2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
33 #define __ex(x) __kvm_handle_fault_on_reboot(x)
35 MODULE_AUTHOR("Qumranet");
36 MODULE_LICENSE("GPL");
38 static int bypass_guest_pf
= 1;
39 module_param(bypass_guest_pf
, bool, 0);
41 static int enable_vpid
= 1;
42 module_param(enable_vpid
, bool, 0);
44 static int flexpriority_enabled
= 1;
45 module_param(flexpriority_enabled
, bool, 0);
47 static int enable_ept
= 1;
48 module_param(enable_ept
, bool, 0);
58 struct list_head local_vcpus_link
;
61 u32 idt_vectoring_info
;
62 struct kvm_msr_entry
*guest_msrs
;
63 struct kvm_msr_entry
*host_msrs
;
68 int msr_offset_kernel_gs_base
;
73 u16 fs_sel
, gs_sel
, ldt_sel
;
74 int gs_ldt_reload_needed
;
76 int guest_efer_loaded
;
88 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
90 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
93 static int init_rmode(struct kvm
*kvm
);
94 static u64
construct_eptp(unsigned long root_hpa
);
96 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
97 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
98 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
100 static struct page
*vmx_io_bitmap_a
;
101 static struct page
*vmx_io_bitmap_b
;
102 static struct page
*vmx_msr_bitmap
;
104 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
105 static DEFINE_SPINLOCK(vmx_vpid_lock
);
107 static struct vmcs_config
{
111 u32 pin_based_exec_ctrl
;
112 u32 cpu_based_exec_ctrl
;
113 u32 cpu_based_2nd_exec_ctrl
;
118 struct vmx_capability
{
123 #define VMX_SEGMENT_FIELD(seg) \
124 [VCPU_SREG_##seg] = { \
125 .selector = GUEST_##seg##_SELECTOR, \
126 .base = GUEST_##seg##_BASE, \
127 .limit = GUEST_##seg##_LIMIT, \
128 .ar_bytes = GUEST_##seg##_AR_BYTES, \
131 static struct kvm_vmx_segment_field
{
136 } kvm_vmx_segment_fields
[] = {
137 VMX_SEGMENT_FIELD(CS
),
138 VMX_SEGMENT_FIELD(DS
),
139 VMX_SEGMENT_FIELD(ES
),
140 VMX_SEGMENT_FIELD(FS
),
141 VMX_SEGMENT_FIELD(GS
),
142 VMX_SEGMENT_FIELD(SS
),
143 VMX_SEGMENT_FIELD(TR
),
144 VMX_SEGMENT_FIELD(LDTR
),
148 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
149 * away by decrementing the array size.
151 static const u32 vmx_msr_index
[] = {
153 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
155 MSR_EFER
, MSR_K6_STAR
,
157 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
159 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
163 for (i
= 0; i
< n
; ++i
)
164 wrmsrl(e
[i
].index
, e
[i
].data
);
167 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
171 for (i
= 0; i
< n
; ++i
)
172 rdmsrl(e
[i
].index
, e
[i
].data
);
175 static inline int is_page_fault(u32 intr_info
)
177 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
178 INTR_INFO_VALID_MASK
)) ==
179 (INTR_TYPE_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
182 static inline int is_no_device(u32 intr_info
)
184 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
185 INTR_INFO_VALID_MASK
)) ==
186 (INTR_TYPE_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
189 static inline int is_invalid_opcode(u32 intr_info
)
191 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
192 INTR_INFO_VALID_MASK
)) ==
193 (INTR_TYPE_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
196 static inline int is_external_interrupt(u32 intr_info
)
198 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
199 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
202 static inline int cpu_has_vmx_msr_bitmap(void)
204 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
);
207 static inline int cpu_has_vmx_tpr_shadow(void)
209 return (vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
);
212 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
214 return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
)));
217 static inline int cpu_has_secondary_exec_ctrls(void)
219 return (vmcs_config
.cpu_based_exec_ctrl
&
220 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
);
223 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
225 return flexpriority_enabled
226 && (vmcs_config
.cpu_based_2nd_exec_ctrl
&
227 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
230 static inline int cpu_has_vmx_invept_individual_addr(void)
232 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
));
235 static inline int cpu_has_vmx_invept_context(void)
237 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
));
240 static inline int cpu_has_vmx_invept_global(void)
242 return (!!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
));
245 static inline int cpu_has_vmx_ept(void)
247 return (vmcs_config
.cpu_based_2nd_exec_ctrl
&
248 SECONDARY_EXEC_ENABLE_EPT
);
251 static inline int vm_need_ept(void)
253 return (cpu_has_vmx_ept() && enable_ept
);
256 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
258 return ((cpu_has_vmx_virtualize_apic_accesses()) &&
259 (irqchip_in_kernel(kvm
)));
262 static inline int cpu_has_vmx_vpid(void)
264 return (vmcs_config
.cpu_based_2nd_exec_ctrl
&
265 SECONDARY_EXEC_ENABLE_VPID
);
268 static inline int cpu_has_virtual_nmis(void)
270 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
273 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
277 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
278 if (vmx
->guest_msrs
[i
].index
== msr
)
283 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
289 } operand
= { vpid
, 0, gva
};
291 asm volatile (__ex(ASM_VMX_INVVPID
)
292 /* CF==1 or ZF==1 --> rc = -1 */
294 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
297 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
301 } operand
= {eptp
, gpa
};
303 asm volatile (__ex(ASM_VMX_INVEPT
)
304 /* CF==1 or ZF==1 --> rc = -1 */
305 "; ja 1f ; ud2 ; 1:\n"
306 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
309 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
313 i
= __find_msr_index(vmx
, msr
);
315 return &vmx
->guest_msrs
[i
];
319 static void vmcs_clear(struct vmcs
*vmcs
)
321 u64 phys_addr
= __pa(vmcs
);
324 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
325 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
328 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
332 static void __vcpu_clear(void *arg
)
334 struct vcpu_vmx
*vmx
= arg
;
335 int cpu
= raw_smp_processor_id();
337 if (vmx
->vcpu
.cpu
== cpu
)
338 vmcs_clear(vmx
->vmcs
);
339 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
340 per_cpu(current_vmcs
, cpu
) = NULL
;
341 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
342 list_del(&vmx
->local_vcpus_link
);
347 static void vcpu_clear(struct vcpu_vmx
*vmx
)
349 if (vmx
->vcpu
.cpu
== -1)
351 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
354 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
359 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
362 static inline void ept_sync_global(void)
364 if (cpu_has_vmx_invept_global())
365 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
368 static inline void ept_sync_context(u64 eptp
)
371 if (cpu_has_vmx_invept_context())
372 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
378 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
381 if (cpu_has_vmx_invept_individual_addr())
382 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
385 ept_sync_context(eptp
);
389 static unsigned long vmcs_readl(unsigned long field
)
393 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
394 : "=a"(value
) : "d"(field
) : "cc");
398 static u16
vmcs_read16(unsigned long field
)
400 return vmcs_readl(field
);
403 static u32
vmcs_read32(unsigned long field
)
405 return vmcs_readl(field
);
408 static u64
vmcs_read64(unsigned long field
)
411 return vmcs_readl(field
);
413 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
417 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
419 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
420 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
424 static void vmcs_writel(unsigned long field
, unsigned long value
)
428 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
429 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
431 vmwrite_error(field
, value
);
434 static void vmcs_write16(unsigned long field
, u16 value
)
436 vmcs_writel(field
, value
);
439 static void vmcs_write32(unsigned long field
, u32 value
)
441 vmcs_writel(field
, value
);
444 static void vmcs_write64(unsigned long field
, u64 value
)
446 vmcs_writel(field
, value
);
447 #ifndef CONFIG_X86_64
449 vmcs_writel(field
+1, value
>> 32);
453 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
455 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
458 static void vmcs_set_bits(unsigned long field
, u32 mask
)
460 vmcs_writel(field
, vmcs_readl(field
) | mask
);
463 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
467 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
);
468 if (!vcpu
->fpu_active
)
469 eb
|= 1u << NM_VECTOR
;
470 if (vcpu
->guest_debug
.enabled
)
472 if (vcpu
->arch
.rmode
.active
)
475 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
476 vmcs_write32(EXCEPTION_BITMAP
, eb
);
479 static void reload_tss(void)
482 * VT restores TR but not its size. Useless.
484 struct descriptor_table gdt
;
485 struct desc_struct
*descs
;
488 descs
= (void *)gdt
.base
;
489 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
493 static void load_transition_efer(struct vcpu_vmx
*vmx
)
495 int efer_offset
= vmx
->msr_offset_efer
;
496 u64 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
497 u64 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
503 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
506 ignore_bits
= EFER_NX
| EFER_SCE
;
508 ignore_bits
|= EFER_LMA
| EFER_LME
;
509 /* SCE is meaningful only in long mode on Intel */
510 if (guest_efer
& EFER_LMA
)
511 ignore_bits
&= ~(u64
)EFER_SCE
;
513 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
516 vmx
->host_state
.guest_efer_loaded
= 1;
517 guest_efer
&= ~ignore_bits
;
518 guest_efer
|= host_efer
& ignore_bits
;
519 wrmsrl(MSR_EFER
, guest_efer
);
520 vmx
->vcpu
.stat
.efer_reload
++;
523 static void reload_host_efer(struct vcpu_vmx
*vmx
)
525 if (vmx
->host_state
.guest_efer_loaded
) {
526 vmx
->host_state
.guest_efer_loaded
= 0;
527 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
531 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
533 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
535 if (vmx
->host_state
.loaded
)
538 vmx
->host_state
.loaded
= 1;
540 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
541 * allow segment selectors with cpl > 0 or ti == 1.
