366 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1367 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1368 break;
1369 if (tty_hung_up_p(filp) ||
1370 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1371 if (portp->flags & ASYNC_HUP_NOTIFY)
1372 rc = -EBUSY;
1373 else
1374 rc = -ERESTARTSYS;
1375 break;
1377 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1378 (doclocal || (portp->sigs & TIOCM_CD))) {
1379 break;
1381 if (signal_pending(current)) {
1382 rc = -ERESTARTSYS;
1383 break;
1385 interruptible_sleep_on(&portp->open_wait);
1388 spin_lock_irqsave(&stli_lock, flags);
1389 if (! tty_hung_up_p(filp))
1390 portp->refcount++;
1391 portp->openwaitcnt--;
1392 spin_unlock_irqrestore(&stli_lock, flags);
1394 return rc;
1397 /*****************************************************************************/
1400 * Write routine. Take the data and put it in the shared memory ring
1401 * queue. If port is not already sending chars then need to mark the
1402 * service bits for this port.
1405 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1407 cdkasy_t __iomem *ap;
1408 cdkhdr_t __iomem *hdrp;
1409 unsigned char __iomem *bits;
1410 unsigned char __iomem *shbuf;
1411 unsigned char *chbuf;
1412 stliport_t *portp;
1413 stlibrd_t *brdp;
1414 unsigned int len, stlen, head, tail, size;
1415 unsigned long flags;
1417 if (tty == stli_txcooktty)
1418 stli_flushchars(tty);
1419 portp = tty->driver_data;
1420 if (portp == NULL)
1421 return 0;
1422 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1423 return 0;
1424 brdp = stli_brds[portp->brdnr];
1425 if (brdp == NULL)
1426 return 0;
1427 chbuf = (unsigned char *) buf;
1430 * All data is now local, shove as much as possible into shared memory.
1432 spin_lock_irqsave(&brd_lock, flags);
1433 EBRDENABLE(brdp);
1434 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1435 head = (unsigned int) readw(&ap->txq.head);
1436 tail = (unsigned int) readw(&ap->txq.tail);
1437 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1438 tail = (unsigned int) readw(&ap->txq.tail);
1439 size = portp->txsize;
1440 if (head >= tail) {
1441 len = size - (head - tail) - 1;
1442 stlen = size - head;
1443 } else {
1444 len = tail - head - 1;
1445 stlen = len;
1448 len = MIN(len, count);
1449 count = 0;
1450 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1452 while (len > 0) {
1453 stlen = MIN(len, stlen);
1454 memcpy_toio(shbuf + head, chbuf, stlen);
1455 chbuf += stlen;
1456 len -= stlen;
1457 count += stlen;
1458 head += stlen;
1459 if (head >= size) {
1460 head = 0;
1461 stlen = tail;
1465 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1466 writew(head, &ap->txq.head);
1467 if (test_bit(ST_TXBUSY, &portp->state)) {
1468 if (readl(&ap->changed.data) & DT_TXEMPTY)
1469 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1471 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1472 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1473 portp->portidx;
1474 writeb(readb(bits) | portp->portbit, bits);
1475 set_bit(ST_TXBUSY, &portp->state);
1476 EBRDDISABLE(brdp);
1477 spin_unlock_irqrestore(&brd_lock, flags);
1479 return(count);
1482 /*****************************************************************************/
1485 * Output a single character. We put it into a temporary local buffer
1486 * (for speed) then write out that buffer when the flushchars routine
1487 * is called. There is a safety catch here so that if some other port
1488 * writes chars before the current buffer has been, then we write them
1489 * first them do the new ports.
1492 static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1494 if (tty != stli_txcooktty) {
1495 if (stli_txcooktty != NULL)
1496 stli_flushchars(stli_txcooktty);
1497 stli_txcooktty = tty;
1500 stli_txcookbuf[stli_txcooksize++] = ch;
1503 /*****************************************************************************/
1506 * Transfer characters from the local TX cooking buffer to the board.
1507 * We sort of ignore the tty that gets passed in here. We rely on the
1508 * info stored with the TX cook buffer to tell us which port to flush
1509 * the data on. In any case we clean out the TX cook buffer, for re-use
1510 * by someone else.
1513 static void stli_flushchars(struct tty_struct *tty)
1515 cdkhdr_t __iomem *hdrp;
1516 unsigned char __iomem *bits;
1517 cdkasy_t __iomem *ap;
1518 struct tty_struct *cooktty;
1519 stliport_t *portp;
1520 stlibrd_t *brdp;
1521 unsigned int len, stlen, head, tail, size, count, cooksize;
1522 unsigned char *buf;
1523 unsigned char __iomem *shbuf;
1524 unsigned long flags;
1526 cooksize = stli_txcooksize;
1527 cooktty = stli_txcooktty;
1528 stli_txcooksize = 0;
1529 stli_txcookrealsize = 0;
1530 stli_txcooktty = NULL;
1532 if (tty == NULL)
1533 return;
1534 if (cooktty == NULL)
1535 return;
1536 if (tty != cooktty)
1537 tty = cooktty;
1538 if (cooksize == 0)
1539 return;
1541 portp = tty->driver_data;
1542 if (portp == NULL)
1543 return;
1544 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1545 return;
1546 brdp = stli_brds[portp->brdnr];
1547 if (brdp == NULL)
1548 return;
1550 spin_lock_irqsave(&brd_lock, flags);
1551 EBRDENABLE(brdp);
1553 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1554 head = (unsigned int) readw(&ap->txq.head);
1555 tail = (unsigned int) readw(&ap->txq.tail);
1556 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1557 tail = (unsigned int) readw(&ap->txq.tail);
1558 size = portp->txsize;
1559 if (head >= tail) {
1560 len = size - (head - tail) - 1;
1561 stlen = size - head;
1562 } else {
1563 len = tail - head - 1;
1564 stlen = len;
1567 len = MIN(len, cooksize);
1568 count = 0;
1569 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1570 buf = stli_txcookbuf;
1572 while (len > 0) {
1573 stlen = MIN(len, stlen);
1574 memcpy_toio(shbuf + head, buf, stlen);
1575 buf += stlen;
1576 len -= stlen;
1577 count += stlen;
1578 head += stlen;
1579 if (head >= size) {
1580 head = 0;
1581 stlen = tail;
1585 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1586 writew(head, &ap->txq.head);
1588 if (test_bit(ST_TXBUSY, &portp->state)) {
1589 if (readl(&ap->changed.data) & DT_TXEMPTY)
1590 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1592 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1593 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1594 portp->portidx;
1595 writeb(readb(bits) | portp->portbit, bits);
1596 set_bit(ST_TXBUSY, &portp->state);
1598 EBRDDISABLE(brdp);
1599 spin_unlock_irqrestore(&brd_lock, flags);
1602 /*****************************************************************************/
1604 static int stli_writeroom(struct tty_struct *tty)
1606 cdkasyrq_t __iomem *rp;
1607 stliport_t *portp;
1608 stlibrd_t *brdp;
1609 unsigned int head, tail, len;
1610 unsigned long flags;
1612 if (tty == stli_txcooktty) {
1613 if (stli_txcookrealsize != 0) {
1614 len = stli_txcookrealsize - stli_txcooksize;
1615 return len;
1619 portp = tty->driver_data;
1620 if (portp == NULL)
1621 return 0;
1622 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1623 return 0;
1624 brdp = stli_brds[portp->brdnr];
1625 if (brdp == NULL)
1626 return 0;
1628 spin_lock_irqsave(&brd_lock, flags);
1629 EBRDENABLE(brdp);
1630 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1631 head = (unsigned int) readw(&rp->head);
1632 tail = (unsigned int) readw(&rp->tail);
1633 if (tail != ((unsigned int) readw(&rp->tail)))
1634 tail = (unsigned int) readw(&rp->tail);
1635 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1636 len--;
1637 EBRDDISABLE(brdp);
1638 spin_unlock_irqrestore(&brd_lock, flags);
1640 if (tty == stli_txcooktty) {
1641 stli_txcookrealsize = len;
1642 len -= stli_txcooksize;
1644 return len;
1647 /*****************************************************************************/
1650 * Return the number of characters in the transmit buffer. Normally we
1651 * will return the number of chars in the shared memory ring queue.
1652 * We need to kludge around the case where the shared memory buffer is
1653 * empty but not all characters have drained yet, for this case just
1654 * return that there is 1 character in the buffer!
1657 static int stli_charsinbuffer(struct tty_struct *tty)
1659 cdkasyrq_t __iomem *rp;
1660 stliport_t *portp;
1661 stlibrd_t *brdp;
1662 unsigned int head, tail, len;
1663 unsigned long flags;
1665 if (tty == stli_txcooktty)
1666 stli_flushchars(tty);
1667 portp = tty->driver_data;
1668 if (portp == NULL)
1669 return 0;
1670 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1671 return 0;
1672 brdp = stli_brds[portp->brdnr];
1673 if (brdp == NULL)
1674 return 0;
1676 spin_lock_irqsave(&brd_lock, flags);
1677 EBRDENABLE(brdp);
1678 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1679 head = (unsigned int) readw(&rp->head);
1680 tail = (unsigned int) readw(&rp->tail);
1681 if (tail != ((unsigned int) readw(&rp->tail)))
1682 tail = (unsigned int) readw(&rp->tail);
1683 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1684 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1685 len = 1;
1686 EBRDDISABLE(brdp);
1687 spin_unlock_irqrestore(&brd_lock, flags);
1689 return len;
1692 /*****************************************************************************/
1695 * Generate the serial struct info.
1698 static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1700 struct serial_struct sio;
1701 stlibrd_t *brdp;
1703 memset(&sio, 0, sizeof(struct serial_struct));
1704 sio.type = PORT_UNKNOWN;
1705 sio.line = portp->portnr;
1706 sio.irq = 0;
1707 sio.flags = portp->flags;
1708 sio.baud_base = portp->baud_base;
1709 sio.close_delay = portp->close_delay;
1710 sio.closing_wait = portp->closing_wait;
1711 sio.custom_divisor = portp->custom_divisor;
1712 sio.xmit_fifo_size = 0;
1713 sio.hub6 = 0;
1715 brdp = stli_brds[portp->brdnr];
1716 if (brdp != NULL)
1717 sio.port = brdp->iobase;
1719 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1720 -EFAULT : 0;
1723 /*****************************************************************************/
1726 * Set port according to the serial struct info.
1727 * At this point we do not do any auto-configure stuff, so we will
1728 * just quietly ignore any requests to change irq, etc.
