Merge commit 'v2.6.38-rc6' into for-2.6.39/core
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blob3cc17e6064d68e5a3315d012a395c84f660bcb8a
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
34 #include "blk.h"
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 static int __make_request(struct request_queue *q, struct bio *bio);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!hd_struct_try_get(part)) {
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
82 part = &rq->rq_disk->part0;
83 hd_struct_get(part);
85 part_round_stats(cpu, part);
86 part_inc_in_flight(part, rw);
87 rq->part = part;
90 part_stat_unlock();
93 void blk_queue_congestion_threshold(struct request_queue *q)
95 int nr;
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
115 * Will return NULL if the request queue cannot be located.
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 struct backing_dev_info *ret = NULL;
120 struct request_queue *q = bdev_get_queue(bdev);
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 void blk_rq_init(struct request_queue *q, struct request *rq)
130 memset(rq, 0, sizeof(*rq));
132 INIT_LIST_HEAD(&rq->queuelist);
133 INIT_LIST_HEAD(&rq->timeout_list);
134 rq->cpu = -1;
135 rq->q = q;
136 rq->__sector = (sector_t) -1;
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd = rq->__cmd;
140 rq->cmd_len = BLK_MAX_CDB;
141 rq->tag = -1;
142 rq->ref_count = 1;
143 rq->start_time = jiffies;
144 set_start_time_ns(rq);
145 rq->part = NULL;
147 EXPORT_SYMBOL(blk_rq_init);
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
177 void blk_dump_rq_flags(struct request *rq, char *msg)
179 int bit;
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 printk(KERN_INFO " cdb: ");
193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
198 EXPORT_SYMBOL(blk_dump_rq_flags);
201 * "plug" the device if there are no outstanding requests: this will
202 * force the transfer to start only after we have put all the requests
203 * on the list.
205 * This is called with interrupts off and no requests on the queue and
206 * with the queue lock held.
208 void blk_plug_device(struct request_queue *q)
210 WARN_ON(!irqs_disabled());
213 * don't plug a stopped queue, it must be paired with blk_start_queue()
214 * which will restart the queueing
216 if (blk_queue_stopped(q))
217 return;
219 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
220 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
221 trace_block_plug(q);
224 EXPORT_SYMBOL(blk_plug_device);
227 * blk_plug_device_unlocked - plug a device without queue lock held
228 * @q: The &struct request_queue to plug
230 * Description:
231 * Like @blk_plug_device(), but grabs the queue lock and disables
232 * interrupts.
234 void blk_plug_device_unlocked(struct request_queue *q)
236 unsigned long flags;
238 spin_lock_irqsave(q->queue_lock, flags);
239 blk_plug_device(q);
240 spin_unlock_irqrestore(q->queue_lock, flags);
242 EXPORT_SYMBOL(blk_plug_device_unlocked);
245 * remove the queue from the plugged list, if present. called with
246 * queue lock held and interrupts disabled.
248 int blk_remove_plug(struct request_queue *q)
250 WARN_ON(!irqs_disabled());
252 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
253 return 0;
255 del_timer(&q->unplug_timer);
256 return 1;
258 EXPORT_SYMBOL(blk_remove_plug);
261 * remove the plug and let it rip..
263 void __generic_unplug_device(struct request_queue *q)
265 if (unlikely(blk_queue_stopped(q)))
266 return;
267 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
268 return;
270 q->request_fn(q);
274 * generic_unplug_device - fire a request queue
275 * @q: The &struct request_queue in question
277 * Description:
278 * Linux uses plugging to build bigger requests queues before letting
279 * the device have at them. If a queue is plugged, the I/O scheduler
280 * is still adding and merging requests on the queue. Once the queue
281 * gets unplugged, the request_fn defined for the queue is invoked and
282 * transfers started.
284 void generic_unplug_device(struct request_queue *q)
286 if (blk_queue_plugged(q)) {
287 spin_lock_irq(q->queue_lock);
288 __generic_unplug_device(q);
289 spin_unlock_irq(q->queue_lock);
292 EXPORT_SYMBOL(generic_unplug_device);
294 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
295 struct page *page)
297 struct request_queue *q = bdi->unplug_io_data;
299 blk_unplug(q);
302 void blk_unplug_work(struct work_struct *work)
304 struct request_queue *q =
305 container_of(work, struct request_queue, unplug_work);
307 trace_block_unplug_io(q);
308 q->unplug_fn(q);
311 void blk_unplug_timeout(unsigned long data)
313 struct request_queue *q = (struct request_queue *)data;
315 trace_block_unplug_timer(q);
316 kblockd_schedule_work(q, &q->unplug_work);
319 void blk_unplug(struct request_queue *q)
322 * devices don't necessarily have an ->unplug_fn defined
324 if (q->unplug_fn) {
325 trace_block_unplug_io(q);
326 q->unplug_fn(q);
329 EXPORT_SYMBOL(blk_unplug);
332 * blk_start_queue - restart a previously stopped queue
333 * @q: The &struct request_queue in question
335 * Description:
336 * blk_start_queue() will clear the stop flag on the queue, and call
337 * the request_fn for the queue if it was in a stopped state when
338 * entered. Also see blk_stop_queue(). Queue lock must be held.
340 void blk_start_queue(struct request_queue *q)
342 WARN_ON(!irqs_disabled());
344 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
345 __blk_run_queue(q);
347 EXPORT_SYMBOL(blk_start_queue);
350 * blk_stop_queue - stop a queue
351 * @q: The &struct request_queue in question
353 * Description:
354 * The Linux block layer assumes that a block driver will consume all
355 * entries on the request queue when the request_fn strategy is called.
356 * Often this will not happen, because of hardware limitations (queue
357 * depth settings). If a device driver gets a 'queue full' response,
358 * or if it simply chooses not to queue more I/O at one point, it can
359 * call this function to prevent the request_fn from being called until
360 * the driver has signalled it's ready to go again. This happens by calling
361 * blk_start_queue() to restart queue operations. Queue lock must be held.
363 void blk_stop_queue(struct request_queue *q)
365 blk_remove_plug(q);
366 queue_flag_set(QUEUE_FLAG_STOPPED, q);
368 EXPORT_SYMBOL(blk_stop_queue);
371 * blk_sync_queue - cancel any pending callbacks on a queue
372 * @q: the queue
374 * Description:
375 * The block layer may perform asynchronous callback activity
376 * on a queue, such as calling the unplug function after a timeout.
377 * A block device may call blk_sync_queue to ensure that any
378 * such activity is cancelled, thus allowing it to release resources
379 * that the callbacks might use. The caller must already have made sure
380 * that its ->make_request_fn will not re-add plugging prior to calling
381 * this function.
384 void blk_sync_queue(struct request_queue *q)
386 del_timer_sync(&q->unplug_timer);
387 del_timer_sync(&q->timeout);
388 cancel_work_sync(&q->unplug_work);
389 throtl_shutdown_timer_wq(q);
391 EXPORT_SYMBOL(blk_sync_queue);
394 * __blk_run_queue - run a single device queue
395 * @q: The queue to run
397 * Description:
398 * See @blk_run_queue. This variant must be called with the queue lock
399 * held and interrupts disabled.
402 void __blk_run_queue(struct request_queue *q)
404 blk_remove_plug(q);
406 if (unlikely(blk_queue_stopped(q)))
407 return;
409 if (elv_queue_empty(q))
410 return;
413 * Only recurse once to avoid overrunning the stack, let the unplug
414 * handling reinvoke the handler shortly if we already got there.
416 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
417 q->request_fn(q);
418 queue_flag_clear(QUEUE_FLAG_REENTER, q);
419 } else {
420 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
421 kblockd_schedule_work(q, &q->unplug_work);
424 EXPORT_SYMBOL(__blk_run_queue);
427 * blk_run_queue - run a single device queue
428 * @q: The queue to run
430 * Description:
431 * Invoke request handling on this queue, if it has pending work to do.
432 * May be used to restart queueing when a request has completed.
434 void blk_run_queue(struct request_queue *q)
436 unsigned long flags;
438 spin_lock_irqsave(q->queue_lock, flags);
439 __blk_run_queue(q);
440 spin_unlock_irqrestore(q->queue_lock, flags);
442 EXPORT_SYMBOL(blk_run_queue);
444 void blk_put_queue(struct request_queue *q)
446 kobject_put(&q->kobj);
449 void blk_cleanup_queue(struct request_queue *q)
452 * We know we have process context here, so we can be a little
453 * cautious and ensure that pending block actions on this device
454 * are done before moving on. Going into this function, we should
455 * not have processes doing IO to this device.
