[S390] allow usage of string functions in linux/string.h
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cpuset.c
blobf76db9dcaa05e592f3138f5389ae4c22827b58d9
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Workqueue for cpuset related tasks.
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
69 static struct workqueue_struct *cpuset_wq;
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
76 int number_of_cpusets __read_mostly;
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
82 /* See "Frequency meter" comments, below. */
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
91 struct cpuset {
92 struct cgroup_subsys_state css;
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
98 struct cpuset *parent; /* my parent */
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
104 int mems_generation;
106 struct fmeter fmeter; /* memory_pressure filter */
108 /* partition number for rebuild_sched_domains() */
109 int pn;
111 /* for custom sched domain */
112 int relax_domain_level;
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
118 /* Retrieve the cpuset for a cgroup */
119 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
125 /* Retrieve the cpuset for a task */
126 static inline struct cpuset *task_cs(struct task_struct *task)
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
131 struct cpuset_hotplug_scanner {
132 struct cgroup_scanner scan;
133 struct cgroup *to;
136 /* bits in struct cpuset flags field */
137 typedef enum {
138 CS_CPU_EXCLUSIVE,
139 CS_MEM_EXCLUSIVE,
140 CS_MEM_HARDWALL,
141 CS_MEMORY_MIGRATE,
142 CS_SCHED_LOAD_BALANCE,
143 CS_SPREAD_PAGE,
144 CS_SPREAD_SLAB,
145 } cpuset_flagbits_t;
147 /* convenient tests for these bits */
148 static inline int is_cpu_exclusive(const struct cpuset *cs)
150 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
153 static inline int is_mem_exclusive(const struct cpuset *cs)
155 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
158 static inline int is_mem_hardwall(const struct cpuset *cs)
160 return test_bit(CS_MEM_HARDWALL, &cs->flags);
163 static inline int is_sched_load_balance(const struct cpuset *cs)
165 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
168 static inline int is_memory_migrate(const struct cpuset *cs)
170 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
173 static inline int is_spread_page(const struct cpuset *cs)
175 return test_bit(CS_SPREAD_PAGE, &cs->flags);
178 static inline int is_spread_slab(const struct cpuset *cs)
180 return test_bit(CS_SPREAD_SLAB, &cs->flags);
184 * Increment this integer everytime any cpuset changes its
185 * mems_allowed value. Users of cpusets can track this generation
186 * number, and avoid having to lock and reload mems_allowed unless
187 * the cpuset they're using changes generation.
189 * A single, global generation is needed because cpuset_attach_task() could
190 * reattach a task to a different cpuset, which must not have its
191 * generation numbers aliased with those of that tasks previous cpuset.
193 * Generations are needed for mems_allowed because one task cannot
194 * modify another's memory placement. So we must enable every task,
195 * on every visit to __alloc_pages(), to efficiently check whether
196 * its current->cpuset->mems_allowed has changed, requiring an update
197 * of its current->mems_allowed.
199 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
200 * there is no need to mark it atomic.
202 static int cpuset_mems_generation;
204 static struct cpuset top_cpuset = {
205 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
209 * There are two global mutexes guarding cpuset structures. The first
210 * is the main control groups cgroup_mutex, accessed via
211 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
212 * callback_mutex, below. They can nest. It is ok to first take
213 * cgroup_mutex, then nest callback_mutex. We also require taking
214 * task_lock() when dereferencing a task's cpuset pointer. See "The
215 * task_lock() exception", at the end of this comment.
217 * A task must hold both mutexes to modify cpusets. If a task
218 * holds cgroup_mutex, then it blocks others wanting that mutex,
219 * ensuring that it is the only task able to also acquire callback_mutex
220 * and be able to modify cpusets. It can perform various checks on
221 * the cpuset structure first, knowing nothing will change. It can
222 * also allocate memory while just holding cgroup_mutex. While it is
223 * performing these checks, various callback routines can briefly
224 * acquire callback_mutex to query cpusets. Once it is ready to make
225 * the changes, it takes callback_mutex, blocking everyone else.
227 * Calls to the kernel memory allocator can not be made while holding
228 * callback_mutex, as that would risk double tripping on callback_mutex
229 * from one of the callbacks into the cpuset code from within
230 * __alloc_pages().
232 * If a task is only holding callback_mutex, then it has read-only
233 * access to cpusets.
235 * The task_struct fields mems_allowed and mems_generation may only
236 * be accessed in the context of that task, so require no locks.
238 * The cpuset_common_file_read() handlers only hold callback_mutex across
239 * small pieces of code, such as when reading out possibly multi-word
240 * cpumasks and nodemasks.
242 * Accessing a task's cpuset should be done in accordance with the
243 * guidelines for accessing subsystem state in kernel/cgroup.c
246 static DEFINE_MUTEX(callback_mutex);
249 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
250 * buffers. They are statically allocated to prevent using excess stack
251 * when calling cpuset_print_task_mems_allowed().
253 #define CPUSET_NAME_LEN (128)
254 #define CPUSET_NODELIST_LEN (256)
255 static char cpuset_name[CPUSET_NAME_LEN];
256 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
257 static DEFINE_SPINLOCK(cpuset_buffer_lock);
260 * This is ugly, but preserves the userspace API for existing cpuset
261 * users. If someone tries to mount the "cpuset" filesystem, we
262 * silently switch it to mount "cgroup" instead
264 static int cpuset_get_sb(struct file_system_type *fs_type,
265 int flags, const char *unused_dev_name,
266 void *data, struct vfsmount *mnt)
268 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
269 int ret = -ENODEV;
270 if (cgroup_fs) {
271 char mountopts[] =
272 "cpuset,noprefix,"
273 "release_agent=/sbin/cpuset_release_agent";
274 ret = cgroup_fs->get_sb(cgroup_fs, flags,
275 unused_dev_name, mountopts, mnt);
276 put_filesystem(cgroup_fs);
278 return ret;
281 static struct file_system_type cpuset_fs_type = {
282 .name = "cpuset",
283 .get_sb = cpuset_get_sb,
287 * Return in pmask the portion of a cpusets's cpus_allowed that
288 * are online. If none are online, walk up the cpuset hierarchy
289 * until we find one that does have some online cpus. If we get
290 * all the way to the top and still haven't found any online cpus,
291 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
292 * task, return cpu_online_map.
294 * One way or another, we guarantee to return some non-empty subset
295 * of cpu_online_map.
297 * Call with callback_mutex held.
300 static void guarantee_online_cpus(const struct cpuset *cs,
301 struct cpumask *pmask)
303 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
304 cs = cs->parent;
305 if (cs)
306 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
307 else
308 cpumask_copy(pmask, cpu_online_mask);
309 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
313 * Return in *pmask the portion of a cpusets's mems_allowed that
314 * are online, with memory. If none are online with memory, walk
315 * up the cpuset hierarchy until we find one that does have some
316 * online mems. If we get all the way to the top and still haven't
317 * found any online mems, return node_states[N_HIGH_MEMORY].
319 * One way or another, we guarantee to return some non-empty subset
320 * of node_states[N_HIGH_MEMORY].
322 * Call with callback_mutex held.
325 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
327 while (cs && !nodes_intersects(cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]))
329 cs = cs->parent;
330 if (cs)
331 nodes_and(*pmask, cs->mems_allowed,
332 node_states[N_HIGH_MEMORY]);
333 else
334 *pmask = node_states[N_HIGH_MEMORY];
335 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
339 * cpuset_update_task_memory_state - update task memory placement
341 * If the current tasks cpusets mems_allowed changed behind our
342 * backs, update current->mems_allowed, mems_generation and task NUMA
343 * mempolicy to the new value.
345 * Task mempolicy is updated by rebinding it relative to the
346 * current->cpuset if a task has its memory placement changed.
347 * Do not call this routine if in_interrupt().
349 * Call without callback_mutex or task_lock() held. May be
350 * called with or without cgroup_mutex held. Thanks in part to
351 * 'the_top_cpuset_hack', the task's cpuset pointer will never
352 * be NULL. This routine also might acquire callback_mutex during
353 * call.
355 * Reading current->cpuset->mems_generation doesn't need task_lock
356 * to guard the current->cpuset derefence, because it is guarded
357 * from concurrent freeing of current->cpuset using RCU.
359 * The rcu_dereference() is technically probably not needed,
360 * as I don't actually mind if I see a new cpuset pointer but
361 * an old value of mems_generation. However this really only
362 * matters on alpha systems using cpusets heavily. If I dropped
363 * that rcu_dereference(), it would save them a memory barrier.