543 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
544 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
545 vmx
->host_state
.fs_sel
= kvm_read_fs();
546 if (!(vmx
->host_state
.fs_sel
& 7)) {
547 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
548 vmx
->host_state
.fs_reload_needed
= 0;
550 vmcs_write16(HOST_FS_SELECTOR
, 0);
551 vmx
->host_state
.fs_reload_needed
= 1;
553 vmx
->host_state
.gs_sel
= kvm_read_gs();
554 if (!(vmx
->host_state
.gs_sel
& 7))
555 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
557 vmcs_write16(HOST_GS_SELECTOR
, 0);
558 vmx
->host_state
.gs_ldt_reload_needed
= 1;
562 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
563 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
565 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
566 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
570 if (is_long_mode(&vmx
->vcpu
))
571 save_msrs(vmx
->host_msrs
+
572 vmx
->msr_offset_kernel_gs_base
, 1);
575 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
576 load_transition_efer(vmx
);
579 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
583 if (!vmx
->host_state
.loaded
)
586 ++vmx
->vcpu
.stat
.host_state_reload
;
587 vmx
->host_state
.loaded
= 0;
588 if (vmx
->host_state
.fs_reload_needed
)
589 kvm_load_fs(vmx
->host_state
.fs_sel
);
590 if (vmx
->host_state
.gs_ldt_reload_needed
) {
591 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
593 * If we have to reload gs, we must take care to
594 * preserve our gs base.
596 local_irq_save(flags
);
597 kvm_load_gs(vmx
->host_state
.gs_sel
);
599 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
601 local_irq_restore(flags
);
604 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
605 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
606 reload_host_efer(vmx
);
609 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
612 __vmx_load_host_state(vmx
);
617 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
618 * vcpu mutex is already taken.
620 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
622 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
623 u64 phys_addr
= __pa(vmx
->vmcs
);
624 u64 tsc_this
, delta
, new_offset
;
626 if (vcpu
->cpu
!= cpu
) {
628 kvm_migrate_timers(vcpu
);
629 vpid_sync_vcpu_all(vmx
);
631 list_add(&vmx
->local_vcpus_link
,
632 &per_cpu(vcpus_on_cpu
, cpu
));
636 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
639 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
640 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
641 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
644 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
645 vmx
->vmcs
, phys_addr
);
648 if (vcpu
->cpu
!= cpu
) {
649 struct descriptor_table dt
;
650 unsigned long sysenter_esp
;
654 * Linux uses per-cpu TSS and GDT, so set these when switching
657 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
659 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
661 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
662 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
665 * Make sure the time stamp counter is monotonous.
668 if (tsc_this
< vcpu
->arch
.host_tsc
) {
669 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
670 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
671 vmcs_write64(TSC_OFFSET
, new_offset
);
676 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
678 __vmx_load_host_state(to_vmx(vcpu
));
681 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
683 if (vcpu
->fpu_active
)
685 vcpu
->fpu_active
= 1;
686 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
687 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
688 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
689 update_exception_bitmap(vcpu
);
692 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
694 if (!vcpu
->fpu_active
)
696 vcpu
->fpu_active
= 0;
697 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
698 update_exception_bitmap(vcpu
);
701 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
703 return vmcs_readl(GUEST_RFLAGS
);
706 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
708 if (vcpu
->arch
.rmode
.active
)
709 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
710 vmcs_writel(GUEST_RFLAGS
, rflags
);
713 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
716 u32 interruptibility
;
718 rip
= vmcs_readl(GUEST_RIP
);
719 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
720 vmcs_writel(GUEST_RIP
, rip
);
723 * We emulated an instruction, so temporary interrupt blocking
724 * should be removed, if set.
726 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
727 if (interruptibility
& 3)
728 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
729 interruptibility
& ~3);
730 vcpu
->arch
.interrupt_window_open
= 1;
733 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
734 bool has_error_code
, u32 error_code
)
736 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
737 nr
| INTR_TYPE_EXCEPTION
738 | (has_error_code
? INTR_INFO_DELIVER_CODE_MASK
: 0)
739 | INTR_INFO_VALID_MASK
);
741 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
744 static bool vmx_exception_injected(struct kvm_vcpu
*vcpu
)
746 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
748 return !(vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
752 * Swap MSR entry in host/guest MSR entry array.
755 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
757 struct kvm_msr_entry tmp
;
759 tmp
= vmx
->guest_msrs
[to
];
760 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
761 vmx
->guest_msrs
[from
] = tmp
;
762 tmp
= vmx
->host_msrs
[to
];
763 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
764 vmx
->host_msrs
[from
] = tmp
;
769 * Set up the vmcs to automatically save and restore system
770 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
771 * mode, as fiddling with msrs is very expensive.
773 static void setup_msrs(struct vcpu_vmx
*vmx
)
777 vmx_load_host_state(vmx
);
780 if (is_long_mode(&vmx
->vcpu
)) {
783 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
785 move_msr_up(vmx
, index
, save_nmsrs
++);
786 index
= __find_msr_index(vmx
, MSR_LSTAR
);
788 move_msr_up(vmx
, index
, save_nmsrs
++);
789 index
= __find_msr_index(vmx
, MSR_CSTAR
);
791 move_msr_up(vmx
, index
, save_nmsrs
++);
792 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
794 move_msr_up(vmx
, index
, save_nmsrs
++);
796 * MSR_K6_STAR is only needed on long mode guests, and only
797 * if efer.sce is enabled.
799 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
800 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
801 move_msr_up(vmx
, index
, save_nmsrs
++);
804 vmx
->save_nmsrs
= save_nmsrs
;
807 vmx
->msr_offset_kernel_gs_base
=
808 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
810 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
814 * reads and returns guest's timestamp counter "register"
815 * guest_tsc = host_tsc + tsc_offset -- 21.3
817 static u64
guest_read_tsc(void)
819 u64 host_tsc
, tsc_offset
;
822 tsc_offset
= vmcs_read64(TSC_OFFSET
);
823 return host_tsc
+ tsc_offset
;
827 * writes 'guest_tsc' into guest's timestamp counter "register"
828 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
830 static void guest_write_tsc(u64 guest_tsc
)
835 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
839 * Reads an msr value (of 'msr_index') into 'pdata'.
840 * Returns 0 on success, non-0 otherwise.
841 * Assumes vcpu_load() was already called.
843 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
846 struct kvm_msr_entry
*msr
;
849 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
856 data
= vmcs_readl(GUEST_FS_BASE
);
859 data
= vmcs_readl(GUEST_GS_BASE
);
862 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
864 case MSR_IA32_TIME_STAMP_COUNTER
:
865 data
= guest_read_tsc();
867 case MSR_IA32_SYSENTER_CS
:
868 data
= vmcs_read32(GUEST_SYSENTER_CS
);
870 case MSR_IA32_SYSENTER_EIP
:
871 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
873 case MSR_IA32_SYSENTER_ESP
:
874 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
877 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
882 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
890 * Writes msr value into into the appropriate "register".
891 * Returns 0 on success, non-0 otherwise.
892 * Assumes vcpu_load() was already called.
894 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
896 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
897 struct kvm_msr_entry
*msr
;
903 vmx_load_host_state(vmx
);
904 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
907 vmcs_writel(GUEST_FS_BASE
, data
);
910 vmcs_writel(GUEST_GS_BASE
, data
);
913 case MSR_IA32_SYSENTER_CS
:
914 vmcs_write32(GUEST_SYSENTER_CS
, data
);
916 case MSR_IA32_SYSENTER_EIP
:
917 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
919 case MSR_IA32_SYSENTER_ESP
:
920 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
922 case MSR_IA32_TIME_STAMP_COUNTER
:
923 guest_write_tsc(data
);
925 case MSR_P6_PERFCTR0
:
926 case MSR_P6_PERFCTR1
:
927 case MSR_P6_EVNTSEL0
:
928 case MSR_P6_EVNTSEL1
:
930 * Just discard all writes to the performance counters; this
931 * should keep both older linux and windows 64-bit guests
934 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index
, data
);
938 vmx_load_host_state(vmx
);
939 msr
= find_msr_entry(vmx
, msr_index
);
944 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
951 * Sync the rsp and rip registers into the vcpu structure. This allows
952 * registers to be accessed by indexing vcpu->arch.regs.