457 blk_sync_queue(q);
459 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
460 mutex_lock(&q->sysfs_lock);
461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
462 mutex_unlock(&q->sysfs_lock);
464 if (q->elevator)
465 elevator_exit(q->elevator);
467 blk_put_queue(q);
469 EXPORT_SYMBOL(blk_cleanup_queue);
471 static int blk_init_free_list(struct request_queue *q)
473 struct request_list *rl = &q->rq;
475 if (unlikely(rl->rq_pool))
476 return 0;
478 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
479 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
480 rl->elvpriv = 0;
481 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
482 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
484 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
485 mempool_free_slab, request_cachep, q->node);
487 if (!rl->rq_pool)
488 return -ENOMEM;
490 return 0;
493 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
495 return blk_alloc_queue_node(gfp_mask, -1);
497 EXPORT_SYMBOL(blk_alloc_queue);
499 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
501 struct request_queue *q;
502 int err;
504 q = kmem_cache_alloc_node(blk_requestq_cachep,
505 gfp_mask | __GFP_ZERO, node_id);
506 if (!q)
507 return NULL;
509 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
510 q->backing_dev_info.unplug_io_data = q;
511 q->backing_dev_info.ra_pages =
512 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
513 q->backing_dev_info.state = 0;
514 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
515 q->backing_dev_info.name = "block";
517 err = bdi_init(&q->backing_dev_info);
518 if (err) {
519 kmem_cache_free(blk_requestq_cachep, q);
520 return NULL;
523 if (blk_throtl_init(q)) {
524 kmem_cache_free(blk_requestq_cachep, q);
525 return NULL;
528 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
529 laptop_mode_timer_fn, (unsigned long) q);
530 init_timer(&q->unplug_timer);
531 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
532 INIT_LIST_HEAD(&q->timeout_list);
533 INIT_LIST_HEAD(&q->flush_queue[0]);
534 INIT_LIST_HEAD(&q->flush_queue[1]);
535 INIT_LIST_HEAD(&q->flush_data_in_flight);
536 INIT_WORK(&q->unplug_work, blk_unplug_work);
538 kobject_init(&q->kobj, &blk_queue_ktype);
540 mutex_init(&q->sysfs_lock);
541 spin_lock_init(&q->__queue_lock);
543 return q;
545 EXPORT_SYMBOL(blk_alloc_queue_node);
548 * blk_init_queue - prepare a request queue for use with a block device
549 * @rfn: The function to be called to process requests that have been
550 * placed on the queue.
551 * @lock: Request queue spin lock
553 * Description:
554 * If a block device wishes to use the standard request handling procedures,
555 * which sorts requests and coalesces adjacent requests, then it must
556 * call blk_init_queue(). The function @rfn will be called when there
557 * are requests on the queue that need to be processed. If the device
558 * supports plugging, then @rfn may not be called immediately when requests
559 * are available on the queue, but may be called at some time later instead.
560 * Plugged queues are generally unplugged when a buffer belonging to one
561 * of the requests on the queue is needed, or due to memory pressure.
563 * @rfn is not required, or even expected, to remove all requests off the
564 * queue, but only as many as it can handle at a time. If it does leave
565 * requests on the queue, it is responsible for arranging that the requests
566 * get dealt with eventually.
568 * The queue spin lock must be held while manipulating the requests on the
569 * request queue; this lock will be taken also from interrupt context, so irq
570 * disabling is needed for it.
572 * Function returns a pointer to the initialized request queue, or %NULL if
573 * it didn't succeed.
575 * Note:
576 * blk_init_queue() must be paired with a blk_cleanup_queue() call
577 * when the block device is deactivated (such as at module unload).
580 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
582 return blk_init_queue_node(rfn, lock, -1);
584 EXPORT_SYMBOL(blk_init_queue);
586 struct request_queue *
587 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
589 struct request_queue *uninit_q, *q;
591 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
592 if (!uninit_q)
593 return NULL;
595 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
596 if (!q)
597 blk_cleanup_queue(uninit_q);
599 return q;
601 EXPORT_SYMBOL(blk_init_queue_node);
603 struct request_queue *
604 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
605 spinlock_t *lock)
607 return blk_init_allocated_queue_node(q, rfn, lock, -1);
609 EXPORT_SYMBOL(blk_init_allocated_queue);
611 struct request_queue *
612 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
613 spinlock_t *lock, int node_id)
615 if (!q)
616 return NULL;
618 q->node = node_id;
619 if (blk_init_free_list(q))
620 return NULL;
622 q->request_fn = rfn;
623 q->prep_rq_fn = NULL;
624 q->unprep_rq_fn = NULL;
625 q->unplug_fn = generic_unplug_device;
626 q->queue_flags = QUEUE_FLAG_DEFAULT;
627 q->queue_lock = lock;
630 * This also sets hw/phys segments, boundary and size
632 blk_queue_make_request(q, __make_request);
634 q->sg_reserved_size = INT_MAX;
637 * all done
639 if (!elevator_init(q, NULL)) {
640 blk_queue_congestion_threshold(q);
641 return q;
644 return NULL;
646 EXPORT_SYMBOL(blk_init_allocated_queue_node);
648 int blk_get_queue(struct request_queue *q)
650 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
651 kobject_get(&q->kobj);
652 return 0;
655 return 1;
658 static inline void blk_free_request(struct request_queue *q, struct request *rq)
660 if (rq->cmd_flags & REQ_ELVPRIV)
661 elv_put_request(q, rq);
662 mempool_free(rq, q->rq.rq_pool);
665 static struct request *
666 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
668 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
670 if (!rq)
671 return NULL;
673 blk_rq_init(q, rq);
675 rq->cmd_flags = flags | REQ_ALLOCED;
677 if (priv) {
678 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
679 mempool_free(rq, q->rq.rq_pool);
680 return NULL;
682 rq->cmd_flags |= REQ_ELVPRIV;
685 return rq;
689 * ioc_batching returns true if the ioc is a valid batching request and
690 * should be given priority access to a request.
692 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
694 if (!ioc)
695 return 0;
698 * Make sure the process is able to allocate at least 1 request
699 * even if the batch times out, otherwise we could theoretically
700 * lose wakeups.
702 return ioc->nr_batch_requests == q->nr_batching ||
703 (ioc->nr_batch_requests > 0
704 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
708 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
709 * will cause the process to be a "batcher" on all queues in the system. This
710 * is the behaviour we want though - once it gets a wakeup it should be given
711 * a nice run.
713 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
715 if (!ioc || ioc_batching(q, ioc))
716 return;
718 ioc->nr_batch_requests = q->nr_batching;
719 ioc->last_waited = jiffies;
722 static void __freed_request(struct request_queue *q, int sync)
724 struct request_list *rl = &q->rq;
726 if (rl->count[sync] < queue_congestion_off_threshold(q))
727 blk_clear_queue_congested(q, sync);
729 if (rl->count[sync] + 1 <= q->nr_requests) {
730 if (waitqueue_active(&rl->wait[sync]))
731 wake_up(&rl->wait[sync]);
733 blk_clear_queue_full(q, sync);
738 * A request has just been released. Account for it, update the full and
739 * congestion status, wake up any waiters. Called under q->queue_lock.
741 static void freed_request(struct request_queue *q, int sync, int priv)
743 struct request_list *rl = &q->rq;
745 rl->count[sync]--;
746 if (priv)
747 rl->elvpriv--;
749 __freed_request(q, sync);
751 if (unlikely(rl->starved[sync ^ 1]))
752 __freed_request(q, sync ^ 1);
756 * Determine if elevator data should be initialized when allocating the
757 * request associated with @bio.
759 static bool blk_rq_should_init_elevator(struct bio *bio)
761 if (!bio)
762 return true;
765 * Flush requests do not use the elevator so skip initialization.
766 * This allows a request to share the flush and elevator data.
768 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
769 return false;
771 return true;
775 * Get a free request, queue_lock must be held.
776 * Returns NULL on failure, with queue_lock held.
777 * Returns !NULL on success, with queue_lock *not held*.