364 * For all other arch's, rcu_dereference is a no-op anyway, and for
365 * alpha systems not using cpusets, another planned optimization,
366 * avoiding the rcu critical section for tasks in the root cpuset
367 * which is statically allocated, so can't vanish, will make this
368 * irrelevant. Better to use RCU as intended, than to engage in
369 * some cute trick to save a memory barrier that is impossible to
370 * test, for alpha systems using cpusets heavily, which might not
371 * even exist.
373 * This routine is needed to update the per-task mems_allowed data,
374 * within the tasks context, when it is trying to allocate memory
375 * (in various mm/mempolicy.c routines) and notices that some other
376 * task has been modifying its cpuset.
379 void cpuset_update_task_memory_state(void)
381 int my_cpusets_mem_gen;
382 struct task_struct *tsk = current;
383 struct cpuset *cs;
385 rcu_read_lock();
386 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
387 rcu_read_unlock();
389 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
390 mutex_lock(&callback_mutex);
391 task_lock(tsk);
392 cs = task_cs(tsk); /* Maybe changed when task not locked */
393 guarantee_online_mems(cs, &tsk->mems_allowed);
394 tsk->cpuset_mems_generation = cs->mems_generation;
395 if (is_spread_page(cs))
396 tsk->flags |= PF_SPREAD_PAGE;
397 else
398 tsk->flags &= ~PF_SPREAD_PAGE;
399 if (is_spread_slab(cs))
400 tsk->flags |= PF_SPREAD_SLAB;
401 else
402 tsk->flags &= ~PF_SPREAD_SLAB;
403 task_unlock(tsk);
404 mutex_unlock(&callback_mutex);
405 mpol_rebind_task(tsk, &tsk->mems_allowed);
410 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
412 * One cpuset is a subset of another if all its allowed CPUs and
413 * Memory Nodes are a subset of the other, and its exclusive flags
414 * are only set if the other's are set. Call holding cgroup_mutex.
417 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
419 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
420 nodes_subset(p->mems_allowed, q->mems_allowed) &&
421 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
422 is_mem_exclusive(p) <= is_mem_exclusive(q);
426 * alloc_trial_cpuset - allocate a trial cpuset
427 * @cs: the cpuset that the trial cpuset duplicates
429 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
431 struct cpuset *trial;
433 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
434 if (!trial)
435 return NULL;
437 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
438 kfree(trial);
439 return NULL;
441 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
443 return trial;
447 * free_trial_cpuset - free the trial cpuset
448 * @trial: the trial cpuset to be freed
450 static void free_trial_cpuset(struct cpuset *trial)
452 free_cpumask_var(trial->cpus_allowed);
453 kfree(trial);
457 * validate_change() - Used to validate that any proposed cpuset change
458 * follows the structural rules for cpusets.
460 * If we replaced the flag and mask values of the current cpuset
461 * (cur) with those values in the trial cpuset (trial), would
462 * our various subset and exclusive rules still be valid? Presumes
463 * cgroup_mutex held.
465 * 'cur' is the address of an actual, in-use cpuset. Operations
466 * such as list traversal that depend on the actual address of the
467 * cpuset in the list must use cur below, not trial.
469 * 'trial' is the address of bulk structure copy of cur, with
470 * perhaps one or more of the fields cpus_allowed, mems_allowed,
471 * or flags changed to new, trial values.
473 * Return 0 if valid, -errno if not.
476 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
478 struct cgroup *cont;
479 struct cpuset *c, *par;
481 /* Each of our child cpusets must be a subset of us */
482 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
483 if (!is_cpuset_subset(cgroup_cs(cont), trial))
484 return -EBUSY;
487 /* Remaining checks don't apply to root cpuset */
488 if (cur == &top_cpuset)
489 return 0;
491 par = cur->parent;
493 /* We must be a subset of our parent cpuset */
494 if (!is_cpuset_subset(trial, par))
495 return -EACCES;
498 * If either I or some sibling (!= me) is exclusive, we can't
499 * overlap
501 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
502 c = cgroup_cs(cont);
503 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
504 c != cur &&
505 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
506 return -EINVAL;
507 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
508 c != cur &&
509 nodes_intersects(trial->mems_allowed, c->mems_allowed))
510 return -EINVAL;
513 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
514 if (cgroup_task_count(cur->css.cgroup)) {
515 if (cpumask_empty(trial->cpus_allowed) ||
516 nodes_empty(trial->mems_allowed)) {
517 return -ENOSPC;
521 return 0;
525 * Helper routine for generate_sched_domains().
526 * Do cpusets a, b have overlapping cpus_allowed masks?
528 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
530 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
533 static void
534 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
536 if (dattr->relax_domain_level < c->relax_domain_level)
537 dattr->relax_domain_level = c->relax_domain_level;
538 return;
541 static void
542 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
544 LIST_HEAD(q);
546 list_add(&c->stack_list, &q);
547 while (!list_empty(&q)) {
548 struct cpuset *cp;
549 struct cgroup *cont;
550 struct cpuset *child;
552 cp = list_first_entry(&q, struct cpuset, stack_list);
553 list_del(q.next);
555 if (cpumask_empty(cp->cpus_allowed))
556 continue;
558 if (is_sched_load_balance(cp))
559 update_domain_attr(dattr, cp);
561 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
562 child = cgroup_cs(cont);
563 list_add_tail(&child->stack_list, &q);
569 * generate_sched_domains()
571 * This function builds a partial partition of the systems CPUs
572 * A 'partial partition' is a set of non-overlapping subsets whose
573 * union is a subset of that set.
574 * The output of this function needs to be passed to kernel/sched.c
575 * partition_sched_domains() routine, which will rebuild the scheduler's
576 * load balancing domains (sched domains) as specified by that partial
577 * partition.
579 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
580 * for a background explanation of this.
582 * Does not return errors, on the theory that the callers of this
583 * routine would rather not worry about failures to rebuild sched
584 * domains when operating in the severe memory shortage situations
585 * that could cause allocation failures below.
587 * Must be called with cgroup_lock held.
589 * The three key local variables below are:
590 * q - a linked-list queue of cpuset pointers, used to implement a
591 * top-down scan of all cpusets. This scan loads a pointer
592 * to each cpuset marked is_sched_load_balance into the
593 * array 'csa'. For our purposes, rebuilding the schedulers
594 * sched domains, we can ignore !is_sched_load_balance cpusets.
595 * csa - (for CpuSet Array) Array of pointers to all the cpusets
596 * that need to be load balanced, for convenient iterative
597 * access by the subsequent code that finds the best partition,
598 * i.e the set of domains (subsets) of CPUs such that the
599 * cpus_allowed of every cpuset marked is_sched_load_balance
600 * is a subset of one of these domains, while there are as
601 * many such domains as possible, each as small as possible.
602 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
603 * the kernel/sched.c routine partition_sched_domains() in a
604 * convenient format, that can be easily compared to the prior
605 * value to determine what partition elements (sched domains)
606 * were changed (added or removed.)
608 * Finding the best partition (set of domains):
609 * The triple nested loops below over i, j, k scan over the
610 * load balanced cpusets (using the array of cpuset pointers in
611 * csa[]) looking for pairs of cpusets that have overlapping
612 * cpus_allowed, but which don't have the same 'pn' partition
613 * number and gives them in the same partition number. It keeps
614 * looping on the 'restart' label until it can no longer find
615 * any such pairs.
617 * The union of the cpus_allowed masks from the set of
618 * all cpusets having the same 'pn' value then form the one
619 * element of the partition (one sched domain) to be passed to
620 * partition_sched_domains().
622 /* FIXME: see the FIXME in partition_sched_domains() */
623 static int generate_sched_domains(struct cpumask **domains,
624 struct sched_domain_attr **attributes)
626 LIST_HEAD(q); /* queue of cpusets to be scanned */
627 struct cpuset *cp; /* scans q */
628 struct cpuset **csa; /* array of all cpuset ptrs */
629 int csn; /* how many cpuset ptrs in csa so far */
630 int i, j, k; /* indices for partition finding loops */
631 struct cpumask *doms; /* resulting partition; i.e. sched domains */
632 struct sched_domain_attr *dattr; /* attributes for custom domains */
633 int ndoms = 0; /* number of sched domains in result */
634 int nslot; /* next empty doms[] struct cpumask slot */
636 doms = NULL;
637 dattr = NULL;
638 csa = NULL;
640 /* Special case for the 99% of systems with one, full, sched domain */
641 if (is_sched_load_balance(&top_cpuset)) {
642 doms = kmalloc(cpumask_size(), GFP_KERNEL);
643 if (!doms)
644 goto done;
646 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
647 if (dattr) {
648 *dattr = SD_ATTR_INIT;
649 update_domain_attr_tree(dattr, &top_cpuset);
651 cpumask_copy(doms, top_cpuset.cpus_allowed);
653 ndoms = 1;
654 goto done;
657 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
658 if (!csa)
659 goto done;
660 csn = 0;
662 list_add(&top_cpuset.stack_list, &q);
663 while (!list_empty(&q)) {
664 struct cgroup *cont;
665 struct cpuset *child; /* scans child cpusets of cp */
667 cp = list_first_entry(&q, struct cpuset, stack_list);
668 list_del(q.next);
670 if (cpumask_empty(cp->cpus_allowed))
671 continue;
674 * All child cpusets contain a subset of the parent's cpus, so
675 * just skip them, and then we call update_domain_attr_tree()
676 * to calc relax_domain_level of the corresponding sched
677 * domain.