954 static void vcpu_load_rsp_rip(struct kvm_vcpu
*vcpu
)
956 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
957 vcpu
->arch
.rip
= vmcs_readl(GUEST_RIP
);
961 * Syncs rsp and rip back into the vmcs. Should be called after possible
964 static void vcpu_put_rsp_rip(struct kvm_vcpu
*vcpu
)
966 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
967 vmcs_writel(GUEST_RIP
, vcpu
->arch
.rip
);
970 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_debug_guest
*dbg
)
972 unsigned long dr7
= 0x400;
975 old_singlestep
= vcpu
->guest_debug
.singlestep
;
977 vcpu
->guest_debug
.enabled
= dbg
->enabled
;
978 if (vcpu
->guest_debug
.enabled
) {
981 dr7
|= 0x200; /* exact */
982 for (i
= 0; i
< 4; ++i
) {
983 if (!dbg
->breakpoints
[i
].enabled
)
985 vcpu
->guest_debug
.bp
[i
] = dbg
->breakpoints
[i
].address
;
986 dr7
|= 2 << (i
*2); /* global enable */
987 dr7
|= 0 << (i
*4+16); /* execution breakpoint */
990 vcpu
->guest_debug
.singlestep
= dbg
->singlestep
;
992 vcpu
->guest_debug
.singlestep
= 0;
994 if (old_singlestep
&& !vcpu
->guest_debug
.singlestep
) {
997 flags
= vmcs_readl(GUEST_RFLAGS
);
998 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
999 vmcs_writel(GUEST_RFLAGS
, flags
);
1002 update_exception_bitmap(vcpu
);
1003 vmcs_writel(GUEST_DR7
, dr7
);
1008 static int vmx_get_irq(struct kvm_vcpu
*vcpu
)
1010 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1011 u32 idtv_info_field
;
1013 idtv_info_field
= vmx
->idt_vectoring_info
;
1014 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
1015 if (is_external_interrupt(idtv_info_field
))
1016 return idtv_info_field
& VECTORING_INFO_VECTOR_MASK
;
1018 printk(KERN_DEBUG
"pending exception: not handled yet\n");
1023 static __init
int cpu_has_kvm_support(void)
1025 unsigned long ecx
= cpuid_ecx(1);
1026 return test_bit(5, &ecx
); /* CPUID.1:ECX.VMX[bit 5] -> VT */
1029 static __init
int vmx_disabled_by_bios(void)
1033 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1034 return (msr
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
1035 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
1036 == MSR_IA32_FEATURE_CONTROL_LOCKED
;
1037 /* locked but not enabled */
1040 static void hardware_enable(void *garbage
)
1042 int cpu
= raw_smp_processor_id();
1043 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1046 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1047 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1048 if ((old
& (MSR_IA32_FEATURE_CONTROL_LOCKED
|
1049 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
1050 != (MSR_IA32_FEATURE_CONTROL_LOCKED
|
1051 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
))
1052 /* enable and lock */
1053 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1054 MSR_IA32_FEATURE_CONTROL_LOCKED
|
1055 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED
);
1056 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1057 asm volatile (ASM_VMX_VMXON_RAX
1058 : : "a"(&phys_addr
), "m"(phys_addr
)
1062 static void vmclear_local_vcpus(void)
1064 int cpu
= raw_smp_processor_id();
1065 struct vcpu_vmx
*vmx
, *n
;
1067 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1072 static void hardware_disable(void *garbage
)
1074 vmclear_local_vcpus();
1075 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1076 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1079 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1080 u32 msr
, u32
*result
)
1082 u32 vmx_msr_low
, vmx_msr_high
;
1083 u32 ctl
= ctl_min
| ctl_opt
;
1085 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1087 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1088 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1090 /* Ensure minimum (required) set of control bits are supported. */
1098 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1100 u32 vmx_msr_low
, vmx_msr_high
;
1101 u32 min
, opt
, min2
, opt2
;
1102 u32 _pin_based_exec_control
= 0;
1103 u32 _cpu_based_exec_control
= 0;
1104 u32 _cpu_based_2nd_exec_control
= 0;
1105 u32 _vmexit_control
= 0;
1106 u32 _vmentry_control
= 0;
1108 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1109 opt
= PIN_BASED_VIRTUAL_NMIS
;
1110 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1111 &_pin_based_exec_control
) < 0)
1114 min
= CPU_BASED_HLT_EXITING
|
1115 #ifdef CONFIG_X86_64
1116 CPU_BASED_CR8_LOAD_EXITING
|
1117 CPU_BASED_CR8_STORE_EXITING
|
1119 CPU_BASED_CR3_LOAD_EXITING
|
1120 CPU_BASED_CR3_STORE_EXITING
|
1121 CPU_BASED_USE_IO_BITMAPS
|
1122 CPU_BASED_MOV_DR_EXITING
|
1123 CPU_BASED_USE_TSC_OFFSETING
;
1124 opt
= CPU_BASED_TPR_SHADOW
|
1125 CPU_BASED_USE_MSR_BITMAPS
|
1126 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1127 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1128 &_cpu_based_exec_control
) < 0)
1130 #ifdef CONFIG_X86_64
1131 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1132 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1133 ~CPU_BASED_CR8_STORE_EXITING
;
1135 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1137 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1138 SECONDARY_EXEC_WBINVD_EXITING
|
1139 SECONDARY_EXEC_ENABLE_VPID
|
1140 SECONDARY_EXEC_ENABLE_EPT
;
1141 if (adjust_vmx_controls(min2
, opt2
,
1142 MSR_IA32_VMX_PROCBASED_CTLS2
,
1143 &_cpu_based_2nd_exec_control
) < 0)
1146 #ifndef CONFIG_X86_64
1147 if (!(_cpu_based_2nd_exec_control
&
1148 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1149 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1151 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1152 /* CR3 accesses don't need to cause VM Exits when EPT enabled */
1153 min
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1154 CPU_BASED_CR3_STORE_EXITING
);
1155 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1156 &_cpu_based_exec_control
) < 0)
1158 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1159 vmx_capability
.ept
, vmx_capability
.vpid
);
1163 #ifdef CONFIG_X86_64
1164 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1167 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1168 &_vmexit_control
) < 0)
1172 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1173 &_vmentry_control
) < 0)
1176 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1178 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1179 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1182 #ifdef CONFIG_X86_64
1183 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1184 if (vmx_msr_high
& (1u<<16))
1188 /* Require Write-Back (WB) memory type for VMCS accesses. */
1189 if (((vmx_msr_high
>> 18) & 15) != 6)
1192 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1193 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1194 vmcs_conf
->revision_id
= vmx_msr_low
;
1196 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1197 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1198 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1199 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1200 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1205 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1207 int node
= cpu_to_node(cpu
);
1211 pages
= alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1214 vmcs
= page_address(pages
);
1215 memset(vmcs
, 0, vmcs_config
.size
);
1216 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1220 static struct vmcs
*alloc_vmcs(void)
1222 return alloc_vmcs_cpu(raw_smp_processor_id());
1225 static void free_vmcs(struct vmcs
*vmcs
)
1227 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1230 static void free_kvm_area(void)
1234 for_each_online_cpu(cpu
)
1235 free_vmcs(per_cpu(vmxarea
, cpu
));
1238 static __init
int alloc_kvm_area(void)
1242 for_each_online_cpu(cpu
) {
1245 vmcs
= alloc_vmcs_cpu(cpu
);
1251 per_cpu(vmxarea
, cpu
) = vmcs
;
1256 static __init
int hardware_setup(void)
1258 if (setup_vmcs_config(&vmcs_config
) < 0)
1261 if (boot_cpu_has(X86_FEATURE_NX
))
1262 kvm_enable_efer_bits(EFER_NX
);
1264 return alloc_kvm_area();
1267 static __exit
void hardware_unsetup(void)
1272 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1274 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1276 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1277 vmcs_write16(sf
->selector
, save
->selector
);
1278 vmcs_writel(sf
->base
, save
->base
);
1279 vmcs_write32(sf
->limit
, save
->limit
);
1280 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1282 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1284 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1288 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1290 unsigned long flags
;
1292 vcpu
->arch
.rmode
.active
= 0;
1294 vmcs_writel(GUEST_TR_BASE
, vcpu
->arch
.rmode
.tr
.base
);
1295 vmcs_write32(GUEST_TR_LIMIT
, vcpu
->arch
.rmode
.tr
.limit
);
1296 vmcs_write32(GUEST_TR_AR_BYTES
, vcpu
->arch
.rmode
.tr
.ar
);
1298 flags
= vmcs_readl(GUEST_RFLAGS
);
1299 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1300 flags
|= (vcpu
->arch
.rmode
.save_iopl
<< IOPL_SHIFT
);
1301 vmcs_writel(GUEST_RFLAGS
, flags
);
1303 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1304 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1306 update_exception_bitmap(vcpu
);
1308 fix_pmode_dataseg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1309 fix_pmode_dataseg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1310 fix_pmode_dataseg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1311 fix_pmode_dataseg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1313 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1314 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1316 vmcs_write16(GUEST_CS_SELECTOR
,
1317 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1318 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1321 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1323 if (!kvm
->arch
.tss_addr
) {
1324 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1325 kvm
->memslots
[0].npages
- 3;
1326 return base_gfn
<< PAGE_SHIFT
;
1328 return kvm
->arch
.tss_addr
;
1331 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1333 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1335 save
->selector
= vmcs_read16(sf
->selector
);
1336 save
->base
= vmcs_readl(sf
->base
);
1337 save
->limit
= vmcs_read32(sf
->limit
);
1338 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1339 vmcs_write16(sf
->selector
, save
->base
>> 4);
1340 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1341 vmcs_write32(sf
->limit
, 0xffff);
1342 vmcs_write32(sf
->ar_bytes
, 0xf3);
1345 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1347 unsigned long flags
;
1349 vcpu
->arch
.rmode
.active
= 1;
1351 vcpu
->arch
.rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1352 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1354 vcpu
->arch
.rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1355 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1357 vcpu
->arch
.rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1358 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1360 flags
= vmcs_readl(GUEST_RFLAGS
);
1361 vcpu
->arch
.rmode
.save_iopl
1362 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1364 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1366 vmcs_writel(GUEST_RFLAGS
, flags
);
1367 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1368 update_exception_bitmap(vcpu
);
1370 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1371 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1372 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1374 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1375 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1376 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1377 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1378 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1380 fix_rmode_seg(VCPU_SREG_ES
, &vcpu
->arch
.rmode
.es
);
1381 fix_rmode_seg(VCPU_SREG_DS
, &vcpu
->arch
.rmode
.ds
);
1382 fix_rmode_seg(VCPU_SREG_GS
, &vcpu
->arch
.rmode
.gs
);
1383 fix_rmode_seg(VCPU_SREG_FS
, &vcpu
->arch
.rmode
.fs
);
1385 kvm_mmu_reset_context(vcpu
);