1731 static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1733 struct serial_struct sio;
1734 int rc;
1736 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1737 return -EFAULT;
1738 if (!capable(CAP_SYS_ADMIN)) {
1739 if ((sio.baud_base != portp->baud_base) ||
1740 (sio.close_delay != portp->close_delay) ||
1741 ((sio.flags & ~ASYNC_USR_MASK) !=
1742 (portp->flags & ~ASYNC_USR_MASK)))
1743 return -EPERM;
1746 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1747 (sio.flags & ASYNC_USR_MASK);
1748 portp->baud_base = sio.baud_base;
1749 portp->close_delay = sio.close_delay;
1750 portp->closing_wait = sio.closing_wait;
1751 portp->custom_divisor = sio.custom_divisor;
1753 if ((rc = stli_setport(portp)) < 0)
1754 return rc;
1755 return 0;
1758 /*****************************************************************************/
1760 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1762 stliport_t *portp = tty->driver_data;
1763 stlibrd_t *brdp;
1764 int rc;
1766 if (portp == NULL)
1767 return -ENODEV;
1768 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1769 return 0;
1770 brdp = stli_brds[portp->brdnr];
1771 if (brdp == NULL)
1772 return 0;
1773 if (tty->flags & (1 << TTY_IO_ERROR))
1774 return -EIO;
1776 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1777 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1778 return rc;
1780 return stli_mktiocm(portp->asig.sigvalue);
1783 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1784 unsigned int set, unsigned int clear)
1786 stliport_t *portp = tty->driver_data;
1787 stlibrd_t *brdp;
1788 int rts = -1, dtr = -1;
1790 if (portp == NULL)
1791 return -ENODEV;
1792 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1793 return 0;
1794 brdp = stli_brds[portp->brdnr];
1795 if (brdp == NULL)
1796 return 0;
1797 if (tty->flags & (1 << TTY_IO_ERROR))
1798 return -EIO;
1800 if (set & TIOCM_RTS)
1801 rts = 1;
1802 if (set & TIOCM_DTR)
1803 dtr = 1;
1804 if (clear & TIOCM_RTS)
1805 rts = 0;
1806 if (clear & TIOCM_DTR)
1807 dtr = 0;
1809 stli_mkasysigs(&portp->asig, dtr, rts);
1811 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1812 sizeof(asysigs_t), 0);
1815 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1817 stliport_t *portp;
1818 stlibrd_t *brdp;
1819 unsigned int ival;
1820 int rc;
1821 void __user *argp = (void __user *)arg;
1823 portp = tty->driver_data;
1824 if (portp == NULL)
1825 return -ENODEV;
1826 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1827 return 0;
1828 brdp = stli_brds[portp->brdnr];
1829 if (brdp == NULL)
1830 return 0;
1832 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1833 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1834 if (tty->flags & (1 << TTY_IO_ERROR))
1835 return -EIO;
1838 rc = 0;
1840 switch (cmd) {
1841 case TIOCGSOFTCAR:
1842 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1843 (unsigned __user *) arg);
1844 break;
1845 case TIOCSSOFTCAR:
1846 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
1847 tty->termios->c_cflag =
1848 (tty->termios->c_cflag & ~CLOCAL) |
1849 (ival ? CLOCAL : 0);
1850 break;
1851 case TIOCGSERIAL:
1852 rc = stli_getserial(portp, argp);
1853 break;
1854 case TIOCSSERIAL:
1855 rc = stli_setserial(portp, argp);
1856 break;
1857 case STL_GETPFLAG:
1858 rc = put_user(portp->pflag, (unsigned __user *)argp);
1859 break;
1860 case STL_SETPFLAG:
1861 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1862 stli_setport(portp);
1863 break;
1864 case COM_GETPORTSTATS:
1865 rc = stli_getportstats(portp, argp);
1866 break;
1867 case COM_CLRPORTSTATS:
1868 rc = stli_clrportstats(portp, argp);
1869 break;
1870 case TIOCSERCONFIG:
1871 case TIOCSERGWILD:
1872 case TIOCSERSWILD:
1873 case TIOCSERGETLSR:
1874 case TIOCSERGSTRUCT:
1875 case TIOCSERGETMULTI:
1876 case TIOCSERSETMULTI:
1877 default:
1878 rc = -ENOIOCTLCMD;
1879 break;
1882 return rc;
1885 /*****************************************************************************/
1888 * This routine assumes that we have user context and can sleep.
1889 * Looks like it is true for the current ttys implementation..!!
1892 static void stli_settermios(struct tty_struct *tty, struct termios *old)
1894 stliport_t *portp;
1895 stlibrd_t *brdp;
1896 struct termios *tiosp;
1897 asyport_t aport;
1899 if (tty == NULL)
1900 return;
1901 portp = tty->driver_data;
1902 if (portp == NULL)
1903 return;
1904 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
1905 return;
1906 brdp = stli_brds[portp->brdnr];
1907 if (brdp == NULL)
1908 return;
1910 tiosp = tty->termios;
1911 if ((tiosp->c_cflag == old->c_cflag) &&
1912 (tiosp->c_iflag == old->c_iflag))
1913 return;
1915 stli_mkasyport(portp, &aport, tiosp);
1916 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1917 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1918 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1919 sizeof(asysigs_t), 0);
1920 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1921 tty->hw_stopped = 0;
1922 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1923 wake_up_interruptible(&portp->open_wait);
1926 /*****************************************************************************/
1929 * Attempt to flow control who ever is sending us data. We won't really
1930 * do any flow control action here. We can't directly, and even if we
1931 * wanted to we would have to send a command to the slave. The slave
1932 * knows how to flow control, and will do so when its buffers reach its
1933 * internal high water marks. So what we will do is set a local state
1934 * bit that will stop us sending any RX data up from the poll routine
1935 * (which is the place where RX data from the slave is handled).
1938 static void stli_throttle(struct tty_struct *tty)
1940 stliport_t *portp = tty->driver_data;
1941 if (portp == NULL)
1942 return;
1943 set_bit(ST_RXSTOP, &portp->state);
1946 /*****************************************************************************/
1949 * Unflow control the device sending us data... That means that all
1950 * we have to do is clear the RXSTOP state bit. The next poll call
1951 * will then be able to pass the RX data back up.
1954 static void stli_unthrottle(struct tty_struct *tty)
1956 stliport_t *portp = tty->driver_data;
1957 if (portp == NULL)
1958 return;
1959 clear_bit(ST_RXSTOP, &portp->state);
1962 /*****************************************************************************/
1965 * Stop the transmitter.
1968 static void stli_stop(struct tty_struct *tty)
1972 /*****************************************************************************/
1975 * Start the transmitter again.
1978 static void stli_start(struct tty_struct *tty)
1982 /*****************************************************************************/
1985 * Scheduler called hang up routine. This is called from the scheduler,
1986 * not direct from the driver "poll" routine. We can't call it there
1987 * since the real local hangup code will enable/disable the board and
1988 * other things that we can't do while handling the poll. Much easier
1989 * to deal with it some time later (don't really care when, hangups
1990 * aren't that time critical).
1993 static void stli_dohangup(void *arg)
1995 stliport_t *portp = (stliport_t *) arg;
1996 if (portp->tty != NULL) {
1997 tty_hangup(portp->tty);
2001 /*****************************************************************************/
2004 * Hangup this port. This is pretty much like closing the port, only
2005 * a little more brutal. No waiting for data to drain. Shutdown the
2006 * port and maybe drop signals. This is rather tricky really. We want
2007 * to close the port as well.
2010 static void stli_hangup(struct tty_struct *tty)
2012 stliport_t *portp;
2013 stlibrd_t *brdp;
2014 unsigned long flags;
2016 portp = tty->driver_data;
2017 if (portp == NULL)
2018 return;
2019 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2020 return;
2021 brdp = stli_brds[portp->brdnr];
2022 if (brdp == NULL)
2023 return;
2025 portp->flags &= ~ASYNC_INITIALIZED;
2027 if (!test_bit(ST_CLOSING, &portp->state))
2028 stli_rawclose(brdp, portp, 0, 0);
2030 spin_lock_irqsave(&stli_lock, flags);
2031 if (tty->termios->c_cflag & HUPCL) {
2032 stli_mkasysigs(&portp->asig, 0, 0);
2033 if (test_bit(ST_CMDING, &portp->state)) {
2034 set_bit(ST_DOSIGS, &portp->state);
2035 set_bit(ST_DOFLUSHTX, &portp->state);
2036 set_bit(ST_DOFLUSHRX, &portp->state);
2037 } else {
2038 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2039 &portp->asig, sizeof(asysigs_t), 0);
2043 clear_bit(ST_TXBUSY, &portp->state);
2044 clear_bit(ST_RXSTOP, &portp->state);
2045 set_bit(TTY_IO_ERROR, &tty->flags);
2046 portp->tty = NULL;
2047 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2048 portp->refcount = 0;
2049 spin_unlock_irqrestore(&stli_lock, flags);
2051 wake_up_interruptible(&portp->open_wait);
2054 /*****************************************************************************/
2057 * Flush characters from the lower buffer. We may not have user context
2058 * so we cannot sleep waiting for it to complete. Also we need to check
2059 * if there is chars for this port in the TX cook buffer, and flush them
2060 * as well.
2063 static void stli_flushbuffer(struct tty_struct *tty)
2065 stliport_t *portp;
2066 stlibrd_t *brdp;
2067 unsigned long ftype, flags;
2069 portp = tty->driver_data;
2070 if (portp == NULL)
2071 return;
2072 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2073 return;
2074 brdp = stli_brds[portp->brdnr];
2075 if (brdp == NULL)
2076 return;
2078 spin_lock_irqsave(&brd_lock, flags);
2079 if (tty == stli_txcooktty) {
2080 stli_txcooktty = NULL;
2081 stli_txcooksize = 0;
2082 stli_txcookrealsize = 0;
2084 if (test_bit(ST_CMDING, &portp->state)) {
2085 set_bit(ST_DOFLUSHTX, &portp->state);
2086 } else {
2087 ftype = FLUSHTX;
2088 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2089 ftype |= FLUSHRX;
2090 clear_bit(ST_DOFLUSHRX, &portp->state);
2092 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
2094 spin_unlock_irqrestore(&brd_lock, flags);
2095 tty_wakeup(tty);
2098 /*****************************************************************************/
2100 static void stli_breakctl(struct tty_struct *tty, int state)
2102 stlibrd_t *brdp;
2103 stliport_t *portp;
2104 long arg;
2106 portp = tty->driver_data;
2107 if (portp == NULL)
2108 return;
2109 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2110 return;
2111 brdp = stli_brds[portp->brdnr];
2112 if (brdp == NULL)
2113 return;
2115 arg = (state == -1) ? BREAKON : BREAKOFF;
2116 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2119 /*****************************************************************************/
2121 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2123 stliport_t *portp;
2124 unsigned long tend;
2126 if (tty == NULL)
2127 return;
2128 portp = tty->driver_data;
2129 if (portp == NULL)
2130 return;
2132 if (timeout == 0)
2133 timeout = HZ;
2134 tend = jiffies + timeout;
2136 while (test_bit(ST_TXBUSY, &portp->state)) {
2137 if (signal_pending(current))
2138 break;
2139 msleep_interruptible(20);
2140 if (time_after_eq(jiffies, tend))
2141 break;
2145 /*****************************************************************************/
2147 static void stli_sendxchar(struct tty_struct *tty, char ch)
2149 stlibrd_t *brdp;
2150 stliport_t *portp;
2151 asyctrl_t actrl;
2153 portp = tty->driver_data;
2154 if (portp == NULL)
2155 return;
2156 if (portp->brdnr < 0 || portp->brdnr >= stli_nrbrds)
2157 return;
2158 brdp = stli_brds[portp->brdnr];
2159 if (brdp == NULL)
2160 return;
2162 memset(&actrl, 0, sizeof(asyctrl_t));
2163 if (ch == STOP_CHAR(tty)) {
2164 actrl.rxctrl = CT_STOPFLOW;
2165 } else if (ch == START_CHAR(tty)) {
2166 actrl.rxctrl = CT_STARTFLOW;
2167 } else {
2168 actrl.txctrl = CT_SENDCHR;
2169 actrl.tximdch = ch;
2171 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2174 /*****************************************************************************/
2176 #define MAXLINE 80
2179 * Format info for a specified port. The line is deliberately limited
2180 * to 80 characters. (If it is too long it will be truncated, if too
2181 * short then padded with spaces).
