1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
17 #include <asm/delay.h>
19 unsigned int cpu_khz
; /* TSC clocks / usec, not used here */
20 EXPORT_SYMBOL(cpu_khz
);
22 EXPORT_SYMBOL(tsc_khz
);
25 * TSC can be unstable due to cpufreq or due to unsynced TSCs
27 static int tsc_unstable
;
29 /* native_sched_clock() is called before tsc_init(), so
30 we must start with the TSC soft disabled to prevent
31 erroneous rdtsc usage on !cpu_has_tsc processors */
32 static int tsc_disabled
= -1;
35 * Scheduler clock - returns current time in nanosec units.
37 u64
native_sched_clock(void)
42 * Fall back to jiffies if there's no TSC available:
43 * ( But note that we still use it if the TSC is marked
44 * unstable. We do this because unlike Time Of Day,
45 * the scheduler clock tolerates small errors and it's
46 * very important for it to be as fast as the platform
49 if (unlikely(tsc_disabled
)) {
50 /* No locking but a rare wrong value is not a big deal: */
51 return (jiffies_64
- INITIAL_JIFFIES
) * (1000000000 / HZ
);
54 /* read the Time Stamp Counter: */
57 /* return the value in ns */
58 return cycles_2_ns(this_offset
);
61 /* We need to define a real function for sched_clock, to override the
62 weak default version */
63 #ifdef CONFIG_PARAVIRT
64 unsigned long long sched_clock(void)
66 return paravirt_sched_clock();
70 sched_clock(void) __attribute__((alias("native_sched_clock")));
73 int check_tsc_unstable(void)
77 EXPORT_SYMBOL_GPL(check_tsc_unstable
);
80 int __init
notsc_setup(char *str
)
82 printk(KERN_WARNING
"notsc: Kernel compiled with CONFIG_X86_TSC, "
83 "cannot disable TSC completely.\n");
89 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
92 int __init
notsc_setup(char *str
)
94 setup_clear_cpu_cap(X86_FEATURE_TSC
);
99 __setup("notsc", notsc_setup
);
101 #define MAX_RETRIES 5
102 #define SMI_TRESHOLD 50000
105 * Read TSC and the reference counters. Take care of SMI disturbance
107 static u64 __init
tsc_read_refs(u64
*pm
, u64
*hpet
)
112 for (i
= 0; i
< MAX_RETRIES
; i
++) {
115 *hpet
= hpet_readl(HPET_COUNTER
) & 0xFFFFFFFF;
117 *pm
= acpi_pm_read_early();
119 if ((t2
- t1
) < SMI_TRESHOLD
)
126 * native_calibrate_tsc - calibrate the tsc on boot
128 unsigned long native_calibrate_tsc(void)
131 u64 tsc1
, tsc2
, tr1
, tr2
, delta
, pm1
, pm2
, hpet1
, hpet2
;
132 int hpet
= is_hpet_enabled();
133 unsigned int tsc_khz_val
= 0;
135 local_irq_save(flags
);
137 tsc1
= tsc_read_refs(&pm1
, hpet
? &hpet1
: NULL
);
139 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
142 outb((CLOCK_TICK_RATE
/ (1000 / 50)) & 0xff, 0x42);
143 outb((CLOCK_TICK_RATE
/ (1000 / 50)) >> 8, 0x42);
145 while ((inb(0x61) & 0x20) == 0);
148 tsc2
= tsc_read_refs(&pm2
, hpet
? &hpet2
: NULL
);
150 local_irq_restore(flags
);
153 * Preset the result with the raw and inaccurate PIT
160 /* hpet or pmtimer available ? */
161 if (!hpet
&& !pm1
&& !pm2
) {
162 printk(KERN_INFO
"TSC calibrated against PIT\n");
166 /* Check, whether the sampling was disturbed by an SMI */
167 if (tsc1
== ULLONG_MAX
|| tsc2
== ULLONG_MAX
) {
168 printk(KERN_WARNING
"TSC calibration disturbed by SMI, "
169 "using PIT calibration result\n");
173 tsc2
= (tsc2
- tsc1
) * 1000000LL;
176 printk(KERN_INFO
"TSC calibrated against HPET\n");
178 hpet2
+= 0x100000000ULL
;
180 tsc1
= ((u64
)hpet2
* hpet_readl(HPET_PERIOD
));
181 do_div(tsc1
, 1000000);
183 printk(KERN_INFO
"TSC calibrated against PM_TIMER\n");
185 pm2
+= (u64
)ACPI_PM_OVRRUN
;
187 tsc1
= pm2
* 1000000000LL;
188 do_div(tsc1
, PMTMR_TICKS_PER_SEC
);
200 /* Only called from the Powernow K7 cpu freq driver */
201 int recalibrate_cpu_khz(void)
204 unsigned long cpu_khz_old
= cpu_khz
;
207 tsc_khz
= calibrate_tsc();
209 cpu_data(0).loops_per_jiffy
=
210 cpufreq_scale(cpu_data(0).loops_per_jiffy
,