1386 init_rmode(vcpu
->kvm
);
1389 #ifdef CONFIG_X86_64
1391 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1395 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1396 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1397 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1399 vmcs_write32(GUEST_TR_AR_BYTES
,
1400 (guest_tr_ar
& ~AR_TYPE_MASK
)
1401 | AR_TYPE_BUSY_64_TSS
);
1404 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1406 find_msr_entry(to_vmx(vcpu
), MSR_EFER
)->data
|= EFER_LMA
| EFER_LME
;
1407 vmcs_write32(VM_ENTRY_CONTROLS
,
1408 vmcs_read32(VM_ENTRY_CONTROLS
)
1409 | VM_ENTRY_IA32E_MODE
);
1412 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1414 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1416 vmcs_write32(VM_ENTRY_CONTROLS
,
1417 vmcs_read32(VM_ENTRY_CONTROLS
)
1418 & ~VM_ENTRY_IA32E_MODE
);
1423 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1425 vpid_sync_vcpu_all(to_vmx(vcpu
));
1427 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1430 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1432 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1433 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1436 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1438 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1439 if (!load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
1440 printk(KERN_ERR
"EPT: Fail to load pdptrs!\n");
1443 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1444 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1445 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1446 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1450 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1452 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1454 struct kvm_vcpu
*vcpu
)
1456 if (!(cr0
& X86_CR0_PG
)) {
1457 /* From paging/starting to nonpaging */
1458 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1459 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1460 (CPU_BASED_CR3_LOAD_EXITING
|
1461 CPU_BASED_CR3_STORE_EXITING
));
1462 vcpu
->arch
.cr0
= cr0
;
1463 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1464 *hw_cr0
|= X86_CR0_PE
| X86_CR0_PG
;
1465 *hw_cr0
&= ~X86_CR0_WP
;
1466 } else if (!is_paging(vcpu
)) {
1467 /* From nonpaging to paging */
1468 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1469 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1470 ~(CPU_BASED_CR3_LOAD_EXITING
|
1471 CPU_BASED_CR3_STORE_EXITING
));
1472 vcpu
->arch
.cr0
= cr0
;
1473 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1474 if (!(vcpu
->arch
.cr0
& X86_CR0_WP
))
1475 *hw_cr0
&= ~X86_CR0_WP
;
1479 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1480 struct kvm_vcpu
*vcpu
)
1482 if (!is_paging(vcpu
)) {
1483 *hw_cr4
&= ~X86_CR4_PAE
;
1484 *hw_cr4
|= X86_CR4_PSE
;
1485 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1486 *hw_cr4
&= ~X86_CR4_PAE
;
1489 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1491 unsigned long hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) |
1492 KVM_VM_CR0_ALWAYS_ON
;
1494 vmx_fpu_deactivate(vcpu
);
1496 if (vcpu
->arch
.rmode
.active
&& (cr0
& X86_CR0_PE
))
1499 if (!vcpu
->arch
.rmode
.active
&& !(cr0
& X86_CR0_PE
))
1502 #ifdef CONFIG_X86_64
1503 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1504 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1506 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1512 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1514 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1515 vmcs_writel(GUEST_CR0
, hw_cr0
);
1516 vcpu
->arch
.cr0
= cr0
;
1518 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1519 vmx_fpu_activate(vcpu
);
1522 static u64
construct_eptp(unsigned long root_hpa
)
1526 /* TODO write the value reading from MSR */
1527 eptp
= VMX_EPT_DEFAULT_MT
|
1528 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1529 eptp
|= (root_hpa
& PAGE_MASK
);
1534 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1536 unsigned long guest_cr3
;
1540 if (vm_need_ept()) {
1541 eptp
= construct_eptp(cr3
);
1542 vmcs_write64(EPT_POINTER
, eptp
);
1543 ept_sync_context(eptp
);
1544 ept_load_pdptrs(vcpu
);
1545 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1546 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
1549 vmx_flush_tlb(vcpu
);
1550 vmcs_writel(GUEST_CR3
, guest_cr3
);
1551 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1552 vmx_fpu_deactivate(vcpu
);
1555 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1557 unsigned long hw_cr4
= cr4
| (vcpu
->arch
.rmode
.active
?
1558 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1560 vcpu
->arch
.cr4
= cr4
;
1562 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1564 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1565 vmcs_writel(GUEST_CR4
, hw_cr4
);
1568 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1570 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1571 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1573 vcpu
->arch
.shadow_efer
= efer
;
1576 if (efer
& EFER_LMA
) {
1577 vmcs_write32(VM_ENTRY_CONTROLS
,
1578 vmcs_read32(VM_ENTRY_CONTROLS
) |
1579 VM_ENTRY_IA32E_MODE
);
1583 vmcs_write32(VM_ENTRY_CONTROLS
,
1584 vmcs_read32(VM_ENTRY_CONTROLS
) &
1585 ~VM_ENTRY_IA32E_MODE
);
1587 msr
->data
= efer
& ~EFER_LME
;
1592 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1594 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1596 return vmcs_readl(sf
->base
);
1599 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1600 struct kvm_segment
*var
, int seg
)
1602 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1605 var
->base
= vmcs_readl(sf
->base
);
1606 var
->limit
= vmcs_read32(sf
->limit
);
1607 var
->selector
= vmcs_read16(sf
->selector
);
1608 ar
= vmcs_read32(sf
->ar_bytes
);
1609 if (ar
& AR_UNUSABLE_MASK
)
1611 var
->type
= ar
& 15;
1612 var
->s
= (ar
>> 4) & 1;
1613 var
->dpl
= (ar
>> 5) & 3;
1614 var
->present
= (ar
>> 7) & 1;
1615 var
->avl
= (ar
>> 12) & 1;
1616 var
->l
= (ar
>> 13) & 1;
1617 var
->db
= (ar
>> 14) & 1;
1618 var
->g
= (ar
>> 15) & 1;
1619 var
->unusable
= (ar
>> 16) & 1;
1622 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1624 struct kvm_segment kvm_seg
;
1626 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1629 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1632 vmx_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_CS
);
1633 return kvm_seg
.selector
& 3;
1636 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1643 ar
= var
->type
& 15;
1644 ar
|= (var
->s
& 1) << 4;
1645 ar
|= (var
->dpl
& 3) << 5;
1646 ar
|= (var
->present
& 1) << 7;
1647 ar
|= (var
->avl
& 1) << 12;
1648 ar
|= (var
->l
& 1) << 13;
1649 ar
|= (var
->db
& 1) << 14;
1650 ar
|= (var
->g
& 1) << 15;
1652 if (ar
== 0) /* a 0 value means unusable */
1653 ar
= AR_UNUSABLE_MASK
;
1658 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1659 struct kvm_segment
*var
, int seg
)
1661 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1664 if (vcpu
->arch
.rmode
.active
&& seg
== VCPU_SREG_TR
) {
1665 vcpu
->arch
.rmode
.tr
.selector
= var
->selector
;
1666 vcpu
->arch
.rmode
.tr
.base
= var
->base
;
1667 vcpu
->arch
.rmode
.tr
.limit
= var
->limit
;
1668 vcpu
->arch
.rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1671 vmcs_writel(sf
->base
, var
->base
);
1672 vmcs_write32(sf
->limit
, var
->limit
);
1673 vmcs_write16(sf
->selector
, var
->selector
);
1674 if (vcpu
->arch
.rmode
.active
&& var
->s
) {
1676 * Hack real-mode segments into vm86 compatibility.
1678 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1679 vmcs_writel(sf
->base
, 0xf0000);
1682 ar
= vmx_segment_access_rights(var
);
1683 vmcs_write32(sf
->ar_bytes
, ar
);
1686 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1688 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1690 *db
= (ar
>> 14) & 1;
1691 *l
= (ar
>> 13) & 1;
1694 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1696 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1697 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1700 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1702 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1703 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1706 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1708 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1709 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1712 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1714 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1715 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1718 static int init_rmode_tss(struct kvm
*kvm
)
1720 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
1725 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1728 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
1729 r
= kvm_write_guest_page(kvm
, fn
++, &data
, 0x66, sizeof(u16
));
1732 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
1735 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
1739 r
= kvm_write_guest_page(kvm
, fn
, &data
,
1740 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
1750 static int init_rmode_identity_map(struct kvm
*kvm
)
1753 pfn_t identity_map_pfn
;
1758 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
1759 printk(KERN_ERR
"EPT: identity-mapping pagetable "
1760 "haven't been allocated!\n");
1763 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
1766 identity_map_pfn
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
;
1767 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
1770 /* Set up identity-mapping pagetable for EPT in real mode */
1771 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
1772 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
1773 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
1774 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
1775 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
1779 kvm
->arch
.ept_identity_pagetable_done
= true;
1785 static void seg_setup(int seg
)
1787 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1789 vmcs_write16(sf
->selector
, 0);
1790 vmcs_writel(sf
->base
, 0);
1791 vmcs_write32(sf
->limit
, 0xffff);
1792 vmcs_write32(sf
->ar_bytes
, 0x93);
1795 static int alloc_apic_access_page(struct kvm
*kvm
)
1797 struct kvm_userspace_memory_region kvm_userspace_mem
;
1800 down_write(&kvm
->slots_lock
);
1801 if (kvm
->arch
.apic_access_page
)
1803 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
1804 kvm_userspace_mem
.flags
= 0;
1805 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
1806 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
1807 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1811 down_read(¤t
->mm
->mmap_sem
);
1812 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
1813 up_read(¤t
->mm
->mmap_sem
);
1815 up_write(&kvm
->slots_lock
);
1819 static int alloc_identity_pagetable(struct kvm
*kvm
)
1821 struct kvm_userspace_memory_region kvm_userspace_mem
;
1824 down_write(&kvm
->slots_lock
);
1825 if (kvm
->arch
.ept_identity_pagetable
)
1827 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
1828 kvm_userspace_mem
.flags
= 0;
1829 kvm_userspace_mem
.guest_phys_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
1830 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
1831 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1835 down_read(¤t
->mm
->mmap_sem
);
1836 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
1837 VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
);
1838 up_read(¤t
->mm
->mmap_sem
);
1840 up_write(&kvm
->slots_lock
);
1844 static void allocate_vpid(struct vcpu_vmx
*vmx
)
1849 if (!enable_vpid
|| !cpu_has_vmx_vpid())
1851 spin_lock(&vmx_vpid_lock
);
1852 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
1853 if (vpid
< VMX_NR_VPIDS
) {
1855 __set_bit(vpid
, vmx_vpid_bitmap
);
1857 spin_unlock(&vmx_vpid_lock
);
1860 static void vmx_disable_intercept_for_msr(struct page
*msr_bitmap
, u32 msr
)
1864 if (!cpu_has_vmx_msr_bitmap())
1868 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
1869 * have the write-low and read-high bitmap offsets the wrong way round.