2184 static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2186 char *sp, *uart;
2187 int rc, cnt;
2189 rc = stli_portcmdstats(portp);
2191 uart = "UNKNOWN";
2192 if (brdp->state & BST_STARTED) {
2193 switch (stli_comstats.hwid) {
2194 case 0: uart = "2681"; break;
2195 case 1: uart = "SC26198"; break;
2196 default:uart = "CD1400"; break;
2200 sp = pos;
2201 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2203 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2204 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2205 (int) stli_comstats.rxtotal);
2207 if (stli_comstats.rxframing)
2208 sp += sprintf(sp, " fe:%d",
2209 (int) stli_comstats.rxframing);
2210 if (stli_comstats.rxparity)
2211 sp += sprintf(sp, " pe:%d",
2212 (int) stli_comstats.rxparity);
2213 if (stli_comstats.rxbreaks)
2214 sp += sprintf(sp, " brk:%d",
2215 (int) stli_comstats.rxbreaks);
2216 if (stli_comstats.rxoverrun)
2217 sp += sprintf(sp, " oe:%d",
2218 (int) stli_comstats.rxoverrun);
2220 cnt = sprintf(sp, "%s%s%s%s%s ",
2221 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2222 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2223 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2224 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2225 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2226 *sp = ' ';
2227 sp += cnt;
2230 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2231 *sp++ = ' ';
2232 if (cnt >= MAXLINE)
2233 pos[(MAXLINE - 2)] = '+';
2234 pos[(MAXLINE - 1)] = '\n';
2236 return(MAXLINE);
2239 /*****************************************************************************/
2242 * Port info, read from the /proc file system.
2245 static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2247 stlibrd_t *brdp;
2248 stliport_t *portp;
2249 int brdnr, portnr, totalport;
2250 int curoff, maxoff;
2251 char *pos;
2253 pos = page;
2254 totalport = 0;
2255 curoff = 0;
2257 if (off == 0) {
2258 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2259 stli_drvversion);
2260 while (pos < (page + MAXLINE - 1))
2261 *pos++ = ' ';
2262 *pos++ = '\n';
2264 curoff = MAXLINE;
2267 * We scan through for each board, panel and port. The offset is
2268 * calculated on the fly, and irrelevant ports are skipped.
2270 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2271 brdp = stli_brds[brdnr];
2272 if (brdp == NULL)
2273 continue;
2274 if (brdp->state == 0)
2275 continue;
2277 maxoff = curoff + (brdp->nrports * MAXLINE);
2278 if (off >= maxoff) {
2279 curoff = maxoff;
2280 continue;
2283 totalport = brdnr * STL_MAXPORTS;
2284 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2285 totalport++) {
2286 portp = brdp->ports[portnr];
2287 if (portp == NULL)
2288 continue;
2289 if (off >= (curoff += MAXLINE))
2290 continue;
2291 if ((pos - page + MAXLINE) > count)
2292 goto stli_readdone;
2293 pos += stli_portinfo(brdp, portp, totalport, pos);
2297 *eof = 1;
2299 stli_readdone:
2300 *start = page;
2301 return(pos - page);
2304 /*****************************************************************************/
2307 * Generic send command routine. This will send a message to the slave,
2308 * of the specified type with the specified argument. Must be very
2309 * careful of data that will be copied out from shared memory -
2310 * containing command results. The command completion is all done from
2311 * a poll routine that does not have user context. Therefore you cannot
2312 * copy back directly into user space, or to the kernel stack of a
2313 * process. This routine does not sleep, so can be called from anywhere.
2315 * The caller must hold the brd_lock (see also stli_sendcmd the usual
2316 * entry point)
2319 static void __stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2321 cdkhdr_t __iomem *hdrp;
2322 cdkctrl_t __iomem *cp;
2323 unsigned char __iomem *bits;
2324 unsigned long flags;
2326 spin_lock_irqsave(&brd_lock, flags);
2328 if (test_bit(ST_CMDING, &portp->state)) {
2329 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2330 (int) cmd);
2331 spin_unlock_irqrestore(&brd_lock, flags);
2332 return;
2335 EBRDENABLE(brdp);
2336 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2337 if (size > 0) {
2338 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
2339 if (copyback) {
2340 portp->argp = arg;
2341 portp->argsize = size;
2344 writel(0, &cp->status);
2345 writel(cmd, &cp->cmd);
2346 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2347 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
2348 portp->portidx;
2349 writeb(readb(bits) | portp->portbit, bits);
2350 set_bit(ST_CMDING, &portp->state);
2351 EBRDDISABLE(brdp);
2352 spin_unlock_irqrestore(&brd_lock, flags);
2355 static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2357 unsigned long flags;
2359 spin_lock_irqsave(&brd_lock, flags);
2360 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2361 spin_unlock_irqrestore(&brd_lock, flags);
2364 /*****************************************************************************/
2367 * Read data from shared memory. This assumes that the shared memory
2368 * is enabled and that interrupts are off. Basically we just empty out
2369 * the shared memory buffer into the tty buffer. Must be careful to
2370 * handle the case where we fill up the tty buffer, but still have
2371 * more chars to unload.
2374 static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2376 cdkasyrq_t __iomem *rp;
2377 char __iomem *shbuf;
2378 struct tty_struct *tty;
2379 unsigned int head, tail, size;
2380 unsigned int len, stlen;
2382 if (test_bit(ST_RXSTOP, &portp->state))
2383 return;
2384 tty = portp->tty;
2385 if (tty == NULL)
2386 return;
2388 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2389 head = (unsigned int) readw(&rp->head);
2390 if (head != ((unsigned int) readw(&rp->head)))
2391 head = (unsigned int) readw(&rp->head);
2392 tail = (unsigned int) readw(&rp->tail);
2393 size = portp->rxsize;
2394 if (head >= tail) {
2395 len = head - tail;
2396 stlen = len;
2397 } else {
2398 len = size - (tail - head);
2399 stlen = size - tail;
2402 len = tty_buffer_request_room(tty, len);
2404 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2406 while (len > 0) {
2407 unsigned char *cptr;
2409 stlen = MIN(len, stlen);
2410 tty_prepare_flip_string(tty, &cptr, stlen);
2411 memcpy_fromio(cptr, shbuf + tail, stlen);
2412 len -= stlen;
2413 tail += stlen;
2414 if (tail >= size) {
2415 tail = 0;
2416 stlen = head;
2419 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2420 writew(tail, &rp->tail);
2422 if (head != tail)
2423 set_bit(ST_RXING, &portp->state);
2425 tty_schedule_flip(tty);
2428 /*****************************************************************************/
2431 * Set up and carry out any delayed commands. There is only a small set
2432 * of slave commands that can be done "off-level". So it is not too
2433 * difficult to deal with them here.
2436 static void stli_dodelaycmd(stliport_t *portp, cdkctrl_t __iomem *cp)
2438 int cmd;
2440 if (test_bit(ST_DOSIGS, &portp->state)) {
2441 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2442 test_bit(ST_DOFLUSHRX, &portp->state))
2443 cmd = A_SETSIGNALSF;
2444 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2445 cmd = A_SETSIGNALSFTX;
2446 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2447 cmd = A_SETSIGNALSFRX;
2448 else
2449 cmd = A_SETSIGNALS;
2450 clear_bit(ST_DOFLUSHTX, &portp->state);
2451 clear_bit(ST_DOFLUSHRX, &portp->state);
2452 clear_bit(ST_DOSIGS, &portp->state);
2453 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2454 sizeof(asysigs_t));
2455 writel(0, &cp->status);
2456 writel(cmd, &cp->cmd);
2457 set_bit(ST_CMDING, &portp->state);
2458 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2459 test_bit(ST_DOFLUSHRX, &portp->state)) {
2460 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2461 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2462 clear_bit(ST_DOFLUSHTX, &portp->state);
2463 clear_bit(ST_DOFLUSHRX, &portp->state);
2464 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2465 writel(0, &cp->status);
2466 writel(A_FLUSH, &cp->cmd);
2467 set_bit(ST_CMDING, &portp->state);
2471 /*****************************************************************************/
2474 * Host command service checking. This handles commands or messages
2475 * coming from the slave to the host. Must have board shared memory
2476 * enabled and interrupts off when called. Notice that by servicing the
2477 * read data last we don't need to change the shared memory pointer
2478 * during processing (which is a slow IO operation).
2479 * Return value indicates if this port is still awaiting actions from
2480 * the slave (like open, command, or even TX data being sent). If 0
2481 * then port is still busy, otherwise no longer busy.
2484 static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2486 cdkasy_t __iomem *ap;
2487 cdkctrl_t __iomem *cp;
2488 struct tty_struct *tty;
2489 asynotify_t nt;
2490 unsigned long oldsigs;
2491 int rc, donerx;
2493 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2494 cp = &ap->ctrl;
2497 * Check if we are waiting for an open completion message.
2499 if (test_bit(ST_OPENING, &portp->state)) {
2500 rc = readl(&cp->openarg);
2501 if (readb(&cp->open) == 0 && rc != 0) {
2502 if (rc > 0)
2503 rc--;
2504 writel(0, &cp->openarg);
2505 portp->rc = rc;
2506 clear_bit(ST_OPENING, &portp->state);
2507 wake_up_interruptible(&portp->raw_wait);
2512 * Check if we are waiting for a close completion message.
2514 if (test_bit(ST_CLOSING, &portp->state)) {
2515 rc = (int) readl(&cp->closearg);
2516 if (readb(&cp->close) == 0 && rc != 0) {
2517 if (rc > 0)
2518 rc--;
2519 writel(0, &cp->closearg);
2520 portp->rc = rc;
2521 clear_bit(ST_CLOSING, &portp->state);
2522 wake_up_interruptible(&portp->raw_wait);
2527 * Check if we are waiting for a command completion message. We may
2528 * need to copy out the command results associated with this command.
2530 if (test_bit(ST_CMDING, &portp->state)) {
2531 rc = readl(&cp->status);
2532 if (readl(&cp->cmd) == 0 && rc != 0) {
2533 if (rc > 0)
2534 rc--;
2535 if (portp->argp != NULL) {
2536 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2537 portp->argsize);
2538 portp->argp = NULL;
2540 writel(0, &cp->status);
2541 portp->rc = rc;
2542 clear_bit(ST_CMDING, &portp->state);
2543 stli_dodelaycmd(portp, cp);
2544 wake_up_interruptible(&portp->raw_wait);
2549 * Check for any notification messages ready. This includes lots of
2550 * different types of events - RX chars ready, RX break received,
2551 * TX data low or empty in the slave, modem signals changed state.
2553 donerx = 0;
2555 if (ap->notify) {
2556 nt = ap->changed;
2557 ap->notify = 0;
2558 tty = portp->tty;
2560 if (nt.signal & SG_DCD) {
2561 oldsigs = portp->sigs;
2562 portp->sigs = stli_mktiocm(nt.sigvalue);
2563 clear_bit(ST_GETSIGS, &portp->state);
2564 if ((portp->sigs & TIOCM_CD) &&
2565 ((oldsigs & TIOCM_CD) == 0))
2566 wake_up_interruptible(&portp->open_wait);
2567 if ((oldsigs & TIOCM_CD) &&
2568 ((portp->sigs & TIOCM_CD) == 0)) {
2569 if (portp->flags & ASYNC_CHECK_CD) {
2570 if (tty)
2571 schedule_work(&portp->tqhangup);
2576 if (nt.data & DT_TXEMPTY)
2577 clear_bit(ST_TXBUSY, &portp->state);
2578 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2579 if (tty != NULL) {
2580 tty_wakeup(tty);
2581 EBRDENABLE(brdp);
2582 wake_up_interruptible(&tty->write_wait);
2586 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2587 if (tty != NULL) {
2588 tty_insert_flip_char(tty, 0, TTY_BREAK);
2589 if (portp->flags & ASYNC_SAK) {
2590 do_SAK(tty);
2591 EBRDENABLE(brdp);
2593 tty_schedule_flip(tty);
2597 if (nt.data & DT_RXBUSY) {
2598 donerx++;
2599 stli_read(brdp, portp);
2604 * It might seem odd that we are checking for more RX chars here.
