KVM: Support assigning userspace memory to the guest
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / kvm_main.c
blob22b143feb66d79f702fbf642c5309e4507f2642d
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
21 #include "irq.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
45 #include <asm/processor.h>
46 #include <asm/msr.h>
47 #include <asm/io.h>
48 #include <asm/uaccess.h>
49 #include <asm/desc.h>
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
54 static DEFINE_SPINLOCK(kvm_lock);
55 static LIST_HEAD(vm_list);
57 static cpumask_t cpus_hardware_enabled;
59 struct kvm_x86_ops *kvm_x86_ops;
60 struct kmem_cache *kvm_vcpu_cache;
61 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
63 static __read_mostly struct preempt_ops kvm_preempt_ops;
65 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
67 static struct kvm_stats_debugfs_item {
68 const char *name;
69 int offset;
70 struct dentry *dentry;
71 } debugfs_entries[] = {
72 { "pf_fixed", STAT_OFFSET(pf_fixed) },
73 { "pf_guest", STAT_OFFSET(pf_guest) },
74 { "tlb_flush", STAT_OFFSET(tlb_flush) },
75 { "invlpg", STAT_OFFSET(invlpg) },
76 { "exits", STAT_OFFSET(exits) },
77 { "io_exits", STAT_OFFSET(io_exits) },
78 { "mmio_exits", STAT_OFFSET(mmio_exits) },
79 { "signal_exits", STAT_OFFSET(signal_exits) },
80 { "irq_window", STAT_OFFSET(irq_window_exits) },
81 { "halt_exits", STAT_OFFSET(halt_exits) },
82 { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
83 { "request_irq", STAT_OFFSET(request_irq_exits) },
84 { "irq_exits", STAT_OFFSET(irq_exits) },
85 { "light_exits", STAT_OFFSET(light_exits) },
86 { "efer_reload", STAT_OFFSET(efer_reload) },
87 { NULL }
90 static struct dentry *debugfs_dir;
92 #define MAX_IO_MSRS 256
94 #define CR0_RESERVED_BITS \
95 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
96 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
97 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
98 #define CR4_RESERVED_BITS \
99 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
100 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
101 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
102 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
104 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
105 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
107 #ifdef CONFIG_X86_64
108 /* LDT or TSS descriptor in the GDT. 16 bytes. */
109 struct segment_descriptor_64 {
110 struct segment_descriptor s;
111 u32 base_higher;
112 u32 pad_zero;
115 #endif
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
120 unsigned long segment_base(u16 selector)
122 struct descriptor_table gdt;
123 struct segment_descriptor *d;
124 unsigned long table_base;
125 unsigned long v;
127 if (selector == 0)
128 return 0;
130 asm("sgdt %0" : "=m"(gdt));
131 table_base = gdt.base;
133 if (selector & 4) { /* from ldt */
134 u16 ldt_selector;
136 asm("sldt %0" : "=g"(ldt_selector));
137 table_base = segment_base(ldt_selector);
139 d = (struct segment_descriptor *)(table_base + (selector & ~7));
140 v = d->base_low | ((unsigned long)d->base_mid << 16) |
141 ((unsigned long)d->base_high << 24);
142 #ifdef CONFIG_X86_64
143 if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
144 v |= ((unsigned long) \
145 ((struct segment_descriptor_64 *)d)->base_higher) << 32;
146 #endif
147 return v;
149 EXPORT_SYMBOL_GPL(segment_base);
151 static inline int valid_vcpu(int n)
153 return likely(n >= 0 && n < KVM_MAX_VCPUS);
156 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
158 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
159 return;
161 vcpu->guest_fpu_loaded = 1;
162 fx_save(&vcpu->host_fx_image);
163 fx_restore(&vcpu->guest_fx_image);
165 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
167 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
169 if (!vcpu->guest_fpu_loaded)
170 return;
172 vcpu->guest_fpu_loaded = 0;
173 fx_save(&vcpu->guest_fx_image);
174 fx_restore(&vcpu->host_fx_image);
176 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
179 * Switches to specified vcpu, until a matching vcpu_put()
181 static void vcpu_load(struct kvm_vcpu *vcpu)
183 int cpu;
185 mutex_lock(&vcpu->mutex);
186 cpu = get_cpu();
187 preempt_notifier_register(&vcpu->preempt_notifier);
188 kvm_x86_ops->vcpu_load(vcpu, cpu);
189 put_cpu();
192 static void vcpu_put(struct kvm_vcpu *vcpu)
194 preempt_disable();
195 kvm_x86_ops->vcpu_put(vcpu);
196 preempt_notifier_unregister(&vcpu->preempt_notifier);
197 preempt_enable();
198 mutex_unlock(&vcpu->mutex);
201 static void ack_flush(void *_completed)
205 void kvm_flush_remote_tlbs(struct kvm *kvm)
207 int i, cpu;
208 cpumask_t cpus;
209 struct kvm_vcpu *vcpu;
211 cpus_clear(cpus);
212 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
213 vcpu = kvm->vcpus[i];
214 if (!vcpu)
215 continue;
216 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
217 continue;
218 cpu = vcpu->cpu;
219 if (cpu != -1 && cpu != raw_smp_processor_id())
220 cpu_set(cpu, cpus);
222 smp_call_function_mask(cpus, ack_flush, NULL, 1);
225 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
227 struct page *page;
228 int r;
230 mutex_init(&vcpu->mutex);
231 vcpu->cpu = -1;
232 vcpu->mmu.root_hpa = INVALID_PAGE;
233 vcpu->kvm = kvm;
234 vcpu->vcpu_id = id;
235 if (!irqchip_in_kernel(kvm) || id == 0)
236 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
237 else
238 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
239 init_waitqueue_head(&vcpu->wq);
241 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
242 if (!page) {
243 r = -ENOMEM;
244 goto fail;
246 vcpu->run = page_address(page);
248 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
249 if (!page) {
250 r = -ENOMEM;
251 goto fail_free_run;
253 vcpu->pio_data = page_address(page);
255 r = kvm_mmu_create(vcpu);
256 if (r < 0)
257 goto fail_free_pio_data;
259 if (irqchip_in_kernel(kvm)) {
260 r = kvm_create_lapic(vcpu);
261 if (r < 0)
262 goto fail_mmu_destroy;
265 return 0;
267 fail_mmu_destroy:
268 kvm_mmu_destroy(vcpu);
269 fail_free_pio_data:
270 free_page((unsigned long)vcpu->pio_data);
271 fail_free_run:
272 free_page((unsigned long)vcpu->run);
273 fail:
274 return r;
276 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
278 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
280 kvm_free_lapic(vcpu);
281 kvm_mmu_destroy(vcpu);
282 free_page((unsigned long)vcpu->pio_data);
283 free_page((unsigned long)vcpu->run);
285 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
287 static struct kvm *kvm_create_vm(void)
289 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
291 if (!kvm)
292 return ERR_PTR(-ENOMEM);
294 kvm_io_bus_init(&kvm->pio_bus);
295 mutex_init(&kvm->lock);
296 INIT_LIST_HEAD(&kvm->active_mmu_pages);
297 kvm_io_bus_init(&kvm->mmio_bus);
298 spin_lock(&kvm_lock);
299 list_add(&kvm->vm_list, &vm_list);
300 spin_unlock(&kvm_lock);
301 return kvm;
304 static void kvm_free_userspace_physmem(struct kvm_memory_slot *free)
306 int i;
308 for (i = 0; i < free->npages; ++i) {
309 if (free->phys_mem[i]) {
310 if (!PageReserved(free->phys_mem[i]))
311 SetPageDirty(free->phys_mem[i]);
312 page_cache_release(free->phys_mem[i]);
317 static void kvm_free_kernel_physmem(struct kvm_memory_slot *free)
319 int i;
321 for (i = 0; i < free->npages; ++i)
322 if (free->phys_mem[i])
323 __free_page(free->phys_mem[i]);
327 * Free any memory in @free but not in @dont.
329 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
330 struct kvm_memory_slot *dont)
332 if (!dont || free->phys_mem != dont->phys_mem)
333 if (free->phys_mem) {
334 if (free->user_alloc)
335 kvm_free_userspace_physmem(free);
336 else
337 kvm_free_kernel_physmem(free);
338 vfree(free->phys_mem);
340 if (!dont || free->rmap != dont->rmap)
341 vfree(free->rmap);
343 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
344 vfree(free->dirty_bitmap);
346 free->phys_mem = NULL;
347 free->npages = 0;
348 free->dirty_bitmap = NULL;
351 static void kvm_free_physmem(struct kvm *kvm)
353 int i;
355 for (i = 0; i < kvm->nmemslots; ++i)
356 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
359 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
361 int i;
363 for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
364 if (vcpu->pio.guest_pages[i]) {
365 __free_page(vcpu->pio.guest_pages[i]);
366 vcpu->pio.guest_pages[i] = NULL;
370 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
372 vcpu_load(vcpu);
373 kvm_mmu_unload(vcpu);
374 vcpu_put(vcpu);
377 static void kvm_free_vcpus(struct kvm *kvm)
379 unsigned int i;
382 * Unpin any mmu pages first.
384 for (i = 0; i < KVM_MAX_VCPUS; ++i)
385 if (kvm->vcpus[i])
386 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
387 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
388 if (kvm->vcpus[i]) {
389 kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
390 kvm->vcpus[i] = NULL;
396 static void kvm_destroy_vm(struct kvm *kvm)
398 spin_lock(&kvm_lock);
399 list_del(&kvm->vm_list);
400 spin_unlock(&kvm_lock);
401 kvm_io_bus_destroy(&kvm->pio_bus);
402 kvm_io_bus_destroy(&kvm->mmio_bus);
403 kfree(kvm->vpic);
404 kfree(kvm->vioapic);
405 kvm_free_vcpus(kvm);
406 kvm_free_physmem(kvm);
407 kfree(kvm);
410 static int kvm_vm_release(struct inode *inode, struct file *filp)
412 struct kvm *kvm = filp->private_data;
414 kvm_destroy_vm(kvm);
415 return 0;
418 static void inject_gp(struct kvm_vcpu *vcpu)
420 kvm_x86_ops->inject_gp(vcpu, 0);
424 * Load the pae pdptrs. Return true is they are all valid.
426 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
428 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430 int i;
431 int ret;
432 u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
434 mutex_lock(&vcpu->kvm->lock);
435 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
436 offset * sizeof(u64), sizeof(pdpte));
437 if (ret < 0) {
438 ret = 0;
439 goto out;
441 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
443 ret = 0;
444 goto out;
447 ret = 1;
449 memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
450 out:
451 mutex_unlock(&vcpu->kvm->lock);
453 return ret;
456 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
458 if (cr0 & CR0_RESERVED_BITS) {
459 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
460 cr0, vcpu->cr0);
461 inject_gp(vcpu);
462 return;
465 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
466 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
467 inject_gp(vcpu);
468 return;
471 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
472 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
473 "and a clear PE flag\n");
474 inject_gp(vcpu);
475 return;
478 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
479 #ifdef CONFIG_X86_64
480 if ((vcpu->shadow_efer & EFER_LME)) {
481 int cs_db, cs_l;
483 if (!is_pae(vcpu)) {
484 printk(KERN_DEBUG "set_cr0: #GP, start paging "
485 "in long mode while PAE is disabled\n");
486 inject_gp(vcpu);
487 return;
489 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
490 if (cs_l) {
491 printk(KERN_DEBUG "set_cr0: #GP, start paging "
492 "in long mode while CS.L == 1\n");
493 inject_gp(vcpu);
494 return;
497 } else
498 #endif
499 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
500 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
501 "reserved bits\n");
502 inject_gp(vcpu);
503 return;
508 kvm_x86_ops->set_cr0(vcpu, cr0);
509 vcpu->cr0 = cr0;
511 mutex_lock(&vcpu->kvm->lock);
512 kvm_mmu_reset_context(vcpu);
513 mutex_unlock(&vcpu->kvm->lock);
514 return;
516 EXPORT_SYMBOL_GPL(set_cr0);
518 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
520 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
522 EXPORT_SYMBOL_GPL(lmsw);
524 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
526 if (cr4 & CR4_RESERVED_BITS) {
527 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
528 inject_gp(vcpu);
529 return;
532 if (is_long_mode(vcpu)) {
533 if (!(cr4 & X86_CR4_PAE)) {
534 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
535 "in long mode\n");
536 inject_gp(vcpu);
537 return;
539 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
540 && !load_pdptrs(vcpu, vcpu->cr3)) {
541 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
542 inject_gp(vcpu);
543 return;
546 if (cr4 & X86_CR4_VMXE) {
547 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
548 inject_gp(vcpu);
549 return;
551 kvm_x86_ops->set_cr4(vcpu, cr4);
552 vcpu->cr4 = cr4;
553 mutex_lock(&vcpu->kvm->lock);
554 kvm_mmu_reset_context(vcpu);
555 mutex_unlock(&vcpu->kvm->lock);
557 EXPORT_SYMBOL_GPL(set_cr4);
559 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
561 if (is_long_mode(vcpu)) {
562 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
563 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
564 inject_gp(vcpu);
565 return;
567 } else {
568 if (is_pae(vcpu)) {
569 if (cr3 & CR3_PAE_RESERVED_BITS) {
570 printk(KERN_DEBUG
571 "set_cr3: #GP, reserved bits\n");
572 inject_gp(vcpu);
573 return;
575 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
576 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
577 "reserved bits\n");
578 inject_gp(vcpu);
579 return;
583 * We don't check reserved bits in nonpae mode, because
584 * this isn't enforced, and VMware depends on this.