679 if (is_sched_load_balance(cp)) {
680 csa[csn++] = cp;
681 continue;
684 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
685 child = cgroup_cs(cont);
686 list_add_tail(&child->stack_list, &q);
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
694 restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
708 if (c->pn == bpn)
709 c->pn = apn;
711 ndoms--; /* one less element */
712 goto restart;
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
721 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
722 if (!doms)
723 goto done;
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
733 struct cpumask *dp;
734 int apn = a->pn;
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
741 dp = doms + nslot;
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 printk(KERN_WARNING
747 "rebuild_sched_domains confused:"
748 " nslot %d, ndoms %d, csn %d, i %d,"
749 " apn %d\n",
750 nslot, ndoms, csn, i, apn);
751 warnings--;
753 continue;
756 cpumask_clear(dp);
757 if (dattr)
758 *(dattr + nslot) = SD_ATTR_INIT;
759 for (j = i; j < csn; j++) {
760 struct cpuset *b = csa[j];
762 if (apn == b->pn) {
763 cpumask_or(dp, dp, b->cpus_allowed);
764 if (dattr)
765 update_domain_attr_tree(dattr + nslot, b);
767 /* Done with this partition */
768 b->pn = -1;
771 nslot++;
773 BUG_ON(nslot != ndoms);
775 done:
776 kfree(csa);
779 * Fallback to the default domain if kmalloc() failed.
780 * See comments in partition_sched_domains().
782 if (doms == NULL)
783 ndoms = 1;
785 *domains = doms;
786 *attributes = dattr;
787 return ndoms;
791 * Rebuild scheduler domains.
793 * Call with neither cgroup_mutex held nor within get_online_cpus().
794 * Takes both cgroup_mutex and get_online_cpus().
796 * Cannot be directly called from cpuset code handling changes
797 * to the cpuset pseudo-filesystem, because it cannot be called
798 * from code that already holds cgroup_mutex.
800 static void do_rebuild_sched_domains(struct work_struct *unused)
802 struct sched_domain_attr *attr;
803 struct cpumask *doms;
804 int ndoms;
806 get_online_cpus();
808 /* Generate domain masks and attrs */
809 cgroup_lock();
810 ndoms = generate_sched_domains(&doms, &attr);
811 cgroup_unlock();
813 /* Have scheduler rebuild the domains */
814 partition_sched_domains(ndoms, doms, attr);
816 put_online_cpus();
819 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
822 * Rebuild scheduler domains, asynchronously via workqueue.
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
830 * The rebuild_sched_domains() and partition_sched_domains()
831 * routines must nest cgroup_lock() inside get_online_cpus(),
832 * but such cpuset changes as these must nest that locking the
833 * other way, holding cgroup_lock() for much of the code.
835 * So in order to avoid an ABBA deadlock, the cpuset code handling
836 * these user changes delegates the actual sched domain rebuilding
837 * to a separate workqueue thread, which ends up processing the
838 * above do_rebuild_sched_domains() function.
840 static void async_rebuild_sched_domains(void)
842 queue_work(cpuset_wq, &rebuild_sched_domains_work);
846 * Accomplishes the same scheduler domain rebuild as the above
847 * async_rebuild_sched_domains(), however it directly calls the
848 * rebuild routine synchronously rather than calling it via an
849 * asynchronous work thread.
851 * This can only be called from code that is not holding
852 * cgroup_mutex (not nested in a cgroup_lock() call.)
854 void rebuild_sched_domains(void)
856 do_rebuild_sched_domains(NULL);
860 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
861 * @tsk: task to test
862 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
864 * Call with cgroup_mutex held. May take callback_mutex during call.
865 * Called for each task in a cgroup by cgroup_scan_tasks().
866 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
867 * words, if its mask is not equal to its cpuset's mask).
869 static int cpuset_test_cpumask(struct task_struct *tsk,
870 struct cgroup_scanner *scan)
872 return !cpumask_equal(&tsk->cpus_allowed,
873 (cgroup_cs(scan->cg))->cpus_allowed);
877 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
878 * @tsk: task to test
879 * @scan: struct cgroup_scanner containing the cgroup of the task
881 * Called by cgroup_scan_tasks() for each task in a cgroup whose
882 * cpus_allowed mask needs to be changed.
884 * We don't need to re-check for the cgroup/cpuset membership, since we're
885 * holding cgroup_lock() at this point.
887 static void cpuset_change_cpumask(struct task_struct *tsk,
888 struct cgroup_scanner *scan)
890 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
894 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
895 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
896 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
898 * Called with cgroup_mutex held
900 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
901 * calling callback functions for each.
903 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
904 * if @heap != NULL.
906 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
908 struct cgroup_scanner scan;
910 scan.cg = cs->css.cgroup;
911 scan.test_task = cpuset_test_cpumask;
912 scan.process_task = cpuset_change_cpumask;
913 scan.heap = heap;
914 cgroup_scan_tasks(&scan);
918 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
919 * @cs: the cpuset to consider
920 * @buf: buffer of cpu numbers written to this cpuset
922 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
923 const char *buf)
925 struct ptr_heap heap;
926 int retval;
927 int is_load_balanced;
929 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
930 if (cs == &top_cpuset)
931 return -EACCES;
934 * An empty cpus_allowed is ok only if the cpuset has no tasks.
935 * Since cpulist_parse() fails on an empty mask, we special case
936 * that parsing. The validate_change() call ensures that cpusets
937 * with tasks have cpus.
939 if (!*buf) {
940 cpumask_clear(trialcs->cpus_allowed);
941 } else {
942 retval = cpulist_parse(buf, trialcs->cpus_allowed);
943 if (retval < 0)
944 return retval;
946 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
947 return -EINVAL;
949 retval = validate_change(cs, trialcs);
950 if (retval < 0)
951 return retval;
953 /* Nothing to do if the cpus didn't change */
954 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
955 return 0;
957 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
958 if (retval)
959 return retval;
961 is_load_balanced = is_sched_load_balance(trialcs);
963 mutex_lock(&callback_mutex);
964 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
965 mutex_unlock(&callback_mutex);
968 * Scan tasks in the cpuset, and update the cpumasks of any
969 * that need an update.
971 update_tasks_cpumask(cs, &heap);
973 heap_free(&heap);
975 if (is_load_balanced)
976 async_rebuild_sched_domains();
977 return 0;
981 * cpuset_migrate_mm
983 * Migrate memory region from one set of nodes to another.
985 * Temporarilly set tasks mems_allowed to target nodes of migration,
986 * so that the migration code can allocate pages on these nodes.
988 * Call holding cgroup_mutex, so current's cpuset won't change
989 * during this call, as manage_mutex holds off any cpuset_attach()
990 * calls. Therefore we don't need to take task_lock around the
991 * call to guarantee_online_mems(), as we know no one is changing
992 * our task's cpuset.
994 * Hold callback_mutex around the two modifications of our tasks
995 * mems_allowed to synchronize with cpuset_mems_allowed().
997 * While the mm_struct we are migrating is typically from some
998 * other task, the task_struct mems_allowed that we are hacking
999 * is for our current task, which must allocate new pages for that
1000 * migrating memory region.
1002 * We call cpuset_update_task_memory_state() before hacking
1003 * our tasks mems_allowed, so that we are assured of being in
1004 * sync with our tasks cpuset, and in particular, callbacks to
1005 * cpuset_update_task_memory_state() from nested page allocations
1006 * won't see any mismatch of our cpuset and task mems_generation
1007 * values, so won't overwrite our hacked tasks mems_allowed
1008 * nodemask.
1011 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1012 const nodemask_t *to)
1014 struct task_struct *tsk = current;
1016 cpuset_update_task_memory_state();
1018 mutex_lock(&callback_mutex);
1019 tsk->mems_allowed = *to;
1020 mutex_unlock(&callback_mutex);
1022 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1024 mutex_lock(&callback_mutex);
1025 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1026 mutex_unlock(&callback_mutex);
1029 static void *cpuset_being_rebound;
1032 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1033 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1034 * @oldmem: old mems_allowed of cpuset cs
1036 * Called with cgroup_mutex held
1037 * Return 0 if successful, -errno if not.