2605 * But, we need to handle the case where the tty buffer was previously
2606 * filled, but we had more characters to pass up. The slave will not
2607 * send any more RX notify messages until the RX buffer has been emptied.
2608 * But it will leave the service bits on (since the buffer is not empty).
2609 * So from here we can try to process more RX chars.
2611 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2612 clear_bit(ST_RXING, &portp->state);
2613 stli_read(brdp, portp);
2616 return((test_bit(ST_OPENING, &portp->state) ||
2617 test_bit(ST_CLOSING, &portp->state) ||
2618 test_bit(ST_CMDING, &portp->state) ||
2619 test_bit(ST_TXBUSY, &portp->state) ||
2620 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2623 /*****************************************************************************/
2626 * Service all ports on a particular board. Assumes that the boards
2627 * shared memory is enabled, and that the page pointer is pointed
2628 * at the cdk header structure.
2631 static void stli_brdpoll(stlibrd_t *brdp, cdkhdr_t __iomem *hdrp)
2633 stliport_t *portp;
2634 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2635 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2636 unsigned char __iomem *slavep;
2637 int bitpos, bitat, bitsize;
2638 int channr, nrdevs, slavebitchange;
2640 bitsize = brdp->bitsize;
2641 nrdevs = brdp->nrdevs;
2644 * Check if slave wants any service. Basically we try to do as
2645 * little work as possible here. There are 2 levels of service
2646 * bits. So if there is nothing to do we bail early. We check
2647 * 8 service bits at a time in the inner loop, so we can bypass
2648 * the lot if none of them want service.
2650 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2651 bitsize);
2653 memset(&slavebits[0], 0, bitsize);
2654 slavebitchange = 0;
2656 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2657 if (hostbits[bitpos] == 0)
2658 continue;
2659 channr = bitpos * 8;
2660 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2661 if (hostbits[bitpos] & bitat) {
2662 portp = brdp->ports[(channr - 1)];
2663 if (stli_hostcmd(brdp, portp)) {
2664 slavebitchange++;
2665 slavebits[bitpos] |= bitat;
2672 * If any of the ports are no longer busy then update them in the
2673 * slave request bits. We need to do this after, since a host port
2674 * service may initiate more slave requests.
2676 if (slavebitchange) {
2677 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2678 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2679 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2680 if (readb(slavebits + bitpos))
2681 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2686 /*****************************************************************************/
2689 * Driver poll routine. This routine polls the boards in use and passes
2690 * messages back up to host when necessary. This is actually very
2691 * CPU efficient, since we will always have the kernel poll clock, it
2692 * adds only a few cycles when idle (since board service can be
2693 * determined very easily), but when loaded generates no interrupts
2694 * (with their expensive associated context change).
2697 static void stli_poll(unsigned long arg)
2699 cdkhdr_t __iomem *hdrp;
2700 stlibrd_t *brdp;
2701 int brdnr;
2703 stli_timerlist.expires = STLI_TIMEOUT;
2704 add_timer(&stli_timerlist);
2707 * Check each board and do any servicing required.
2709 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2710 brdp = stli_brds[brdnr];
2711 if (brdp == NULL)
2712 continue;
2713 if ((brdp->state & BST_STARTED) == 0)
2714 continue;
2716 spin_lock(&brd_lock);
2717 EBRDENABLE(brdp);
2718 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2719 if (readb(&hdrp->hostreq))
2720 stli_brdpoll(brdp, hdrp);
2721 EBRDDISABLE(brdp);
2722 spin_unlock(&brd_lock);
2726 /*****************************************************************************/
2729 * Translate the termios settings into the port setting structure of
2730 * the slave.
2733 static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
2735 memset(pp, 0, sizeof(asyport_t));
2738 * Start of by setting the baud, char size, parity and stop bit info.
2740 pp->baudout = tty_get_baud_rate(portp->tty);
2741 if ((tiosp->c_cflag & CBAUD) == B38400) {
2742 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2743 pp->baudout = 57600;
2744 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2745 pp->baudout = 115200;
2746 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2747 pp->baudout = 230400;
2748 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2749 pp->baudout = 460800;
2750 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2751 pp->baudout = (portp->baud_base / portp->custom_divisor);
2753 if (pp->baudout > STL_MAXBAUD)
2754 pp->baudout = STL_MAXBAUD;
2755 pp->baudin = pp->baudout;
2757 switch (tiosp->c_cflag & CSIZE) {
2758 case CS5:
2759 pp->csize = 5;
2760 break;
2761 case CS6:
2762 pp->csize = 6;
2763 break;
2764 case CS7:
2765 pp->csize = 7;
2766 break;
2767 default:
2768 pp->csize = 8;
2769 break;
2772 if (tiosp->c_cflag & CSTOPB)
2773 pp->stopbs = PT_STOP2;
2774 else
2775 pp->stopbs = PT_STOP1;
2777 if (tiosp->c_cflag & PARENB) {
2778 if (tiosp->c_cflag & PARODD)
2779 pp->parity = PT_ODDPARITY;
2780 else
2781 pp->parity = PT_EVENPARITY;
2782 } else {
2783 pp->parity = PT_NOPARITY;
2787 * Set up any flow control options enabled.
2789 if (tiosp->c_iflag & IXON) {
2790 pp->flow |= F_IXON;
2791 if (tiosp->c_iflag & IXANY)
2792 pp->flow |= F_IXANY;
2794 if (tiosp->c_cflag & CRTSCTS)
2795 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2797 pp->startin = tiosp->c_cc[VSTART];
2798 pp->stopin = tiosp->c_cc[VSTOP];
2799 pp->startout = tiosp->c_cc[VSTART];
2800 pp->stopout = tiosp->c_cc[VSTOP];
2803 * Set up the RX char marking mask with those RX error types we must
2804 * catch. We can get the slave to help us out a little here, it will
2805 * ignore parity errors and breaks for us, and mark parity errors in
2806 * the data stream.
2808 if (tiosp->c_iflag & IGNPAR)
2809 pp->iflag |= FI_IGNRXERRS;
2810 if (tiosp->c_iflag & IGNBRK)
2811 pp->iflag |= FI_IGNBREAK;
2813 portp->rxmarkmsk = 0;
2814 if (tiosp->c_iflag & (INPCK | PARMRK))
2815 pp->iflag |= FI_1MARKRXERRS;
2816 if (tiosp->c_iflag & BRKINT)
2817 portp->rxmarkmsk |= BRKINT;
2820 * Set up clocal processing as required.
2822 if (tiosp->c_cflag & CLOCAL)
2823 portp->flags &= ~ASYNC_CHECK_CD;
2824 else
2825 portp->flags |= ASYNC_CHECK_CD;
2828 * Transfer any persistent flags into the asyport structure.
2830 pp->pflag = (portp->pflag & 0xffff);
2831 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2832 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2833 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2836 /*****************************************************************************/
2839 * Construct a slave signals structure for setting the DTR and RTS
2840 * signals as specified.
2843 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2845 memset(sp, 0, sizeof(asysigs_t));
2846 if (dtr >= 0) {
2847 sp->signal |= SG_DTR;
2848 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2850 if (rts >= 0) {
2851 sp->signal |= SG_RTS;
2852 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2856 /*****************************************************************************/
2859 * Convert the signals returned from the slave into a local TIOCM type
2860 * signals value. We keep them locally in TIOCM format.
2863 static long stli_mktiocm(unsigned long sigvalue)
2865 long tiocm = 0;
2866 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2867 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2868 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2869 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2870 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2871 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2872 return(tiocm);
2875 /*****************************************************************************/
2878 * All panels and ports actually attached have been worked out. All
2879 * we need to do here is set up the appropriate per port data structures.
2882 static int stli_initports(stlibrd_t *brdp)
2884 stliport_t *portp;
2885 int i, panelnr, panelport;
2887 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2888 portp = kzalloc(sizeof(stliport_t), GFP_KERNEL);
2889 if (!portp) {
2890 printk("STALLION: failed to allocate port structure\n");
2891 continue;
2894 portp->magic = STLI_PORTMAGIC;
2895 portp->portnr = i;
2896 portp->brdnr = brdp->brdnr;
2897 portp->panelnr = panelnr;
2898 portp->baud_base = STL_BAUDBASE;
2899 portp->close_delay = STL_CLOSEDELAY;
2900 portp->closing_wait = 30 * HZ;
2901 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
2902 init_waitqueue_head(&portp->open_wait);
2903 init_waitqueue_head(&portp->close_wait);
2904 init_waitqueue_head(&portp->raw_wait);
2905 panelport++;
2906 if (panelport >= brdp->panels[panelnr]) {
2907 panelport = 0;
2908 panelnr++;
2910 brdp->ports[i] = portp;
2913 return 0;
2916 /*****************************************************************************/
2919 * All the following routines are board specific hardware operations.
2922 static void stli_ecpinit(stlibrd_t *brdp)
2924 unsigned long memconf;
2926 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2927 udelay(10);
2928 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2929 udelay(100);
2931 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2932 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2935 /*****************************************************************************/
2937 static void stli_ecpenable(stlibrd_t *brdp)
2939 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2942 /*****************************************************************************/
2944 static void stli_ecpdisable(stlibrd_t *brdp)
2946 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2949 /*****************************************************************************/
2951 static void __iomem *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
2953 void __iomem *ptr;
2954 unsigned char val;
2956 if (offset > brdp->memsize) {
2957 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
2958 "range at line=%d(%d), brd=%d\n",
2959 (int) offset, line, __LINE__, brdp->brdnr);
2960 ptr = NULL;
2961 val = 0;
2962 } else {
2963 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2964 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2966 outb(val, (brdp->iobase + ECP_ATMEMPR));
2967 return(ptr);
2970 /*****************************************************************************/
2972 static void stli_ecpreset(stlibrd_t *brdp)
2974 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2975 udelay(10);
2976 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2977 udelay(500);
2980 /*****************************************************************************/
2982 static void stli_ecpintr(stlibrd_t *brdp)
2984 outb(0x1, brdp->iobase);
2987 /*****************************************************************************/
2990 * The following set of functions act on ECP EISA boards.
2993 static void stli_ecpeiinit(stlibrd_t *brdp)
2995 unsigned long memconf;
2997 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2998 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2999 udelay(10);
3000 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3001 udelay(500);
3003 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3004 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3005 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3006 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3009 /*****************************************************************************/
3011 static void stli_ecpeienable(stlibrd_t *brdp)
3013 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3016 /*****************************************************************************/
3018 static void stli_ecpeidisable(stlibrd_t *brdp)
3020 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3023 /*****************************************************************************/
3025 static void __iomem *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3027 void __iomem *ptr;
3028 unsigned char val;
3030 if (offset > brdp->memsize) {
3031 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3032 "range at line=%d(%d), brd=%d\n",
3033 (int) offset, line, __LINE__, brdp->brdnr);
3034 ptr = NULL;
3035 val = 0;
3036 } else {
3037 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3038 if (offset < ECP_EIPAGESIZE)
3039 val = ECP_EIENABLE;
3040 else
3041 val = ECP_EIENABLE | 0x40;
3043 outb(val, (brdp->iobase + ECP_EICONFR));
3044 return(ptr);
3047 /*****************************************************************************/
3049 static void stli_ecpeireset(stlibrd_t *brdp)
3051 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3052 udelay(10);
3053 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3054 udelay(500);
3057 /*****************************************************************************/
3060 * The following set of functions act on ECP MCA boards.