588 mutex_lock(&vcpu->kvm->lock);
590 * Does the new cr3 value map to physical memory? (Note, we
591 * catch an invalid cr3 even in real-mode, because it would
592 * cause trouble later on when we turn on paging anyway.)
594 * A real CPU would silently accept an invalid cr3 and would
595 * attempt to use it - with largely undefined (and often hard
596 * to debug) behavior on the guest side.
598 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
599 inject_gp(vcpu);
600 else {
601 vcpu->cr3 = cr3;
602 vcpu->mmu.new_cr3(vcpu);
604 mutex_unlock(&vcpu->kvm->lock);
606 EXPORT_SYMBOL_GPL(set_cr3);
608 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
610 if (cr8 & CR8_RESERVED_BITS) {
611 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
612 inject_gp(vcpu);
613 return;
615 if (irqchip_in_kernel(vcpu->kvm))
616 kvm_lapic_set_tpr(vcpu, cr8);
617 else
618 vcpu->cr8 = cr8;
620 EXPORT_SYMBOL_GPL(set_cr8);
622 unsigned long get_cr8(struct kvm_vcpu *vcpu)
624 if (irqchip_in_kernel(vcpu->kvm))
625 return kvm_lapic_get_cr8(vcpu);
626 else
627 return vcpu->cr8;
629 EXPORT_SYMBOL_GPL(get_cr8);
631 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
633 if (irqchip_in_kernel(vcpu->kvm))
634 return vcpu->apic_base;
635 else
636 return vcpu->apic_base;
638 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
640 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
642 /* TODO: reserve bits check */
643 if (irqchip_in_kernel(vcpu->kvm))
644 kvm_lapic_set_base(vcpu, data);
645 else
646 vcpu->apic_base = data;
648 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
650 void fx_init(struct kvm_vcpu *vcpu)
652 unsigned after_mxcsr_mask;
654 /* Initialize guest FPU by resetting ours and saving into guest's */
655 preempt_disable();
656 fx_save(&vcpu->host_fx_image);
657 fpu_init();
658 fx_save(&vcpu->guest_fx_image);
659 fx_restore(&vcpu->host_fx_image);
660 preempt_enable();
662 vcpu->cr0 |= X86_CR0_ET;
663 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
664 vcpu->guest_fx_image.mxcsr = 0x1f80;
665 memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
666 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
668 EXPORT_SYMBOL_GPL(fx_init);
671 * Allocate some memory and give it an address in the guest physical address
672 * space.
674 * Discontiguous memory is allowed, mostly for framebuffers.
676 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
677 struct
678 kvm_userspace_memory_region *mem,
679 int user_alloc)
681 int r;
682 gfn_t base_gfn;
683 unsigned long npages;
684 unsigned long i;
685 struct kvm_memory_slot *memslot;
686 struct kvm_memory_slot old, new;
688 r = -EINVAL;
689 /* General sanity checks */
690 if (mem->memory_size & (PAGE_SIZE - 1))
691 goto out;
692 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
693 goto out;
694 if (mem->slot >= KVM_MEMORY_SLOTS)
695 goto out;
696 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
697 goto out;
699 memslot = &kvm->memslots[mem->slot];
700 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
701 npages = mem->memory_size >> PAGE_SHIFT;
703 if (!npages)
704 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
706 mutex_lock(&kvm->lock);
708 new = old = *memslot;
710 new.base_gfn = base_gfn;
711 new.npages = npages;
712 new.flags = mem->flags;
714 /* Disallow changing a memory slot's size. */
715 r = -EINVAL;
716 if (npages && old.npages && npages != old.npages)
717 goto out_unlock;
719 /* Check for overlaps */
720 r = -EEXIST;
721 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
722 struct kvm_memory_slot *s = &kvm->memslots[i];
724 if (s == memslot)
725 continue;
726 if (!((base_gfn + npages <= s->base_gfn) ||
727 (base_gfn >= s->base_gfn + s->npages)))
728 goto out_unlock;
731 /* Deallocate if slot is being removed */
732 if (!npages)
733 new.phys_mem = NULL;
735 /* Free page dirty bitmap if unneeded */
736 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
737 new.dirty_bitmap = NULL;
739 r = -ENOMEM;
741 /* Allocate if a slot is being created */
742 if (npages && !new.phys_mem) {
743 new.phys_mem = vmalloc(npages * sizeof(struct page *));
745 if (!new.phys_mem)
746 goto out_unlock;
748 new.rmap = vmalloc(npages * sizeof(struct page *));
750 if (!new.rmap)
751 goto out_unlock;
753 memset(new.phys_mem, 0, npages * sizeof(struct page *));
754 memset(new.rmap, 0, npages * sizeof(*new.rmap));
755 if (user_alloc) {
756 unsigned long pages_num;
758 new.user_alloc = 1;
759 down_read(&current->mm->mmap_sem);
761 pages_num = get_user_pages(current, current->mm,
762 mem->userspace_addr,
763 npages, 1, 1, new.phys_mem,
764 NULL);
766 up_read(&current->mm->mmap_sem);
767 if (pages_num != npages)
768 goto out_unlock;
769 } else {
770 for (i = 0; i < npages; ++i) {
771 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
772 | __GFP_ZERO);
773 if (!new.phys_mem[i])
774 goto out_unlock;
779 /* Allocate page dirty bitmap if needed */
780 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
781 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
783 new.dirty_bitmap = vmalloc(dirty_bytes);
784 if (!new.dirty_bitmap)
785 goto out_unlock;
786 memset(new.dirty_bitmap, 0, dirty_bytes);
789 if (mem->slot >= kvm->nmemslots)
790 kvm->nmemslots = mem->slot + 1;
792 if (!kvm->n_requested_mmu_pages) {
793 unsigned int n_pages;
795 if (npages) {
796 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
797 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
798 n_pages);
799 } else {
800 unsigned int nr_mmu_pages;
802 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
803 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
804 nr_mmu_pages = max(nr_mmu_pages,
805 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
806 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
810 *memslot = new;
812 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
813 kvm_flush_remote_tlbs(kvm);
815 mutex_unlock(&kvm->lock);
817 kvm_free_physmem_slot(&old, &new);
818 return 0;
820 out_unlock:
821 mutex_unlock(&kvm->lock);
822 kvm_free_physmem_slot(&new, &old);
823 out:
824 return r;
827 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
828 u32 kvm_nr_mmu_pages)
830 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
831 return -EINVAL;
833 mutex_lock(&kvm->lock);
835 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
836 kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
838 mutex_unlock(&kvm->lock);
839 return 0;
842 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
844 return kvm->n_alloc_mmu_pages;
848 * Get (and clear) the dirty memory log for a memory slot.
850 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
851 struct kvm_dirty_log *log)
853 struct kvm_memory_slot *memslot;
854 int r, i;
855 int n;
856 unsigned long any = 0;
858 mutex_lock(&kvm->lock);
860 r = -EINVAL;
861 if (log->slot >= KVM_MEMORY_SLOTS)
862 goto out;
864 memslot = &kvm->memslots[log->slot];
865 r = -ENOENT;
866 if (!memslot->dirty_bitmap)
867 goto out;
869 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
871 for (i = 0; !any && i < n/sizeof(long); ++i)
872 any = memslot->dirty_bitmap[i];
874 r = -EFAULT;
875 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
876 goto out;
878 /* If nothing is dirty, don't bother messing with page tables. */
879 if (any) {
880 kvm_mmu_slot_remove_write_access(kvm, log->slot);
881 kvm_flush_remote_tlbs(kvm);
882 memset(memslot->dirty_bitmap, 0, n);
885 r = 0;
887 out:
888 mutex_unlock(&kvm->lock);
889 return r;
893 * Set a new alias region. Aliases map a portion of physical memory into
894 * another portion. This is useful for memory windows, for example the PC
895 * VGA region.