211 cpu_khz_old
, cpu_khz
);
220 EXPORT_SYMBOL(recalibrate_cpu_khz
);
222 #endif /* CONFIG_X86_32 */
224 /* Accelerators for sched_clock()
225 * convert from cycles(64bits) => nanoseconds (64bits)
227 * ns = cycles / (freq / ns_per_sec)
228 * ns = cycles * (ns_per_sec / freq)
229 * ns = cycles * (10^9 / (cpu_khz * 10^3))
230 * ns = cycles * (10^6 / cpu_khz)
232 * Then we use scaling math (suggested by george@mvista.com) to get:
233 * ns = cycles * (10^6 * SC / cpu_khz) / SC
234 * ns = cycles * cyc2ns_scale / SC
236 * And since SC is a constant power of two, we can convert the div
239 * We can use khz divisor instead of mhz to keep a better precision, since
240 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
241 * (mathieu.desnoyers@polymtl.ca)
243 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
246 DEFINE_PER_CPU(unsigned long, cyc2ns
);
248 static void set_cyc2ns_scale(unsigned long cpu_khz
, int cpu
)
250 unsigned long long tsc_now
, ns_now
;
251 unsigned long flags
, *scale
;
253 local_irq_save(flags
);
254 sched_clock_idle_sleep_event();
256 scale
= &per_cpu(cyc2ns
, cpu
);
259 ns_now
= __cycles_2_ns(tsc_now
);
262 *scale
= (NSEC_PER_MSEC
<< CYC2NS_SCALE_FACTOR
)/cpu_khz
;
264 sched_clock_idle_wakeup_event(0);
265 local_irq_restore(flags
);
268 #ifdef CONFIG_CPU_FREQ
270 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
273 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
274 * not that important because current Opteron setups do not support
275 * scaling on SMP anyroads.
277 * Should fix up last_tsc too. Currently gettimeofday in the
278 * first tick after the change will be slightly wrong.
281 static unsigned int ref_freq
;
282 static unsigned long loops_per_jiffy_ref
;
283 static unsigned long tsc_khz_ref
;
285 static int time_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
288 struct cpufreq_freqs
*freq
= data
;
289 unsigned long *lpj
, dummy
;
291 if (cpu_has(&cpu_data(freq
->cpu
), X86_FEATURE_CONSTANT_TSC
))
295 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
297 lpj
= &cpu_data(freq
->cpu
).loops_per_jiffy
;
299 lpj
= &boot_cpu_data
.loops_per_jiffy
;
303 ref_freq
= freq
->old
;
304 loops_per_jiffy_ref
= *lpj
;
305 tsc_khz_ref
= tsc_khz
;
307 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
308 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
309 (val
== CPUFREQ_RESUMECHANGE
)) {
310 *lpj
= cpufreq_scale(loops_per_jiffy_ref
, ref_freq
, freq
->new);
312 tsc_khz
= cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
313 if (!(freq
->flags
& CPUFREQ_CONST_LOOPS
))
314 mark_tsc_unstable("cpufreq changes");
317 set_cyc2ns_scale(tsc_khz_ref
, freq
->cpu
);
322 static struct notifier_block time_cpufreq_notifier_block
= {
323 .notifier_call
= time_cpufreq_notifier
326 static int __init
cpufreq_tsc(void)
328 cpufreq_register_notifier(&time_cpufreq_notifier_block
,
329 CPUFREQ_TRANSITION_NOTIFIER
);
333 core_initcall(cpufreq_tsc
);
335 #endif /* CONFIG_CPU_FREQ */
337 /* clocksource code */
339 static struct clocksource clocksource_tsc
;
342 * We compare the TSC to the cycle_last value in the clocksource
343 * structure to avoid a nasty time-warp. This can be observed in a
344 * very small window right after one CPU updated cycle_last under
345 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
346 * is smaller than the cycle_last reference value due to a TSC which
347 * is slighty behind. This delta is nowhere else observable, but in
348 * that case it results in a forward time jump in the range of hours
349 * due to the unsigned delta calculation of the time keeping core
350 * code, which is necessary to support wrapping clocksources like pm
353 static cycle_t
read_tsc(void)
355 cycle_t ret
= (cycle_t
)get_cycles();
357 return ret
>= clocksource_tsc
.cycle_last
?