3063 static void stli_ecpmcenable(stlibrd_t *brdp)
3065 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3068 /*****************************************************************************/
3070 static void stli_ecpmcdisable(stlibrd_t *brdp)
3072 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3075 /*****************************************************************************/
3077 static void __iomem *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3079 void __iomem *ptr;
3080 unsigned char val;
3082 if (offset > brdp->memsize) {
3083 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3084 "range at line=%d(%d), brd=%d\n",
3085 (int) offset, line, __LINE__, brdp->brdnr);
3086 ptr = NULL;
3087 val = 0;
3088 } else {
3089 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3090 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3092 outb(val, (brdp->iobase + ECP_MCCONFR));
3093 return(ptr);
3096 /*****************************************************************************/
3098 static void stli_ecpmcreset(stlibrd_t *brdp)
3100 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3101 udelay(10);
3102 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3103 udelay(500);
3106 /*****************************************************************************/
3109 * The following set of functions act on ECP PCI boards.
3112 static void stli_ecppciinit(stlibrd_t *brdp)
3114 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3115 udelay(10);
3116 outb(0, (brdp->iobase + ECP_PCICONFR));
3117 udelay(500);
3120 /*****************************************************************************/
3122 static void __iomem *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3124 void __iomem *ptr;
3125 unsigned char val;
3127 if (offset > brdp->memsize) {
3128 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3129 "range at line=%d(%d), board=%d\n",
3130 (int) offset, line, __LINE__, brdp->brdnr);
3131 ptr = NULL;
3132 val = 0;
3133 } else {
3134 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3135 val = (offset / ECP_PCIPAGESIZE) << 1;
3137 outb(val, (brdp->iobase + ECP_PCICONFR));
3138 return(ptr);
3141 /*****************************************************************************/
3143 static void stli_ecppcireset(stlibrd_t *brdp)
3145 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3146 udelay(10);
3147 outb(0, (brdp->iobase + ECP_PCICONFR));
3148 udelay(500);
3151 /*****************************************************************************/
3154 * The following routines act on ONboards.
3157 static void stli_onbinit(stlibrd_t *brdp)
3159 unsigned long memconf;
3161 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3162 udelay(10);
3163 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3164 mdelay(1000);
3166 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3167 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3168 outb(0x1, brdp->iobase);
3169 mdelay(1);
3172 /*****************************************************************************/
3174 static void stli_onbenable(stlibrd_t *brdp)
3176 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3179 /*****************************************************************************/
3181 static void stli_onbdisable(stlibrd_t *brdp)
3183 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3186 /*****************************************************************************/
3188 static void __iomem *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3190 void __iomem *ptr;
3192 if (offset > brdp->memsize) {
3193 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3194 "range at line=%d(%d), brd=%d\n",
3195 (int) offset, line, __LINE__, brdp->brdnr);
3196 ptr = NULL;
3197 } else {
3198 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3200 return(ptr);
3203 /*****************************************************************************/
3205 static void stli_onbreset(stlibrd_t *brdp)
3207 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3208 udelay(10);
3209 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3210 mdelay(1000);
3213 /*****************************************************************************/
3216 * The following routines act on ONboard EISA.
3219 static void stli_onbeinit(stlibrd_t *brdp)
3221 unsigned long memconf;
3223 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3224 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3225 udelay(10);
3226 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3227 mdelay(1000);
3229 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3230 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3231 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3232 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3233 outb(0x1, brdp->iobase);
3234 mdelay(1);
3237 /*****************************************************************************/
3239 static void stli_onbeenable(stlibrd_t *brdp)
3241 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3244 /*****************************************************************************/
3246 static void stli_onbedisable(stlibrd_t *brdp)
3248 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3251 /*****************************************************************************/
3253 static void __iomem *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3255 void __iomem *ptr;
3256 unsigned char val;
3258 if (offset > brdp->memsize) {
3259 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3260 "range at line=%d(%d), brd=%d\n",
3261 (int) offset, line, __LINE__, brdp->brdnr);
3262 ptr = NULL;
3263 val = 0;
3264 } else {
3265 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3266 if (offset < ONB_EIPAGESIZE)
3267 val = ONB_EIENABLE;
3268 else
3269 val = ONB_EIENABLE | 0x40;
3271 outb(val, (brdp->iobase + ONB_EICONFR));
3272 return(ptr);
3275 /*****************************************************************************/
3277 static void stli_onbereset(stlibrd_t *brdp)
3279 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3280 udelay(10);
3281 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3282 mdelay(1000);
3285 /*****************************************************************************/
3288 * The following routines act on Brumby boards.
3291 static void stli_bbyinit(stlibrd_t *brdp)
3293 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3294 udelay(10);
3295 outb(0, (brdp->iobase + BBY_ATCONFR));
3296 mdelay(1000);
3297 outb(0x1, brdp->iobase);
3298 mdelay(1);
3301 /*****************************************************************************/
3303 static void __iomem *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3305 void __iomem *ptr;
3306 unsigned char val;
3308 BUG_ON(offset > brdp->memsize);
3310 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3311 val = (unsigned char) (offset / BBY_PAGESIZE);
3312 outb(val, (brdp->iobase + BBY_ATCONFR));
3313 return(ptr);
3316 /*****************************************************************************/
3318 static void stli_bbyreset(stlibrd_t *brdp)
3320 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3321 udelay(10);
3322 outb(0, (brdp->iobase + BBY_ATCONFR));
3323 mdelay(1000);
3326 /*****************************************************************************/
3329 * The following routines act on original old Stallion boards.
3332 static void stli_stalinit(stlibrd_t *brdp)
3334 outb(0x1, brdp->iobase);
3335 mdelay(1000);
3338 /*****************************************************************************/
3340 static void __iomem *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3342 BUG_ON(offset > brdp->memsize);
3343 return brdp->membase + (offset % STAL_PAGESIZE);
3346 /*****************************************************************************/
3348 static void stli_stalreset(stlibrd_t *brdp)
3350 u32 __iomem *vecp;
3352 vecp = (u32 __iomem *) (brdp->membase + 0x30);
3353 writel(0xffff0000, vecp);
3354 outb(0, brdp->iobase);
3355 mdelay(1000);
3358 /*****************************************************************************/
3361 * Try to find an ECP board and initialize it. This handles only ECP
3362 * board types.
3365 static int stli_initecp(stlibrd_t *brdp)
3367 cdkecpsig_t sig;
3368 cdkecpsig_t __iomem *sigsp;
3369 unsigned int status, nxtid;
3370 char *name;
3371 int panelnr, nrports;
3373 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3374 return -EIO;
3376 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3378 release_region(brdp->iobase, brdp->iosize);
3379 return -ENODEV;
3382 brdp->iosize = ECP_IOSIZE;
3385 * Based on the specific board type setup the common vars to access
3386 * and enable shared memory. Set all board specific information now
3387 * as well.
3389 switch (brdp->brdtype) {
3390 case BRD_ECP:
3391 brdp->membase = (void *) brdp->memaddr;
3392 brdp->memsize = ECP_MEMSIZE;
3393 brdp->pagesize = ECP_ATPAGESIZE;
3394 brdp->init = stli_ecpinit;
3395 brdp->enable = stli_ecpenable;
3396 brdp->reenable = stli_ecpenable;
3397 brdp->disable = stli_ecpdisable;
3398 brdp->getmemptr = stli_ecpgetmemptr;
3399 brdp->intr = stli_ecpintr;
3400 brdp->reset = stli_ecpreset;
3401 name = "serial(EC8/64)";
3402 break;
3404 case BRD_ECPE:
3405 brdp->membase = (void *) brdp->memaddr;
3406 brdp->memsize = ECP_MEMSIZE;
3407 brdp->pagesize = ECP_EIPAGESIZE;
3408 brdp->init = stli_ecpeiinit;
3409 brdp->enable = stli_ecpeienable;
3410 brdp->reenable = stli_ecpeienable;
3411 brdp->disable = stli_ecpeidisable;
3412 brdp->getmemptr = stli_ecpeigetmemptr;
3413 brdp->intr = stli_ecpintr;
3414 brdp->reset = stli_ecpeireset;
3415 name = "serial(EC8/64-EI)";
3416 break;
3418 case BRD_ECPMC:
3419 brdp->membase = (void *) brdp->memaddr;
3420 brdp->memsize = ECP_MEMSIZE;
3421 brdp->pagesize = ECP_MCPAGESIZE;
3422 brdp->init = NULL;
3423 brdp->enable = stli_ecpmcenable;
3424 brdp->reenable = stli_ecpmcenable;
3425 brdp->disable = stli_ecpmcdisable;
3426 brdp->getmemptr = stli_ecpmcgetmemptr;
3427 brdp->intr = stli_ecpintr;
3428 brdp->reset = stli_ecpmcreset;
3429 name = "serial(EC8/64-MCA)";
3430 break;
3432 case BRD_ECPPCI:
3433 brdp->membase = (void *) brdp->memaddr;
3434 brdp->memsize = ECP_PCIMEMSIZE;
3435 brdp->pagesize = ECP_PCIPAGESIZE;
3436 brdp->init = stli_ecppciinit;
3437 brdp->enable = NULL;
3438 brdp->reenable = NULL;
3439 brdp->disable = NULL;
3440 brdp->getmemptr = stli_ecppcigetmemptr;
3441 brdp->intr = stli_ecpintr;
3442 brdp->reset = stli_ecppcireset;
3443 name = "serial(EC/RA-PCI)";
3444 break;
3446 default:
3447 release_region(brdp->iobase, brdp->iosize);
3448 return -EINVAL;
3452 * The per-board operations structure is all set up, so now let's go
3453 * and get the board operational. Firstly initialize board configuration
3454 * registers. Set the memory mapping info so we can get at the boards
3455 * shared memory.
3457 EBRDINIT(brdp);
3459 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3460 if (brdp->membase == NULL)
3462 release_region(brdp->iobase, brdp->iosize);
3463 return -ENOMEM;
3467 * Now that all specific code is set up, enable the shared memory and
3468 * look for the a signature area that will tell us exactly what board
3469 * this is, and what it is connected to it.
3471 EBRDENABLE(brdp);
3472 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3473 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3474 EBRDDISABLE(brdp);
3476 if (sig.magic != cpu_to_le32(ECP_MAGIC))
3478 release_region(brdp->iobase, brdp->iosize);
3479 return -ENODEV;
3483 * Scan through the signature looking at the panels connected to the
3484 * board. Calculate the total number of ports as we go.
3486 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3487 status = sig.panelid[nxtid];
3488 if ((status & ECH_PNLIDMASK) != nxtid)
3489 break;
3491 brdp->panelids[panelnr] = status;
3492 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3493 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3494 nxtid++;
3495 brdp->panels[panelnr] = nrports;
3496 brdp->nrports += nrports;
3497 nxtid++;
3498 brdp->nrpanels++;
3502 brdp->state |= BST_FOUND;
3503 return 0;
3506 /*****************************************************************************/
3509 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3510 * This handles only these board types.