897 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
898 struct kvm_memory_alias *alias)
900 int r, n;
901 struct kvm_mem_alias *p;
903 r = -EINVAL;
904 /* General sanity checks */
905 if (alias->memory_size & (PAGE_SIZE - 1))
906 goto out;
907 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
908 goto out;
909 if (alias->slot >= KVM_ALIAS_SLOTS)
910 goto out;
911 if (alias->guest_phys_addr + alias->memory_size
912 < alias->guest_phys_addr)
913 goto out;
914 if (alias->target_phys_addr + alias->memory_size
915 < alias->target_phys_addr)
916 goto out;
918 mutex_lock(&kvm->lock);
920 p = &kvm->aliases[alias->slot];
921 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
922 p->npages = alias->memory_size >> PAGE_SHIFT;
923 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
925 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
926 if (kvm->aliases[n - 1].npages)
927 break;
928 kvm->naliases = n;
930 kvm_mmu_zap_all(kvm);
932 mutex_unlock(&kvm->lock);
934 return 0;
936 out:
937 return r;
940 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
942 int r;
944 r = 0;
945 switch (chip->chip_id) {
946 case KVM_IRQCHIP_PIC_MASTER:
947 memcpy(&chip->chip.pic,
948 &pic_irqchip(kvm)->pics[0],
949 sizeof(struct kvm_pic_state));
950 break;
951 case KVM_IRQCHIP_PIC_SLAVE:
952 memcpy(&chip->chip.pic,
953 &pic_irqchip(kvm)->pics[1],
954 sizeof(struct kvm_pic_state));
955 break;
956 case KVM_IRQCHIP_IOAPIC:
957 memcpy(&chip->chip.ioapic,
958 ioapic_irqchip(kvm),
959 sizeof(struct kvm_ioapic_state));
960 break;
961 default:
962 r = -EINVAL;
963 break;
965 return r;
968 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
970 int r;
972 r = 0;
973 switch (chip->chip_id) {
974 case KVM_IRQCHIP_PIC_MASTER:
975 memcpy(&pic_irqchip(kvm)->pics[0],
976 &chip->chip.pic,
977 sizeof(struct kvm_pic_state));
978 break;
979 case KVM_IRQCHIP_PIC_SLAVE:
980 memcpy(&pic_irqchip(kvm)->pics[1],
981 &chip->chip.pic,
982 sizeof(struct kvm_pic_state));
983 break;
984 case KVM_IRQCHIP_IOAPIC:
985 memcpy(ioapic_irqchip(kvm),
986 &chip->chip.ioapic,
987 sizeof(struct kvm_ioapic_state));
988 break;
989 default:
990 r = -EINVAL;
991 break;
993 kvm_pic_update_irq(pic_irqchip(kvm));
994 return r;
997 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
999 int i;
1000 struct kvm_mem_alias *alias;
1002 for (i = 0; i < kvm->naliases; ++i) {
1003 alias = &kvm->aliases[i];
1004 if (gfn >= alias->base_gfn
1005 && gfn < alias->base_gfn + alias->npages)
1006 return alias->target_gfn + gfn - alias->base_gfn;
1008 return gfn;
1011 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1013 int i;
1015 for (i = 0; i < kvm->nmemslots; ++i) {
1016 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1018 if (gfn >= memslot->base_gfn
1019 && gfn < memslot->base_gfn + memslot->npages)
1020 return memslot;
1022 return NULL;
1025 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1027 gfn = unalias_gfn(kvm, gfn);
1028 return __gfn_to_memslot(kvm, gfn);
1031 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1033 struct kvm_memory_slot *slot;
1035 gfn = unalias_gfn(kvm, gfn);
1036 slot = __gfn_to_memslot(kvm, gfn);
1037 if (!slot)
1038 return NULL;
1039 return slot->phys_mem[gfn - slot->base_gfn];
1041 EXPORT_SYMBOL_GPL(gfn_to_page);
1043 static int next_segment(unsigned long len, int offset)
1045 if (len > PAGE_SIZE - offset)
1046 return PAGE_SIZE - offset;
1047 else
1048 return len;
1051 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1052 int len)
1054 void *page_virt;
1055 struct page *page;
1057 page = gfn_to_page(kvm, gfn);
1058 if (!page)
1059 return -EFAULT;
1060 page_virt = kmap_atomic(page, KM_USER0);
1062 memcpy(data, page_virt + offset, len);
1064 kunmap_atomic(page_virt, KM_USER0);
1065 return 0;
1067 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1069 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1071 gfn_t gfn = gpa >> PAGE_SHIFT;
1072 int seg;
1073 int offset = offset_in_page(gpa);
1074 int ret;
1076 while ((seg = next_segment(len, offset)) != 0) {
1077 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1078 if (ret < 0)
1079 return ret;
1080 offset = 0;
1081 len -= seg;
1082 data += seg;
1083 ++gfn;
1085 return 0;
1087 EXPORT_SYMBOL_GPL(kvm_read_guest);
1089 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1090 int offset, int len)
1092 void *page_virt;
1093 struct page *page;
1095 page = gfn_to_page(kvm, gfn);
1096 if (!page)
1097 return -EFAULT;
1098 page_virt = kmap_atomic(page, KM_USER0);
1100 memcpy(page_virt + offset, data, len);
1102 kunmap_atomic(page_virt, KM_USER0);
1103 mark_page_dirty(kvm, gfn);
1104 return 0;
1106 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1108 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1109 unsigned long len)
1111 gfn_t gfn = gpa >> PAGE_SHIFT;
1112 int seg;
1113 int offset = offset_in_page(gpa);
1114 int ret;
1116 while ((seg = next_segment(len, offset)) != 0) {
1117 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1118 if (ret < 0)
1119 return ret;
1120 offset = 0;
1121 len -= seg;
1122 data += seg;
1123 ++gfn;
1125 return 0;
1128 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1130 void *page_virt;
1131 struct page *page;
1133 page = gfn_to_page(kvm, gfn);
1134 if (!page)
1135 return -EFAULT;
1136 page_virt = kmap_atomic(page, KM_USER0);
1138 memset(page_virt + offset, 0, len);
1140 kunmap_atomic(page_virt, KM_USER0);
1141 return 0;
1143 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1145 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1147 gfn_t gfn = gpa >> PAGE_SHIFT;
1148 int seg;
1149 int offset = offset_in_page(gpa);
1150 int ret;
1152 while ((seg = next_segment(len, offset)) != 0) {
1153 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1154 if (ret < 0)
1155 return ret;
1156 offset = 0;
1157 len -= seg;
1158 ++gfn;
1160 return 0;
1162 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1164 /* WARNING: Does not work on aliased pages. */
1165 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1167 struct kvm_memory_slot *memslot;
1169 memslot = __gfn_to_memslot(kvm, gfn);
1170 if (memslot && memslot->dirty_bitmap) {
1171 unsigned long rel_gfn = gfn - memslot->base_gfn;
1173 /* avoid RMW */
1174 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1175 set_bit(rel_gfn, memslot->dirty_bitmap);
1179 int emulator_read_std(unsigned long addr,
1180 void *val,
1181 unsigned int bytes,
1182 struct kvm_vcpu *vcpu)
1184 void *data = val;
1186 while (bytes) {
1187 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1188 unsigned offset = addr & (PAGE_SIZE-1);
1189 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
1190 int ret;
1192 if (gpa == UNMAPPED_GVA)
1193 return X86EMUL_PROPAGATE_FAULT;
1194 ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
1195 if (ret < 0)
1196 return X86EMUL_UNHANDLEABLE;
1198 bytes -= tocopy;
1199 data += tocopy;
1200 addr += tocopy;
1203 return X86EMUL_CONTINUE;
1205 EXPORT_SYMBOL_GPL(emulator_read_std);
1207 static int emulator_write_std(unsigned long addr,
1208 const void *val,
1209 unsigned int bytes,
1210 struct kvm_vcpu *vcpu)
1212 pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
1213 return X86EMUL_UNHANDLEABLE;
1217 * Only apic need an MMIO device hook, so shortcut now..
1219 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1220 gpa_t addr)
1222 struct kvm_io_device *dev;
1224 if (vcpu->apic) {
1225 dev = &vcpu->apic->dev;
1226 if (dev->in_range(dev, addr))
1227 return dev;
1229 return NULL;
1232 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1233 gpa_t addr)
1235 struct kvm_io_device *dev;
1237 dev = vcpu_find_pervcpu_dev(vcpu, addr);
1238 if (dev == NULL)
1239 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1240 return dev;
1243 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1244 gpa_t addr)
1246 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1249 static int emulator_read_emulated(unsigned long addr,
1250 void *val,
1251 unsigned int bytes,
1252 struct kvm_vcpu *vcpu)
1254 struct kvm_io_device *mmio_dev;
1255 gpa_t gpa;
1257 if (vcpu->mmio_read_completed) {
1258 memcpy(val, vcpu->mmio_data, bytes);
1259 vcpu->mmio_read_completed = 0;
1260 return X86EMUL_CONTINUE;
1261 } else if (emulator_read_std(addr, val, bytes, vcpu)
1262 == X86EMUL_CONTINUE)
1263 return X86EMUL_CONTINUE;
1265 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1266 if (gpa == UNMAPPED_GVA)
1267 return X86EMUL_PROPAGATE_FAULT;
1270 * Is this MMIO handled locally?
1272 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1273 if (mmio_dev) {
1274 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1275 return X86EMUL_CONTINUE;
1278 vcpu->mmio_needed = 1;
1279 vcpu->mmio_phys_addr = gpa;
1280 vcpu->mmio_size = bytes;
1281 vcpu->mmio_is_write = 0;
1283 return X86EMUL_UNHANDLEABLE;
1286 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1287 const void *val, int bytes)
1289 int ret;
1291 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
1292 if (ret < 0)
1293 return 0;
1294 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
1295 return 1;
1298 static int emulator_write_emulated_onepage(unsigned long addr,
1299 const void *val,
1300 unsigned int bytes,
1301 struct kvm_vcpu *vcpu)
1303 struct kvm_io_device *mmio_dev;
1304 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1306 if (gpa == UNMAPPED_GVA) {
1307 kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
1308 return X86EMUL_PROPAGATE_FAULT;
1311 if (emulator_write_phys(vcpu, gpa, val, bytes))
1312 return X86EMUL_CONTINUE;
1315 * Is this MMIO handled locally?
1317 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1318 if (mmio_dev) {
1319 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1320 return X86EMUL_CONTINUE;
1323 vcpu->mmio_needed = 1;
1324 vcpu->mmio_phys_addr = gpa;
1325 vcpu->mmio_size = bytes;
1326 vcpu->mmio_is_write = 1;
1327 memcpy(vcpu->mmio_data, val, bytes);
1329 return X86EMUL_CONTINUE;
1332 int emulator_write_emulated(unsigned long addr,
1333 const void *val,
1334 unsigned int bytes,
1335 struct kvm_vcpu *vcpu)
1337 /* Crossing a page boundary? */
1338 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1339 int rc, now;
1341 now = -addr & ~PAGE_MASK;
1342 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
1343 if (rc != X86EMUL_CONTINUE)
1344 return rc;
1345 addr += now;
1346 val += now;
1347 bytes -= now;
1349 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
1351 EXPORT_SYMBOL_GPL(emulator_write_emulated);
1353 static int emulator_cmpxchg_emulated(unsigned long addr,
1354 const void *old,
1355 const void *new,
1356 unsigned int bytes,
1357 struct kvm_vcpu *vcpu)
1359 static int reported;
1361 if (!reported) {
1362 reported = 1;
1363 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1365 return emulator_write_emulated(addr, new, bytes, vcpu);
1368 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1370 return kvm_x86_ops->get_segment_base(vcpu, seg);
1373 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1375 return X86EMUL_CONTINUE;
1378 int emulate_clts(struct kvm_vcpu *vcpu)
1380 kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
1381 return X86EMUL_CONTINUE;
1384 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
1386 struct kvm_vcpu *vcpu = ctxt->vcpu;
1388 switch (dr) {
1389 case 0 ... 3:
1390 *dest = kvm_x86_ops->get_dr(vcpu, dr);
1391 return X86EMUL_CONTINUE;
1392 default:
1393 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
1394 return X86EMUL_UNHANDLEABLE;
1398 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1400 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1401 int exception;
1403 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1404 if (exception) {
1405 /* FIXME: better handling */
1406 return X86EMUL_UNHANDLEABLE;
1408 return X86EMUL_CONTINUE;
1411 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
1413 static int reported;
1414 u8 opcodes[4];
1415 unsigned long rip = vcpu->rip;
1416 unsigned long rip_linear;
1418 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
1420 if (reported)
1421 return;
1423 emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
1425 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1426 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1427 reported = 1;