1039 static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1041 struct task_struct *p;
1042 struct mm_struct **mmarray;
1043 int i, n, ntasks;
1044 int migrate;
1045 int fudge;
1046 struct cgroup_iter it;
1047 int retval;
1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1051 fudge = 10; /* spare mmarray[] slots */
1052 fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
1053 retval = -ENOMEM;
1056 * Allocate mmarray[] to hold mm reference for each task
1057 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1058 * tasklist_lock. We could use GFP_ATOMIC, but with a
1059 * few more lines of code, we can retry until we get a big
1060 * enough mmarray[] w/o using GFP_ATOMIC.
1062 while (1) {
1063 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
1064 ntasks += fudge;
1065 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1066 if (!mmarray)
1067 goto done;
1068 read_lock(&tasklist_lock); /* block fork */
1069 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
1070 break; /* got enough */
1071 read_unlock(&tasklist_lock); /* try again */
1072 kfree(mmarray);
1075 n = 0;
1077 /* Load up mmarray[] with mm reference for each task in cpuset. */
1078 cgroup_iter_start(cs->css.cgroup, &it);
1079 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
1080 struct mm_struct *mm;
1082 if (n >= ntasks) {
1083 printk(KERN_WARNING
1084 "Cpuset mempolicy rebind incomplete.\n");
1085 break;
1087 mm = get_task_mm(p);
1088 if (!mm)
1089 continue;
1090 mmarray[n++] = mm;
1092 cgroup_iter_end(cs->css.cgroup, &it);
1093 read_unlock(&tasklist_lock);
1096 * Now that we've dropped the tasklist spinlock, we can
1097 * rebind the vma mempolicies of each mm in mmarray[] to their
1098 * new cpuset, and release that mm. The mpol_rebind_mm()
1099 * call takes mmap_sem, which we couldn't take while holding
1100 * tasklist_lock. Forks can happen again now - the mpol_dup()
1101 * cpuset_being_rebound check will catch such forks, and rebind
1102 * their vma mempolicies too. Because we still hold the global
1103 * cgroup_mutex, we know that no other rebind effort will
1104 * be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 * is idempotent. Also migrate pages in each mm to new nodes.
1108 migrate = is_memory_migrate(cs);
1109 for (i = 0; i < n; i++) {
1110 struct mm_struct *mm = mmarray[i];
1112 mpol_rebind_mm(mm, &cs->mems_allowed);
1113 if (migrate)
1114 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1115 mmput(mm);
1118 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1119 kfree(mmarray);
1120 cpuset_being_rebound = NULL;
1121 retval = 0;
1122 done:
1123 return retval;
1127 * Handle user request to change the 'mems' memory placement
1128 * of a cpuset. Needs to validate the request, update the
1129 * cpusets mems_allowed and mems_generation, and for each
1130 * task in the cpuset, rebind any vma mempolicies and if
1131 * the cpuset is marked 'memory_migrate', migrate the tasks
1132 * pages to the new memory.
1134 * Call with cgroup_mutex held. May take callback_mutex during call.
1135 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1136 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1137 * their mempolicies to the cpusets new mems_allowed.
1139 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1140 const char *buf)
1142 nodemask_t oldmem;
1143 int retval;
1146 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1147 * it's read-only
1149 if (cs == &top_cpuset)
1150 return -EACCES;
1153 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1154 * Since nodelist_parse() fails on an empty mask, we special case
1155 * that parsing. The validate_change() call ensures that cpusets
1156 * with tasks have memory.
1158 if (!*buf) {
1159 nodes_clear(trialcs->mems_allowed);
1160 } else {
1161 retval = nodelist_parse(buf, trialcs->mems_allowed);
1162 if (retval < 0)
1163 goto done;
1165 if (!nodes_subset(trialcs->mems_allowed,
1166 node_states[N_HIGH_MEMORY]))
1167 return -EINVAL;
1169 oldmem = cs->mems_allowed;
1170 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1171 retval = 0; /* Too easy - nothing to do */
1172 goto done;
1174 retval = validate_change(cs, trialcs);
1175 if (retval < 0)
1176 goto done;
1178 mutex_lock(&callback_mutex);
1179 cs->mems_allowed = trialcs->mems_allowed;
1180 cs->mems_generation = cpuset_mems_generation++;
1181 mutex_unlock(&callback_mutex);
1183 retval = update_tasks_nodemask(cs, &oldmem);
1184 done:
1185 return retval;
1188 int current_cpuset_is_being_rebound(void)
1190 return task_cs(current) == cpuset_being_rebound;
1193 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1195 if (val < -1 || val >= SD_LV_MAX)
1196 return -EINVAL;
1198 if (val != cs->relax_domain_level) {
1199 cs->relax_domain_level = val;
1200 if (!cpumask_empty(cs->cpus_allowed) &&
1201 is_sched_load_balance(cs))
1202 async_rebuild_sched_domains();
1205 return 0;
1209 * update_flag - read a 0 or a 1 in a file and update associated flag
1210 * bit: the bit to update (see cpuset_flagbits_t)
1211 * cs: the cpuset to update
1212 * turning_on: whether the flag is being set or cleared
1214 * Call with cgroup_mutex held.
1217 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1218 int turning_on)
1220 struct cpuset *trialcs;
1221 int err;
1222 int balance_flag_changed;
1224 trialcs = alloc_trial_cpuset(cs);
1225 if (!trialcs)
1226 return -ENOMEM;
1228 if (turning_on)
1229 set_bit(bit, &trialcs->flags);
1230 else
1231 clear_bit(bit, &trialcs->flags);
1233 err = validate_change(cs, trialcs);
1234 if (err < 0)
1235 goto out;
1237 balance_flag_changed = (is_sched_load_balance(cs) !=
1238 is_sched_load_balance(trialcs));
1240 mutex_lock(&callback_mutex);
1241 cs->flags = trialcs->flags;
1242 mutex_unlock(&callback_mutex);
1244 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1245 async_rebuild_sched_domains();
1247 out:
1248 free_trial_cpuset(trialcs);
1249 return err;
1253 * Frequency meter - How fast is some event occurring?
1255 * These routines manage a digitally filtered, constant time based,
1256 * event frequency meter. There are four routines:
1257 * fmeter_init() - initialize a frequency meter.
1258 * fmeter_markevent() - called each time the event happens.
1259 * fmeter_getrate() - returns the recent rate of such events.
1260 * fmeter_update() - internal routine used to update fmeter.
1262 * A common data structure is passed to each of these routines,
1263 * which is used to keep track of the state required to manage the
1264 * frequency meter and its digital filter.
1266 * The filter works on the number of events marked per unit time.
1267 * The filter is single-pole low-pass recursive (IIR). The time unit
1268 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1269 * simulate 3 decimal digits of precision (multiplied by 1000).
1271 * With an FM_COEF of 933, and a time base of 1 second, the filter
1272 * has a half-life of 10 seconds, meaning that if the events quit
1273 * happening, then the rate returned from the fmeter_getrate()
1274 * will be cut in half each 10 seconds, until it converges to zero.
1276 * It is not worth doing a real infinitely recursive filter. If more
1277 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1278 * just compute FM_MAXTICKS ticks worth, by which point the level
1279 * will be stable.
1281 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1282 * arithmetic overflow in the fmeter_update() routine.
1284 * Given the simple 32 bit integer arithmetic used, this meter works
1285 * best for reporting rates between one per millisecond (msec) and
1286 * one per 32 (approx) seconds. At constant rates faster than one
1287 * per msec it maxes out at values just under 1,000,000. At constant
1288 * rates between one per msec, and one per second it will stabilize
1289 * to a value N*1000, where N is the rate of events per second.
1290 * At constant rates between one per second and one per 32 seconds,
1291 * it will be choppy, moving up on the seconds that have an event,
1292 * and then decaying until the next event. At rates slower than
1293 * about one in 32 seconds, it decays all the way back to zero between
1294 * each event.