779 static struct request *get_request(struct request_queue *q, int rw_flags,
780 struct bio *bio, gfp_t gfp_mask)
782 struct request *rq = NULL;
783 struct request_list *rl = &q->rq;
784 struct io_context *ioc = NULL;
785 const bool is_sync = rw_is_sync(rw_flags) != 0;
786 int may_queue, priv = 0;
788 may_queue = elv_may_queue(q, rw_flags);
789 if (may_queue == ELV_MQUEUE_NO)
790 goto rq_starved;
792 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
793 if (rl->count[is_sync]+1 >= q->nr_requests) {
794 ioc = current_io_context(GFP_ATOMIC, q->node);
796 * The queue will fill after this allocation, so set
797 * it as full, and mark this process as "batching".
798 * This process will be allowed to complete a batch of
799 * requests, others will be blocked.
801 if (!blk_queue_full(q, is_sync)) {
802 ioc_set_batching(q, ioc);
803 blk_set_queue_full(q, is_sync);
804 } else {
805 if (may_queue != ELV_MQUEUE_MUST
806 && !ioc_batching(q, ioc)) {
808 * The queue is full and the allocating
809 * process is not a "batcher", and not
810 * exempted by the IO scheduler
812 goto out;
816 blk_set_queue_congested(q, is_sync);
820 * Only allow batching queuers to allocate up to 50% over the defined
821 * limit of requests, otherwise we could have thousands of requests
822 * allocated with any setting of ->nr_requests
824 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
825 goto out;
827 rl->count[is_sync]++;
828 rl->starved[is_sync] = 0;
830 if (blk_rq_should_init_elevator(bio)) {
831 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
832 if (priv)
833 rl->elvpriv++;
836 if (blk_queue_io_stat(q))
837 rw_flags |= REQ_IO_STAT;
838 spin_unlock_irq(q->queue_lock);
840 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
841 if (unlikely(!rq)) {
843 * Allocation failed presumably due to memory. Undo anything
844 * we might have messed up.
846 * Allocating task should really be put onto the front of the
847 * wait queue, but this is pretty rare.
849 spin_lock_irq(q->queue_lock);
850 freed_request(q, is_sync, priv);
853 * in the very unlikely event that allocation failed and no
854 * requests for this direction was pending, mark us starved
855 * so that freeing of a request in the other direction will
856 * notice us. another possible fix would be to split the
857 * rq mempool into READ and WRITE
859 rq_starved:
860 if (unlikely(rl->count[is_sync] == 0))
861 rl->starved[is_sync] = 1;
863 goto out;
867 * ioc may be NULL here, and ioc_batching will be false. That's
868 * OK, if the queue is under the request limit then requests need
869 * not count toward the nr_batch_requests limit. There will always
870 * be some limit enforced by BLK_BATCH_TIME.
872 if (ioc_batching(q, ioc))
873 ioc->nr_batch_requests--;
875 trace_block_getrq(q, bio, rw_flags & 1);
876 out:
877 return rq;
881 * No available requests for this queue, unplug the device and wait for some
882 * requests to become available.
884 * Called with q->queue_lock held, and returns with it unlocked.
886 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
887 struct bio *bio)
889 const bool is_sync = rw_is_sync(rw_flags) != 0;
890 struct request *rq;
892 rq = get_request(q, rw_flags, bio, GFP_NOIO);
893 while (!rq) {
894 DEFINE_WAIT(wait);
895 struct io_context *ioc;
896 struct request_list *rl = &q->rq;
898 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
899 TASK_UNINTERRUPTIBLE);
901 trace_block_sleeprq(q, bio, rw_flags & 1);
903 __generic_unplug_device(q);
904 spin_unlock_irq(q->queue_lock);
905 io_schedule();
908 * After sleeping, we become a "batching" process and
909 * will be able to allocate at least one request, and
910 * up to a big batch of them for a small period time.
911 * See ioc_batching, ioc_set_batching
913 ioc = current_io_context(GFP_NOIO, q->node);
914 ioc_set_batching(q, ioc);
916 spin_lock_irq(q->queue_lock);
917 finish_wait(&rl->wait[is_sync], &wait);
919 rq = get_request(q, rw_flags, bio, GFP_NOIO);
922 return rq;
925 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
927 struct request *rq;
929 BUG_ON(rw != READ && rw != WRITE);
931 spin_lock_irq(q->queue_lock);
932 if (gfp_mask & __GFP_WAIT) {
933 rq = get_request_wait(q, rw, NULL);
934 } else {
935 rq = get_request(q, rw, NULL, gfp_mask);
936 if (!rq)
937 spin_unlock_irq(q->queue_lock);
939 /* q->queue_lock is unlocked at this point */
941 return rq;
943 EXPORT_SYMBOL(blk_get_request);
946 * blk_make_request - given a bio, allocate a corresponding struct request.
947 * @q: target request queue
948 * @bio: The bio describing the memory mappings that will be submitted for IO.
949 * It may be a chained-bio properly constructed by block/bio layer.
950 * @gfp_mask: gfp flags to be used for memory allocation
952 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
953 * type commands. Where the struct request needs to be farther initialized by
954 * the caller. It is passed a &struct bio, which describes the memory info of
955 * the I/O transfer.
957 * The caller of blk_make_request must make sure that bi_io_vec
958 * are set to describe the memory buffers. That bio_data_dir() will return
959 * the needed direction of the request. (And all bio's in the passed bio-chain
960 * are properly set accordingly)
962 * If called under none-sleepable conditions, mapped bio buffers must not
963 * need bouncing, by calling the appropriate masked or flagged allocator,
964 * suitable for the target device. Otherwise the call to blk_queue_bounce will
965 * BUG.
967 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
968 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
969 * anything but the first bio in the chain. Otherwise you risk waiting for IO
970 * completion of a bio that hasn't been submitted yet, thus resulting in a
971 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
972 * of bio_alloc(), as that avoids the mempool deadlock.
973 * If possible a big IO should be split into smaller parts when allocation
974 * fails. Partial allocation should not be an error, or you risk a live-lock.
976 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
977 gfp_t gfp_mask)
979 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
981 if (unlikely(!rq))
982 return ERR_PTR(-ENOMEM);
984 for_each_bio(bio) {
985 struct bio *bounce_bio = bio;
986 int ret;
988 blk_queue_bounce(q, &bounce_bio);
989 ret = blk_rq_append_bio(q, rq, bounce_bio);
990 if (unlikely(ret)) {
991 blk_put_request(rq);
992 return ERR_PTR(ret);
996 return rq;
998 EXPORT_SYMBOL(blk_make_request);
1001 * blk_requeue_request - put a request back on queue
1002 * @q: request queue where request should be inserted
1003 * @rq: request to be inserted
1005 * Description:
1006 * Drivers often keep queueing requests until the hardware cannot accept
1007 * more, when that condition happens we need to put the request back
1008 * on the queue. Must be called with queue lock held.
1010 void blk_requeue_request(struct request_queue *q, struct request *rq)
1012 blk_delete_timer(rq);
1013 blk_clear_rq_complete(rq);
1014 trace_block_rq_requeue(q, rq);
1016 if (blk_rq_tagged(rq))
1017 blk_queue_end_tag(q, rq);
1019 BUG_ON(blk_queued_rq(rq));
1021 elv_requeue_request(q, rq);
1023 EXPORT_SYMBOL(blk_requeue_request);
1026 * blk_insert_request - insert a special request into a request queue
1027 * @q: request queue where request should be inserted
1028 * @rq: request to be inserted
1029 * @at_head: insert request at head or tail of queue
1030 * @data: private data
1032 * Description:
1033 * Many block devices need to execute commands asynchronously, so they don't
1034 * block the whole kernel from preemption during request execution. This is
1035 * accomplished normally by inserting aritficial requests tagged as
1036 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1037 * be scheduled for actual execution by the request queue.
1039 * We have the option of inserting the head or the tail of the queue.
1040 * Typically we use the tail for new ioctls and so forth. We use the head
1041 * of the queue for things like a QUEUE_FULL message from a device, or a
1042 * host that is unable to accept a particular command.