1429 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
1431 struct x86_emulate_ops emulate_ops = {
1432 .read_std = emulator_read_std,
1433 .write_std = emulator_write_std,
1434 .read_emulated = emulator_read_emulated,
1435 .write_emulated = emulator_write_emulated,
1436 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1439 int emulate_instruction(struct kvm_vcpu *vcpu,
1440 struct kvm_run *run,
1441 unsigned long cr2,
1442 u16 error_code,
1443 int no_decode)
1445 int r;
1447 vcpu->mmio_fault_cr2 = cr2;
1448 kvm_x86_ops->cache_regs(vcpu);
1450 vcpu->mmio_is_write = 0;
1451 vcpu->pio.string = 0;
1453 if (!no_decode) {
1454 int cs_db, cs_l;
1455 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1457 vcpu->emulate_ctxt.vcpu = vcpu;
1458 vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
1459 vcpu->emulate_ctxt.cr2 = cr2;
1460 vcpu->emulate_ctxt.mode =
1461 (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
1462 ? X86EMUL_MODE_REAL : cs_l
1463 ? X86EMUL_MODE_PROT64 : cs_db
1464 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1466 if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1467 vcpu->emulate_ctxt.cs_base = 0;
1468 vcpu->emulate_ctxt.ds_base = 0;
1469 vcpu->emulate_ctxt.es_base = 0;
1470 vcpu->emulate_ctxt.ss_base = 0;
1471 } else {
1472 vcpu->emulate_ctxt.cs_base =
1473 get_segment_base(vcpu, VCPU_SREG_CS);
1474 vcpu->emulate_ctxt.ds_base =
1475 get_segment_base(vcpu, VCPU_SREG_DS);
1476 vcpu->emulate_ctxt.es_base =
1477 get_segment_base(vcpu, VCPU_SREG_ES);
1478 vcpu->emulate_ctxt.ss_base =
1479 get_segment_base(vcpu, VCPU_SREG_SS);
1482 vcpu->emulate_ctxt.gs_base =
1483 get_segment_base(vcpu, VCPU_SREG_GS);
1484 vcpu->emulate_ctxt.fs_base =
1485 get_segment_base(vcpu, VCPU_SREG_FS);
1487 r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
1488 if (r) {
1489 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1490 return EMULATE_DONE;
1491 return EMULATE_FAIL;
1495 r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
1497 if (vcpu->pio.string)
1498 return EMULATE_DO_MMIO;
1500 if ((r || vcpu->mmio_is_write) && run) {
1501 run->exit_reason = KVM_EXIT_MMIO;
1502 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1503 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1504 run->mmio.len = vcpu->mmio_size;
1505 run->mmio.is_write = vcpu->mmio_is_write;
1508 if (r) {
1509 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1510 return EMULATE_DONE;
1511 if (!vcpu->mmio_needed) {
1512 kvm_report_emulation_failure(vcpu, "mmio");
1513 return EMULATE_FAIL;
1515 return EMULATE_DO_MMIO;
1518 kvm_x86_ops->decache_regs(vcpu);
1519 kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
1521 if (vcpu->mmio_is_write) {
1522 vcpu->mmio_needed = 0;
1523 return EMULATE_DO_MMIO;
1526 return EMULATE_DONE;
1528 EXPORT_SYMBOL_GPL(emulate_instruction);
1531 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1533 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1535 DECLARE_WAITQUEUE(wait, current);
1537 add_wait_queue(&vcpu->wq, &wait);
1540 * We will block until either an interrupt or a signal wakes us up
1542 while (!kvm_cpu_has_interrupt(vcpu)
1543 && !signal_pending(current)
1544 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
1545 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
1546 set_current_state(TASK_INTERRUPTIBLE);
1547 vcpu_put(vcpu);
1548 schedule();
1549 vcpu_load(vcpu);
1552 __set_current_state(TASK_RUNNING);
1553 remove_wait_queue(&vcpu->wq, &wait);
1556 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1558 ++vcpu->stat.halt_exits;
1559 if (irqchip_in_kernel(vcpu->kvm)) {
1560 vcpu->mp_state = VCPU_MP_STATE_HALTED;
1561 kvm_vcpu_block(vcpu);
1562 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
1563 return -EINTR;
1564 return 1;
1565 } else {
1566 vcpu->run->exit_reason = KVM_EXIT_HLT;
1567 return 0;
1570 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1572 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
1574 unsigned long nr, a0, a1, a2, a3, ret;
1576 kvm_x86_ops->cache_regs(vcpu);
1578 nr = vcpu->regs[VCPU_REGS_RAX];
1579 a0 = vcpu->regs[VCPU_REGS_RBX];
1580 a1 = vcpu->regs[VCPU_REGS_RCX];
1581 a2 = vcpu->regs[VCPU_REGS_RDX];
1582 a3 = vcpu->regs[VCPU_REGS_RSI];
1584 if (!is_long_mode(vcpu)) {
1585 nr &= 0xFFFFFFFF;
1586 a0 &= 0xFFFFFFFF;
1587 a1 &= 0xFFFFFFFF;
1588 a2 &= 0xFFFFFFFF;
1589 a3 &= 0xFFFFFFFF;
1592 switch (nr) {
1593 default:
1594 ret = -KVM_ENOSYS;
1595 break;
1597 vcpu->regs[VCPU_REGS_RAX] = ret;
1598 kvm_x86_ops->decache_regs(vcpu);
1599 return 0;
1601 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
1603 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
1605 char instruction[3];
1606 int ret = 0;
1608 mutex_lock(&vcpu->kvm->lock);
1611 * Blow out the MMU to ensure that no other VCPU has an active mapping
1612 * to ensure that the updated hypercall appears atomically across all
1613 * VCPUs.
1615 kvm_mmu_zap_all(vcpu->kvm);
1617 kvm_x86_ops->cache_regs(vcpu);
1618 kvm_x86_ops->patch_hypercall(vcpu, instruction);
1619 if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
1620 != X86EMUL_CONTINUE)
1621 ret = -EFAULT;
1623 mutex_unlock(&vcpu->kvm->lock);
1625 return ret;
1628 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1630 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1633 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1635 struct descriptor_table dt = { limit, base };
1637 kvm_x86_ops->set_gdt(vcpu, &dt);
1640 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1642 struct descriptor_table dt = { limit, base };
1644 kvm_x86_ops->set_idt(vcpu, &dt);
1647 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1648 unsigned long *rflags)
1650 lmsw(vcpu, msw);
1651 *rflags = kvm_x86_ops->get_rflags(vcpu);
1654 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1656 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1657 switch (cr) {
1658 case 0:
1659 return vcpu->cr0;
1660 case 2:
1661 return vcpu->cr2;
1662 case 3:
1663 return vcpu->cr3;
1664 case 4:
1665 return vcpu->cr4;
1666 default:
1667 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1668 return 0;
1672 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1673 unsigned long *rflags)
1675 switch (cr) {
1676 case 0:
1677 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1678 *rflags = kvm_x86_ops->get_rflags(vcpu);
1679 break;
1680 case 2:
1681 vcpu->cr2 = val;
1682 break;
1683 case 3:
1684 set_cr3(vcpu, val);
1685 break;
1686 case 4:
1687 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1688 break;
1689 default:
1690 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1694 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1696 u64 data;
1698 switch (msr) {
1699 case 0xc0010010: /* SYSCFG */
1700 case 0xc0010015: /* HWCR */
1701 case MSR_IA32_PLATFORM_ID:
1702 case MSR_IA32_P5_MC_ADDR:
1703 case MSR_IA32_P5_MC_TYPE:
1704 case MSR_IA32_MC0_CTL:
1705 case MSR_IA32_MCG_STATUS:
1706 case MSR_IA32_MCG_CAP:
1707 case MSR_IA32_MC0_MISC:
1708 case MSR_IA32_MC0_MISC+4:
1709 case MSR_IA32_MC0_MISC+8:
1710 case MSR_IA32_MC0_MISC+12:
1711 case MSR_IA32_MC0_MISC+16:
1712 case MSR_IA32_UCODE_REV:
1713 case MSR_IA32_PERF_STATUS:
1714 case MSR_IA32_EBL_CR_POWERON:
1715 /* MTRR registers */
1716 case 0xfe:
1717 case 0x200 ... 0x2ff:
1718 data = 0;
1719 break;
1720 case 0xcd: /* fsb frequency */
1721 data = 3;
1722 break;
1723 case MSR_IA32_APICBASE:
1724 data = kvm_get_apic_base(vcpu);
1725 break;
1726 case MSR_IA32_MISC_ENABLE:
1727 data = vcpu->ia32_misc_enable_msr;
1728 break;
1729 #ifdef CONFIG_X86_64
1730 case MSR_EFER:
1731 data = vcpu->shadow_efer;
1732 break;
1733 #endif
1734 default:
1735 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1736 return 1;
1738 *pdata = data;
1739 return 0;
1741 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1744 * Reads an msr value (of 'msr_index') into 'pdata'.
1745 * Returns 0 on success, non-0 otherwise.
1746 * Assumes vcpu_load() was already called.
1748 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1750 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1753 #ifdef CONFIG_X86_64
1755 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1757 if (efer & EFER_RESERVED_BITS) {
1758 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1759 efer);
1760 inject_gp(vcpu);
1761 return;
1764 if (is_paging(vcpu)
1765 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1766 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1767 inject_gp(vcpu);
1768 return;
1771 kvm_x86_ops->set_efer(vcpu, efer);
1773 efer &= ~EFER_LMA;
1774 efer |= vcpu->shadow_efer & EFER_LMA;
1776 vcpu->shadow_efer = efer;
1779 #endif
1781 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1783 switch (msr) {
1784 #ifdef CONFIG_X86_64
1785 case MSR_EFER:
1786 set_efer(vcpu, data);
1787 break;
1788 #endif
1789 case MSR_IA32_MC0_STATUS:
1790 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1791 __FUNCTION__, data);
1792 break;
1793 case MSR_IA32_MCG_STATUS:
1794 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1795 __FUNCTION__, data);
1796 break;
1797 case MSR_IA32_UCODE_REV:
1798 case MSR_IA32_UCODE_WRITE:
1799 case 0x200 ... 0x2ff: /* MTRRs */
1800 break;
1801 case MSR_IA32_APICBASE:
1802 kvm_set_apic_base(vcpu, data);
1803 break;
1804 case MSR_IA32_MISC_ENABLE:
1805 vcpu->ia32_misc_enable_msr = data;
1806 break;
1807 default:
1808 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
1809 return 1;
1811 return 0;
1813 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1816 * Writes msr value into into the appropriate "register".
1817 * Returns 0 on success, non-0 otherwise.
1818 * Assumes vcpu_load() was already called.
1820 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1822 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
1825 void kvm_resched(struct kvm_vcpu *vcpu)
1827 if (!need_resched())
1828 return;
1829 cond_resched();
1831 EXPORT_SYMBOL_GPL(kvm_resched);
1833 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1835 int i;
1836 u32 function;
1837 struct kvm_cpuid_entry *e, *best;
1839 kvm_x86_ops->cache_regs(vcpu);
1840 function = vcpu->regs[VCPU_REGS_RAX];
1841 vcpu->regs[VCPU_REGS_RAX] = 0;
1842 vcpu->regs[VCPU_REGS_RBX] = 0;
1843 vcpu->regs[VCPU_REGS_RCX] = 0;
1844 vcpu->regs[VCPU_REGS_RDX] = 0;
1845 best = NULL;
1846 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1847 e = &vcpu->cpuid_entries[i];
1848 if (e->function == function) {
1849 best = e;
1850 break;
1853 * Both basic or both extended?
1855 if (((e->function ^ function) & 0x80000000) == 0)
1856 if (!best || e->function > best->function)
1857 best = e;
1859 if (best) {
1860 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1861 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1862 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1863 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1865 kvm_x86_ops->decache_regs(vcpu);
1866 kvm_x86_ops->skip_emulated_instruction(vcpu);
1868 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1870 static int pio_copy_data(struct kvm_vcpu *vcpu)
1872 void *p = vcpu->pio_data;
1873 void *q;
1874 unsigned bytes;
1875 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1877 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1878 PAGE_KERNEL);
1879 if (!q) {
1880 free_pio_guest_pages(vcpu);
1881 return -ENOMEM;
1883 q += vcpu->pio.guest_page_offset;
1884 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1885 if (vcpu->pio.in)
1886 memcpy(q, p, bytes);
1887 else
1888 memcpy(p, q, bytes);
1889 q -= vcpu->pio.guest_page_offset;
1890 vunmap(q);
1891 free_pio_guest_pages(vcpu);
1892 return 0;
1895 static int complete_pio(struct kvm_vcpu *vcpu)
1897 struct kvm_pio_request *io = &vcpu->pio;
1898 long delta;
1899 int r;
1901 kvm_x86_ops->cache_regs(vcpu);
1903 if (!io->string) {
1904 if (io->in)
1905 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1906 io->size);
1907 } else {
1908 if (io->in) {
1909 r = pio_copy_data(vcpu);
1910 if (r) {
1911 kvm_x86_ops->cache_regs(vcpu);
1912 return r;
1916 delta = 1;
1917 if (io->rep) {
1918 delta *= io->cur_count;
1920 * The size of the register should really depend on
1921 * current address size.