1297 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1298 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1299 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1300 #define FM_SCALE 1000 /* faux fixed point scale */
1302 /* Initialize a frequency meter */
1303 static void fmeter_init(struct fmeter *fmp)
1305 fmp->cnt = 0;
1306 fmp->val = 0;
1307 fmp->time = 0;
1308 spin_lock_init(&fmp->lock);
1311 /* Internal meter update - process cnt events and update value */
1312 static void fmeter_update(struct fmeter *fmp)
1314 time_t now = get_seconds();
1315 time_t ticks = now - fmp->time;
1317 if (ticks == 0)
1318 return;
1320 ticks = min(FM_MAXTICKS, ticks);
1321 while (ticks-- > 0)
1322 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1323 fmp->time = now;
1325 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1326 fmp->cnt = 0;
1329 /* Process any previous ticks, then bump cnt by one (times scale). */
1330 static void fmeter_markevent(struct fmeter *fmp)
1332 spin_lock(&fmp->lock);
1333 fmeter_update(fmp);
1334 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1335 spin_unlock(&fmp->lock);
1338 /* Process any previous ticks, then return current value. */
1339 static int fmeter_getrate(struct fmeter *fmp)
1341 int val;
1343 spin_lock(&fmp->lock);
1344 fmeter_update(fmp);
1345 val = fmp->val;
1346 spin_unlock(&fmp->lock);
1347 return val;
1350 /* Protected by cgroup_lock */
1351 static cpumask_var_t cpus_attach;
1353 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1354 static int cpuset_can_attach(struct cgroup_subsys *ss,
1355 struct cgroup *cont, struct task_struct *tsk)
1357 struct cpuset *cs = cgroup_cs(cont);
1358 int ret = 0;
1360 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1361 return -ENOSPC;
1363 if (tsk->flags & PF_THREAD_BOUND) {
1364 mutex_lock(&callback_mutex);
1365 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
1366 ret = -EINVAL;
1367 mutex_unlock(&callback_mutex);
1370 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
1373 static void cpuset_attach(struct cgroup_subsys *ss,
1374 struct cgroup *cont, struct cgroup *oldcont,
1375 struct task_struct *tsk)
1377 nodemask_t from, to;
1378 struct mm_struct *mm;
1379 struct cpuset *cs = cgroup_cs(cont);
1380 struct cpuset *oldcs = cgroup_cs(oldcont);
1381 int err;
1383 if (cs == &top_cpuset) {
1384 cpumask_copy(cpus_attach, cpu_possible_mask);
1385 } else {
1386 mutex_lock(&callback_mutex);
1387 guarantee_online_cpus(cs, cpus_attach);
1388 mutex_unlock(&callback_mutex);
1390 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1391 if (err)
1392 return;
1394 from = oldcs->mems_allowed;
1395 to = cs->mems_allowed;
1396 mm = get_task_mm(tsk);
1397 if (mm) {
1398 mpol_rebind_mm(mm, &to);
1399 if (is_memory_migrate(cs))
1400 cpuset_migrate_mm(mm, &from, &to);
1401 mmput(mm);
1405 /* The various types of files and directories in a cpuset file system */
1407 typedef enum {
1408 FILE_MEMORY_MIGRATE,
1409 FILE_CPULIST,
1410 FILE_MEMLIST,
1411 FILE_CPU_EXCLUSIVE,
1412 FILE_MEM_EXCLUSIVE,
1413 FILE_MEM_HARDWALL,
1414 FILE_SCHED_LOAD_BALANCE,
1415 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1416 FILE_MEMORY_PRESSURE_ENABLED,
1417 FILE_MEMORY_PRESSURE,
1418 FILE_SPREAD_PAGE,
1419 FILE_SPREAD_SLAB,
1420 } cpuset_filetype_t;
1422 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1424 int retval = 0;
1425 struct cpuset *cs = cgroup_cs(cgrp);
1426 cpuset_filetype_t type = cft->private;
1428 if (!cgroup_lock_live_group(cgrp))
1429 return -ENODEV;
1431 switch (type) {
1432 case FILE_CPU_EXCLUSIVE:
1433 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1434 break;
1435 case FILE_MEM_EXCLUSIVE:
1436 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1437 break;
1438 case FILE_MEM_HARDWALL:
1439 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1440 break;
1441 case FILE_SCHED_LOAD_BALANCE:
1442 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1443 break;
1444 case FILE_MEMORY_MIGRATE:
1445 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1446 break;
1447 case FILE_MEMORY_PRESSURE_ENABLED:
1448 cpuset_memory_pressure_enabled = !!val;
1449 break;
1450 case FILE_MEMORY_PRESSURE:
1451 retval = -EACCES;
1452 break;
1453 case FILE_SPREAD_PAGE:
1454 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1455 cs->mems_generation = cpuset_mems_generation++;
1456 break;
1457 case FILE_SPREAD_SLAB:
1458 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1459 cs->mems_generation = cpuset_mems_generation++;
1460 break;
1461 default:
1462 retval = -EINVAL;
1463 break;
1465 cgroup_unlock();
1466 return retval;
1469 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1471 int retval = 0;
1472 struct cpuset *cs = cgroup_cs(cgrp);
1473 cpuset_filetype_t type = cft->private;
1475 if (!cgroup_lock_live_group(cgrp))
1476 return -ENODEV;
1478 switch (type) {
1479 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1480 retval = update_relax_domain_level(cs, val);
1481 break;
1482 default:
1483 retval = -EINVAL;
1484 break;
1486 cgroup_unlock();
1487 return retval;
1491 * Common handling for a write to a "cpus" or "mems" file.
1493 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1494 const char *buf)
1496 int retval = 0;
1497 struct cpuset *cs = cgroup_cs(cgrp);
1498 struct cpuset *trialcs;
1500 if (!cgroup_lock_live_group(cgrp))
1501 return -ENODEV;
1503 trialcs = alloc_trial_cpuset(cs);
1504 if (!trialcs)
1505 return -ENOMEM;
1507 switch (cft->private) {
1508 case FILE_CPULIST:
1509 retval = update_cpumask(cs, trialcs, buf);
1510 break;
1511 case FILE_MEMLIST:
1512 retval = update_nodemask(cs, trialcs, buf);
1513 break;
1514 default:
1515 retval = -EINVAL;
1516 break;
1519 free_trial_cpuset(trialcs);
1520 cgroup_unlock();
1521 return retval;
1525 * These ascii lists should be read in a single call, by using a user
1526 * buffer large enough to hold the entire map. If read in smaller
1527 * chunks, there is no guarantee of atomicity. Since the display format
1528 * used, list of ranges of sequential numbers, is variable length,
1529 * and since these maps can change value dynamically, one could read
1530 * gibberish by doing partial reads while a list was changing.
1531 * A single large read to a buffer that crosses a page boundary is
1532 * ok, because the result being copied to user land is not recomputed
1533 * across a page fault.