1870 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
1872 va
= kmap(msr_bitmap
);
1873 if (msr
<= 0x1fff) {
1874 __clear_bit(msr
, va
+ 0x000); /* read-low */
1875 __clear_bit(msr
, va
+ 0x800); /* write-low */
1876 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
1878 __clear_bit(msr
, va
+ 0x400); /* read-high */
1879 __clear_bit(msr
, va
+ 0xc00); /* write-high */
1885 * Sets up the vmcs for emulated real mode.
1887 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
1889 u32 host_sysenter_cs
;
1892 struct descriptor_table dt
;
1894 unsigned long kvm_vmx_return
;
1898 vmcs_write64(IO_BITMAP_A
, page_to_phys(vmx_io_bitmap_a
));
1899 vmcs_write64(IO_BITMAP_B
, page_to_phys(vmx_io_bitmap_b
));
1901 if (cpu_has_vmx_msr_bitmap())
1902 vmcs_write64(MSR_BITMAP
, page_to_phys(vmx_msr_bitmap
));
1904 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
1907 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
1908 vmcs_config
.pin_based_exec_ctrl
);
1910 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
1911 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
1912 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1913 #ifdef CONFIG_X86_64
1914 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
1915 CPU_BASED_CR8_LOAD_EXITING
;
1919 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
1920 CPU_BASED_CR3_LOAD_EXITING
;
1921 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
1923 if (cpu_has_secondary_exec_ctrls()) {
1924 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
1925 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
1927 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1929 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
1931 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
1932 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
1935 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
1936 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
1937 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
1939 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
1940 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
1941 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1943 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
1944 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1945 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1946 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
1947 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
1948 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
1949 #ifdef CONFIG_X86_64
1950 rdmsrl(MSR_FS_BASE
, a
);
1951 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
1952 rdmsrl(MSR_GS_BASE
, a
);
1953 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
1955 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
1956 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
1959 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
1962 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
1964 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
1965 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
1966 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
1967 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
1968 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
1970 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
1971 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
1972 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
1973 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
1974 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
1975 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
1977 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
1978 u32 index
= vmx_msr_index
[i
];
1979 u32 data_low
, data_high
;
1983 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
1985 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
1987 data
= data_low
| ((u64
)data_high
<< 32);
1988 vmx
->host_msrs
[j
].index
= index
;
1989 vmx
->host_msrs
[j
].reserved
= 0;
1990 vmx
->host_msrs
[j
].data
= data
;
1991 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
1995 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
1997 /* 22.2.1, 20.8.1 */
1998 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2000 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2001 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2007 static int init_rmode(struct kvm
*kvm
)
2009 if (!init_rmode_tss(kvm
))
2011 if (!init_rmode_identity_map(kvm
))
2016 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2018 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2022 down_read(&vcpu
->kvm
->slots_lock
);
2023 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2028 vmx
->vcpu
.arch
.rmode
.active
= 0;
2030 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2031 kvm_set_cr8(&vmx
->vcpu
, 0);
2032 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2033 if (vmx
->vcpu
.vcpu_id
== 0)
2034 msr
|= MSR_IA32_APICBASE_BSP
;
2035 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2037 fx_init(&vmx
->vcpu
);
2040 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2041 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2043 if (vmx
->vcpu
.vcpu_id
== 0) {
2044 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2045 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2047 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2048 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2050 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
2051 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
2053 seg_setup(VCPU_SREG_DS
);
2054 seg_setup(VCPU_SREG_ES
);
2055 seg_setup(VCPU_SREG_FS
);
2056 seg_setup(VCPU_SREG_GS
);
2057 seg_setup(VCPU_SREG_SS
);
2059 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2060 vmcs_writel(GUEST_TR_BASE
, 0);
2061 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2062 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2064 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2065 vmcs_writel(GUEST_LDTR_BASE
, 0);
2066 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2067 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2069 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2070 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2071 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2073 vmcs_writel(GUEST_RFLAGS
, 0x02);
2074 if (vmx
->vcpu
.vcpu_id
== 0)
2075 vmcs_writel(GUEST_RIP
, 0xfff0);
2077 vmcs_writel(GUEST_RIP
, 0);
2078 vmcs_writel(GUEST_RSP
, 0);
2080 /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
2081 vmcs_writel(GUEST_DR7
, 0x400);
2083 vmcs_writel(GUEST_GDTR_BASE
, 0);
2084 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2086 vmcs_writel(GUEST_IDTR_BASE
, 0);
2087 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2089 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2090 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2091 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2095 /* Special registers */
2096 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2100 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2102 if (cpu_has_vmx_tpr_shadow()) {
2103 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2104 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2105 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2106 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2107 vmcs_write32(TPR_THRESHOLD
, 0);
2110 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2111 vmcs_write64(APIC_ACCESS_ADDR
,
2112 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2115 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2117 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2118 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2119 vmx_set_cr4(&vmx
->vcpu
, 0);
2120 vmx_set_efer(&vmx
->vcpu
, 0);
2121 vmx_fpu_activate(&vmx
->vcpu
);
2122 update_exception_bitmap(&vmx
->vcpu
);
2124 vpid_sync_vcpu_all(vmx
);
2129 up_read(&vcpu
->kvm
->slots_lock
);
2133 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
, int irq
)
2135 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2137 KVMTRACE_1D(INJ_VIRQ
, vcpu
, (u32
)irq
, handler
);
2139 if (vcpu
->arch
.rmode
.active
) {
2140 vmx
->rmode
.irq
.pending
= true;
2141 vmx
->rmode
.irq
.vector
= irq
;
2142 vmx
->rmode
.irq
.rip
= vmcs_readl(GUEST_RIP
);
2143 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2144 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2145 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2146 vmcs_writel(GUEST_RIP
, vmx
->rmode
.irq
.rip
- 1);
2149 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2150 irq
| INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
2153 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2155 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2156 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2157 vcpu
->arch
.nmi_pending
= 0;
2160 static void kvm_do_inject_irq(struct kvm_vcpu
*vcpu
)
2162 int word_index
= __ffs(vcpu
->arch
.irq_summary
);
2163 int bit_index
= __ffs(vcpu
->arch
.irq_pending
[word_index
]);
2164 int irq
= word_index
* BITS_PER_LONG
+ bit_index
;
2166 clear_bit(bit_index
, &vcpu
->arch
.irq_pending
[word_index
]);
2167 if (!vcpu
->arch
.irq_pending
[word_index
])
2168 clear_bit(word_index
, &vcpu
->arch
.irq_summary
);
2169 vmx_inject_irq(vcpu
, irq
);
2173 static void do_interrupt_requests(struct kvm_vcpu
*vcpu
,
2174 struct kvm_run
*kvm_run
)
2176 u32 cpu_based_vm_exec_control
;
2178 vcpu
->arch
.interrupt_window_open
=
2179 ((vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2180 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & 3) == 0);
2182 if (vcpu
->arch
.interrupt_window_open
&&
2183 vcpu
->arch
.irq_summary
&&
2184 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
) & INTR_INFO_VALID_MASK
))
2186 * If interrupts enabled, and not blocked by sti or mov ss. Good.
2188 kvm_do_inject_irq(vcpu
);
2190 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2191 if (!vcpu
->arch
.interrupt_window_open
&&
2192 (vcpu
->arch
.irq_summary
|| kvm_run
->request_interrupt_window
))
2194 * Interrupts blocked. Wait for unblock.
2196 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2198 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2199 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2202 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2205 struct kvm_userspace_memory_region tss_mem
= {
2207 .guest_phys_addr
= addr
,
2208 .memory_size
= PAGE_SIZE
* 3,
2212 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2215 kvm
->arch
.tss_addr
= addr
;
2219 static void kvm_guest_debug_pre(struct kvm_vcpu
*vcpu
)
2221 struct kvm_guest_debug
*dbg
= &vcpu
->guest_debug
;
2223 set_debugreg(dbg
->bp
[0], 0);
2224 set_debugreg(dbg
->bp
[1], 1);
2225 set_debugreg(dbg
->bp
[2], 2);
2226 set_debugreg(dbg
->bp
[3], 3);
2228 if (dbg
->singlestep
) {
2229 unsigned long flags
;
2231 flags
= vmcs_readl(GUEST_RFLAGS
);
2232 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
2233 vmcs_writel(GUEST_RFLAGS
, flags
);
2237 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2238 int vec
, u32 err_code
)
2240 if (!vcpu
->arch
.rmode
.active
)
2244 * Instruction with address size override prefix opcode 0x67
2245 * Cause the #SS fault with 0 error code in VM86 mode.