1923 vcpu->regs[VCPU_REGS_RCX] -= delta;
1925 if (io->down)
1926 delta = -delta;
1927 delta *= io->size;
1928 if (io->in)
1929 vcpu->regs[VCPU_REGS_RDI] += delta;
1930 else
1931 vcpu->regs[VCPU_REGS_RSI] += delta;
1934 kvm_x86_ops->decache_regs(vcpu);
1936 io->count -= io->cur_count;
1937 io->cur_count = 0;
1939 return 0;
1942 static void kernel_pio(struct kvm_io_device *pio_dev,
1943 struct kvm_vcpu *vcpu,
1944 void *pd)
1946 /* TODO: String I/O for in kernel device */
1948 mutex_lock(&vcpu->kvm->lock);
1949 if (vcpu->pio.in)
1950 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1951 vcpu->pio.size,
1952 pd);
1953 else
1954 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1955 vcpu->pio.size,
1956 pd);
1957 mutex_unlock(&vcpu->kvm->lock);
1960 static void pio_string_write(struct kvm_io_device *pio_dev,
1961 struct kvm_vcpu *vcpu)
1963 struct kvm_pio_request *io = &vcpu->pio;
1964 void *pd = vcpu->pio_data;
1965 int i;
1967 mutex_lock(&vcpu->kvm->lock);
1968 for (i = 0; i < io->cur_count; i++) {
1969 kvm_iodevice_write(pio_dev, io->port,
1970 io->size,
1971 pd);
1972 pd += io->size;
1974 mutex_unlock(&vcpu->kvm->lock);
1977 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1978 int size, unsigned port)
1980 struct kvm_io_device *pio_dev;
1982 vcpu->run->exit_reason = KVM_EXIT_IO;
1983 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1984 vcpu->run->io.size = vcpu->pio.size = size;
1985 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1986 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1987 vcpu->run->io.port = vcpu->pio.port = port;
1988 vcpu->pio.in = in;
1989 vcpu->pio.string = 0;
1990 vcpu->pio.down = 0;
1991 vcpu->pio.guest_page_offset = 0;
1992 vcpu->pio.rep = 0;
1994 kvm_x86_ops->cache_regs(vcpu);
1995 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1996 kvm_x86_ops->decache_regs(vcpu);
1998 kvm_x86_ops->skip_emulated_instruction(vcpu);
2000 pio_dev = vcpu_find_pio_dev(vcpu, port);
2001 if (pio_dev) {
2002 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
2003 complete_pio(vcpu);
2004 return 1;
2006 return 0;
2008 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2010 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2011 int size, unsigned long count, int down,
2012 gva_t address, int rep, unsigned port)
2014 unsigned now, in_page;
2015 int i, ret = 0;
2016 int nr_pages = 1;
2017 struct page *page;
2018 struct kvm_io_device *pio_dev;
2020 vcpu->run->exit_reason = KVM_EXIT_IO;
2021 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2022 vcpu->run->io.size = vcpu->pio.size = size;
2023 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2024 vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
2025 vcpu->run->io.port = vcpu->pio.port = port;
2026 vcpu->pio.in = in;
2027 vcpu->pio.string = 1;
2028 vcpu->pio.down = down;
2029 vcpu->pio.guest_page_offset = offset_in_page(address);
2030 vcpu->pio.rep = rep;
2032 if (!count) {
2033 kvm_x86_ops->skip_emulated_instruction(vcpu);
2034 return 1;
2037 if (!down)
2038 in_page = PAGE_SIZE - offset_in_page(address);
2039 else
2040 in_page = offset_in_page(address) + size;
2041 now = min(count, (unsigned long)in_page / size);
2042 if (!now) {
2044 * String I/O straddles page boundary. Pin two guest pages
2045 * so that we satisfy atomicity constraints. Do just one
2046 * transaction to avoid complexity.
2048 nr_pages = 2;
2049 now = 1;
2051 if (down) {
2053 * String I/O in reverse. Yuck. Kill the guest, fix later.
2055 pr_unimpl(vcpu, "guest string pio down\n");
2056 inject_gp(vcpu);
2057 return 1;
2059 vcpu->run->io.count = now;
2060 vcpu->pio.cur_count = now;
2062 if (vcpu->pio.cur_count == vcpu->pio.count)
2063 kvm_x86_ops->skip_emulated_instruction(vcpu);
2065 for (i = 0; i < nr_pages; ++i) {
2066 mutex_lock(&vcpu->kvm->lock);
2067 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
2068 if (page)
2069 get_page(page);
2070 vcpu->pio.guest_pages[i] = page;
2071 mutex_unlock(&vcpu->kvm->lock);
2072 if (!page) {
2073 inject_gp(vcpu);
2074 free_pio_guest_pages(vcpu);
2075 return 1;
2079 pio_dev = vcpu_find_pio_dev(vcpu, port);
2080 if (!vcpu->pio.in) {
2081 /* string PIO write */
2082 ret = pio_copy_data(vcpu);
2083 if (ret >= 0 && pio_dev) {
2084 pio_string_write(pio_dev, vcpu);
2085 complete_pio(vcpu);
2086 if (vcpu->pio.count == 0)
2087 ret = 1;
2089 } else if (pio_dev)
2090 pr_unimpl(vcpu, "no string pio read support yet, "
2091 "port %x size %d count %ld\n",
2092 port, size, count);
2094 return ret;
2096 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2099 * Check if userspace requested an interrupt window, and that the
2100 * interrupt window is open.
2102 * No need to exit to userspace if we already have an interrupt queued.
2104 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2105 struct kvm_run *kvm_run)
2107 return (!vcpu->irq_summary &&
2108 kvm_run->request_interrupt_window &&
2109 vcpu->interrupt_window_open &&
2110 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2113 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2114 struct kvm_run *kvm_run)
2116 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2117 kvm_run->cr8 = get_cr8(vcpu);
2118 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2119 if (irqchip_in_kernel(vcpu->kvm))
2120 kvm_run->ready_for_interrupt_injection = 1;
2121 else
2122 kvm_run->ready_for_interrupt_injection =
2123 (vcpu->interrupt_window_open &&
2124 vcpu->irq_summary == 0);
2127 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2129 int r;
2131 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
2132 pr_debug("vcpu %d received sipi with vector # %x\n",
2133 vcpu->vcpu_id, vcpu->sipi_vector);
2134 kvm_lapic_reset(vcpu);
2135 kvm_x86_ops->vcpu_reset(vcpu);
2136 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
2139 preempted:
2140 if (vcpu->guest_debug.enabled)
2141 kvm_x86_ops->guest_debug_pre(vcpu);
2143 again:
2144 r = kvm_mmu_reload(vcpu);
2145 if (unlikely(r))
2146 goto out;
2148 preempt_disable();
2150 kvm_x86_ops->prepare_guest_switch(vcpu);
2151 kvm_load_guest_fpu(vcpu);
2153 local_irq_disable();
2155 if (signal_pending(current)) {
2156 local_irq_enable();
2157 preempt_enable();
2158 r = -EINTR;
2159 kvm_run->exit_reason = KVM_EXIT_INTR;
2160 ++vcpu->stat.signal_exits;
2161 goto out;
2164 if (irqchip_in_kernel(vcpu->kvm))
2165 kvm_x86_ops->inject_pending_irq(vcpu);
2166 else if (!vcpu->mmio_read_completed)
2167 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
2169 vcpu->guest_mode = 1;
2170 kvm_guest_enter();
2172 if (vcpu->requests)
2173 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2174 kvm_x86_ops->tlb_flush(vcpu);
2176 kvm_x86_ops->run(vcpu, kvm_run);
2178 vcpu->guest_mode = 0;
2179 local_irq_enable();
2181 ++vcpu->stat.exits;
2184 * We must have an instruction between local_irq_enable() and
2185 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2186 * the interrupt shadow. The stat.exits increment will do nicely.
2187 * But we need to prevent reordering, hence this barrier():
2189 barrier();
2191 kvm_guest_exit();
2193 preempt_enable();
2196 * Profile KVM exit RIPs:
2198 if (unlikely(prof_on == KVM_PROFILING)) {
2199 kvm_x86_ops->cache_regs(vcpu);
2200 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
2203 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
2205 if (r > 0) {
2206 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2207 r = -EINTR;
2208 kvm_run->exit_reason = KVM_EXIT_INTR;
2209 ++vcpu->stat.request_irq_exits;
2210 goto out;
2212 if (!need_resched()) {
2213 ++vcpu->stat.light_exits;
2214 goto again;
2218 out:
2219 if (r > 0) {
2220 kvm_resched(vcpu);
2221 goto preempted;
2224 post_kvm_run_save(vcpu, kvm_run);
2226 return r;
2230 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2232 int r;
2233 sigset_t sigsaved;
2235 vcpu_load(vcpu);
2237 if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
2238 kvm_vcpu_block(vcpu);
2239 vcpu_put(vcpu);
2240 return -EAGAIN;
2243 if (vcpu->sigset_active)
2244 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2246 /* re-sync apic's tpr */
2247 if (!irqchip_in_kernel(vcpu->kvm))
2248 set_cr8(vcpu, kvm_run->cr8);
2250 if (vcpu->pio.cur_count) {
2251 r = complete_pio(vcpu);
2252 if (r)
2253 goto out;
2256 if (vcpu->mmio_needed) {
2257 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
2258 vcpu->mmio_read_completed = 1;
2259 vcpu->mmio_needed = 0;
2260 r = emulate_instruction(vcpu, kvm_run,
2261 vcpu->mmio_fault_cr2, 0, 1);
2262 if (r == EMULATE_DO_MMIO) {
2264 * Read-modify-write. Back to userspace.