1536 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1538 int ret;
1540 mutex_lock(&callback_mutex);
1541 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1542 mutex_unlock(&callback_mutex);
1544 return ret;
1547 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1549 nodemask_t mask;
1551 mutex_lock(&callback_mutex);
1552 mask = cs->mems_allowed;
1553 mutex_unlock(&callback_mutex);
1555 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1558 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1559 struct cftype *cft,
1560 struct file *file,
1561 char __user *buf,
1562 size_t nbytes, loff_t *ppos)
1564 struct cpuset *cs = cgroup_cs(cont);
1565 cpuset_filetype_t type = cft->private;
1566 char *page;
1567 ssize_t retval = 0;
1568 char *s;
1570 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1571 return -ENOMEM;
1573 s = page;
1575 switch (type) {
1576 case FILE_CPULIST:
1577 s += cpuset_sprintf_cpulist(s, cs);
1578 break;
1579 case FILE_MEMLIST:
1580 s += cpuset_sprintf_memlist(s, cs);
1581 break;
1582 default:
1583 retval = -EINVAL;
1584 goto out;
1586 *s++ = '\n';
1588 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1589 out:
1590 free_page((unsigned long)page);
1591 return retval;
1594 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1596 struct cpuset *cs = cgroup_cs(cont);
1597 cpuset_filetype_t type = cft->private;
1598 switch (type) {
1599 case FILE_CPU_EXCLUSIVE:
1600 return is_cpu_exclusive(cs);
1601 case FILE_MEM_EXCLUSIVE:
1602 return is_mem_exclusive(cs);
1603 case FILE_MEM_HARDWALL:
1604 return is_mem_hardwall(cs);
1605 case FILE_SCHED_LOAD_BALANCE:
1606 return is_sched_load_balance(cs);
1607 case FILE_MEMORY_MIGRATE:
1608 return is_memory_migrate(cs);
1609 case FILE_MEMORY_PRESSURE_ENABLED:
1610 return cpuset_memory_pressure_enabled;
1611 case FILE_MEMORY_PRESSURE:
1612 return fmeter_getrate(&cs->fmeter);
1613 case FILE_SPREAD_PAGE:
1614 return is_spread_page(cs);
1615 case FILE_SPREAD_SLAB:
1616 return is_spread_slab(cs);
1617 default:
1618 BUG();
1621 /* Unreachable but makes gcc happy */
1622 return 0;
1625 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1627 struct cpuset *cs = cgroup_cs(cont);
1628 cpuset_filetype_t type = cft->private;
1629 switch (type) {
1630 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1631 return cs->relax_domain_level;
1632 default:
1633 BUG();
1636 /* Unrechable but makes gcc happy */
1637 return 0;
1642 * for the common functions, 'private' gives the type of file
1645 static struct cftype files[] = {
1647 .name = "cpus",
1648 .read = cpuset_common_file_read,
1649 .write_string = cpuset_write_resmask,
1650 .max_write_len = (100U + 6 * NR_CPUS),
1651 .private = FILE_CPULIST,
1655 .name = "mems",
1656 .read = cpuset_common_file_read,
1657 .write_string = cpuset_write_resmask,
1658 .max_write_len = (100U + 6 * MAX_NUMNODES),
1659 .private = FILE_MEMLIST,
1663 .name = "cpu_exclusive",
1664 .read_u64 = cpuset_read_u64,
1665 .write_u64 = cpuset_write_u64,
1666 .private = FILE_CPU_EXCLUSIVE,
1670 .name = "mem_exclusive",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_MEM_EXCLUSIVE,
1677 .name = "mem_hardwall",
1678 .read_u64 = cpuset_read_u64,
1679 .write_u64 = cpuset_write_u64,
1680 .private = FILE_MEM_HARDWALL,
1684 .name = "sched_load_balance",
1685 .read_u64 = cpuset_read_u64,
1686 .write_u64 = cpuset_write_u64,
1687 .private = FILE_SCHED_LOAD_BALANCE,
1691 .name = "sched_relax_domain_level",
1692 .read_s64 = cpuset_read_s64,
1693 .write_s64 = cpuset_write_s64,
1694 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1698 .name = "memory_migrate",
1699 .read_u64 = cpuset_read_u64,
1700 .write_u64 = cpuset_write_u64,
1701 .private = FILE_MEMORY_MIGRATE,
1705 .name = "memory_pressure",
1706 .read_u64 = cpuset_read_u64,
1707 .write_u64 = cpuset_write_u64,
1708 .private = FILE_MEMORY_PRESSURE,
1712 .name = "memory_spread_page",
1713 .read_u64 = cpuset_read_u64,
1714 .write_u64 = cpuset_write_u64,
1715 .private = FILE_SPREAD_PAGE,
1719 .name = "memory_spread_slab",
1720 .read_u64 = cpuset_read_u64,
1721 .write_u64 = cpuset_write_u64,
1722 .private = FILE_SPREAD_SLAB,
1726 static struct cftype cft_memory_pressure_enabled = {
1727 .name = "memory_pressure_enabled",
1728 .read_u64 = cpuset_read_u64,
1729 .write_u64 = cpuset_write_u64,
1730 .private = FILE_MEMORY_PRESSURE_ENABLED,
1733 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1735 int err;
1737 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1738 if (err)
1739 return err;
1740 /* memory_pressure_enabled is in root cpuset only */
1741 if (!cont->parent)
1742 err = cgroup_add_file(cont, ss,
1743 &cft_memory_pressure_enabled);
1744 return err;
1748 * post_clone() is called at the end of cgroup_clone().
1749 * 'cgroup' was just created automatically as a result of
1750 * a cgroup_clone(), and the current task is about to
1751 * be moved into 'cgroup'.
1753 * Currently we refuse to set up the cgroup - thereby
1754 * refusing the task to be entered, and as a result refusing
1755 * the sys_unshare() or clone() which initiated it - if any
1756 * sibling cpusets have exclusive cpus or mem.
1758 * If this becomes a problem for some users who wish to
1759 * allow that scenario, then cpuset_post_clone() could be
1760 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1761 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1762 * held.
1764 static void cpuset_post_clone(struct cgroup_subsys *ss,
1765 struct cgroup *cgroup)
1767 struct cgroup *parent, *child;
1768 struct cpuset *cs, *parent_cs;
1770 parent = cgroup->parent;
1771 list_for_each_entry(child, &parent->children, sibling) {
1772 cs = cgroup_cs(child);
1773 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1774 return;
1776 cs = cgroup_cs(cgroup);
1777 parent_cs = cgroup_cs(parent);
1779 cs->mems_allowed = parent_cs->mems_allowed;
1780 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1781 return;
1785 * cpuset_create - create a cpuset
1786 * ss: cpuset cgroup subsystem
1787 * cont: control group that the new cpuset will be part of
1790 static struct cgroup_subsys_state *cpuset_create(
1791 struct cgroup_subsys *ss,
1792 struct cgroup *cont)
1794 struct cpuset *cs;
1795 struct cpuset *parent;
1797 if (!cont->parent) {
1798 /* This is early initialization for the top cgroup */
1799 top_cpuset.mems_generation = cpuset_mems_generation++;
1800 return &top_cpuset.css;
1802 parent = cgroup_cs(cont->parent);
1803 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1804 if (!cs)
1805 return ERR_PTR(-ENOMEM);
1806 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1807 kfree(cs);
1808 return ERR_PTR(-ENOMEM);
1811 cpuset_update_task_memory_state();
1812 cs->flags = 0;
1813 if (is_spread_page(parent))
1814 set_bit(CS_SPREAD_PAGE, &cs->flags);
1815 if (is_spread_slab(parent))
1816 set_bit(CS_SPREAD_SLAB, &cs->flags);
1817 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1818 cpumask_clear(cs->cpus_allowed);
1819 nodes_clear(cs->mems_allowed);
1820 cs->mems_generation = cpuset_mems_generation++;
1821 fmeter_init(&cs->fmeter);
1822 cs->relax_domain_level = -1;
1824 cs->parent = parent;
1825 number_of_cpusets++;
1826 return &cs->css ;
1830 * If the cpuset being removed has its flag 'sched_load_balance'
1831 * enabled, then simulate turning sched_load_balance off, which
1832 * will call async_rebuild_sched_domains().
1835 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1837 struct cpuset *cs = cgroup_cs(cont);
1839 cpuset_update_task_memory_state();
1841 if (is_sched_load_balance(cs))
1842 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1844 number_of_cpusets--;
1845 free_cpumask_var(cs->cpus_allowed);
1846 kfree(cs);
1849 struct cgroup_subsys cpuset_subsys = {
1850 .name = "cpuset",
1851 .create = cpuset_create,
1852 .destroy = cpuset_destroy,
1853 .can_attach = cpuset_can_attach,
1854 .attach = cpuset_attach,
1855 .populate = cpuset_populate,
1856 .post_clone = cpuset_post_clone,
1857 .subsys_id = cpuset_subsys_id,
1858 .early_init = 1,
1862 * cpuset_init_early - just enough so that the calls to
1863 * cpuset_update_task_memory_state() in early init code
1864 * are harmless.
1867 int __init cpuset_init_early(void)
1869 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1871 top_cpuset.mems_generation = cpuset_mems_generation++;
1872 return 0;
1877 * cpuset_init - initialize cpusets at system boot
1879 * Description: Initialize top_cpuset and the cpuset internal file system,
1882 int __init cpuset_init(void)
1884 int err = 0;
1886 cpumask_setall(top_cpuset.cpus_allowed);
1887 nodes_setall(top_cpuset.mems_allowed);
1889 fmeter_init(&top_cpuset.fmeter);
1890 top_cpuset.mems_generation = cpuset_mems_generation++;
1891 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1892 top_cpuset.relax_domain_level = -1;
1894 err = register_filesystem(&cpuset_fs_type);
1895 if (err < 0)
1896 return err;
1898 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1899 BUG();
1901 number_of_cpusets = 1;
1902 return 0;
1906 * cpuset_do_move_task - move a given task to another cpuset
1907 * @tsk: pointer to task_struct the task to move
1908 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1910 * Called by cgroup_scan_tasks() for each task in a cgroup.
1911 * Return nonzero to stop the walk through the tasks.
1913 static void cpuset_do_move_task(struct task_struct *tsk,
1914 struct cgroup_scanner *scan)
1916 struct cpuset_hotplug_scanner *chsp;
1918 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1919 cgroup_attach_task(chsp->to, tsk);
1923 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1924 * @from: cpuset in which the tasks currently reside
1925 * @to: cpuset to which the tasks will be moved
1927 * Called with cgroup_mutex held
1928 * callback_mutex must not be held, as cpuset_attach() will take it.
1930 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1931 * calling callback functions for each.
1933 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1935 struct cpuset_hotplug_scanner scan;
1937 scan.scan.cg = from->css.cgroup;
1938 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1939 scan.scan.process_task = cpuset_do_move_task;
1940 scan.scan.heap = NULL;
1941 scan.to = to->css.cgroup;
1943 if (cgroup_scan_tasks(&scan.scan))
1944 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1945 "cgroup_scan_tasks failed\n");
1949 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1950 * or memory nodes, we need to walk over the cpuset hierarchy,
1951 * removing that CPU or node from all cpusets. If this removes the
1952 * last CPU or node from a cpuset, then move the tasks in the empty
1953 * cpuset to its next-highest non-empty parent.