3513 static int stli_initonb(stlibrd_t *brdp)
3515 cdkonbsig_t sig;
3516 cdkonbsig_t __iomem *sigsp;
3517 char *name;
3518 int i;
3521 * Do a basic sanity check on the IO and memory addresses.
3523 if (brdp->iobase == 0 || brdp->memaddr == 0)
3524 return -ENODEV;
3526 brdp->iosize = ONB_IOSIZE;
3528 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3529 return -EIO;
3532 * Based on the specific board type setup the common vars to access
3533 * and enable shared memory. Set all board specific information now
3534 * as well.
3536 switch (brdp->brdtype) {
3537 case BRD_ONBOARD:
3538 case BRD_ONBOARD32:
3539 case BRD_ONBOARD2:
3540 case BRD_ONBOARD2_32:
3541 case BRD_ONBOARDRS:
3542 brdp->memsize = ONB_MEMSIZE;
3543 brdp->pagesize = ONB_ATPAGESIZE;
3544 brdp->init = stli_onbinit;
3545 brdp->enable = stli_onbenable;
3546 brdp->reenable = stli_onbenable;
3547 brdp->disable = stli_onbdisable;
3548 brdp->getmemptr = stli_onbgetmemptr;
3549 brdp->intr = stli_ecpintr;
3550 brdp->reset = stli_onbreset;
3551 if (brdp->memaddr > 0x100000)
3552 brdp->enabval = ONB_MEMENABHI;
3553 else
3554 brdp->enabval = ONB_MEMENABLO;
3555 name = "serial(ONBoard)";
3556 break;
3558 case BRD_ONBOARDE:
3559 brdp->memsize = ONB_EIMEMSIZE;
3560 brdp->pagesize = ONB_EIPAGESIZE;
3561 brdp->init = stli_onbeinit;
3562 brdp->enable = stli_onbeenable;
3563 brdp->reenable = stli_onbeenable;
3564 brdp->disable = stli_onbedisable;
3565 brdp->getmemptr = stli_onbegetmemptr;
3566 brdp->intr = stli_ecpintr;
3567 brdp->reset = stli_onbereset;
3568 name = "serial(ONBoard/E)";
3569 break;
3571 case BRD_BRUMBY4:
3572 case BRD_BRUMBY8:
3573 case BRD_BRUMBY16:
3574 brdp->memsize = BBY_MEMSIZE;
3575 brdp->pagesize = BBY_PAGESIZE;
3576 brdp->init = stli_bbyinit;
3577 brdp->enable = NULL;
3578 brdp->reenable = NULL;
3579 brdp->disable = NULL;
3580 brdp->getmemptr = stli_bbygetmemptr;
3581 brdp->intr = stli_ecpintr;
3582 brdp->reset = stli_bbyreset;
3583 name = "serial(Brumby)";
3584 break;
3586 case BRD_STALLION:
3587 brdp->memsize = STAL_MEMSIZE;
3588 brdp->pagesize = STAL_PAGESIZE;
3589 brdp->init = stli_stalinit;
3590 brdp->enable = NULL;
3591 brdp->reenable = NULL;
3592 brdp->disable = NULL;
3593 brdp->getmemptr = stli_stalgetmemptr;
3594 brdp->intr = stli_ecpintr;
3595 brdp->reset = stli_stalreset;
3596 name = "serial(Stallion)";
3597 break;
3599 default:
3600 release_region(brdp->iobase, brdp->iosize);
3601 return -EINVAL;
3605 * The per-board operations structure is all set up, so now let's go
3606 * and get the board operational. Firstly initialize board configuration
3607 * registers. Set the memory mapping info so we can get at the boards
3608 * shared memory.
3610 EBRDINIT(brdp);
3612 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3613 if (brdp->membase == NULL)
3615 release_region(brdp->iobase, brdp->iosize);
3616 return -ENOMEM;
3620 * Now that all specific code is set up, enable the shared memory and
3621 * look for the a signature area that will tell us exactly what board
3622 * this is, and how many ports.
3624 EBRDENABLE(brdp);
3625 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3626 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3627 EBRDDISABLE(brdp);
3629 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3630 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3631 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3632 sig.magic3 != cpu_to_le16(ONB_MAGIC3))
3634 release_region(brdp->iobase, brdp->iosize);
3635 return -ENODEV;
3639 * Scan through the signature alive mask and calculate how many ports
3640 * there are on this board.
3642 brdp->nrpanels = 1;
3643 if (sig.amask1) {
3644 brdp->nrports = 32;
3645 } else {
3646 for (i = 0; (i < 16); i++) {
3647 if (((sig.amask0 << i) & 0x8000) == 0)
3648 break;
3650 brdp->nrports = i;
3652 brdp->panels[0] = brdp->nrports;
3655 brdp->state |= BST_FOUND;
3656 return 0;
3659 /*****************************************************************************/
3662 * Start up a running board. This routine is only called after the
3663 * code has been down loaded to the board and is operational. It will
3664 * read in the memory map, and get the show on the road...
3667 static int stli_startbrd(stlibrd_t *brdp)
3669 cdkhdr_t __iomem *hdrp;
3670 cdkmem_t __iomem *memp;
3671 cdkasy_t __iomem *ap;
3672 unsigned long flags;
3673 stliport_t *portp;
3674 int portnr, nrdevs, i, rc = 0;
3675 u32 memoff;
3677 spin_lock_irqsave(&brd_lock, flags);
3678 EBRDENABLE(brdp);
3679 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3680 nrdevs = hdrp->nrdevs;
3682 #if 0
3683 printk("%s(%d): CDK version %d.%d.%d --> "
3684 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3685 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3686 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3687 readl(&hdrp->slavep));
3688 #endif
3690 if (nrdevs < (brdp->nrports + 1)) {
3691 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
3692 "all devices, devices=%d\n", nrdevs);
3693 brdp->nrports = nrdevs - 1;
3695 brdp->nrdevs = nrdevs;
3696 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3697 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3698 brdp->bitsize = (nrdevs + 7) / 8;
3699 memoff = readl(&hdrp->memp);
3700 if (memoff > brdp->memsize) {
3701 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
3702 rc = -EIO;
3703 goto stli_donestartup;
3705 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3706 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3707 printk(KERN_ERR "STALLION: no slave control device found\n");
3708 goto stli_donestartup;
3710 memp++;
3713 * Cycle through memory allocation of each port. We are guaranteed to
3714 * have all ports inside the first page of slave window, so no need to
3715 * change pages while reading memory map.
3717 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3718 if (readw(&memp->dtype) != TYP_ASYNC)
3719 break;
3720 portp = brdp->ports[portnr];
3721 if (portp == NULL)
3722 break;
3723 portp->devnr = i;
3724 portp->addr = readl(&memp->offset);
3725 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3726 portp->portidx = (unsigned char) (i / 8);
3727 portp->portbit = (unsigned char) (0x1 << (i % 8));
3730 writeb(0xff, &hdrp->slavereq);
3733 * For each port setup a local copy of the RX and TX buffer offsets
3734 * and sizes. We do this separate from the above, because we need to
3735 * move the shared memory page...
3737 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3738 portp = brdp->ports[portnr];
3739 if (portp == NULL)
3740 break;
3741 if (portp->addr == 0)
3742 break;
3743 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3744 if (ap != NULL) {
3745 portp->rxsize = readw(&ap->rxq.size);
3746 portp->txsize = readw(&ap->txq.size);
3747 portp->rxoffset = readl(&ap->rxq.offset);
3748 portp->txoffset = readl(&ap->txq.offset);
3752 stli_donestartup:
3753 EBRDDISABLE(brdp);
3754 spin_unlock_irqrestore(&brd_lock, flags);
3756 if (rc == 0)
3757 brdp->state |= BST_STARTED;
3759 if (! stli_timeron) {
3760 stli_timeron++;
3761 stli_timerlist.expires = STLI_TIMEOUT;
3762 add_timer(&stli_timerlist);
3765 return rc;
3768 /*****************************************************************************/
3771 * Probe and initialize the specified board.
3774 static int __init stli_brdinit(stlibrd_t *brdp)
3776 stli_brds[brdp->brdnr] = brdp;
3778 switch (brdp->brdtype) {
3779 case BRD_ECP:
3780 case BRD_ECPE:
3781 case BRD_ECPMC:
3782 case BRD_ECPPCI:
3783 stli_initecp(brdp);
3784 break;
3785 case BRD_ONBOARD:
3786 case BRD_ONBOARDE:
3787 case BRD_ONBOARD2:
3788 case BRD_ONBOARD32:
3789 case BRD_ONBOARD2_32:
3790 case BRD_ONBOARDRS:
3791 case BRD_BRUMBY4:
3792 case BRD_BRUMBY8:
3793 case BRD_BRUMBY16:
3794 case BRD_STALLION:
3795 stli_initonb(brdp);
3796 break;
3797 case BRD_EASYIO:
3798 case BRD_ECH:
3799 case BRD_ECHMC:
3800 case BRD_ECHPCI:
3801 printk(KERN_ERR "STALLION: %s board type not supported in "
3802 "this driver\n", stli_brdnames[brdp->brdtype]);
3803 return -ENODEV;
3804 default:
3805 printk(KERN_ERR "STALLION: board=%d is unknown board "
3806 "type=%d\n", brdp->brdnr, brdp->brdtype);
3807 return -ENODEV;
3810 if ((brdp->state & BST_FOUND) == 0) {
3811 printk(KERN_ERR "STALLION: %s board not found, board=%d "
3812 "io=%x mem=%x\n",
3813 stli_brdnames[brdp->brdtype], brdp->brdnr,
3814 brdp->iobase, (int) brdp->memaddr);
3815 return -ENODEV;
3818 stli_initports(brdp);
3819 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
3820 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3821 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3822 brdp->nrpanels, brdp->nrports);
3823 return 0;
3826 /*****************************************************************************/
3829 * Probe around trying to find where the EISA boards shared memory
3830 * might be. This is a bit if hack, but it is the best we can do.
3833 static int stli_eisamemprobe(stlibrd_t *brdp)
3835 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3836 cdkonbsig_t onbsig, __iomem *onbsigp;
3837 int i, foundit;
3840 * First up we reset the board, to get it into a known state. There
3841 * is only 2 board types here we need to worry about. Don;t use the
3842 * standard board init routine here, it programs up the shared
3843 * memory address, and we don't know it yet...
3845 if (brdp->brdtype == BRD_ECPE) {
3846 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3847 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3848 udelay(10);
3849 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3850 udelay(500);
3851 stli_ecpeienable(brdp);
3852 } else if (brdp->brdtype == BRD_ONBOARDE) {
3853 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3854 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3855 udelay(10);
3856 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3857 mdelay(100);
3858 outb(0x1, brdp->iobase);
3859 mdelay(1);
3860 stli_onbeenable(brdp);
3861 } else {
3862 return -ENODEV;
3865 foundit = 0;
3866 brdp->memsize = ECP_MEMSIZE;
3869 * Board shared memory is enabled, so now we have a poke around and
3870 * see if we can find it.
3872 for (i = 0; (i < stli_eisamempsize); i++) {
3873 brdp->memaddr = stli_eisamemprobeaddrs[i];
3874 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3875 if (brdp->membase == NULL)
3876 continue;
3878 if (brdp->brdtype == BRD_ECPE) {
3879 ecpsigp = stli_ecpeigetmemptr(brdp,
3880 CDK_SIGADDR, __LINE__);
3881 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3882 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3883 foundit = 1;
3884 } else {
3885 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3886 CDK_SIGADDR, __LINE__);
3887 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3888 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3889 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3890 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3891 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3892 foundit = 1;
3895 iounmap(brdp->membase);
3896 if (foundit)
3897 break;
3901 * Regardless of whether we found the shared memory or not we must
3902 * disable the region. After that return success or failure.