2266 r = 0;
2267 goto out;
2271 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
2272 kvm_x86_ops->cache_regs(vcpu);
2273 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
2274 kvm_x86_ops->decache_regs(vcpu);
2277 r = __vcpu_run(vcpu, kvm_run);
2279 out:
2280 if (vcpu->sigset_active)
2281 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2283 vcpu_put(vcpu);
2284 return r;
2287 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
2288 struct kvm_regs *regs)
2290 vcpu_load(vcpu);
2292 kvm_x86_ops->cache_regs(vcpu);
2294 regs->rax = vcpu->regs[VCPU_REGS_RAX];
2295 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
2296 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
2297 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
2298 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
2299 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
2300 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
2301 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
2302 #ifdef CONFIG_X86_64
2303 regs->r8 = vcpu->regs[VCPU_REGS_R8];
2304 regs->r9 = vcpu->regs[VCPU_REGS_R9];
2305 regs->r10 = vcpu->regs[VCPU_REGS_R10];
2306 regs->r11 = vcpu->regs[VCPU_REGS_R11];
2307 regs->r12 = vcpu->regs[VCPU_REGS_R12];
2308 regs->r13 = vcpu->regs[VCPU_REGS_R13];
2309 regs->r14 = vcpu->regs[VCPU_REGS_R14];
2310 regs->r15 = vcpu->regs[VCPU_REGS_R15];
2311 #endif
2313 regs->rip = vcpu->rip;
2314 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
2317 * Don't leak debug flags in case they were set for guest debugging
2319 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
2320 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2322 vcpu_put(vcpu);
2324 return 0;
2327 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2328 struct kvm_regs *regs)
2330 vcpu_load(vcpu);
2332 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2333 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2334 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2335 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2336 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2337 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2338 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2339 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2340 #ifdef CONFIG_X86_64
2341 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2342 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2343 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2344 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2345 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2346 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2347 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2348 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2349 #endif
2351 vcpu->rip = regs->rip;
2352 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
2354 kvm_x86_ops->decache_regs(vcpu);
2356 vcpu_put(vcpu);
2358 return 0;
2361 static void get_segment(struct kvm_vcpu *vcpu,
2362 struct kvm_segment *var, int seg)
2364 return kvm_x86_ops->get_segment(vcpu, var, seg);
2367 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2368 struct kvm_sregs *sregs)
2370 struct descriptor_table dt;
2371 int pending_vec;
2373 vcpu_load(vcpu);
2375 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2376 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2377 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2378 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2379 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2380 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2382 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2383 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2385 kvm_x86_ops->get_idt(vcpu, &dt);
2386 sregs->idt.limit = dt.limit;
2387 sregs->idt.base = dt.base;
2388 kvm_x86_ops->get_gdt(vcpu, &dt);
2389 sregs->gdt.limit = dt.limit;
2390 sregs->gdt.base = dt.base;
2392 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2393 sregs->cr0 = vcpu->cr0;
2394 sregs->cr2 = vcpu->cr2;
2395 sregs->cr3 = vcpu->cr3;
2396 sregs->cr4 = vcpu->cr4;
2397 sregs->cr8 = get_cr8(vcpu);
2398 sregs->efer = vcpu->shadow_efer;
2399 sregs->apic_base = kvm_get_apic_base(vcpu);
2401 if (irqchip_in_kernel(vcpu->kvm)) {
2402 memset(sregs->interrupt_bitmap, 0,
2403 sizeof sregs->interrupt_bitmap);
2404 pending_vec = kvm_x86_ops->get_irq(vcpu);
2405 if (pending_vec >= 0)
2406 set_bit(pending_vec,
2407 (unsigned long *)sregs->interrupt_bitmap);
2408 } else
2409 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2410 sizeof sregs->interrupt_bitmap);
2412 vcpu_put(vcpu);
2414 return 0;
2417 static void set_segment(struct kvm_vcpu *vcpu,
2418 struct kvm_segment *var, int seg)
2420 return kvm_x86_ops->set_segment(vcpu, var, seg);
2423 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2424 struct kvm_sregs *sregs)
2426 int mmu_reset_needed = 0;
2427 int i, pending_vec, max_bits;
2428 struct descriptor_table dt;
2430 vcpu_load(vcpu);
2432 dt.limit = sregs->idt.limit;
2433 dt.base = sregs->idt.base;
2434 kvm_x86_ops->set_idt(vcpu, &dt);
2435 dt.limit = sregs->gdt.limit;
2436 dt.base = sregs->gdt.base;
2437 kvm_x86_ops->set_gdt(vcpu, &dt);
2439 vcpu->cr2 = sregs->cr2;
2440 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2441 vcpu->cr3 = sregs->cr3;
2443 set_cr8(vcpu, sregs->cr8);
2445 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2446 #ifdef CONFIG_X86_64
2447 kvm_x86_ops->set_efer(vcpu, sregs->efer);
2448 #endif
2449 kvm_set_apic_base(vcpu, sregs->apic_base);
2451 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2453 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2454 vcpu->cr0 = sregs->cr0;
2455 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
2457 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2458 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
2459 if (!is_long_mode(vcpu) && is_pae(vcpu))
2460 load_pdptrs(vcpu, vcpu->cr3);
2462 if (mmu_reset_needed)
2463 kvm_mmu_reset_context(vcpu);
2465 if (!irqchip_in_kernel(vcpu->kvm)) {
2466 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2467 sizeof vcpu->irq_pending);
2468 vcpu->irq_summary = 0;
2469 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2470 if (vcpu->irq_pending[i])
2471 __set_bit(i, &vcpu->irq_summary);
2472 } else {
2473 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
2474 pending_vec = find_first_bit(
2475 (const unsigned long *)sregs->interrupt_bitmap,
2476 max_bits);
2477 /* Only pending external irq is handled here */
2478 if (pending_vec < max_bits) {
2479 kvm_x86_ops->set_irq(vcpu, pending_vec);
2480 pr_debug("Set back pending irq %d\n",
2481 pending_vec);
2485 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2486 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2487 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2488 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2489 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2490 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2492 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2493 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2495 vcpu_put(vcpu);
2497 return 0;
2500 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2502 struct kvm_segment cs;
2504 get_segment(vcpu, &cs, VCPU_SREG_CS);
2505 *db = cs.db;
2506 *l = cs.l;
2508 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
2511 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2512 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2514 * This list is modified at module load time to reflect the
2515 * capabilities of the host cpu.
2517 static u32 msrs_to_save[] = {
2518 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2519 MSR_K6_STAR,
2520 #ifdef CONFIG_X86_64
2521 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2522 #endif
2523 MSR_IA32_TIME_STAMP_COUNTER,
2526 static unsigned num_msrs_to_save;
2528 static u32 emulated_msrs[] = {
2529 MSR_IA32_MISC_ENABLE,
2532 static __init void kvm_init_msr_list(void)
2534 u32 dummy[2];
2535 unsigned i, j;
2537 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2538 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2539 continue;
2540 if (j < i)
2541 msrs_to_save[j] = msrs_to_save[i];
2542 j++;
2544 num_msrs_to_save = j;
2548 * Adapt set_msr() to msr_io()'s calling convention
2550 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2552 return kvm_set_msr(vcpu, index, *data);
2556 * Read or write a bunch of msrs. All parameters are kernel addresses.
2558 * @return number of msrs set successfully.
2560 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2561 struct kvm_msr_entry *entries,
2562 int (*do_msr)(struct kvm_vcpu *vcpu,
2563 unsigned index, u64 *data))
2565 int i;
2567 vcpu_load(vcpu);
2569 for (i = 0; i < msrs->nmsrs; ++i)
2570 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2571 break;
2573 vcpu_put(vcpu);
2575 return i;
2579 * Read or write a bunch of msrs. Parameters are user addresses.
2581 * @return number of msrs set successfully.
2583 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2584 int (*do_msr)(struct kvm_vcpu *vcpu,
2585 unsigned index, u64 *data),
2586 int writeback)
2588 struct kvm_msrs msrs;
2589 struct kvm_msr_entry *entries;
2590 int r, n;
2591 unsigned size;
2593 r = -EFAULT;
2594 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2595 goto out;
2597 r = -E2BIG;
2598 if (msrs.nmsrs >= MAX_IO_MSRS)
2599 goto out;
2601 r = -ENOMEM;
2602 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2603 entries = vmalloc(size);
2604 if (!entries)
2605 goto out;
2607 r = -EFAULT;
2608 if (copy_from_user(entries, user_msrs->entries, size))
2609 goto out_free;
2611 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2612 if (r < 0)
2613 goto out_free;
2615 r = -EFAULT;
2616 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2617 goto out_free;
2619 r = n;
2621 out_free:
2622 vfree(entries);
2623 out:
2624 return r;
2628 * Translate a guest virtual address to a guest physical address.
2630 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2631 struct kvm_translation *tr)
2633 unsigned long vaddr = tr->linear_address;
2634 gpa_t gpa;
2636 vcpu_load(vcpu);
2637 mutex_lock(&vcpu->kvm->lock);
2638 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2639 tr->physical_address = gpa;
2640 tr->valid = gpa != UNMAPPED_GVA;
2641 tr->writeable = 1;
2642 tr->usermode = 0;
2643 mutex_unlock(&vcpu->kvm->lock);
2644 vcpu_put(vcpu);
2646 return 0;
2649 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2650 struct kvm_interrupt *irq)
2652 if (irq->irq < 0 || irq->irq >= 256)
2653 return -EINVAL;
2654 if (irqchip_in_kernel(vcpu->kvm))
2655 return -ENXIO;
2656 vcpu_load(vcpu);
2658 set_bit(irq->irq, vcpu->irq_pending);
2659 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2661 vcpu_put(vcpu);
2663 return 0;
2666 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2667 struct kvm_debug_guest *dbg)
2669 int r;
2671 vcpu_load(vcpu);
2673 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
2675 vcpu_put(vcpu);
2677 return r;
2680 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2681 unsigned long address,
2682 int *type)
2684 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2685 unsigned long pgoff;
2686 struct page *page;
2688 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2689 if (pgoff == 0)
2690 page = virt_to_page(vcpu->run);
2691 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2692 page = virt_to_page(vcpu->pio_data);
2693 else
2694 return NOPAGE_SIGBUS;
2695 get_page(page);
2696 if (type != NULL)
2697 *type = VM_FAULT_MINOR;
2699 return page;
2702 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2703 .nopage = kvm_vcpu_nopage,
2706 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2708 vma->vm_ops = &kvm_vcpu_vm_ops;
2709 return 0;
2712 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2714 struct kvm_vcpu *vcpu = filp->private_data;
2716 fput(vcpu->kvm->filp);
2717 return 0;
2720 static struct file_operations kvm_vcpu_fops = {
2721 .release = kvm_vcpu_release,
2722 .unlocked_ioctl = kvm_vcpu_ioctl,
2723 .compat_ioctl = kvm_vcpu_ioctl,
2724 .mmap = kvm_vcpu_mmap,
2728 * Allocates an inode for the vcpu.
2730 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2732 int fd, r;
2733 struct inode *inode;
2734 struct file *file;
2736 r = anon_inode_getfd(&fd, &inode, &file,
2737 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2738 if (r)
2739 return r;
2740 atomic_inc(&vcpu->kvm->filp->f_count);
2741 return fd;
2745 * Creates some virtual cpus. Good luck creating more than one.