1955 * Called with cgroup_mutex held
1956 * callback_mutex must not be held, as cpuset_attach() will take it.
1958 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1960 struct cpuset *parent;
1963 * The cgroup's css_sets list is in use if there are tasks
1964 * in the cpuset; the list is empty if there are none;
1965 * the cs->css.refcnt seems always 0.
1967 if (list_empty(&cs->css.cgroup->css_sets))
1968 return;
1971 * Find its next-highest non-empty parent, (top cpuset
1972 * has online cpus, so can't be empty).
1974 parent = cs->parent;
1975 while (cpumask_empty(parent->cpus_allowed) ||
1976 nodes_empty(parent->mems_allowed))
1977 parent = parent->parent;
1979 move_member_tasks_to_cpuset(cs, parent);
1983 * Walk the specified cpuset subtree and look for empty cpusets.
1984 * The tasks of such cpuset must be moved to a parent cpuset.
1986 * Called with cgroup_mutex held. We take callback_mutex to modify
1987 * cpus_allowed and mems_allowed.
1989 * This walk processes the tree from top to bottom, completing one layer
1990 * before dropping down to the next. It always processes a node before
1991 * any of its children.
1993 * For now, since we lack memory hot unplug, we'll never see a cpuset
1994 * that has tasks along with an empty 'mems'. But if we did see such
1995 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1997 static void scan_for_empty_cpusets(struct cpuset *root)
1999 LIST_HEAD(queue);
2000 struct cpuset *cp; /* scans cpusets being updated */
2001 struct cpuset *child; /* scans child cpusets of cp */
2002 struct cgroup *cont;
2003 nodemask_t oldmems;
2005 list_add_tail((struct list_head *)&root->stack_list, &queue);
2007 while (!list_empty(&queue)) {
2008 cp = list_first_entry(&queue, struct cpuset, stack_list);
2009 list_del(queue.next);
2010 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2011 child = cgroup_cs(cont);
2012 list_add_tail(&child->stack_list, &queue);
2015 /* Continue past cpusets with all cpus, mems online */
2016 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
2017 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2018 continue;
2020 oldmems = cp->mems_allowed;
2022 /* Remove offline cpus and mems from this cpuset. */
2023 mutex_lock(&callback_mutex);
2024 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2025 cpu_online_mask);
2026 nodes_and(cp->mems_allowed, cp->mems_allowed,
2027 node_states[N_HIGH_MEMORY]);
2028 mutex_unlock(&callback_mutex);
2030 /* Move tasks from the empty cpuset to a parent */
2031 if (cpumask_empty(cp->cpus_allowed) ||
2032 nodes_empty(cp->mems_allowed))
2033 remove_tasks_in_empty_cpuset(cp);
2034 else {
2035 update_tasks_cpumask(cp, NULL);
2036 update_tasks_nodemask(cp, &oldmems);
2042 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2043 * period. This is necessary in order to make cpusets transparent
2044 * (of no affect) on systems that are actively using CPU hotplug
2045 * but making no active use of cpusets.
2047 * This routine ensures that top_cpuset.cpus_allowed tracks
2048 * cpu_online_map on each CPU hotplug (cpuhp) event.
2050 * Called within get_online_cpus(). Needs to call cgroup_lock()
2051 * before calling generate_sched_domains().
2053 static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2054 unsigned long phase, void *unused_cpu)
2056 struct sched_domain_attr *attr;
2057 struct cpumask *doms;
2058 int ndoms;
2060 switch (phase) {
2061 case CPU_ONLINE:
2062 case CPU_ONLINE_FROZEN:
2063 case CPU_DEAD:
2064 case CPU_DEAD_FROZEN:
2065 break;
2067 default:
2068 return NOTIFY_DONE;
2071 cgroup_lock();
2072 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2073 scan_for_empty_cpusets(&top_cpuset);
2074 ndoms = generate_sched_domains(&doms, &attr);
2075 cgroup_unlock();
2077 /* Have scheduler rebuild the domains */
2078 partition_sched_domains(ndoms, doms, attr);
2080 return NOTIFY_OK;
2083 #ifdef CONFIG_MEMORY_HOTPLUG
2085 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2086 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2087 * See also the previous routine cpuset_track_online_cpus().
2089 static int cpuset_track_online_nodes(struct notifier_block *self,
2090 unsigned long action, void *arg)
2092 cgroup_lock();
2093 switch (action) {
2094 case MEM_ONLINE:
2095 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2096 break;
2097 case MEM_OFFLINE:
2098 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2099 scan_for_empty_cpusets(&top_cpuset);
2100 break;
2101 default:
2102 break;
2104 cgroup_unlock();
2105 return NOTIFY_OK;
2107 #endif
2110 * cpuset_init_smp - initialize cpus_allowed
2112 * Description: Finish top cpuset after cpu, node maps are initialized
2115 void __init cpuset_init_smp(void)
2117 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2118 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2120 hotcpu_notifier(cpuset_track_online_cpus, 0);
2121 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2123 cpuset_wq = create_singlethread_workqueue("cpuset");
2124 BUG_ON(!cpuset_wq);
2128 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2129 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2130 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2132 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2133 * attached to the specified @tsk. Guaranteed to return some non-empty
2134 * subset of cpu_online_map, even if this means going outside the
2135 * tasks cpuset.
2138 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2140 mutex_lock(&callback_mutex);
2141 cpuset_cpus_allowed_locked(tsk, pmask);
2142 mutex_unlock(&callback_mutex);
2146 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2147 * Must be called with callback_mutex held.
2149 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2151 task_lock(tsk);
2152 guarantee_online_cpus(task_cs(tsk), pmask);
2153 task_unlock(tsk);
2156 void cpuset_init_current_mems_allowed(void)
2158 nodes_setall(current->mems_allowed);
2162 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2163 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2165 * Description: Returns the nodemask_t mems_allowed of the cpuset
2166 * attached to the specified @tsk. Guaranteed to return some non-empty
2167 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2168 * tasks cpuset.
2171 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2173 nodemask_t mask;
2175 mutex_lock(&callback_mutex);
2176 task_lock(tsk);
2177 guarantee_online_mems(task_cs(tsk), &mask);
2178 task_unlock(tsk);
2179 mutex_unlock(&callback_mutex);
2181 return mask;
2185 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2186 * @nodemask: the nodemask to be checked
2188 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2190 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2192 return nodes_intersects(*nodemask, current->mems_allowed);
2196 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2197 * mem_hardwall ancestor to the specified cpuset. Call holding
2198 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2199 * (an unusual configuration), then returns the root cpuset.
2201 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2203 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2204 cs = cs->parent;
2205 return cs;
2209 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2210 * @z: is this zone on an allowed node?
2211 * @gfp_mask: memory allocation flags
2213 * If we're in interrupt, yes, we can always allocate. If
2214 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2215 * z's node is in our tasks mems_allowed, yes. If it's not a
2216 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2217 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2218 * If the task has been OOM killed and has access to memory reserves
2219 * as specified by the TIF_MEMDIE flag, yes.
2220 * Otherwise, no.
2222 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2223 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2224 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2225 * from an enclosing cpuset.
2227 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2228 * hardwall cpusets, and never sleeps.
2230 * The __GFP_THISNODE placement logic is really handled elsewhere,
2231 * by forcibly using a zonelist starting at a specified node, and by
2232 * (in get_page_from_freelist()) refusing to consider the zones for
2233 * any node on the zonelist except the first. By the time any such
2234 * calls get to this routine, we should just shut up and say 'yes'.
2236 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2237 * and do not allow allocations outside the current tasks cpuset
2238 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2239 * GFP_KERNEL allocations are not so marked, so can escape to the
2240 * nearest enclosing hardwalled ancestor cpuset.
2242 * Scanning up parent cpusets requires callback_mutex. The
2243 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2244 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2245 * current tasks mems_allowed came up empty on the first pass over
2246 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2247 * cpuset are short of memory, might require taking the callback_mutex
2248 * mutex.
2250 * The first call here from mm/page_alloc:get_page_from_freelist()
2251 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2252 * so no allocation on a node outside the cpuset is allowed (unless
2253 * in interrupt, of course).
2255 * The second pass through get_page_from_freelist() doesn't even call
2256 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2257 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2258 * in alloc_flags. That logic and the checks below have the combined
2259 * affect that:
2260 * in_interrupt - any node ok (current task context irrelevant)
2261 * GFP_ATOMIC - any node ok
2262 * TIF_MEMDIE - any node ok
2263 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2264 * GFP_USER - only nodes in current tasks mems allowed ok.