1044 void blk_insert_request(struct request_queue *q, struct request *rq,
1045 int at_head, void *data)
1047 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1048 unsigned long flags;
1051 * tell I/O scheduler that this isn't a regular read/write (ie it
1052 * must not attempt merges on this) and that it acts as a soft
1053 * barrier
1055 rq->cmd_type = REQ_TYPE_SPECIAL;
1057 rq->special = data;
1059 spin_lock_irqsave(q->queue_lock, flags);
1062 * If command is tagged, release the tag
1064 if (blk_rq_tagged(rq))
1065 blk_queue_end_tag(q, rq);
1067 drive_stat_acct(rq, 1);
1068 __elv_add_request(q, rq, where, 0);
1069 __blk_run_queue(q);
1070 spin_unlock_irqrestore(q->queue_lock, flags);
1072 EXPORT_SYMBOL(blk_insert_request);
1074 static void part_round_stats_single(int cpu, struct hd_struct *part,
1075 unsigned long now)
1077 if (now == part->stamp)
1078 return;
1080 if (part_in_flight(part)) {
1081 __part_stat_add(cpu, part, time_in_queue,
1082 part_in_flight(part) * (now - part->stamp));
1083 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1085 part->stamp = now;
1089 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1090 * @cpu: cpu number for stats access
1091 * @part: target partition
1093 * The average IO queue length and utilisation statistics are maintained
1094 * by observing the current state of the queue length and the amount of
1095 * time it has been in this state for.
1097 * Normally, that accounting is done on IO completion, but that can result
1098 * in more than a second's worth of IO being accounted for within any one
1099 * second, leading to >100% utilisation. To deal with that, we call this
1100 * function to do a round-off before returning the results when reading
1101 * /proc/diskstats. This accounts immediately for all queue usage up to
1102 * the current jiffies and restarts the counters again.
1104 void part_round_stats(int cpu, struct hd_struct *part)
1106 unsigned long now = jiffies;
1108 if (part->partno)
1109 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1110 part_round_stats_single(cpu, part, now);
1112 EXPORT_SYMBOL_GPL(part_round_stats);
1115 * queue lock must be held
1117 void __blk_put_request(struct request_queue *q, struct request *req)
1119 if (unlikely(!q))
1120 return;
1121 if (unlikely(--req->ref_count))
1122 return;
1124 elv_completed_request(q, req);
1126 /* this is a bio leak */
1127 WARN_ON(req->bio != NULL);
1130 * Request may not have originated from ll_rw_blk. if not,
1131 * it didn't come out of our reserved rq pools
1133 if (req->cmd_flags & REQ_ALLOCED) {
1134 int is_sync = rq_is_sync(req) != 0;
1135 int priv = req->cmd_flags & REQ_ELVPRIV;
1137 BUG_ON(!list_empty(&req->queuelist));
1138 BUG_ON(!hlist_unhashed(&req->hash));
1140 blk_free_request(q, req);
1141 freed_request(q, is_sync, priv);
1144 EXPORT_SYMBOL_GPL(__blk_put_request);
1146 void blk_put_request(struct request *req)
1148 unsigned long flags;
1149 struct request_queue *q = req->q;
1151 spin_lock_irqsave(q->queue_lock, flags);
1152 __blk_put_request(q, req);
1153 spin_unlock_irqrestore(q->queue_lock, flags);
1155 EXPORT_SYMBOL(blk_put_request);
1158 * blk_add_request_payload - add a payload to a request
1159 * @rq: request to update
1160 * @page: page backing the payload
1161 * @len: length of the payload.
1163 * This allows to later add a payload to an already submitted request by
1164 * a block driver. The driver needs to take care of freeing the payload
1165 * itself.
1167 * Note that this is a quite horrible hack and nothing but handling of
1168 * discard requests should ever use it.
1170 void blk_add_request_payload(struct request *rq, struct page *page,
1171 unsigned int len)
1173 struct bio *bio = rq->bio;
1175 bio->bi_io_vec->bv_page = page;
1176 bio->bi_io_vec->bv_offset = 0;
1177 bio->bi_io_vec->bv_len = len;
1179 bio->bi_size = len;
1180 bio->bi_vcnt = 1;
1181 bio->bi_phys_segments = 1;
1183 rq->__data_len = rq->resid_len = len;
1184 rq->nr_phys_segments = 1;
1185 rq->buffer = bio_data(bio);
1187 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1189 void init_request_from_bio(struct request *req, struct bio *bio)
1191 req->cpu = bio->bi_comp_cpu;
1192 req->cmd_type = REQ_TYPE_FS;
1194 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1195 if (bio->bi_rw & REQ_RAHEAD)
1196 req->cmd_flags |= REQ_FAILFAST_MASK;
1198 req->errors = 0;
1199 req->__sector = bio->bi_sector;
1200 req->ioprio = bio_prio(bio);
1201 blk_rq_bio_prep(req->q, req, bio);
1205 * Only disabling plugging for non-rotational devices if it does tagging
1206 * as well, otherwise we do need the proper merging
1208 static inline bool queue_should_plug(struct request_queue *q)
1210 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1213 static int __make_request(struct request_queue *q, struct bio *bio)
1215 struct request *req;
1216 int el_ret;
1217 unsigned int bytes = bio->bi_size;
1218 const unsigned short prio = bio_prio(bio);
1219 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1220 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1221 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1222 int where = ELEVATOR_INSERT_SORT;
1223 int rw_flags;
1226 * low level driver can indicate that it wants pages above a
1227 * certain limit bounced to low memory (ie for highmem, or even
1228 * ISA dma in theory)
1230 blk_queue_bounce(q, &bio);
1232 spin_lock_irq(q->queue_lock);
1234 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1235 where = ELEVATOR_INSERT_FLUSH;
1236 goto get_rq;
1239 if (elv_queue_empty(q))
1240 goto get_rq;
1242 el_ret = elv_merge(q, &req, bio);
1243 switch (el_ret) {
1244 case ELEVATOR_BACK_MERGE:
1245 BUG_ON(!rq_mergeable(req));
1247 if (!ll_back_merge_fn(q, req, bio))
1248 break;
1250 trace_block_bio_backmerge(q, bio);
1252 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1253 blk_rq_set_mixed_merge(req);
1255 req->biotail->bi_next = bio;
1256 req->biotail = bio;
1257 req->__data_len += bytes;
1258 req->ioprio = ioprio_best(req->ioprio, prio);
1259 if (!blk_rq_cpu_valid(req))
1260 req->cpu = bio->bi_comp_cpu;
1261 drive_stat_acct(req, 0);
1262 elv_bio_merged(q, req, bio);
1263 if (!attempt_back_merge(q, req))
1264 elv_merged_request(q, req, el_ret);
1265 goto out;
1267 case ELEVATOR_FRONT_MERGE:
1268 BUG_ON(!rq_mergeable(req));
1270 if (!ll_front_merge_fn(q, req, bio))
1271 break;
1273 trace_block_bio_frontmerge(q, bio);
1275 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1276 blk_rq_set_mixed_merge(req);
1277 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1278 req->cmd_flags |= ff;
1281 bio->bi_next = req->bio;
1282 req->bio = bio;
1285 * may not be valid. if the low level driver said
1286 * it didn't need a bounce buffer then it better
1287 * not touch req->buffer either...
1289 req->buffer = bio_data(bio);
1290 req->__sector = bio->bi_sector;
1291 req->__data_len += bytes;
1292 req->ioprio = ioprio_best(req->ioprio, prio);
1293 if (!blk_rq_cpu_valid(req))
1294 req->cpu = bio->bi_comp_cpu;
1295 drive_stat_acct(req, 0);
1296 elv_bio_merged(q, req, bio);
1297 if (!attempt_front_merge(q, req))
1298 elv_merged_request(q, req, el_ret);
1299 goto out;
1301 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1302 default:
1306 get_rq:
1308 * This sync check and mask will be re-done in init_request_from_bio(),
1309 * but we need to set it earlier to expose the sync flag to the
1310 * rq allocator and io schedulers.
1312 rw_flags = bio_data_dir(bio);
1313 if (sync)
1314 rw_flags |= REQ_SYNC;
1317 * Grab a free request. This is might sleep but can not fail.
1318 * Returns with the queue unlocked.
1320 req = get_request_wait(q, rw_flags, bio);
1323 * After dropping the lock and possibly sleeping here, our request
1324 * may now be mergeable after it had proven unmergeable (above).
1325 * We don't worry about that case for efficiency. It won't happen
1326 * often, and the elevators are able to handle it.