2747 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2749 int r;
2750 struct kvm_vcpu *vcpu;
2752 if (!valid_vcpu(n))
2753 return -EINVAL;
2755 vcpu = kvm_x86_ops->vcpu_create(kvm, n);
2756 if (IS_ERR(vcpu))
2757 return PTR_ERR(vcpu);
2759 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2761 /* We do fxsave: this must be aligned. */
2762 BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
2764 vcpu_load(vcpu);
2765 r = kvm_mmu_setup(vcpu);
2766 vcpu_put(vcpu);
2767 if (r < 0)
2768 goto free_vcpu;
2770 mutex_lock(&kvm->lock);
2771 if (kvm->vcpus[n]) {
2772 r = -EEXIST;
2773 mutex_unlock(&kvm->lock);
2774 goto mmu_unload;
2776 kvm->vcpus[n] = vcpu;
2777 mutex_unlock(&kvm->lock);
2779 /* Now it's all set up, let userspace reach it */
2780 r = create_vcpu_fd(vcpu);
2781 if (r < 0)
2782 goto unlink;
2783 return r;
2785 unlink:
2786 mutex_lock(&kvm->lock);
2787 kvm->vcpus[n] = NULL;
2788 mutex_unlock(&kvm->lock);
2790 mmu_unload:
2791 vcpu_load(vcpu);
2792 kvm_mmu_unload(vcpu);
2793 vcpu_put(vcpu);
2795 free_vcpu:
2796 kvm_x86_ops->vcpu_free(vcpu);
2797 return r;
2800 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2802 u64 efer;
2803 int i;
2804 struct kvm_cpuid_entry *e, *entry;
2806 rdmsrl(MSR_EFER, efer);
2807 entry = NULL;
2808 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2809 e = &vcpu->cpuid_entries[i];
2810 if (e->function == 0x80000001) {
2811 entry = e;
2812 break;
2815 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2816 entry->edx &= ~(1 << 20);
2817 printk(KERN_INFO "kvm: guest NX capability removed\n");
2821 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2822 struct kvm_cpuid *cpuid,
2823 struct kvm_cpuid_entry __user *entries)
2825 int r;
2827 r = -E2BIG;
2828 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2829 goto out;
2830 r = -EFAULT;
2831 if (copy_from_user(&vcpu->cpuid_entries, entries,
2832 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2833 goto out;
2834 vcpu->cpuid_nent = cpuid->nent;
2835 cpuid_fix_nx_cap(vcpu);
2836 return 0;
2838 out:
2839 return r;
2842 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2844 if (sigset) {
2845 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2846 vcpu->sigset_active = 1;
2847 vcpu->sigset = *sigset;
2848 } else
2849 vcpu->sigset_active = 0;
2850 return 0;
2854 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2855 * we have asm/x86/processor.h
2857 struct fxsave {
2858 u16 cwd;
2859 u16 swd;
2860 u16 twd;
2861 u16 fop;
2862 u64 rip;
2863 u64 rdp;
2864 u32 mxcsr;
2865 u32 mxcsr_mask;
2866 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2867 #ifdef CONFIG_X86_64
2868 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2869 #else
2870 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2871 #endif
2874 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2876 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2878 vcpu_load(vcpu);
2880 memcpy(fpu->fpr, fxsave->st_space, 128);
2881 fpu->fcw = fxsave->cwd;
2882 fpu->fsw = fxsave->swd;
2883 fpu->ftwx = fxsave->twd;
2884 fpu->last_opcode = fxsave->fop;
2885 fpu->last_ip = fxsave->rip;
2886 fpu->last_dp = fxsave->rdp;
2887 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2889 vcpu_put(vcpu);
2891 return 0;
2894 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2896 struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
2898 vcpu_load(vcpu);
2900 memcpy(fxsave->st_space, fpu->fpr, 128);
2901 fxsave->cwd = fpu->fcw;
2902 fxsave->swd = fpu->fsw;
2903 fxsave->twd = fpu->ftwx;
2904 fxsave->fop = fpu->last_opcode;
2905 fxsave->rip = fpu->last_ip;
2906 fxsave->rdp = fpu->last_dp;
2907 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2909 vcpu_put(vcpu);
2911 return 0;
2914 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2915 struct kvm_lapic_state *s)
2917 vcpu_load(vcpu);
2918 memcpy(s->regs, vcpu->apic->regs, sizeof *s);
2919 vcpu_put(vcpu);
2921 return 0;
2924 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2925 struct kvm_lapic_state *s)
2927 vcpu_load(vcpu);
2928 memcpy(vcpu->apic->regs, s->regs, sizeof *s);
2929 kvm_apic_post_state_restore(vcpu);
2930 vcpu_put(vcpu);
2932 return 0;
2935 static long kvm_vcpu_ioctl(struct file *filp,
2936 unsigned int ioctl, unsigned long arg)
2938 struct kvm_vcpu *vcpu = filp->private_data;
2939 void __user *argp = (void __user *)arg;
2940 int r = -EINVAL;
2942 switch (ioctl) {
2943 case KVM_RUN:
2944 r = -EINVAL;
2945 if (arg)
2946 goto out;
2947 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2948 break;
2949 case KVM_GET_REGS: {
2950 struct kvm_regs kvm_regs;
2952 memset(&kvm_regs, 0, sizeof kvm_regs);
2953 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2954 if (r)
2955 goto out;
2956 r = -EFAULT;
2957 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2958 goto out;
2959 r = 0;
2960 break;
2962 case KVM_SET_REGS: {
2963 struct kvm_regs kvm_regs;
2965 r = -EFAULT;
2966 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2967 goto out;
2968 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2969 if (r)
2970 goto out;
2971 r = 0;
2972 break;
2974 case KVM_GET_SREGS: {
2975 struct kvm_sregs kvm_sregs;
2977 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2978 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2979 if (r)
2980 goto out;
2981 r = -EFAULT;
2982 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2983 goto out;
2984 r = 0;
2985 break;
2987 case KVM_SET_SREGS: {
2988 struct kvm_sregs kvm_sregs;
2990 r = -EFAULT;
2991 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2992 goto out;
2993 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2994 if (r)
2995 goto out;
2996 r = 0;
2997 break;
2999 case KVM_TRANSLATE: {
3000 struct kvm_translation tr;
3002 r = -EFAULT;
3003 if (copy_from_user(&tr, argp, sizeof tr))
3004 goto out;
3005 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
3006 if (r)
3007 goto out;
3008 r = -EFAULT;
3009 if (copy_to_user(argp, &tr, sizeof tr))
3010 goto out;
3011 r = 0;
3012 break;
3014 case KVM_INTERRUPT: {
3015 struct kvm_interrupt irq;
3017 r = -EFAULT;
3018 if (copy_from_user(&irq, argp, sizeof irq))
3019 goto out;
3020 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3021 if (r)
3022 goto out;
3023 r = 0;
3024 break;
3026 case KVM_DEBUG_GUEST: {
3027 struct kvm_debug_guest dbg;
3029 r = -EFAULT;
3030 if (copy_from_user(&dbg, argp, sizeof dbg))
3031 goto out;
3032 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
3033 if (r)
3034 goto out;
3035 r = 0;
3036 break;
3038 case KVM_GET_MSRS:
3039 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3040 break;
3041 case KVM_SET_MSRS:
3042 r = msr_io(vcpu, argp, do_set_msr, 0);
3043 break;
3044 case KVM_SET_CPUID: {
3045 struct kvm_cpuid __user *cpuid_arg = argp;
3046 struct kvm_cpuid cpuid;
3048 r = -EFAULT;
3049 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3050 goto out;
3051 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3052 if (r)
3053 goto out;
3054 break;
3056 case KVM_SET_SIGNAL_MASK: {
3057 struct kvm_signal_mask __user *sigmask_arg = argp;
3058 struct kvm_signal_mask kvm_sigmask;
3059 sigset_t sigset, *p;
3061 p = NULL;
3062 if (argp) {
3063 r = -EFAULT;
3064 if (copy_from_user(&kvm_sigmask, argp,
3065 sizeof kvm_sigmask))
3066 goto out;
3067 r = -EINVAL;
3068 if (kvm_sigmask.len != sizeof sigset)
3069 goto out;
3070 r = -EFAULT;
3071 if (copy_from_user(&sigset, sigmask_arg->sigset,
3072 sizeof sigset))
3073 goto out;
3074 p = &sigset;
3076 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3077 break;
3079 case KVM_GET_FPU: {
3080 struct kvm_fpu fpu;
3082 memset(&fpu, 0, sizeof fpu);
3083 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
3084 if (r)
3085 goto out;
3086 r = -EFAULT;
3087 if (copy_to_user(argp, &fpu, sizeof fpu))
3088 goto out;
3089 r = 0;
3090 break;
3092 case KVM_SET_FPU: {
3093 struct kvm_fpu fpu;
3095 r = -EFAULT;
3096 if (copy_from_user(&fpu, argp, sizeof fpu))
3097 goto out;
3098 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
3099 if (r)
3100 goto out;
3101 r = 0;
3102 break;
3104 case KVM_GET_LAPIC: {
3105 struct kvm_lapic_state lapic;
3107 memset(&lapic, 0, sizeof lapic);
3108 r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
3109 if (r)
3110 goto out;
3111 r = -EFAULT;
3112 if (copy_to_user(argp, &lapic, sizeof lapic))
3113 goto out;
3114 r = 0;
3115 break;
3117 case KVM_SET_LAPIC: {
3118 struct kvm_lapic_state lapic;
3120 r = -EFAULT;
3121 if (copy_from_user(&lapic, argp, sizeof lapic))
3122 goto out;
3123 r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
3124 if (r)
3125 goto out;
3126 r = 0;
3127 break;
3129 default:
3132 out:
3133 return r;
3136 static long kvm_vm_ioctl(struct file *filp,
3137 unsigned int ioctl, unsigned long arg)
3139 struct kvm *kvm = filp->private_data;
3140 void __user *argp = (void __user *)arg;
3141 int r = -EINVAL;
3143 switch (ioctl) {
3144 case KVM_CREATE_VCPU:
3145 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3146 if (r < 0)
3147 goto out;
3148 break;
3149 case KVM_SET_MEMORY_REGION: {
3150 struct kvm_memory_region kvm_mem;
3151 struct kvm_userspace_memory_region kvm_userspace_mem;
3153 r = -EFAULT;
3154 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
3155 goto out;
3156 kvm_userspace_mem.slot = kvm_mem.slot;
3157 kvm_userspace_mem.flags = kvm_mem.flags;
3158 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
3159 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
3160 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
3161 if (r)
3162 goto out;
3163 break;
3165 case KVM_SET_USER_MEMORY_REGION: {
3166 struct kvm_userspace_memory_region kvm_userspace_mem;
3168 r = -EFAULT;
3169 if (copy_from_user(&kvm_userspace_mem, argp,
3170 sizeof kvm_userspace_mem))
3171 goto out;
3173 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
3174 if (r)
3175 goto out;
3176 break;
3178 case KVM_SET_NR_MMU_PAGES:
3179 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3180 if (r)
3181 goto out;
3182 break;
3183 case KVM_GET_NR_MMU_PAGES:
3184 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3185 break;
3186 case KVM_GET_DIRTY_LOG: {
3187 struct kvm_dirty_log log;
3189 r = -EFAULT;
3190 if (copy_from_user(&log, argp, sizeof log))
3191 goto out;
3192 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3193 if (r)
3194 goto out;
3195 break;
3197 case KVM_SET_MEMORY_ALIAS: {
3198 struct kvm_memory_alias alias;
3200 r = -EFAULT;
3201 if (copy_from_user(&alias, argp, sizeof alias))
3202 goto out;
3203 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
3204 if (r)
3205 goto out;
3206 break;
3208 case KVM_CREATE_IRQCHIP:
3209 r = -ENOMEM;
3210 kvm->vpic = kvm_create_pic(kvm);
3211 if (kvm->vpic) {
3212 r = kvm_ioapic_init(kvm);
3213 if (r) {
3214 kfree(kvm->vpic);
3215 kvm->vpic = NULL;
3216 goto out;
3218 } else
3219 goto out;
3220 break;
3221 case KVM_IRQ_LINE: {
3222 struct kvm_irq_level irq_event;
3224 r = -EFAULT;
3225 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3226 goto out;
3227 if (irqchip_in_kernel(kvm)) {
3228 mutex_lock(&kvm->lock);
3229 if (irq_event.irq < 16)
3230 kvm_pic_set_irq(pic_irqchip(kvm),
3231 irq_event.irq,
3232 irq_event.level);
3233 kvm_ioapic_set_irq(kvm->vioapic,
3234 irq_event.irq,
3235 irq_event.level);
3236 mutex_unlock(&kvm->lock);
3237 r = 0;
3239 break;
3241 case KVM_GET_IRQCHIP: {
3242 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3243 struct kvm_irqchip chip;
3245 r = -EFAULT;
3246 if (copy_from_user(&chip, argp, sizeof chip))
3247 goto out;
3248 r = -ENXIO;
3249 if (!irqchip_in_kernel(kvm))
3250 goto out;
3251 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
3252 if (r)
3253 goto out;
3254 r = -EFAULT;
3255 if (copy_to_user(argp, &chip, sizeof chip))
3256 goto out;
3257 r = 0;
3258 break;
3260 case KVM_SET_IRQCHIP: {
3261 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3262 struct kvm_irqchip chip;
3264 r = -EFAULT;
3265 if (copy_from_user(&chip, argp, sizeof chip))
3266 goto out;
3267 r = -ENXIO;
3268 if (!irqchip_in_kernel(kvm))
3269 goto out;
3270 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
3271 if (r)
3272 goto out;
3273 r = 0;
3274 break;
3276 default:
3279 out:
3280 return r;
3283 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
3284 unsigned long address,
3285 int *type)
3287 struct kvm *kvm = vma->vm_file->private_data;
3288 unsigned long pgoff;
3289 struct page *page;
3291 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3292 page = gfn_to_page(kvm, pgoff);
3293 if (!page)
3294 return NOPAGE_SIGBUS;
3295 get_page(page);
3296 if (type != NULL)
3297 *type = VM_FAULT_MINOR;
3299 return page;
3302 static struct vm_operations_struct kvm_vm_vm_ops = {
3303 .nopage = kvm_vm_nopage,
3306 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
3308 vma->vm_ops = &kvm_vm_vm_ops;
3309 return 0;
3312 static struct file_operations kvm_vm_fops = {
3313 .release = kvm_vm_release,
3314 .unlocked_ioctl = kvm_vm_ioctl,
3315 .compat_ioctl = kvm_vm_ioctl,
3316 .mmap = kvm_vm_mmap,
3319 static int kvm_dev_ioctl_create_vm(void)
3321 int fd, r;
3322 struct inode *inode;
3323 struct file *file;
3324 struct kvm *kvm;
3326 kvm = kvm_create_vm();
3327 if (IS_ERR(kvm))
3328 return PTR_ERR(kvm);
3329 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
3330 if (r) {
3331 kvm_destroy_vm(kvm);
3332 return r;
3335 kvm->filp = file;
3337 return fd;
3340 static long kvm_dev_ioctl(struct file *filp,
3341 unsigned int ioctl, unsigned long arg)
3343 void __user *argp = (void __user *)arg;
3344 long r = -EINVAL;
3346 switch (ioctl) {
3347 case KVM_GET_API_VERSION:
3348 r = -EINVAL;
3349 if (arg)
3350 goto out;
3351 r = KVM_API_VERSION;
3352 break;
3353 case KVM_CREATE_VM:
3354 r = -EINVAL;
3355 if (arg)
3356 goto out;
3357 r = kvm_dev_ioctl_create_vm();
3358 break;
3359 case KVM_GET_MSR_INDEX_LIST: {
3360 struct kvm_msr_list __user *user_msr_list = argp;
3361 struct kvm_msr_list msr_list;
3362 unsigned n;
3364 r = -EFAULT;
3365 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
3366 goto out;
3367 n = msr_list.nmsrs;
3368 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
3369 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
3370 goto out;
3371 r = -E2BIG;
3372 if (n < num_msrs_to_save)
3373 goto out;
3374 r = -EFAULT;
3375 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3376 num_msrs_to_save * sizeof(u32)))
3377 goto out;
3378 if (copy_to_user(user_msr_list->indices
3379 + num_msrs_to_save * sizeof(u32),
3380 &emulated_msrs,
3381 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
3382 goto out;
3383 r = 0;
3384 break;
3386 case KVM_CHECK_EXTENSION: {
3387 int ext = (long)argp;
3389 switch (ext) {
3390 case KVM_CAP_IRQCHIP:
3391 case KVM_CAP_HLT:
3392 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3393 case KVM_CAP_USER_MEMORY:
3394 r = 1;
3395 break;
3396 default:
3397 r = 0;
3398 break;
3400 break;
3402 case KVM_GET_VCPU_MMAP_SIZE:
3403 r = -EINVAL;
3404 if (arg)
3405 goto out;
3406 r = 2 * PAGE_SIZE;
3407 break;
3408 default:
3411 out:
3412 return r;
3415 static struct file_operations kvm_chardev_ops = {
3416 .unlocked_ioctl = kvm_dev_ioctl,
3417 .compat_ioctl = kvm_dev_ioctl,
3420 static struct miscdevice kvm_dev = {
3421 KVM_MINOR,
3422 "kvm",
3423 &kvm_chardev_ops,
3427 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3428 * cached on it.