2266 * Rule:
2267 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2268 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2269 * the code that might scan up ancestor cpusets and sleep.
2272 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2274 int node; /* node that zone z is on */
2275 const struct cpuset *cs; /* current cpuset ancestors */
2276 int allowed; /* is allocation in zone z allowed? */
2278 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2279 return 1;
2280 node = zone_to_nid(z);
2281 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2282 if (node_isset(node, current->mems_allowed))
2283 return 1;
2285 * Allow tasks that have access to memory reserves because they have
2286 * been OOM killed to get memory anywhere.
2288 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2289 return 1;
2290 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2291 return 0;
2293 if (current->flags & PF_EXITING) /* Let dying task have memory */
2294 return 1;
2296 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2297 mutex_lock(&callback_mutex);
2299 task_lock(current);
2300 cs = nearest_hardwall_ancestor(task_cs(current));
2301 task_unlock(current);
2303 allowed = node_isset(node, cs->mems_allowed);
2304 mutex_unlock(&callback_mutex);
2305 return allowed;
2309 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2310 * @z: is this zone on an allowed node?
2311 * @gfp_mask: memory allocation flags
2313 * If we're in interrupt, yes, we can always allocate.
2314 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2315 * z's node is in our tasks mems_allowed, yes. If the task has been
2316 * OOM killed and has access to memory reserves as specified by the
2317 * TIF_MEMDIE flag, yes. Otherwise, no.
2319 * The __GFP_THISNODE placement logic is really handled elsewhere,
2320 * by forcibly using a zonelist starting at a specified node, and by
2321 * (in get_page_from_freelist()) refusing to consider the zones for
2322 * any node on the zonelist except the first. By the time any such
2323 * calls get to this routine, we should just shut up and say 'yes'.
2325 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2326 * this variant requires that the zone be in the current tasks
2327 * mems_allowed or that we're in interrupt. It does not scan up the
2328 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2329 * It never sleeps.
2332 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2334 int node; /* node that zone z is on */
2336 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2337 return 1;
2338 node = zone_to_nid(z);
2339 if (node_isset(node, current->mems_allowed))
2340 return 1;
2342 * Allow tasks that have access to memory reserves because they have
2343 * been OOM killed to get memory anywhere.
2345 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2346 return 1;
2347 return 0;
2351 * cpuset_lock - lock out any changes to cpuset structures
2353 * The out of memory (oom) code needs to mutex_lock cpusets
2354 * from being changed while it scans the tasklist looking for a
2355 * task in an overlapping cpuset. Expose callback_mutex via this
2356 * cpuset_lock() routine, so the oom code can lock it, before
2357 * locking the task list. The tasklist_lock is a spinlock, so
2358 * must be taken inside callback_mutex.
2361 void cpuset_lock(void)
2363 mutex_lock(&callback_mutex);
2367 * cpuset_unlock - release lock on cpuset changes
2369 * Undo the lock taken in a previous cpuset_lock() call.
2372 void cpuset_unlock(void)
2374 mutex_unlock(&callback_mutex);
2378 * cpuset_mem_spread_node() - On which node to begin search for a page
2380 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2381 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2382 * and if the memory allocation used cpuset_mem_spread_node()
2383 * to determine on which node to start looking, as it will for
2384 * certain page cache or slab cache pages such as used for file
2385 * system buffers and inode caches, then instead of starting on the
2386 * local node to look for a free page, rather spread the starting
2387 * node around the tasks mems_allowed nodes.
2389 * We don't have to worry about the returned node being offline
2390 * because "it can't happen", and even if it did, it would be ok.
2392 * The routines calling guarantee_online_mems() are careful to
2393 * only set nodes in task->mems_allowed that are online. So it
2394 * should not be possible for the following code to return an
2395 * offline node. But if it did, that would be ok, as this routine
2396 * is not returning the node where the allocation must be, only
2397 * the node where the search should start. The zonelist passed to
2398 * __alloc_pages() will include all nodes. If the slab allocator
2399 * is passed an offline node, it will fall back to the local node.
2400 * See kmem_cache_alloc_node().
2403 int cpuset_mem_spread_node(void)
2405 int node;
2407 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2408 if (node == MAX_NUMNODES)
2409 node = first_node(current->mems_allowed);
2410 current->cpuset_mem_spread_rotor = node;
2411 return node;
2413 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2416 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2417 * @tsk1: pointer to task_struct of some task.
2418 * @tsk2: pointer to task_struct of some other task.
2420 * Description: Return true if @tsk1's mems_allowed intersects the
2421 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2422 * one of the task's memory usage might impact the memory available
2423 * to the other.
2426 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2427 const struct task_struct *tsk2)
2429 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2433 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2434 * @task: pointer to task_struct of some task.
2436 * Description: Prints @task's name, cpuset name, and cached copy of its
2437 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2438 * dereferencing task_cs(task).
2440 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2442 struct dentry *dentry;
2444 dentry = task_cs(tsk)->css.cgroup->dentry;
2445 spin_lock(&cpuset_buffer_lock);
2446 snprintf(cpuset_name, CPUSET_NAME_LEN,
2447 dentry ? (const char *)dentry->d_name.name : "/");
2448 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2449 tsk->mems_allowed);
2450 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2451 tsk->comm, cpuset_name, cpuset_nodelist);
2452 spin_unlock(&cpuset_buffer_lock);
2456 * Collection of memory_pressure is suppressed unless
2457 * this flag is enabled by writing "1" to the special
2458 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2461 int cpuset_memory_pressure_enabled __read_mostly;
2464 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2466 * Keep a running average of the rate of synchronous (direct)
2467 * page reclaim efforts initiated by tasks in each cpuset.
2469 * This represents the rate at which some task in the cpuset
2470 * ran low on memory on all nodes it was allowed to use, and
2471 * had to enter the kernels page reclaim code in an effort to
2472 * create more free memory by tossing clean pages or swapping
2473 * or writing dirty pages.
2475 * Display to user space in the per-cpuset read-only file
2476 * "memory_pressure". Value displayed is an integer
2477 * representing the recent rate of entry into the synchronous
2478 * (direct) page reclaim by any task attached to the cpuset.
2481 void __cpuset_memory_pressure_bump(void)
2483 task_lock(current);
2484 fmeter_markevent(&task_cs(current)->fmeter);
2485 task_unlock(current);
2488 #ifdef CONFIG_PROC_PID_CPUSET
2490 * proc_cpuset_show()
2491 * - Print tasks cpuset path into seq_file.
2492 * - Used for /proc/<pid>/cpuset.
2493 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2494 * doesn't really matter if tsk->cpuset changes after we read it,
2495 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2496 * anyway.
2498 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2500 struct pid *pid;
2501 struct task_struct *tsk;
2502 char *buf;
2503 struct cgroup_subsys_state *css;
2504 int retval;
2506 retval = -ENOMEM;
2507 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2508 if (!buf)
2509 goto out;
2511 retval = -ESRCH;
2512 pid = m->private;
2513 tsk = get_pid_task(pid, PIDTYPE_PID);
2514 if (!tsk)
2515 goto out_free;
2517 retval = -EINVAL;
2518 cgroup_lock();
2519 css = task_subsys_state(tsk, cpuset_subsys_id);
2520 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2521 if (retval < 0)
2522 goto out_unlock;
2523 seq_puts(m, buf);
2524 seq_putc(m, '\n');
2525 out_unlock:
2526 cgroup_unlock();
2527 put_task_struct(tsk);
2528 out_free:
2529 kfree(buf);
2530 out:
2531 return retval;
2534 static int cpuset_open(struct inode *inode, struct file *file)
2536 struct pid *pid = PROC_I(inode)->pid;
2537 return single_open(file, proc_cpuset_show, pid);
2540 const struct file_operations proc_cpuset_operations = {
2541 .open = cpuset_open,
2542 .read = seq_read,
2543 .llseek = seq_lseek,
2544 .release = single_release,
2546 #endif /* CONFIG_PROC_PID_CPUSET */
2548 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2549 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2551 seq_printf(m, "Cpus_allowed:\t");
2552 seq_cpumask(m, &task->cpus_allowed);
2553 seq_printf(m, "\n");
2554 seq_printf(m, "Cpus_allowed_list:\t");
2555 seq_cpumask_list(m, &task->cpus_allowed);
2556 seq_printf(m, "\n");
2557 seq_printf(m, "Mems_allowed:\t");
2558 seq_nodemask(m, &task->mems_allowed);
2559 seq_printf(m, "\n");
2560 seq_printf(m, "Mems_allowed_list:\t");
2561 seq_nodemask_list(m, &task->mems_allowed);
2562 seq_printf(m, "\n");