3904 if (brdp->brdtype == BRD_ECPE)
3905 stli_ecpeidisable(brdp);
3906 else
3907 stli_onbedisable(brdp);
3909 if (! foundit) {
3910 brdp->memaddr = 0;
3911 brdp->membase = NULL;
3912 printk(KERN_ERR "STALLION: failed to probe shared memory "
3913 "region for %s in EISA slot=%d\n",
3914 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3915 return -ENODEV;
3917 return 0;
3920 static int stli_getbrdnr(void)
3922 int i;
3924 for (i = 0; i < STL_MAXBRDS; i++) {
3925 if (!stli_brds[i]) {
3926 if (i >= stli_nrbrds)
3927 stli_nrbrds = i + 1;
3928 return i;
3931 return -1;
3934 /*****************************************************************************/
3937 * Probe around and try to find any EISA boards in system. The biggest
3938 * problem here is finding out what memory address is associated with
3939 * an EISA board after it is found. The registers of the ECPE and
3940 * ONboardE are not readable - so we can't read them from there. We
3941 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3942 * actually have any way to find out the real value. The best we can
3943 * do is go probing around in the usual places hoping we can find it.
3946 static int stli_findeisabrds(void)
3948 stlibrd_t *brdp;
3949 unsigned int iobase, eid;
3950 int i;
3953 * Firstly check if this is an EISA system. If this is not an EISA system then
3954 * don't bother going any further!
3956 if (EISA_bus)
3957 return 0;
3960 * Looks like an EISA system, so go searching for EISA boards.
3962 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3963 outb(0xff, (iobase + 0xc80));
3964 eid = inb(iobase + 0xc80);
3965 eid |= inb(iobase + 0xc81) << 8;
3966 if (eid != STL_EISAID)
3967 continue;
3970 * We have found a board. Need to check if this board was
3971 * statically configured already (just in case!).
3973 for (i = 0; (i < STL_MAXBRDS); i++) {
3974 brdp = stli_brds[i];
3975 if (brdp == NULL)
3976 continue;
3977 if (brdp->iobase == iobase)
3978 break;
3980 if (i < STL_MAXBRDS)
3981 continue;
3984 * We have found a Stallion board and it is not configured already.
3985 * Allocate a board structure and initialize it.
3987 if ((brdp = stli_allocbrd()) == NULL)
3988 return -ENOMEM;
3989 if ((brdp->brdnr = stli_getbrdnr()) < 0)
3990 return -ENOMEM;
3991 eid = inb(iobase + 0xc82);
3992 if (eid == ECP_EISAID)
3993 brdp->brdtype = BRD_ECPE;
3994 else if (eid == ONB_EISAID)
3995 brdp->brdtype = BRD_ONBOARDE;
3996 else
3997 brdp->brdtype = BRD_UNKNOWN;
3998 brdp->iobase = iobase;
3999 outb(0x1, (iobase + 0xc84));
4000 if (stli_eisamemprobe(brdp))
4001 outb(0, (iobase + 0xc84));
4002 stli_brdinit(brdp);
4005 return 0;
4008 /*****************************************************************************/
4011 * Find the next available board number that is free.
4014 /*****************************************************************************/
4016 #ifdef CONFIG_PCI
4019 * We have a Stallion board. Allocate a board structure and
4020 * initialize it. Read its IO and MEMORY resources from PCI
4021 * configuration space.
4024 static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4026 stlibrd_t *brdp;
4028 if (pci_enable_device(devp))
4029 return -EIO;
4030 if ((brdp = stli_allocbrd()) == NULL)
4031 return -ENOMEM;
4032 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4033 printk(KERN_INFO "STALLION: too many boards found, "
4034 "maximum supported %d\n", STL_MAXBRDS);
4035 return 0;
4037 brdp->brdtype = brdtype;
4039 * We have all resources from the board, so lets setup the actual
4040 * board structure now.
4042 brdp->iobase = pci_resource_start(devp, 3);
4043 brdp->memaddr = pci_resource_start(devp, 2);
4044 stli_brdinit(brdp);
4046 return 0;
4049 /*****************************************************************************/
4052 * Find all Stallion PCI boards that might be installed. Initialize each
4053 * one as it is found.
4056 static int stli_findpcibrds(void)
4058 struct pci_dev *dev = NULL;
4060 while ((dev = pci_get_device(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, dev))) {
4061 stli_initpcibrd(BRD_ECPPCI, dev);
4063 return 0;
4066 #endif
4068 /*****************************************************************************/
4071 * Allocate a new board structure. Fill out the basic info in it.
4074 static stlibrd_t *stli_allocbrd(void)
4076 stlibrd_t *brdp;
4078 brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL);
4079 if (!brdp) {
4080 printk(KERN_ERR "STALLION: failed to allocate memory "
4081 "(size=%Zd)\n", sizeof(stlibrd_t));
4082 return NULL;
4084 brdp->magic = STLI_BOARDMAGIC;
4085 return brdp;
4088 /*****************************************************************************/
4091 * Scan through all the boards in the configuration and see what we
4092 * can find.
4095 static int stli_initbrds(void)
4097 stlibrd_t *brdp, *nxtbrdp;
4098 stlconf_t *confp;
4099 int i, j;
4101 if (stli_nrbrds > STL_MAXBRDS) {
4102 printk(KERN_INFO "STALLION: too many boards in configuration "
4103 "table, truncating to %d\n", STL_MAXBRDS);
4104 stli_nrbrds = STL_MAXBRDS;
4108 * Firstly scan the list of static boards configured. Allocate
4109 * resources and initialize the boards as found. If this is a
4110 * module then let the module args override static configuration.
4112 for (i = 0; (i < stli_nrbrds); i++) {
4113 confp = &stli_brdconf[i];
4114 stli_parsebrd(confp, stli_brdsp[i]);
4115 if ((brdp = stli_allocbrd()) == NULL)
4116 return -ENOMEM;
4117 brdp->brdnr = i;
4118 brdp->brdtype = confp->brdtype;
4119 brdp->iobase = confp->ioaddr1;
4120 brdp->memaddr = confp->memaddr;
4121 stli_brdinit(brdp);
4125 * Static configuration table done, so now use dynamic methods to
4126 * see if any more boards should be configured.
4128 stli_argbrds();
4129 if (STLI_EISAPROBE)
4130 stli_findeisabrds();
4131 #ifdef CONFIG_PCI
4132 stli_findpcibrds();
4133 #endif
4136 * All found boards are initialized. Now for a little optimization, if
4137 * no boards are sharing the "shared memory" regions then we can just
4138 * leave them all enabled. This is in fact the usual case.
4140 stli_shared = 0;
4141 if (stli_nrbrds > 1) {
4142 for (i = 0; (i < stli_nrbrds); i++) {
4143 brdp = stli_brds[i];
4144 if (brdp == NULL)
4145 continue;
4146 for (j = i + 1; (j < stli_nrbrds); j++) {
4147 nxtbrdp = stli_brds[j];
4148 if (nxtbrdp == NULL)
4149 continue;
4150 if ((brdp->membase >= nxtbrdp->membase) &&
4151 (brdp->membase <= (nxtbrdp->membase +
4152 nxtbrdp->memsize - 1))) {
4153 stli_shared++;
4154 break;
4160 if (stli_shared == 0) {
4161 for (i = 0; (i < stli_nrbrds); i++) {
4162 brdp = stli_brds[i];
4163 if (brdp == NULL)
4164 continue;
4165 if (brdp->state & BST_FOUND) {
4166 EBRDENABLE(brdp);
4167 brdp->enable = NULL;
4168 brdp->disable = NULL;
4173 return 0;
4176 /*****************************************************************************/
4179 * Code to handle an "staliomem" read operation. This device is the
4180 * contents of the board shared memory. It is used for down loading
4181 * the slave image (and debugging :-)
4184 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4186 unsigned long flags;
4187 void __iomem *memptr;
4188 stlibrd_t *brdp;
4189 int brdnr, size, n;
4190 void *p;
4191 loff_t off = *offp;
4193 brdnr = iminor(fp->f_dentry->d_inode);
4194 if (brdnr >= stli_nrbrds)
4195 return -ENODEV;
4196 brdp = stli_brds[brdnr];
4197 if (brdp == NULL)
4198 return -ENODEV;
4199 if (brdp->state == 0)
4200 return -ENODEV;
4201 if (off >= brdp->memsize || off + count < off)
4202 return 0;
4204 size = MIN(count, (brdp->memsize - off));
4207 * Copy the data a page at a time
4210 p = (void *)__get_free_page(GFP_KERNEL);
4211 if(p == NULL)
4212 return -ENOMEM;
4214 while (size > 0) {
4215 spin_lock_irqsave(&brd_lock, flags);
4216 EBRDENABLE(brdp);
4217 memptr = EBRDGETMEMPTR(brdp, off);
4218 n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4219 n = MIN(n, PAGE_SIZE);
4220 memcpy_fromio(p, memptr, n);
4221 EBRDDISABLE(brdp);
4222 spin_unlock_irqrestore(&brd_lock, flags);
4223 if (copy_to_user(buf, p, n)) {
4224 count = -EFAULT;
4225 goto out;
4227 off += n;
4228 buf += n;
4229 size -= n;
4231 out:
4232 *offp = off;
4233 free_page((unsigned long)p);
4234 return count;
4237 /*****************************************************************************/
4240 * Code to handle an "staliomem" write operation. This device is the
4241 * contents of the board shared memory. It is used for down loading
4242 * the slave image (and debugging :-)
4244 * FIXME: copy under lock
4247 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4249 unsigned long flags;
4250 void __iomem *memptr;
4251 stlibrd_t *brdp;
4252 char __user *chbuf;
4253 int brdnr, size, n;
4254 void *p;
4255 loff_t off = *offp;
4257 brdnr = iminor(fp->f_dentry->d_inode);
4259 if (brdnr >= stli_nrbrds)
4260 return -ENODEV;
4261 brdp = stli_brds[brdnr];
4262 if (brdp == NULL)
4263 return -ENODEV;
4264 if (brdp->state == 0)
4265 return -ENODEV;
4266 if (off >= brdp->memsize || off + count < off)
4267 return 0;
4269 chbuf = (char __user *) buf;
4270 size = MIN(count, (brdp->memsize - off));
4273 * Copy the data a page at a time
4276 p = (void *)__get_free_page(GFP_KERNEL);
4277 if(p == NULL)
4278 return -ENOMEM;
4280 while (size > 0) {
4281 n = MIN(size, (brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
4282 n = MIN(n, PAGE_SIZE);
4283 if (copy_from_user(p, chbuf, n)) {
4284 if (count == 0)
4285 count = -EFAULT;
4286 goto out;
4288 spin_lock_irqsave(&brd_lock, flags);
4289 EBRDENABLE(brdp);
4290 memptr = EBRDGETMEMPTR(brdp, off);
4291 memcpy_toio(memptr, p, n);
4292 EBRDDISABLE(brdp);
4293 spin_unlock_irqrestore(&brd_lock, flags);
4294 off += n;
4295 chbuf += n;
4296 size -= n;
4298 out:
4299 free_page((unsigned long) p);
4300 *offp = off;
4301 return count;
4304 /*****************************************************************************/
4307 * Return the board stats structure to user app.