3430 static void decache_vcpus_on_cpu(int cpu)
3432 struct kvm *vm;
3433 struct kvm_vcpu *vcpu;
3434 int i;
3436 spin_lock(&kvm_lock);
3437 list_for_each_entry(vm, &vm_list, vm_list)
3438 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3439 vcpu = vm->vcpus[i];
3440 if (!vcpu)
3441 continue;
3443 * If the vcpu is locked, then it is running on some
3444 * other cpu and therefore it is not cached on the
3445 * cpu in question.
3447 * If it's not locked, check the last cpu it executed
3448 * on.
3450 if (mutex_trylock(&vcpu->mutex)) {
3451 if (vcpu->cpu == cpu) {
3452 kvm_x86_ops->vcpu_decache(vcpu);
3453 vcpu->cpu = -1;
3455 mutex_unlock(&vcpu->mutex);
3458 spin_unlock(&kvm_lock);
3461 static void hardware_enable(void *junk)
3463 int cpu = raw_smp_processor_id();
3465 if (cpu_isset(cpu, cpus_hardware_enabled))
3466 return;
3467 cpu_set(cpu, cpus_hardware_enabled);
3468 kvm_x86_ops->hardware_enable(NULL);
3471 static void hardware_disable(void *junk)
3473 int cpu = raw_smp_processor_id();
3475 if (!cpu_isset(cpu, cpus_hardware_enabled))
3476 return;
3477 cpu_clear(cpu, cpus_hardware_enabled);
3478 decache_vcpus_on_cpu(cpu);
3479 kvm_x86_ops->hardware_disable(NULL);
3482 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3483 void *v)
3485 int cpu = (long)v;
3487 switch (val) {
3488 case CPU_DYING:
3489 case CPU_DYING_FROZEN:
3490 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3491 cpu);
3492 hardware_disable(NULL);
3493 break;
3494 case CPU_UP_CANCELED:
3495 case CPU_UP_CANCELED_FROZEN:
3496 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3497 cpu);
3498 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3499 break;
3500 case CPU_ONLINE:
3501 case CPU_ONLINE_FROZEN:
3502 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3503 cpu);
3504 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3505 break;
3507 return NOTIFY_OK;
3510 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3511 void *v)
3513 if (val == SYS_RESTART) {
3515 * Some (well, at least mine) BIOSes hang on reboot if
3516 * in vmx root mode.
3518 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3519 on_each_cpu(hardware_disable, NULL, 0, 1);
3521 return NOTIFY_OK;
3524 static struct notifier_block kvm_reboot_notifier = {
3525 .notifier_call = kvm_reboot,
3526 .priority = 0,
3529 void kvm_io_bus_init(struct kvm_io_bus *bus)
3531 memset(bus, 0, sizeof(*bus));
3534 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3536 int i;
3538 for (i = 0; i < bus->dev_count; i++) {
3539 struct kvm_io_device *pos = bus->devs[i];
3541 kvm_iodevice_destructor(pos);
3545 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3547 int i;
3549 for (i = 0; i < bus->dev_count; i++) {
3550 struct kvm_io_device *pos = bus->devs[i];
3552 if (pos->in_range(pos, addr))
3553 return pos;
3556 return NULL;
3559 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3561 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3563 bus->devs[bus->dev_count++] = dev;
3566 static struct notifier_block kvm_cpu_notifier = {
3567 .notifier_call = kvm_cpu_hotplug,
3568 .priority = 20, /* must be > scheduler priority */
3571 static u64 stat_get(void *_offset)
3573 unsigned offset = (long)_offset;
3574 u64 total = 0;
3575 struct kvm *kvm;
3576 struct kvm_vcpu *vcpu;
3577 int i;
3579 spin_lock(&kvm_lock);
3580 list_for_each_entry(kvm, &vm_list, vm_list)
3581 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3582 vcpu = kvm->vcpus[i];
3583 if (vcpu)
3584 total += *(u32 *)((void *)vcpu + offset);
3586 spin_unlock(&kvm_lock);
3587 return total;
3590 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
3592 static __init void kvm_init_debug(void)
3594 struct kvm_stats_debugfs_item *p;
3596 debugfs_dir = debugfs_create_dir("kvm", NULL);
3597 for (p = debugfs_entries; p->name; ++p)
3598 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3599 (void *)(long)p->offset,
3600 &stat_fops);
3603 static void kvm_exit_debug(void)
3605 struct kvm_stats_debugfs_item *p;
3607 for (p = debugfs_entries; p->name; ++p)
3608 debugfs_remove(p->dentry);
3609 debugfs_remove(debugfs_dir);
3612 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3614 hardware_disable(NULL);
3615 return 0;
3618 static int kvm_resume(struct sys_device *dev)
3620 hardware_enable(NULL);
3621 return 0;
3624 static struct sysdev_class kvm_sysdev_class = {
3625 .name = "kvm",
3626 .suspend = kvm_suspend,
3627 .resume = kvm_resume,
3630 static struct sys_device kvm_sysdev = {
3631 .id = 0,
3632 .cls = &kvm_sysdev_class,
3635 hpa_t bad_page_address;
3637 static inline
3638 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3640 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3643 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3645 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3647 kvm_x86_ops->vcpu_load(vcpu, cpu);
3650 static void kvm_sched_out(struct preempt_notifier *pn,
3651 struct task_struct *next)
3653 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3655 kvm_x86_ops->vcpu_put(vcpu);
3658 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
3659 struct module *module)
3661 int r;
3662 int cpu;
3664 if (kvm_x86_ops) {
3665 printk(KERN_ERR "kvm: already loaded the other module\n");
3666 return -EEXIST;
3669 if (!ops->cpu_has_kvm_support()) {
3670 printk(KERN_ERR "kvm: no hardware support\n");
3671 return -EOPNOTSUPP;
3673 if (ops->disabled_by_bios()) {
3674 printk(KERN_ERR "kvm: disabled by bios\n");
3675 return -EOPNOTSUPP;
3678 kvm_x86_ops = ops;
3680 r = kvm_x86_ops->hardware_setup();
3681 if (r < 0)
3682 goto out;
3684 for_each_online_cpu(cpu) {
3685 smp_call_function_single(cpu,
3686 kvm_x86_ops->check_processor_compatibility,
3687 &r, 0, 1);
3688 if (r < 0)
3689 goto out_free_0;
3692 on_each_cpu(hardware_enable, NULL, 0, 1);
3693 r = register_cpu_notifier(&kvm_cpu_notifier);
3694 if (r)
3695 goto out_free_1;
3696 register_reboot_notifier(&kvm_reboot_notifier);
3698 r = sysdev_class_register(&kvm_sysdev_class);
3699 if (r)
3700 goto out_free_2;
3702 r = sysdev_register(&kvm_sysdev);
3703 if (r)
3704 goto out_free_3;
3706 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3707 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
3708 __alignof__(struct kvm_vcpu), 0, 0);
3709 if (!kvm_vcpu_cache) {
3710 r = -ENOMEM;
3711 goto out_free_4;
3714 kvm_chardev_ops.owner = module;
3716 r = misc_register(&kvm_dev);
3717 if (r) {
3718 printk(KERN_ERR "kvm: misc device register failed\n");
3719 goto out_free;
3722 kvm_preempt_ops.sched_in = kvm_sched_in;
3723 kvm_preempt_ops.sched_out = kvm_sched_out;
3725 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
3727 return 0;
3729 out_free:
3730 kmem_cache_destroy(kvm_vcpu_cache);
3731 out_free_4:
3732 sysdev_unregister(&kvm_sysdev);
3733 out_free_3:
3734 sysdev_class_unregister(&kvm_sysdev_class);
3735 out_free_2:
3736 unregister_reboot_notifier(&kvm_reboot_notifier);
3737 unregister_cpu_notifier(&kvm_cpu_notifier);
3738 out_free_1:
3739 on_each_cpu(hardware_disable, NULL, 0, 1);
3740 out_free_0:
3741 kvm_x86_ops->hardware_unsetup();
3742 out:
3743 kvm_x86_ops = NULL;
3744 return r;
3746 EXPORT_SYMBOL_GPL(kvm_init_x86);
3748 void kvm_exit_x86(void)
3750 misc_deregister(&kvm_dev);
3751 kmem_cache_destroy(kvm_vcpu_cache);
3752 sysdev_unregister(&kvm_sysdev);
3753 sysdev_class_unregister(&kvm_sysdev_class);
3754 unregister_reboot_notifier(&kvm_reboot_notifier);
3755 unregister_cpu_notifier(&kvm_cpu_notifier);
3756 on_each_cpu(hardware_disable, NULL, 0, 1);
3757 kvm_x86_ops->hardware_unsetup();
3758 kvm_x86_ops = NULL;
3760 EXPORT_SYMBOL_GPL(kvm_exit_x86);
3762 static __init int kvm_init(void)
3764 static struct page *bad_page;
3765 int r;
3767 r = kvm_mmu_module_init();
3768 if (r)
3769 goto out4;
3771 kvm_init_debug();
3773 kvm_init_msr_list();
3775 bad_page = alloc_page(GFP_KERNEL);
3777 if (bad_page == NULL) {
3778 r = -ENOMEM;
3779 goto out;
3782 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3783 memset(__va(bad_page_address), 0, PAGE_SIZE);
3785 return 0;
3787 out:
3788 kvm_exit_debug();
3789 kvm_mmu_module_exit();
3790 out4:
3791 return r;
3794 static __exit void kvm_exit(void)
3796 kvm_exit_debug();
3797 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3798 kvm_mmu_module_exit();
3801 module_init(kvm_init)
3802 module_exit(kvm_exit)