1328 init_request_from_bio(req, bio);
1330 spin_lock_irq(q->queue_lock);
1331 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1332 bio_flagged(bio, BIO_CPU_AFFINE))
1333 req->cpu = blk_cpu_to_group(smp_processor_id());
1334 if (queue_should_plug(q) && elv_queue_empty(q))
1335 blk_plug_device(q);
1337 /* insert the request into the elevator */
1338 drive_stat_acct(req, 1);
1339 __elv_add_request(q, req, where, 0);
1340 out:
1341 if (unplug || !queue_should_plug(q))
1342 __generic_unplug_device(q);
1343 spin_unlock_irq(q->queue_lock);
1344 return 0;
1348 * If bio->bi_dev is a partition, remap the location
1350 static inline void blk_partition_remap(struct bio *bio)
1352 struct block_device *bdev = bio->bi_bdev;
1354 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1355 struct hd_struct *p = bdev->bd_part;
1357 bio->bi_sector += p->start_sect;
1358 bio->bi_bdev = bdev->bd_contains;
1360 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1361 bdev->bd_dev,
1362 bio->bi_sector - p->start_sect);
1366 static void handle_bad_sector(struct bio *bio)
1368 char b[BDEVNAME_SIZE];
1370 printk(KERN_INFO "attempt to access beyond end of device\n");
1371 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1372 bdevname(bio->bi_bdev, b),
1373 bio->bi_rw,
1374 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1375 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1377 set_bit(BIO_EOF, &bio->bi_flags);
1380 #ifdef CONFIG_FAIL_MAKE_REQUEST
1382 static DECLARE_FAULT_ATTR(fail_make_request);
1384 static int __init setup_fail_make_request(char *str)
1386 return setup_fault_attr(&fail_make_request, str);
1388 __setup("fail_make_request=", setup_fail_make_request);
1390 static int should_fail_request(struct bio *bio)
1392 struct hd_struct *part = bio->bi_bdev->bd_part;
1394 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1395 return should_fail(&fail_make_request, bio->bi_size);
1397 return 0;
1400 static int __init fail_make_request_debugfs(void)
1402 return init_fault_attr_dentries(&fail_make_request,
1403 "fail_make_request");
1406 late_initcall(fail_make_request_debugfs);
1408 #else /* CONFIG_FAIL_MAKE_REQUEST */
1410 static inline int should_fail_request(struct bio *bio)
1412 return 0;
1415 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1418 * Check whether this bio extends beyond the end of the device.
1420 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1422 sector_t maxsector;
1424 if (!nr_sectors)
1425 return 0;
1427 /* Test device or partition size, when known. */
1428 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1429 if (maxsector) {
1430 sector_t sector = bio->bi_sector;
1432 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1434 * This may well happen - the kernel calls bread()
1435 * without checking the size of the device, e.g., when
1436 * mounting a device.
1438 handle_bad_sector(bio);
1439 return 1;
1443 return 0;
1447 * generic_make_request - hand a buffer to its device driver for I/O
1448 * @bio: The bio describing the location in memory and on the device.
1450 * generic_make_request() is used to make I/O requests of block
1451 * devices. It is passed a &struct bio, which describes the I/O that needs
1452 * to be done.
1454 * generic_make_request() does not return any status. The
1455 * success/failure status of the request, along with notification of
1456 * completion, is delivered asynchronously through the bio->bi_end_io
1457 * function described (one day) else where.
1459 * The caller of generic_make_request must make sure that bi_io_vec
1460 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1461 * set to describe the device address, and the
1462 * bi_end_io and optionally bi_private are set to describe how
1463 * completion notification should be signaled.
1465 * generic_make_request and the drivers it calls may use bi_next if this
1466 * bio happens to be merged with someone else, and may change bi_dev and
1467 * bi_sector for remaps as it sees fit. So the values of these fields
1468 * should NOT be depended on after the call to generic_make_request.
1470 static inline void __generic_make_request(struct bio *bio)
1472 struct request_queue *q;
1473 sector_t old_sector;
1474 int ret, nr_sectors = bio_sectors(bio);
1475 dev_t old_dev;
1476 int err = -EIO;
1478 might_sleep();
1480 if (bio_check_eod(bio, nr_sectors))
1481 goto end_io;
1484 * Resolve the mapping until finished. (drivers are
1485 * still free to implement/resolve their own stacking
1486 * by explicitly returning 0)
1488 * NOTE: we don't repeat the blk_size check for each new device.
1489 * Stacking drivers are expected to know what they are doing.
1491 old_sector = -1;
1492 old_dev = 0;
1493 do {
1494 char b[BDEVNAME_SIZE];
1496 q = bdev_get_queue(bio->bi_bdev);
1497 if (unlikely(!q)) {
1498 printk(KERN_ERR
1499 "generic_make_request: Trying to access "
1500 "nonexistent block-device %s (%Lu)\n",
1501 bdevname(bio->bi_bdev, b),
1502 (long long) bio->bi_sector);
1503 goto end_io;
1506 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1507 nr_sectors > queue_max_hw_sectors(q))) {
1508 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1509 bdevname(bio->bi_bdev, b),
1510 bio_sectors(bio),
1511 queue_max_hw_sectors(q));
1512 goto end_io;
1515 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1516 goto end_io;
1518 if (should_fail_request(bio))
1519 goto end_io;
1522 * If this device has partitions, remap block n
1523 * of partition p to block n+start(p) of the disk.
1525 blk_partition_remap(bio);
1527 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1528 goto end_io;
1530 if (old_sector != -1)
1531 trace_block_bio_remap(q, bio, old_dev, old_sector);
1533 old_sector = bio->bi_sector;
1534 old_dev = bio->bi_bdev->bd_dev;
1536 if (bio_check_eod(bio, nr_sectors))
1537 goto end_io;
1540 * Filter flush bio's early so that make_request based
1541 * drivers without flush support don't have to worry
1542 * about them.
1544 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1545 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1546 if (!nr_sectors) {
1547 err = 0;
1548 goto end_io;
1552 if ((bio->bi_rw & REQ_DISCARD) &&
1553 (!blk_queue_discard(q) ||
1554 ((bio->bi_rw & REQ_SECURE) &&
1555 !blk_queue_secdiscard(q)))) {
1556 err = -EOPNOTSUPP;
1557 goto end_io;
1560 blk_throtl_bio(q, &bio);
1563 * If bio = NULL, bio has been throttled and will be submitted
1564 * later.
1566 if (!bio)
1567 break;
1569 trace_block_bio_queue(q, bio);
1571 ret = q->make_request_fn(q, bio);
1572 } while (ret);
1574 return;
1576 end_io:
1577 bio_endio(bio, err);
1581 * We only want one ->make_request_fn to be active at a time,
1582 * else stack usage with stacked devices could be a problem.
1583 * So use current->bio_list to keep a list of requests
1584 * submited by a make_request_fn function.
1585 * current->bio_list is also used as a flag to say if
1586 * generic_make_request is currently active in this task or not.
1587 * If it is NULL, then no make_request is active. If it is non-NULL,
1588 * then a make_request is active, and new requests should be added
1589 * at the tail
1591 void generic_make_request(struct bio *bio)
1593 struct bio_list bio_list_on_stack;
1595 if (current->bio_list) {
1596 /* make_request is active */
1597 bio_list_add(current->bio_list, bio);
1598 return;
1600 /* following loop may be a bit non-obvious, and so deserves some
1601 * explanation.
1602 * Before entering the loop, bio->bi_next is NULL (as all callers
1603 * ensure that) so we have a list with a single bio.
1604 * We pretend that we have just taken it off a longer list, so
1605 * we assign bio_list to a pointer to the bio_list_on_stack,
1606 * thus initialising the bio_list of new bios to be
1607 * added. __generic_make_request may indeed add some more bios
1608 * through a recursive call to generic_make_request. If it
1609 * did, we find a non-NULL value in bio_list and re-enter the loop
1610 * from the top. In this case we really did just take the bio
1611 * of the top of the list (no pretending) and so remove it from
1612 * bio_list, and call into __generic_make_request again.
1614 * The loop was structured like this to make only one call to
1615 * __generic_make_request (which is important as it is large and
1616 * inlined) and to keep the structure simple.
1618 BUG_ON(bio->bi_next);
1619 bio_list_init(&bio_list_on_stack);
1620 current->bio_list = &bio_list_on_stack;
1621 do {
1622 __generic_make_request(bio);
1623 bio = bio_list_pop(current->bio_list);
1624 } while (bio);
1625 current->bio_list = NULL; /* deactivate */
1627 EXPORT_SYMBOL(generic_make_request);
1630 * submit_bio - submit a bio to the block device layer for I/O
1631 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1632 * @bio: The &struct bio which describes the I/O
1634 * submit_bio() is very similar in purpose to generic_make_request(), and
1635 * uses that function to do most of the work. Both are fairly rough
1636 * interfaces; @bio must be presetup and ready for I/O.