2247 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2248 if (emulate_instruction(vcpu
, NULL
, 0, 0, 0) == EMULATE_DONE
)
2253 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2255 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2256 u32 intr_info
, error_code
;
2257 unsigned long cr2
, rip
;
2259 enum emulation_result er
;
2261 vect_info
= vmx
->idt_vectoring_info
;
2262 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2264 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2265 !is_page_fault(intr_info
))
2266 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2267 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2269 if (!irqchip_in_kernel(vcpu
->kvm
) && is_external_interrupt(vect_info
)) {
2270 int irq
= vect_info
& VECTORING_INFO_VECTOR_MASK
;
2271 set_bit(irq
, vcpu
->arch
.irq_pending
);
2272 set_bit(irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
2275 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200) /* nmi */
2276 return 1; /* already handled by vmx_vcpu_run() */
2278 if (is_no_device(intr_info
)) {
2279 vmx_fpu_activate(vcpu
);
2283 if (is_invalid_opcode(intr_info
)) {
2284 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
2285 if (er
!= EMULATE_DONE
)
2286 kvm_queue_exception(vcpu
, UD_VECTOR
);
2291 rip
= vmcs_readl(GUEST_RIP
);
2292 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2293 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2294 if (is_page_fault(intr_info
)) {
2295 /* EPT won't cause page fault directly */
2298 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2299 KVMTRACE_3D(PAGE_FAULT
, vcpu
, error_code
, (u32
)cr2
,
2300 (u32
)((u64
)cr2
>> 32), handler
);
2301 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2304 if (vcpu
->arch
.rmode
.active
&&
2305 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2307 if (vcpu
->arch
.halt_request
) {
2308 vcpu
->arch
.halt_request
= 0;
2309 return kvm_emulate_halt(vcpu
);
2314 if ((intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
)) ==
2315 (INTR_TYPE_EXCEPTION
| 1)) {
2316 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2319 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2320 kvm_run
->ex
.exception
= intr_info
& INTR_INFO_VECTOR_MASK
;
2321 kvm_run
->ex
.error_code
= error_code
;
2325 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
2326 struct kvm_run
*kvm_run
)
2328 ++vcpu
->stat
.irq_exits
;
2329 KVMTRACE_1D(INTR
, vcpu
, vmcs_read32(VM_EXIT_INTR_INFO
), handler
);
2333 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2335 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2339 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2341 unsigned long exit_qualification
;
2342 int size
, down
, in
, string
, rep
;
2345 ++vcpu
->stat
.io_exits
;
2346 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2347 string
= (exit_qualification
& 16) != 0;
2350 if (emulate_instruction(vcpu
,
2351 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
2356 size
= (exit_qualification
& 7) + 1;
2357 in
= (exit_qualification
& 8) != 0;
2358 down
= (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_DF
) != 0;
2359 rep
= (exit_qualification
& 32) != 0;
2360 port
= exit_qualification
>> 16;
2362 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
2366 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2369 * Patch in the VMCALL instruction:
2371 hypercall
[0] = 0x0f;
2372 hypercall
[1] = 0x01;
2373 hypercall
[2] = 0xc1;
2376 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2378 unsigned long exit_qualification
;
2382 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2383 cr
= exit_qualification
& 15;
2384 reg
= (exit_qualification
>> 8) & 15;
2385 switch ((exit_qualification
>> 4) & 3) {
2386 case 0: /* mov to cr */
2387 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)vcpu
->arch
.regs
[reg
],
2388 (u32
)((u64
)vcpu
->arch
.regs
[reg
] >> 32), handler
);
2391 vcpu_load_rsp_rip(vcpu
);
2392 kvm_set_cr0(vcpu
, vcpu
->arch
.regs
[reg
]);
2393 skip_emulated_instruction(vcpu
);
2396 vcpu_load_rsp_rip(vcpu
);
2397 kvm_set_cr3(vcpu
, vcpu
->arch
.regs
[reg
]);
2398 skip_emulated_instruction(vcpu
);
2401 vcpu_load_rsp_rip(vcpu
);
2402 kvm_set_cr4(vcpu
, vcpu
->arch
.regs
[reg
]);
2403 skip_emulated_instruction(vcpu
);
2406 vcpu_load_rsp_rip(vcpu
);
2407 kvm_set_cr8(vcpu
, vcpu
->arch
.regs
[reg
]);
2408 skip_emulated_instruction(vcpu
);
2409 if (irqchip_in_kernel(vcpu
->kvm
))
2411 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2416 vcpu_load_rsp_rip(vcpu
);
2417 vmx_fpu_deactivate(vcpu
);
2418 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2419 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2420 vmx_fpu_activate(vcpu
);
2421 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2422 skip_emulated_instruction(vcpu
);
2424 case 1: /*mov from cr*/
2427 vcpu_load_rsp_rip(vcpu
);
2428 vcpu
->arch
.regs
[reg
] = vcpu
->arch
.cr3
;
2429 vcpu_put_rsp_rip(vcpu
);
2430 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
,
2431 (u32
)vcpu
->arch
.regs
[reg
],
2432 (u32
)((u64
)vcpu
->arch
.regs
[reg
] >> 32),
2434 skip_emulated_instruction(vcpu
);
2437 vcpu_load_rsp_rip(vcpu
);
2438 vcpu
->arch
.regs
[reg
] = kvm_get_cr8(vcpu
);
2439 vcpu_put_rsp_rip(vcpu
);
2440 KVMTRACE_2D(CR_READ
, vcpu
, (u32
)cr
,
2441 (u32
)vcpu
->arch
.regs
[reg
], handler
);
2442 skip_emulated_instruction(vcpu
);
2447 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2449 skip_emulated_instruction(vcpu
);
2454 kvm_run
->exit_reason
= 0;
2455 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2456 (int)(exit_qualification
>> 4) & 3, cr
);
2460 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2462 unsigned long exit_qualification
;
2467 * FIXME: this code assumes the host is debugging the guest.
2468 * need to deal with guest debugging itself too.
2470 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2471 dr
= exit_qualification
& 7;
2472 reg
= (exit_qualification
>> 8) & 15;
2473 vcpu_load_rsp_rip(vcpu
);
2474 if (exit_qualification
& 16) {
2486 vcpu
->arch
.regs
[reg
] = val
;
2487 KVMTRACE_2D(DR_READ
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
2491 vcpu_put_rsp_rip(vcpu
);
2492 skip_emulated_instruction(vcpu
);
2496 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2498 kvm_emulate_cpuid(vcpu
);
2502 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2504 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2507 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
2508 kvm_inject_gp(vcpu
, 0);
2512 KVMTRACE_3D(MSR_READ
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2515 /* FIXME: handling of bits 32:63 of rax, rdx */
2516 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
2517 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
2518 skip_emulated_instruction(vcpu
);
2522 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2524 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
2525 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
2526 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2528 KVMTRACE_3D(MSR_WRITE
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2531 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
2532 kvm_inject_gp(vcpu
, 0);
2536 skip_emulated_instruction(vcpu
);
2540 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
2541 struct kvm_run
*kvm_run
)
2546 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
2547 struct kvm_run
*kvm_run
)
2549 u32 cpu_based_vm_exec_control
;
2551 /* clear pending irq */
2552 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2553 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
2554 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2556 KVMTRACE_0D(PEND_INTR
, vcpu
, handler
);
2559 * If the user space waits to inject interrupts, exit as soon as
2562 if (kvm_run
->request_interrupt_window
&&
2563 !vcpu
->arch
.irq_summary
) {
2564 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2565 ++vcpu
->stat
.irq_window_exits
;
2571 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2573 skip_emulated_instruction(vcpu
);
2574 return kvm_emulate_halt(vcpu
);
2577 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2579 skip_emulated_instruction(vcpu
);
2580 kvm_emulate_hypercall(vcpu
);
2584 static int handle_wbinvd(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2586 skip_emulated_instruction(vcpu
);
2587 /* TODO: Add support for VT-d/pass-through device */
2591 static int handle_apic_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2593 u64 exit_qualification
;
2594 enum emulation_result er
;
2595 unsigned long offset
;
2597 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2598 offset
= exit_qualification
& 0xffful
;
2600 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
2602 if (er
!= EMULATE_DONE
) {
2604 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
2611 static int handle_task_switch(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2613 unsigned long exit_qualification
;
2617 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2619 reason
= (u32
)exit_qualification
>> 30;
2620 tss_selector
= exit_qualification
;
2622 return kvm_task_switch(vcpu
, tss_selector
, reason
);
2625 static int handle_ept_violation(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2627 u64 exit_qualification
;
2628 enum emulation_result er
;
2634 exit_qualification
= vmcs_read64(EXIT_QUALIFICATION
);
2636 if (exit_qualification
& (1 << 6)) {
2637 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
2641 gla_validity
= (exit_qualification
>> 7) & 0x3;
2642 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
2643 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
2644 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2645 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
2646 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS
));
2647 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
2648 (long unsigned int)exit_qualification
);
2649 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2650 kvm_run
->hw
.hardware_exit_reason
= 0;
2654 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
2655 hva
= gfn_to_hva(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2656 if (!kvm_is_error_hva(hva
)) {
2657 r
= kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
2659 printk(KERN_ERR
"EPT: Not enough memory!\n");
2665 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
2667 if (er
== EMULATE_FAIL
) {
2669 "EPT: Fail to handle EPT violation vmexit!er is %d\n",
2671 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
2672 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
2673 (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS
));
2674 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
2675 (long unsigned int)exit_qualification
);
2677 } else if (er
== EMULATE_DO_MMIO
)
2683 static int handle_nmi_window(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2685 u32 cpu_based_vm_exec_control
;
2687 /* clear pending NMI */
2688 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2689 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
2690 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2691 ++vcpu
->stat
.nmi_window_exits
;
2697 * The exit handlers return 1 if the exit was handled fully and guest execution
2698 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2699 * to be done to userspace and return 0.