358 ret
: clocksource_tsc
.cycle_last
;
362 static cycle_t __vsyscall_fn
vread_tsc(void)
364 cycle_t ret
= (cycle_t
)vget_cycles();
366 return ret
>= __vsyscall_gtod_data
.clock
.cycle_last
?
367 ret
: __vsyscall_gtod_data
.clock
.cycle_last
;
371 static struct clocksource clocksource_tsc
= {
375 .mask
= CLOCKSOURCE_MASK(64),
377 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
|
378 CLOCK_SOURCE_MUST_VERIFY
,
384 void mark_tsc_unstable(char *reason
)
388 printk("Marking TSC unstable due to %s\n", reason
);
389 /* Change only the rating, when not registered */
390 if (clocksource_tsc
.mult
)
391 clocksource_change_rating(&clocksource_tsc
, 0);
393 clocksource_tsc
.rating
= 0;
397 EXPORT_SYMBOL_GPL(mark_tsc_unstable
);
399 static int __init
dmi_mark_tsc_unstable(const struct dmi_system_id
*d
)
401 printk(KERN_NOTICE
"%s detected: marking TSC unstable.\n",
407 /* List of systems that have known TSC problems */
408 static struct dmi_system_id __initdata bad_tsc_dmi_table
[] = {
410 .callback
= dmi_mark_tsc_unstable
,
411 .ident
= "IBM Thinkpad 380XD",
413 DMI_MATCH(DMI_BOARD_VENDOR
, "IBM"),
414 DMI_MATCH(DMI_BOARD_NAME
, "2635FA0"),
421 * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
423 #ifdef CONFIG_MGEODE_LX
424 /* RTSC counts during suspend */
425 #define RTSC_SUSP 0x100
427 static void __init
check_geode_tsc_reliable(void)
429 unsigned long res_low
, res_high
;
431 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0
, &res_low
, &res_high
);
432 if (res_low
& RTSC_SUSP
)
433 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_MUST_VERIFY
;
436 static inline void check_geode_tsc_reliable(void) { }
440 * Make an educated guess if the TSC is trustworthy and synchronized
443 __cpuinit
int unsynchronized_tsc(void)
445 if (!cpu_has_tsc
|| tsc_unstable
)
449 if (apic_is_clustered_box())
453 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
456 * Intel systems are normally all synchronized.
457 * Exceptions must mark TSC as unstable:
459 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
) {
460 /* assume multi socket systems are not synchronized: */
461 if (num_possible_cpus() > 1)
468 static void __init
init_tsc_clocksource(void)
470 clocksource_tsc
.mult
= clocksource_khz2mult(tsc_khz
,
471 clocksource_tsc
.shift
);
472 /* lower the rating if we already know its unstable: */
473 if (check_tsc_unstable()) {
474 clocksource_tsc
.rating
= 0;
475 clocksource_tsc
.flags
&= ~CLOCK_SOURCE_IS_CONTINUOUS
;
477 clocksource_register(&clocksource_tsc
);
480 void __init
tsc_init(void)
488 tsc_khz
= calibrate_tsc();
492 mark_tsc_unstable("could not calculate TSC khz");
497 if (cpu_has(&boot_cpu_data
, X86_FEATURE_CONSTANT_TSC
) &&
498 (boot_cpu_data
.x86_vendor
== X86_VENDOR_AMD
))
499 cpu_khz
= calibrate_cpu();
502 lpj
= ((u64
)tsc_khz
* 1000);
506 printk("Detected %lu.%03lu MHz processor.\n",
507 (unsigned long)cpu_khz
/ 1000,
508 (unsigned long)cpu_khz
% 1000);
511 * Secondary CPUs do not run through tsc_init(), so set up
512 * all the scale factors for all CPUs, assuming the same
513 * speed as the bootup CPU. (cpufreq notifiers will fix this
514 * up if their speed diverges)
516 for_each_possible_cpu(cpu
)
517 set_cyc2ns_scale(cpu_khz
, cpu
);
519 if (tsc_disabled
> 0)
522 /* now allow native_sched_clock() to use rdtsc */
526 /* Check and install the TSC clocksource */
527 dmi_check_system(bad_tsc_dmi_table
);
529 if (unsynchronized_tsc())
530 mark_tsc_unstable("TSCs unsynchronized");
532 check_geode_tsc_reliable();
533 init_tsc_clocksource();