1639 void submit_bio(int rw, struct bio *bio)
1641 int count = bio_sectors(bio);
1643 bio->bi_rw |= rw;
1646 * If it's a regular read/write or a barrier with data attached,
1647 * go through the normal accounting stuff before submission.
1649 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1650 if (rw & WRITE) {
1651 count_vm_events(PGPGOUT, count);
1652 } else {
1653 task_io_account_read(bio->bi_size);
1654 count_vm_events(PGPGIN, count);
1657 if (unlikely(block_dump)) {
1658 char b[BDEVNAME_SIZE];
1659 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1660 current->comm, task_pid_nr(current),
1661 (rw & WRITE) ? "WRITE" : "READ",
1662 (unsigned long long)bio->bi_sector,
1663 bdevname(bio->bi_bdev, b),
1664 count);
1668 generic_make_request(bio);
1670 EXPORT_SYMBOL(submit_bio);
1673 * blk_rq_check_limits - Helper function to check a request for the queue limit
1674 * @q: the queue
1675 * @rq: the request being checked
1677 * Description:
1678 * @rq may have been made based on weaker limitations of upper-level queues
1679 * in request stacking drivers, and it may violate the limitation of @q.
1680 * Since the block layer and the underlying device driver trust @rq
1681 * after it is inserted to @q, it should be checked against @q before
1682 * the insertion using this generic function.
1684 * This function should also be useful for request stacking drivers
1685 * in some cases below, so export this function.
1686 * Request stacking drivers like request-based dm may change the queue
1687 * limits while requests are in the queue (e.g. dm's table swapping).
1688 * Such request stacking drivers should check those requests agaist
1689 * the new queue limits again when they dispatch those requests,
1690 * although such checkings are also done against the old queue limits
1691 * when submitting requests.
1693 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1695 if (rq->cmd_flags & REQ_DISCARD)
1696 return 0;
1698 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1699 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1700 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1701 return -EIO;
1705 * queue's settings related to segment counting like q->bounce_pfn
1706 * may differ from that of other stacking queues.
1707 * Recalculate it to check the request correctly on this queue's
1708 * limitation.
1710 blk_recalc_rq_segments(rq);
1711 if (rq->nr_phys_segments > queue_max_segments(q)) {
1712 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1713 return -EIO;
1716 return 0;
1718 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1721 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1722 * @q: the queue to submit the request
1723 * @rq: the request being queued
1725 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1727 unsigned long flags;
1729 if (blk_rq_check_limits(q, rq))
1730 return -EIO;
1732 #ifdef CONFIG_FAIL_MAKE_REQUEST
1733 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1734 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1735 return -EIO;
1736 #endif
1738 spin_lock_irqsave(q->queue_lock, flags);
1741 * Submitting request must be dequeued before calling this function
1742 * because it will be linked to another request_queue
1744 BUG_ON(blk_queued_rq(rq));
1746 drive_stat_acct(rq, 1);
1747 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1749 spin_unlock_irqrestore(q->queue_lock, flags);
1751 return 0;
1753 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1756 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1757 * @rq: request to examine
1759 * Description:
1760 * A request could be merge of IOs which require different failure
1761 * handling. This function determines the number of bytes which
1762 * can be failed from the beginning of the request without
1763 * crossing into area which need to be retried further.
1765 * Return:
1766 * The number of bytes to fail.
1768 * Context:
1769 * queue_lock must be held.
1771 unsigned int blk_rq_err_bytes(const struct request *rq)
1773 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1774 unsigned int bytes = 0;
1775 struct bio *bio;
1777 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1778 return blk_rq_bytes(rq);
1781 * Currently the only 'mixing' which can happen is between
1782 * different fastfail types. We can safely fail portions
1783 * which have all the failfast bits that the first one has -
1784 * the ones which are at least as eager to fail as the first
1785 * one.
1787 for (bio = rq->bio; bio; bio = bio->bi_next) {
1788 if ((bio->bi_rw & ff) != ff)
1789 break;
1790 bytes += bio->bi_size;
1793 /* this could lead to infinite loop */
1794 BUG_ON(blk_rq_bytes(rq) && !bytes);
1795 return bytes;
1797 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1799 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1801 if (blk_do_io_stat(req)) {
1802 const int rw = rq_data_dir(req);
1803 struct hd_struct *part;
1804 int cpu;
1806 cpu = part_stat_lock();
1807 part = req->part;
1808 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1809 part_stat_unlock();
1813 static void blk_account_io_done(struct request *req)
1816 * Account IO completion. flush_rq isn't accounted as a
1817 * normal IO on queueing nor completion. Accounting the
1818 * containing request is enough.
1820 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1821 unsigned long duration = jiffies - req->start_time;
1822 const int rw = rq_data_dir(req);
1823 struct hd_struct *part;
1824 int cpu;
1826 cpu = part_stat_lock();
1827 part = req->part;
1829 part_stat_inc(cpu, part, ios[rw]);
1830 part_stat_add(cpu, part, ticks[rw], duration);
1831 part_round_stats(cpu, part);
1832 part_dec_in_flight(part, rw);
1834 hd_struct_put(part);
1835 part_stat_unlock();
1840 * blk_peek_request - peek at the top of a request queue
1841 * @q: request queue to peek at
1843 * Description:
1844 * Return the request at the top of @q. The returned request
1845 * should be started using blk_start_request() before LLD starts
1846 * processing it.
1848 * Return:
1849 * Pointer to the request at the top of @q if available. Null
1850 * otherwise.
1852 * Context:
1853 * queue_lock must be held.
1855 struct request *blk_peek_request(struct request_queue *q)
1857 struct request *rq;
1858 int ret;
1860 while ((rq = __elv_next_request(q)) != NULL) {
1861 if (!(rq->cmd_flags & REQ_STARTED)) {
1863 * This is the first time the device driver
1864 * sees this request (possibly after
1865 * requeueing). Notify IO scheduler.
1867 if (rq->cmd_flags & REQ_SORTED)
1868 elv_activate_rq(q, rq);
1871 * just mark as started even if we don't start
1872 * it, a request that has been delayed should
1873 * not be passed by new incoming requests
1875 rq->cmd_flags |= REQ_STARTED;
1876 trace_block_rq_issue(q, rq);
1879 if (!q->boundary_rq || q->boundary_rq == rq) {
1880 q->end_sector = rq_end_sector(rq);
1881 q->boundary_rq = NULL;
1884 if (rq->cmd_flags & REQ_DONTPREP)
1885 break;
1887 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1889 * make sure space for the drain appears we
1890 * know we can do this because max_hw_segments
1891 * has been adjusted to be one fewer than the
1892 * device can handle
1894 rq->nr_phys_segments++;
1897 if (!q->prep_rq_fn)
1898 break;
1900 ret = q->prep_rq_fn(q, rq);
1901 if (ret == BLKPREP_OK) {
1902 break;
1903 } else if (ret == BLKPREP_DEFER) {
1905 * the request may have been (partially) prepped.
1906 * we need to keep this request in the front to
1907 * avoid resource deadlock. REQ_STARTED will
1908 * prevent other fs requests from passing this one.
1910 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1911 !(rq->cmd_flags & REQ_DONTPREP)) {
1913 * remove the space for the drain we added
1914 * so that we don't add it again
1916 --rq->nr_phys_segments;
1919 rq = NULL;
1920 break;
1921 } else if (ret == BLKPREP_KILL) {
1922 rq->cmd_flags |= REQ_QUIET;
1924 * Mark this request as started so we don't trigger
1925 * any debug logic in the end I/O path.
1927 blk_start_request(rq);
1928 __blk_end_request_all(rq, -EIO);
1929 } else {
1930 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1931 break;
1935 return rq;
1937 EXPORT_SYMBOL(blk_peek_request);
1939 void blk_dequeue_request(struct request *rq)
1941 struct request_queue *q = rq->q;
1943 BUG_ON(list_empty(&rq->queuelist));
1944 BUG_ON(ELV_ON_HASH(rq));
1946 list_del_init(&rq->queuelist);
1949 * the time frame between a request being removed from the lists
1950 * and to it is freed is accounted as io that is in progress at
1951 * the driver side.
1953 if (blk_account_rq(rq)) {
1954 q->in_flight[rq_is_sync(rq)]++;
1955 set_io_start_time_ns(rq);
1960 * blk_start_request - start request processing on the driver
1961 * @req: request to dequeue
1963 * Description:
1964 * Dequeue @req and start timeout timer on it. This hands off the
1965 * request to the driver.
1967 * Block internal functions which don't want to start timer should
1968 * call blk_dequeue_request().