2701 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
2702 struct kvm_run
*kvm_run
) = {
2703 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
2704 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
2705 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
2706 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
2707 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
2708 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
2709 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
2710 [EXIT_REASON_CPUID
] = handle_cpuid
,
2711 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
2712 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
2713 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
2714 [EXIT_REASON_HLT
] = handle_halt
,
2715 [EXIT_REASON_VMCALL
] = handle_vmcall
,
2716 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
2717 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
2718 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
2719 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
2720 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
2723 static const int kvm_vmx_max_exit_handlers
=
2724 ARRAY_SIZE(kvm_vmx_exit_handlers
);
2727 * The guest has exited. See if we can fix it or if we need userspace
2730 static int kvm_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2732 u32 exit_reason
= vmcs_read32(VM_EXIT_REASON
);
2733 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2734 u32 vectoring_info
= vmx
->idt_vectoring_info
;
2736 KVMTRACE_3D(VMEXIT
, vcpu
, exit_reason
, (u32
)vmcs_readl(GUEST_RIP
),
2737 (u32
)((u64
)vmcs_readl(GUEST_RIP
) >> 32), entryexit
);
2739 /* Access CR3 don't cause VMExit in paging mode, so we need
2740 * to sync with guest real CR3. */
2741 if (vm_need_ept() && is_paging(vcpu
)) {
2742 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
2743 ept_load_pdptrs(vcpu
);
2746 if (unlikely(vmx
->fail
)) {
2747 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2748 kvm_run
->fail_entry
.hardware_entry_failure_reason
2749 = vmcs_read32(VM_INSTRUCTION_ERROR
);
2753 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
2754 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
2755 exit_reason
!= EXIT_REASON_EPT_VIOLATION
))
2756 printk(KERN_WARNING
"%s: unexpected, valid vectoring info and "
2757 "exit reason is 0x%x\n", __func__
, exit_reason
);
2758 if (exit_reason
< kvm_vmx_max_exit_handlers
2759 && kvm_vmx_exit_handlers
[exit_reason
])
2760 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
2762 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2763 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
2768 static void update_tpr_threshold(struct kvm_vcpu
*vcpu
)
2772 if (!vm_need_tpr_shadow(vcpu
->kvm
))
2775 if (!kvm_lapic_enabled(vcpu
) ||
2776 ((max_irr
= kvm_lapic_find_highest_irr(vcpu
)) == -1)) {
2777 vmcs_write32(TPR_THRESHOLD
, 0);
2781 tpr
= (kvm_lapic_get_cr8(vcpu
) & 0x0f) << 4;
2782 vmcs_write32(TPR_THRESHOLD
, (max_irr
> tpr
) ? tpr
>> 4 : max_irr
>> 4);
2785 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2787 u32 cpu_based_vm_exec_control
;
2789 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2790 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2791 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2794 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2796 u32 cpu_based_vm_exec_control
;
2798 if (!cpu_has_virtual_nmis())
2801 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2802 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2803 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2806 static int vmx_nmi_enabled(struct kvm_vcpu
*vcpu
)
2808 u32 guest_intr
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2809 return !(guest_intr
& (GUEST_INTR_STATE_NMI
|
2810 GUEST_INTR_STATE_MOV_SS
|
2811 GUEST_INTR_STATE_STI
));
2814 static int vmx_irq_enabled(struct kvm_vcpu
*vcpu
)
2816 u32 guest_intr
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2817 return (!(guest_intr
& (GUEST_INTR_STATE_MOV_SS
|
2818 GUEST_INTR_STATE_STI
)) &&
2819 (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
));
2822 static void enable_intr_window(struct kvm_vcpu
*vcpu
)
2824 if (vcpu
->arch
.nmi_pending
)
2825 enable_nmi_window(vcpu
);
2826 else if (kvm_cpu_has_interrupt(vcpu
))
2827 enable_irq_window(vcpu
);
2830 static void vmx_intr_assist(struct kvm_vcpu
*vcpu
)
2832 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2833 u32 idtv_info_field
, intr_info_field
, exit_intr_info_field
;
2836 update_tpr_threshold(vcpu
);
2838 intr_info_field
= vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
);
2839 exit_intr_info_field
= vmcs_read32(VM_EXIT_INTR_INFO
);
2840 idtv_info_field
= vmx
->idt_vectoring_info
;
2841 if (intr_info_field
& INTR_INFO_VALID_MASK
) {
2842 if (idtv_info_field
& INTR_INFO_VALID_MASK
) {
2843 /* TODO: fault when IDT_Vectoring */
2844 if (printk_ratelimit())
2845 printk(KERN_ERR
"Fault when IDT_Vectoring\n");
2847 enable_intr_window(vcpu
);
2850 if (unlikely(idtv_info_field
& INTR_INFO_VALID_MASK
)) {
2851 if ((idtv_info_field
& VECTORING_INFO_TYPE_MASK
)
2852 == INTR_TYPE_EXT_INTR
2853 && vcpu
->arch
.rmode
.active
) {
2854 u8 vect
= idtv_info_field
& VECTORING_INFO_VECTOR_MASK
;
2856 vmx_inject_irq(vcpu
, vect
);
2857 enable_intr_window(vcpu
);
2861 KVMTRACE_1D(REDELIVER_EVT
, vcpu
, idtv_info_field
, handler
);
2865 * Clear bit "block by NMI" before VM entry if a NMI delivery
2868 if ((idtv_info_field
& VECTORING_INFO_TYPE_MASK
)
2869 == INTR_TYPE_NMI_INTR
&& cpu_has_virtual_nmis())
2870 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
2871 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2872 ~GUEST_INTR_STATE_NMI
);
2874 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, idtv_info_field
2875 & ~INTR_INFO_RESVD_BITS_MASK
);
2876 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2877 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
2879 if (unlikely(idtv_info_field
& INTR_INFO_DELIVER_CODE_MASK
))
2880 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
2881 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
2882 enable_intr_window(vcpu
);
2885 if (cpu_has_virtual_nmis()) {
2888 * Re-set bit "block by NMI" before VM entry if vmexit caused by
2889 * a guest IRET fault.
2891 if ((exit_intr_info_field
& INTR_INFO_UNBLOCK_NMI
) &&
2892 (exit_intr_info_field
& INTR_INFO_VECTOR_MASK
) != 8)
2893 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
2894 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) |
2895 GUEST_INTR_STATE_NMI
);
2896 else if (vcpu
->arch
.nmi_pending
) {
2897 if (vmx_nmi_enabled(vcpu
))
2898 vmx_inject_nmi(vcpu
);
2899 enable_intr_window(vcpu
);
2904 if (!kvm_cpu_has_interrupt(vcpu
))
2906 if (vmx_irq_enabled(vcpu
)) {
2907 vector
= kvm_cpu_get_interrupt(vcpu
);
2908 vmx_inject_irq(vcpu
, vector
);
2909 kvm_timer_intr_post(vcpu
, vector
);
2911 enable_irq_window(vcpu
);
2915 * Failure to inject an interrupt should give us the information
2916 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
2917 * when fetching the interrupt redirection bitmap in the real-mode
2918 * tss, this doesn't happen. So we do it ourselves.
2920 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
2922 vmx
->rmode
.irq
.pending
= 0;
2923 if (vmcs_readl(GUEST_RIP
) + 1 != vmx
->rmode
.irq
.rip
)
2925 vmcs_writel(GUEST_RIP
, vmx
->rmode
.irq
.rip
);
2926 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
2927 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
2928 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
2931 vmx
->idt_vectoring_info
=
2932 VECTORING_INFO_VALID_MASK
2933 | INTR_TYPE_EXT_INTR
2934 | vmx
->rmode
.irq
.vector
;
2937 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2939 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2943 * Loading guest fpu may have cleared host cr0.ts
2945 vmcs_writel(HOST_CR0
, read_cr0());
2948 /* Store host registers */
2949 #ifdef CONFIG_X86_64
2950 "push %%rdx; push %%rbp;"
2953 "push %%edx; push %%ebp;"
2956 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
2957 /* Check if vmlaunch of vmresume is needed */
2958 "cmpl $0, %c[launched](%0) \n\t"
2959 /* Load guest registers. Don't clobber flags. */
2960 #ifdef CONFIG_X86_64
2961 "mov %c[cr2](%0), %%rax \n\t"
2962 "mov %%rax, %%cr2 \n\t"
2963 "mov %c[rax](%0), %%rax \n\t"
2964 "mov %c[rbx](%0), %%rbx \n\t"
2965 "mov %c[rdx](%0), %%rdx \n\t"
2966 "mov %c[rsi](%0), %%rsi \n\t"
2967 "mov %c[rdi](%0), %%rdi \n\t"
2968 "mov %c[rbp](%0), %%rbp \n\t"
2969 "mov %c[r8](%0), %%r8 \n\t"
2970 "mov %c[r9](%0), %%r9 \n\t"
2971 "mov %c[r10](%0), %%r10 \n\t"
2972 "mov %c[r11](%0), %%r11 \n\t"
2973 "mov %c[r12](%0), %%r12 \n\t"
2974 "mov %c[r13](%0), %%r13 \n\t"
2975 "mov %c[r14](%0), %%r14 \n\t"
2976 "mov %c[r15](%0), %%r15 \n\t"
2977 "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
2979 "mov %c[cr2](%0), %%eax \n\t"
2980 "mov %%eax, %%cr2 \n\t"
2981 "mov %c[rax](%0), %%eax \n\t"
2982 "mov %c[rbx](%0), %%ebx \n\t"
2983 "mov %c[rdx](%0), %%edx \n\t"
2984 "mov %c[rsi](%0), %%esi \n\t"
2985 "mov %c[rdi](%0), %%edi \n\t"
2986 "mov %c[rbp](%0), %%ebp \n\t"
2987 "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
2989 /* Enter guest mode */
2990 "jne .Llaunched \n\t"