4310 static int stli_getbrdstats(combrd_t __user *bp)
4312 stlibrd_t *brdp;
4313 int i;
4315 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4316 return -EFAULT;
4317 if (stli_brdstats.brd >= STL_MAXBRDS)
4318 return -ENODEV;
4319 brdp = stli_brds[stli_brdstats.brd];
4320 if (brdp == NULL)
4321 return -ENODEV;
4323 memset(&stli_brdstats, 0, sizeof(combrd_t));
4324 stli_brdstats.brd = brdp->brdnr;
4325 stli_brdstats.type = brdp->brdtype;
4326 stli_brdstats.hwid = 0;
4327 stli_brdstats.state = brdp->state;
4328 stli_brdstats.ioaddr = brdp->iobase;
4329 stli_brdstats.memaddr = brdp->memaddr;
4330 stli_brdstats.nrpanels = brdp->nrpanels;
4331 stli_brdstats.nrports = brdp->nrports;
4332 for (i = 0; (i < brdp->nrpanels); i++) {
4333 stli_brdstats.panels[i].panel = i;
4334 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4335 stli_brdstats.panels[i].nrports = brdp->panels[i];
4338 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4339 return -EFAULT;
4340 return 0;
4343 /*****************************************************************************/
4346 * Resolve the referenced port number into a port struct pointer.
4349 static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4351 stlibrd_t *brdp;
4352 int i;
4354 if (brdnr < 0 || brdnr >= STL_MAXBRDS)
4355 return NULL;
4356 brdp = stli_brds[brdnr];
4357 if (brdp == NULL)
4358 return NULL;
4359 for (i = 0; (i < panelnr); i++)
4360 portnr += brdp->panels[i];
4361 if ((portnr < 0) || (portnr >= brdp->nrports))
4362 return NULL;
4363 return brdp->ports[portnr];
4366 /*****************************************************************************/
4369 * Return the port stats structure to user app. A NULL port struct
4370 * pointer passed in means that we need to find out from the app
4371 * what port to get stats for (used through board control device).
4374 static int stli_portcmdstats(stliport_t *portp)
4376 unsigned long flags;
4377 stlibrd_t *brdp;
4378 int rc;
4380 memset(&stli_comstats, 0, sizeof(comstats_t));
4382 if (portp == NULL)
4383 return -ENODEV;
4384 brdp = stli_brds[portp->brdnr];
4385 if (brdp == NULL)
4386 return -ENODEV;
4388 if (brdp->state & BST_STARTED) {
4389 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4390 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4391 return rc;
4392 } else {
4393 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4396 stli_comstats.brd = portp->brdnr;
4397 stli_comstats.panel = portp->panelnr;
4398 stli_comstats.port = portp->portnr;
4399 stli_comstats.state = portp->state;
4400 stli_comstats.flags = portp->flags;
4402 spin_lock_irqsave(&brd_lock, flags);
4403 if (portp->tty != NULL) {
4404 if (portp->tty->driver_data == portp) {
4405 stli_comstats.ttystate = portp->tty->flags;
4406 stli_comstats.rxbuffered = -1;
4407 if (portp->tty->termios != NULL) {
4408 stli_comstats.cflags = portp->tty->termios->c_cflag;
4409 stli_comstats.iflags = portp->tty->termios->c_iflag;
4410 stli_comstats.oflags = portp->tty->termios->c_oflag;
4411 stli_comstats.lflags = portp->tty->termios->c_lflag;
4415 spin_unlock_irqrestore(&brd_lock, flags);
4417 stli_comstats.txtotal = stli_cdkstats.txchars;
4418 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4419 stli_comstats.txbuffered = stli_cdkstats.txringq;
4420 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4421 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4422 stli_comstats.rxparity = stli_cdkstats.parity;
4423 stli_comstats.rxframing = stli_cdkstats.framing;
4424 stli_comstats.rxlost = stli_cdkstats.ringover;
4425 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4426 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4427 stli_comstats.txxon = stli_cdkstats.txstart;
4428 stli_comstats.txxoff = stli_cdkstats.txstop;
4429 stli_comstats.rxxon = stli_cdkstats.rxstart;
4430 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4431 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4432 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4433 stli_comstats.modem = stli_cdkstats.dcdcnt;
4434 stli_comstats.hwid = stli_cdkstats.hwid;
4435 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4437 return 0;
4440 /*****************************************************************************/
4443 * Return the port stats structure to user app. A NULL port struct
4444 * pointer passed in means that we need to find out from the app
4445 * what port to get stats for (used through board control device).
4448 static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4450 stlibrd_t *brdp;
4451 int rc;
4453 if (!portp) {
4454 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4455 return -EFAULT;
4456 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4457 stli_comstats.port);
4458 if (!portp)
4459 return -ENODEV;
4462 brdp = stli_brds[portp->brdnr];
4463 if (!brdp)
4464 return -ENODEV;
4466 if ((rc = stli_portcmdstats(portp)) < 0)
4467 return rc;
4469 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4470 -EFAULT : 0;
4473 /*****************************************************************************/
4476 * Clear the port stats structure. We also return it zeroed out...
4479 static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
4481 stlibrd_t *brdp;
4482 int rc;
4484 if (!portp) {
4485 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4486 return -EFAULT;
4487 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4488 stli_comstats.port);
4489 if (!portp)
4490 return -ENODEV;
4493 brdp = stli_brds[portp->brdnr];
4494 if (!brdp)
4495 return -ENODEV;
4497 if (brdp->state & BST_STARTED) {
4498 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4499 return rc;
4502 memset(&stli_comstats, 0, sizeof(comstats_t));
4503 stli_comstats.brd = portp->brdnr;
4504 stli_comstats.panel = portp->panelnr;
4505 stli_comstats.port = portp->portnr;
4507 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4508 return -EFAULT;
4509 return 0;
4512 /*****************************************************************************/
4515 * Return the entire driver ports structure to a user app.
4518 static int stli_getportstruct(stliport_t __user *arg)
4520 stliport_t *portp;
4522 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
4523 return -EFAULT;
4524 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4525 stli_dummyport.portnr);
4526 if (!portp)
4527 return -ENODEV;
4528 if (copy_to_user(arg, portp, sizeof(stliport_t)))
4529 return -EFAULT;
4530 return 0;
4533 /*****************************************************************************/
4536 * Return the entire driver board structure to a user app.
4539 static int stli_getbrdstruct(stlibrd_t __user *arg)
4541 stlibrd_t *brdp;
4543 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
4544 return -EFAULT;
4545 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
4546 return -ENODEV;
4547 brdp = stli_brds[stli_dummybrd.brdnr];
4548 if (!brdp)
4549 return -ENODEV;
4550 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
4551 return -EFAULT;
4552 return 0;
4555 /*****************************************************************************/
4558 * The "staliomem" device is also required to do some special operations on
4559 * the board. We need to be able to send an interrupt to the board,
4560 * reset it, and start/stop it.
4563 static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
4565 stlibrd_t *brdp;
4566 int brdnr, rc, done;
4567 void __user *argp = (void __user *)arg;
4570 * First up handle the board independent ioctls.
4572 done = 0;
4573 rc = 0;
4575 switch (cmd) {
4576 case COM_GETPORTSTATS:
4577 rc = stli_getportstats(NULL, argp);
4578 done++;
4579 break;
4580 case COM_CLRPORTSTATS:
4581 rc = stli_clrportstats(NULL, argp);
4582 done++;
4583 break;
4584 case COM_GETBRDSTATS:
4585 rc = stli_getbrdstats(argp);
4586 done++;
4587 break;
4588 case COM_READPORT:
4589 rc = stli_getportstruct(argp);
4590 done++;
4591 break;
4592 case COM_READBOARD:
4593 rc = stli_getbrdstruct(argp);
4594 done++;
4595 break;
4598 if (done)
4599 return rc;
4602 * Now handle the board specific ioctls. These all depend on the
4603 * minor number of the device they were called from.
4605 brdnr = iminor(ip);
4606 if (brdnr >= STL_MAXBRDS)
4607 return -ENODEV;
4608 brdp = stli_brds[brdnr];
4609 if (!brdp)
4610 return -ENODEV;
4611 if (brdp->state == 0)
4612 return -ENODEV;
4614 switch (cmd) {
4615 case STL_BINTR:
4616 EBRDINTR(brdp);
4617 break;
4618 case STL_BSTART:
4619 rc = stli_startbrd(brdp);
4620 break;
4621 case STL_BSTOP:
4622 brdp->state &= ~BST_STARTED;
4623 break;
4624 case STL_BRESET:
4625 brdp->state &= ~BST_STARTED;
4626 EBRDRESET(brdp);
4627 if (stli_shared == 0) {
4628 if (brdp->reenable != NULL)
4629 (* brdp->reenable)(brdp);
4631 break;
4632 default:
4633 rc = -ENOIOCTLCMD;
4634 break;
4636 return rc;
4639 static const struct tty_operations stli_ops = {
4640 .open = stli_open,
4641 .close = stli_close,
4642 .write = stli_write,
4643 .put_char = stli_putchar,
4644 .flush_chars = stli_flushchars,
4645 .write_room = stli_writeroom,
4646 .chars_in_buffer = stli_charsinbuffer,
4647 .ioctl = stli_ioctl,
4648 .set_termios = stli_settermios,
4649 .throttle = stli_throttle,
4650 .unthrottle = stli_unthrottle,
4651 .stop = stli_stop,
4652 .start = stli_start,
4653 .hangup = stli_hangup,
4654 .flush_buffer = stli_flushbuffer,
4655 .break_ctl = stli_breakctl,
4656 .wait_until_sent = stli_waituntilsent,
4657 .send_xchar = stli_sendxchar,
4658 .read_proc = stli_readproc,
4659 .tiocmget = stli_tiocmget,
4660 .tiocmset = stli_tiocmset,
4663 /*****************************************************************************/
4665 static int __init stli_init(void)
4667 int i;
4668 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4670 spin_lock_init(&stli_lock);
4671 spin_lock_init(&brd_lock);
4673 stli_initbrds();
4675 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4676 if (!stli_serial)
4677 return -ENOMEM;
4680 * Allocate a temporary write buffer.
4682 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4683 if (!stli_txcookbuf)
4684 printk(KERN_ERR "STALLION: failed to allocate memory "
4685 "(size=%d)\n", STLI_TXBUFSIZE);
4688 * Set up a character driver for the shared memory region. We need this
4689 * to down load the slave code image. Also it is a useful debugging tool.
4691 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
4692 printk(KERN_ERR "STALLION: failed to register serial memory "
4693 "device\n");
4695 istallion_class = class_create(THIS_MODULE, "staliomem");
4696 for (i = 0; i < 4; i++)
4697 class_device_create(istallion_class, NULL,
4698 MKDEV(STL_SIOMEMMAJOR, i),
4699 NULL, "staliomem%d", i);
4702 * Set up the tty driver structure and register us as a driver.
4704 stli_serial->owner = THIS_MODULE;
4705 stli_serial->driver_name = stli_drvname;
4706 stli_serial->name = stli_serialname;
4707 stli_serial->major = STL_SERIALMAJOR;
4708 stli_serial->minor_start = 0;
4709 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4710 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4711 stli_serial->init_termios = stli_deftermios;
4712 stli_serial->flags = TTY_DRIVER_REAL_RAW;
4713 tty_set_operations(stli_serial, &stli_ops);
4715 if (tty_register_driver(stli_serial)) {
4716 put_tty_driver(stli_serial);
4717 printk(KERN_ERR "STALLION: failed to register serial driver\n");
4718 return -EBUSY;
4720 return 0;
4723 /*****************************************************************************/