1970 * Context:
1971 * queue_lock must be held.
1973 void blk_start_request(struct request *req)
1975 blk_dequeue_request(req);
1978 * We are now handing the request to the hardware, initialize
1979 * resid_len to full count and add the timeout handler.
1981 req->resid_len = blk_rq_bytes(req);
1982 if (unlikely(blk_bidi_rq(req)))
1983 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1985 blk_add_timer(req);
1987 EXPORT_SYMBOL(blk_start_request);
1990 * blk_fetch_request - fetch a request from a request queue
1991 * @q: request queue to fetch a request from
1993 * Description:
1994 * Return the request at the top of @q. The request is started on
1995 * return and LLD can start processing it immediately.
1997 * Return:
1998 * Pointer to the request at the top of @q if available. Null
1999 * otherwise.
2001 * Context:
2002 * queue_lock must be held.
2004 struct request *blk_fetch_request(struct request_queue *q)
2006 struct request *rq;
2008 rq = blk_peek_request(q);
2009 if (rq)
2010 blk_start_request(rq);
2011 return rq;
2013 EXPORT_SYMBOL(blk_fetch_request);
2016 * blk_update_request - Special helper function for request stacking drivers
2017 * @req: the request being processed
2018 * @error: %0 for success, < %0 for error
2019 * @nr_bytes: number of bytes to complete @req
2021 * Description:
2022 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2023 * the request structure even if @req doesn't have leftover.
2024 * If @req has leftover, sets it up for the next range of segments.
2026 * This special helper function is only for request stacking drivers
2027 * (e.g. request-based dm) so that they can handle partial completion.
2028 * Actual device drivers should use blk_end_request instead.
2030 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2031 * %false return from this function.
2033 * Return:
2034 * %false - this request doesn't have any more data
2035 * %true - this request has more data
2037 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2039 int total_bytes, bio_nbytes, next_idx = 0;
2040 struct bio *bio;
2042 if (!req->bio)
2043 return false;
2045 trace_block_rq_complete(req->q, req);
2048 * For fs requests, rq is just carrier of independent bio's
2049 * and each partial completion should be handled separately.
2050 * Reset per-request error on each partial completion.
2052 * TODO: tj: This is too subtle. It would be better to let
2053 * low level drivers do what they see fit.
2055 if (req->cmd_type == REQ_TYPE_FS)
2056 req->errors = 0;
2058 if (error && req->cmd_type == REQ_TYPE_FS &&
2059 !(req->cmd_flags & REQ_QUIET)) {
2060 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2061 req->rq_disk ? req->rq_disk->disk_name : "?",
2062 (unsigned long long)blk_rq_pos(req));
2065 blk_account_io_completion(req, nr_bytes);
2067 total_bytes = bio_nbytes = 0;
2068 while ((bio = req->bio) != NULL) {
2069 int nbytes;
2071 if (nr_bytes >= bio->bi_size) {
2072 req->bio = bio->bi_next;
2073 nbytes = bio->bi_size;
2074 req_bio_endio(req, bio, nbytes, error);
2075 next_idx = 0;
2076 bio_nbytes = 0;
2077 } else {
2078 int idx = bio->bi_idx + next_idx;
2080 if (unlikely(idx >= bio->bi_vcnt)) {
2081 blk_dump_rq_flags(req, "__end_that");
2082 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2083 __func__, idx, bio->bi_vcnt);
2084 break;
2087 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2088 BIO_BUG_ON(nbytes > bio->bi_size);
2091 * not a complete bvec done
2093 if (unlikely(nbytes > nr_bytes)) {
2094 bio_nbytes += nr_bytes;
2095 total_bytes += nr_bytes;
2096 break;
2100 * advance to the next vector
2102 next_idx++;
2103 bio_nbytes += nbytes;
2106 total_bytes += nbytes;
2107 nr_bytes -= nbytes;
2109 bio = req->bio;
2110 if (bio) {
2112 * end more in this run, or just return 'not-done'
2114 if (unlikely(nr_bytes <= 0))
2115 break;
2120 * completely done
2122 if (!req->bio) {
2124 * Reset counters so that the request stacking driver
2125 * can find how many bytes remain in the request
2126 * later.
2128 req->__data_len = 0;
2129 return false;
2133 * if the request wasn't completed, update state
2135 if (bio_nbytes) {
2136 req_bio_endio(req, bio, bio_nbytes, error);
2137 bio->bi_idx += next_idx;
2138 bio_iovec(bio)->bv_offset += nr_bytes;
2139 bio_iovec(bio)->bv_len -= nr_bytes;
2142 req->__data_len -= total_bytes;
2143 req->buffer = bio_data(req->bio);
2145 /* update sector only for requests with clear definition of sector */
2146 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2147 req->__sector += total_bytes >> 9;
2149 /* mixed attributes always follow the first bio */
2150 if (req->cmd_flags & REQ_MIXED_MERGE) {
2151 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2152 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2156 * If total number of sectors is less than the first segment
2157 * size, something has gone terribly wrong.
2159 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2160 printk(KERN_ERR "blk: request botched\n");
2161 req->__data_len = blk_rq_cur_bytes(req);
2164 /* recalculate the number of segments */
2165 blk_recalc_rq_segments(req);
2167 return true;
2169 EXPORT_SYMBOL_GPL(blk_update_request);
2171 static bool blk_update_bidi_request(struct request *rq, int error,
2172 unsigned int nr_bytes,
2173 unsigned int bidi_bytes)
2175 if (blk_update_request(rq, error, nr_bytes))
2176 return true;
2178 /* Bidi request must be completed as a whole */
2179 if (unlikely(blk_bidi_rq(rq)) &&
2180 blk_update_request(rq->next_rq, error, bidi_bytes))
2181 return true;
2183 if (blk_queue_add_random(rq->q))
2184 add_disk_randomness(rq->rq_disk);
2186 return false;
2190 * blk_unprep_request - unprepare a request
2191 * @req: the request
2193 * This function makes a request ready for complete resubmission (or
2194 * completion). It happens only after all error handling is complete,
2195 * so represents the appropriate moment to deallocate any resources
2196 * that were allocated to the request in the prep_rq_fn. The queue
2197 * lock is held when calling this.
2199 void blk_unprep_request(struct request *req)
2201 struct request_queue *q = req->q;
2203 req->cmd_flags &= ~REQ_DONTPREP;
2204 if (q->unprep_rq_fn)
2205 q->unprep_rq_fn(q, req);
2207 EXPORT_SYMBOL_GPL(blk_unprep_request);
2210 * queue lock must be held
2212 static void blk_finish_request(struct request *req, int error)
2214 if (blk_rq_tagged(req))
2215 blk_queue_end_tag(req->q, req);
2217 BUG_ON(blk_queued_rq(req));
2219 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2220 laptop_io_completion(&req->q->backing_dev_info);
2222 blk_delete_timer(req);
2224 if (req->cmd_flags & REQ_DONTPREP)
2225 blk_unprep_request(req);
2228 blk_account_io_done(req);
2230 if (req->end_io)
2231 req->end_io(req, error);
2232 else {
2233 if (blk_bidi_rq(req))
2234 __blk_put_request(req->next_rq->q, req->next_rq);
2236 __blk_put_request(req->q, req);
2241 * blk_end_bidi_request - Complete a bidi request
2242 * @rq: the request to complete
2243 * @error: %0 for success, < %0 for error
2244 * @nr_bytes: number of bytes to complete @rq
2245 * @bidi_bytes: number of bytes to complete @rq->next_rq
2247 * Description:
2248 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2249 * Drivers that supports bidi can safely call this member for any
2250 * type of request, bidi or uni. In the later case @bidi_bytes is
2251 * just ignored.
2253 * Return:
2254 * %false - we are done with this request
2255 * %true - still buffers pending for this request
2257 static bool blk_end_bidi_request(struct request *rq, int error,
2258 unsigned int nr_bytes, unsigned int bidi_bytes)
2260 struct request_queue *q = rq->q;
2261 unsigned long flags;
2263 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2264 return true;
2266 spin_lock_irqsave(q->queue_lock, flags);
2267 blk_finish_request(rq, error);
2268 spin_unlock_irqrestore(q->queue_lock, flags);
2270 return false;
2274 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2275 * @rq: the request to complete
2276 * @error: %0 for success, < %0 for error
2277 * @nr_bytes: number of bytes to complete @rq
2278 * @bidi_bytes: number of bytes to complete @rq->next_rq
2280 * Description:
2281 * Identical to blk_end_bidi_request() except that queue lock is
2282 * assumed to be locked on entry and remains so on return.