2991 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
2992 "jmp .Lkvm_vmx_return \n\t"
2993 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
2994 ".Lkvm_vmx_return: "
2995 /* Save guest registers, load host registers, keep flags */
2996 #ifdef CONFIG_X86_64
2997 "xchg %0, (%%rsp) \n\t"
2998 "mov %%rax, %c[rax](%0) \n\t"
2999 "mov %%rbx, %c[rbx](%0) \n\t"
3000 "pushq (%%rsp); popq %c[rcx](%0) \n\t"
3001 "mov %%rdx, %c[rdx](%0) \n\t"
3002 "mov %%rsi, %c[rsi](%0) \n\t"
3003 "mov %%rdi, %c[rdi](%0) \n\t"
3004 "mov %%rbp, %c[rbp](%0) \n\t"
3005 "mov %%r8, %c[r8](%0) \n\t"
3006 "mov %%r9, %c[r9](%0) \n\t"
3007 "mov %%r10, %c[r10](%0) \n\t"
3008 "mov %%r11, %c[r11](%0) \n\t"
3009 "mov %%r12, %c[r12](%0) \n\t"
3010 "mov %%r13, %c[r13](%0) \n\t"
3011 "mov %%r14, %c[r14](%0) \n\t"
3012 "mov %%r15, %c[r15](%0) \n\t"
3013 "mov %%cr2, %%rax \n\t"
3014 "mov %%rax, %c[cr2](%0) \n\t"
3016 "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
3018 "xchg %0, (%%esp) \n\t"
3019 "mov %%eax, %c[rax](%0) \n\t"
3020 "mov %%ebx, %c[rbx](%0) \n\t"
3021 "pushl (%%esp); popl %c[rcx](%0) \n\t"
3022 "mov %%edx, %c[rdx](%0) \n\t"
3023 "mov %%esi, %c[rsi](%0) \n\t"
3024 "mov %%edi, %c[rdi](%0) \n\t"
3025 "mov %%ebp, %c[rbp](%0) \n\t"
3026 "mov %%cr2, %%eax \n\t"
3027 "mov %%eax, %c[cr2](%0) \n\t"
3029 "pop %%ebp; pop %%ebp; pop %%edx \n\t"
3031 "setbe %c[fail](%0) \n\t"
3032 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3033 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3034 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3035 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3036 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3037 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3038 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3039 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3040 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3041 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3042 #ifdef CONFIG_X86_64
3043 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3044 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3045 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3046 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3047 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3048 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3049 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3050 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3052 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3054 #ifdef CONFIG_X86_64
3055 , "rbx", "rdi", "rsi"
3056 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3058 , "ebx", "edi", "rsi"
3062 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3063 if (vmx
->rmode
.irq
.pending
)
3064 fixup_rmode_irq(vmx
);
3066 vcpu
->arch
.interrupt_window_open
=
3067 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
3068 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
)) == 0;
3070 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3073 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3075 /* We need to handle NMIs before interrupts are enabled */
3076 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == 0x200 &&
3077 (intr_info
& INTR_INFO_VALID_MASK
)) {
3078 KVMTRACE_0D(NMI
, vcpu
, handler
);
3083 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3085 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3089 free_vmcs(vmx
->vmcs
);
3094 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3096 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3098 spin_lock(&vmx_vpid_lock
);
3100 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3101 spin_unlock(&vmx_vpid_lock
);
3102 vmx_free_vmcs(vcpu
);
3103 kfree(vmx
->host_msrs
);
3104 kfree(vmx
->guest_msrs
);
3105 kvm_vcpu_uninit(vcpu
);
3106 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3109 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3112 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3116 return ERR_PTR(-ENOMEM
);
3119 if (id
== 0 && vm_need_ept()) {
3120 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
3121 VMX_EPT_WRITABLE_MASK
|
3122 VMX_EPT_DEFAULT_MT
<< VMX_EPT_MT_EPTE_SHIFT
);
3123 kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK
,
3124 VMX_EPT_FAKE_DIRTY_MASK
, 0ull,
3125 VMX_EPT_EXECUTABLE_MASK
);
3129 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3133 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3134 if (!vmx
->guest_msrs
) {
3139 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3140 if (!vmx
->host_msrs
)
3141 goto free_guest_msrs
;
3143 vmx
->vmcs
= alloc_vmcs();
3147 vmcs_clear(vmx
->vmcs
);
3150 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3151 err
= vmx_vcpu_setup(vmx
);
3152 vmx_vcpu_put(&vmx
->vcpu
);
3156 if (vm_need_virtualize_apic_accesses(kvm
))
3157 if (alloc_apic_access_page(kvm
) != 0)
3161 if (alloc_identity_pagetable(kvm
) != 0)
3167 free_vmcs(vmx
->vmcs
);
3169 kfree(vmx
->host_msrs
);
3171 kfree(vmx
->guest_msrs
);
3173 kvm_vcpu_uninit(&vmx
->vcpu
);
3175 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3176 return ERR_PTR(err
);
3179 static void __init
vmx_check_processor_compat(void *rtn
)
3181 struct vmcs_config vmcs_conf
;
3184 if (setup_vmcs_config(&vmcs_conf
) < 0)
3186 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3187 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3188 smp_processor_id());
3193 static int get_ept_level(void)
3195 return VMX_EPT_DEFAULT_GAW
+ 1;
3198 static struct kvm_x86_ops vmx_x86_ops
= {
3199 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3200 .disabled_by_bios
= vmx_disabled_by_bios
,
3201 .hardware_setup
= hardware_setup
,
3202 .hardware_unsetup
= hardware_unsetup
,
3203 .check_processor_compatibility
= vmx_check_processor_compat
,
3204 .hardware_enable
= hardware_enable
,
3205 .hardware_disable
= hardware_disable
,
3206 .cpu_has_accelerated_tpr
= cpu_has_vmx_virtualize_apic_accesses
,
3208 .vcpu_create
= vmx_create_vcpu
,
3209 .vcpu_free
= vmx_free_vcpu
,
3210 .vcpu_reset
= vmx_vcpu_reset
,
3212 .prepare_guest_switch
= vmx_save_host_state
,
3213 .vcpu_load
= vmx_vcpu_load
,
3214 .vcpu_put
= vmx_vcpu_put
,
3216 .set_guest_debug
= set_guest_debug
,
3217 .guest_debug_pre
= kvm_guest_debug_pre
,
3218 .get_msr
= vmx_get_msr
,
3219 .set_msr
= vmx_set_msr
,
3220 .get_segment_base
= vmx_get_segment_base
,
3221 .get_segment
= vmx_get_segment
,
3222 .set_segment
= vmx_set_segment
,
3223 .get_cpl
= vmx_get_cpl
,
3224 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3225 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3226 .set_cr0
= vmx_set_cr0
,
3227 .set_cr3
= vmx_set_cr3
,
3228 .set_cr4
= vmx_set_cr4
,
3229 .set_efer
= vmx_set_efer
,
3230 .get_idt
= vmx_get_idt
,
3231 .set_idt
= vmx_set_idt
,
3232 .get_gdt
= vmx_get_gdt
,
3233 .set_gdt
= vmx_set_gdt
,
3234 .cache_regs
= vcpu_load_rsp_rip
,
3235 .decache_regs
= vcpu_put_rsp_rip
,
3236 .get_rflags
= vmx_get_rflags
,
3237 .set_rflags
= vmx_set_rflags
,
3239 .tlb_flush
= vmx_flush_tlb
,
3241 .run
= vmx_vcpu_run
,
3242 .handle_exit
= kvm_handle_exit
,
3243 .skip_emulated_instruction
= skip_emulated_instruction
,
3244 .patch_hypercall
= vmx_patch_hypercall
,
3245 .get_irq
= vmx_get_irq
,
3246 .set_irq
= vmx_inject_irq
,
3247 .queue_exception
= vmx_queue_exception
,
3248 .exception_injected
= vmx_exception_injected
,
3249 .inject_pending_irq
= vmx_intr_assist
,
3250 .inject_pending_vectors
= do_interrupt_requests
,
3252 .set_tss_addr
= vmx_set_tss_addr
,
3253 .get_tdp_level
= get_ept_level
,
3256 static int __init
vmx_init(void)
3261 vmx_io_bitmap_a
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3262 if (!vmx_io_bitmap_a
)
3265 vmx_io_bitmap_b
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3266 if (!vmx_io_bitmap_b
) {
3271 vmx_msr_bitmap
= alloc_page(GFP_KERNEL
| __GFP_HIGHMEM
);
3272 if (!vmx_msr_bitmap
) {
3278 * Allow direct access to the PC debug port (it is often used for I/O
3279 * delays, but the vmexits simply slow things down).
3281 va
= kmap(vmx_io_bitmap_a
);
3282 memset(va
, 0xff, PAGE_SIZE
);
3283 clear_bit(0x80, va
);
3284 kunmap(vmx_io_bitmap_a
);
3286 va
= kmap(vmx_io_bitmap_b
);
3287 memset(va
, 0xff, PAGE_SIZE
);
3288 kunmap(vmx_io_bitmap_b
);
3290 va
= kmap(vmx_msr_bitmap
);
3291 memset(va
, 0xff, PAGE_SIZE
);
3292 kunmap(vmx_msr_bitmap
);
3294 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
3296 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
3300 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_FS_BASE
);
3301 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_GS_BASE
);
3302 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_CS
);
3303 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_ESP
);
3304 vmx_disable_intercept_for_msr(vmx_msr_bitmap
, MSR_IA32_SYSENTER_EIP
);
3306 if (cpu_has_vmx_ept())
3307 bypass_guest_pf
= 0;
3309 if (bypass_guest_pf
)
3310 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
3317 __free_page(vmx_msr_bitmap
);
3319 __free_page(vmx_io_bitmap_b
);
3321 __free_page(vmx_io_bitmap_a
);
3325 static void __exit
vmx_exit(void)
3327 __free_page(vmx_msr_bitmap
);
3328 __free_page(vmx_io_bitmap_b
);
3329 __free_page(vmx_io_bitmap_a
);
3334 module_init(vmx_init
)
3335 module_exit(vmx_exit
)