2284 * Return:
2285 * %false - we are done with this request
2286 * %true - still buffers pending for this request
2288 static bool __blk_end_bidi_request(struct request *rq, int error,
2289 unsigned int nr_bytes, unsigned int bidi_bytes)
2291 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2292 return true;
2294 blk_finish_request(rq, error);
2296 return false;
2300 * blk_end_request - Helper function for drivers to complete the request.
2301 * @rq: the request being processed
2302 * @error: %0 for success, < %0 for error
2303 * @nr_bytes: number of bytes to complete
2305 * Description:
2306 * Ends I/O on a number of bytes attached to @rq.
2307 * If @rq has leftover, sets it up for the next range of segments.
2309 * Return:
2310 * %false - we are done with this request
2311 * %true - still buffers pending for this request
2313 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2315 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2317 EXPORT_SYMBOL(blk_end_request);
2320 * blk_end_request_all - Helper function for drives to finish the request.
2321 * @rq: the request to finish
2322 * @error: %0 for success, < %0 for error
2324 * Description:
2325 * Completely finish @rq.
2327 void blk_end_request_all(struct request *rq, int error)
2329 bool pending;
2330 unsigned int bidi_bytes = 0;
2332 if (unlikely(blk_bidi_rq(rq)))
2333 bidi_bytes = blk_rq_bytes(rq->next_rq);
2335 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2336 BUG_ON(pending);
2338 EXPORT_SYMBOL(blk_end_request_all);
2341 * blk_end_request_cur - Helper function to finish the current request chunk.
2342 * @rq: the request to finish the current chunk for
2343 * @error: %0 for success, < %0 for error
2345 * Description:
2346 * Complete the current consecutively mapped chunk from @rq.
2348 * Return:
2349 * %false - we are done with this request
2350 * %true - still buffers pending for this request
2352 bool blk_end_request_cur(struct request *rq, int error)
2354 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2356 EXPORT_SYMBOL(blk_end_request_cur);
2359 * blk_end_request_err - Finish a request till the next failure boundary.
2360 * @rq: the request to finish till the next failure boundary for
2361 * @error: must be negative errno
2363 * Description:
2364 * Complete @rq till the next failure boundary.
2366 * Return:
2367 * %false - we are done with this request
2368 * %true - still buffers pending for this request
2370 bool blk_end_request_err(struct request *rq, int error)
2372 WARN_ON(error >= 0);
2373 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2375 EXPORT_SYMBOL_GPL(blk_end_request_err);
2378 * __blk_end_request - Helper function for drivers to complete the request.
2379 * @rq: the request being processed
2380 * @error: %0 for success, < %0 for error
2381 * @nr_bytes: number of bytes to complete
2383 * Description:
2384 * Must be called with queue lock held unlike blk_end_request().
2386 * Return:
2387 * %false - we are done with this request
2388 * %true - still buffers pending for this request
2390 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2392 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2394 EXPORT_SYMBOL(__blk_end_request);
2397 * __blk_end_request_all - Helper function for drives to finish the request.
2398 * @rq: the request to finish
2399 * @error: %0 for success, < %0 for error
2401 * Description:
2402 * Completely finish @rq. Must be called with queue lock held.
2404 void __blk_end_request_all(struct request *rq, int error)
2406 bool pending;
2407 unsigned int bidi_bytes = 0;
2409 if (unlikely(blk_bidi_rq(rq)))
2410 bidi_bytes = blk_rq_bytes(rq->next_rq);
2412 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2413 BUG_ON(pending);
2415 EXPORT_SYMBOL(__blk_end_request_all);
2418 * __blk_end_request_cur - Helper function to finish the current request chunk.
2419 * @rq: the request to finish the current chunk for
2420 * @error: %0 for success, < %0 for error
2422 * Description:
2423 * Complete the current consecutively mapped chunk from @rq. Must
2424 * be called with queue lock held.
2426 * Return:
2427 * %false - we are done with this request
2428 * %true - still buffers pending for this request
2430 bool __blk_end_request_cur(struct request *rq, int error)
2432 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2434 EXPORT_SYMBOL(__blk_end_request_cur);
2437 * __blk_end_request_err - Finish a request till the next failure boundary.
2438 * @rq: the request to finish till the next failure boundary for
2439 * @error: must be negative errno
2441 * Description:
2442 * Complete @rq till the next failure boundary. Must be called
2443 * with queue lock held.
2445 * Return:
2446 * %false - we are done with this request
2447 * %true - still buffers pending for this request
2449 bool __blk_end_request_err(struct request *rq, int error)
2451 WARN_ON(error >= 0);
2452 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2454 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2456 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2457 struct bio *bio)
2459 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2460 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2462 if (bio_has_data(bio)) {
2463 rq->nr_phys_segments = bio_phys_segments(q, bio);
2464 rq->buffer = bio_data(bio);
2466 rq->__data_len = bio->bi_size;
2467 rq->bio = rq->biotail = bio;
2469 if (bio->bi_bdev)
2470 rq->rq_disk = bio->bi_bdev->bd_disk;
2473 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2475 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2476 * @rq: the request to be flushed
2478 * Description:
2479 * Flush all pages in @rq.
2481 void rq_flush_dcache_pages(struct request *rq)
2483 struct req_iterator iter;
2484 struct bio_vec *bvec;
2486 rq_for_each_segment(bvec, rq, iter)
2487 flush_dcache_page(bvec->bv_page);
2489 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2490 #endif
2493 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2494 * @q : the queue of the device being checked
2496 * Description:
2497 * Check if underlying low-level drivers of a device are busy.
2498 * If the drivers want to export their busy state, they must set own
2499 * exporting function using blk_queue_lld_busy() first.
2501 * Basically, this function is used only by request stacking drivers
2502 * to stop dispatching requests to underlying devices when underlying
2503 * devices are busy. This behavior helps more I/O merging on the queue
2504 * of the request stacking driver and prevents I/O throughput regression
2505 * on burst I/O load.
2507 * Return:
2508 * 0 - Not busy (The request stacking driver should dispatch request)
2509 * 1 - Busy (The request stacking driver should stop dispatching request)
2511 int blk_lld_busy(struct request_queue *q)
2513 if (q->lld_busy_fn)
2514 return q->lld_busy_fn(q);
2516 return 0;
2518 EXPORT_SYMBOL_GPL(blk_lld_busy);
2521 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2522 * @rq: the clone request to be cleaned up
2524 * Description:
2525 * Free all bios in @rq for a cloned request.
2527 void blk_rq_unprep_clone(struct request *rq)
2529 struct bio *bio;
2531 while ((bio = rq->bio) != NULL) {
2532 rq->bio = bio->bi_next;
2534 bio_put(bio);
2537 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2540 * Copy attributes of the original request to the clone request.
2541 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2543 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2545 dst->cpu = src->cpu;
2546 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2547 dst->cmd_type = src->cmd_type;
2548 dst->__sector = blk_rq_pos(src);
2549 dst->__data_len = blk_rq_bytes(src);
2550 dst->nr_phys_segments = src->nr_phys_segments;
2551 dst->ioprio = src->ioprio;
2552 dst->extra_len = src->extra_len;
2556 * blk_rq_prep_clone - Helper function to setup clone request
2557 * @rq: the request to be setup
2558 * @rq_src: original request to be cloned
2559 * @bs: bio_set that bios for clone are allocated from
2560 * @gfp_mask: memory allocation mask for bio
2561 * @bio_ctr: setup function to be called for each clone bio.
2562 * Returns %0 for success, non %0 for failure.
2563 * @data: private data to be passed to @bio_ctr
2565 * Description:
2566 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2567 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2568 * are not copied, and copying such parts is the caller's responsibility.
2569 * Also, pages which the original bios are pointing to are not copied
2570 * and the cloned bios just point same pages.
2571 * So cloned bios must be completed before original bios, which means
2572 * the caller must complete @rq before @rq_src.
2574 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2575 struct bio_set *bs, gfp_t gfp_mask,
2576 int (*bio_ctr)(struct bio *, struct bio *, void *),
2577 void *data)
2579 struct bio *bio, *bio_src;
2581 if (!bs)
2582 bs = fs_bio_set;
2584 blk_rq_init(NULL, rq);
2586 __rq_for_each_bio(bio_src, rq_src) {
2587 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2588 if (!bio)
2589 goto free_and_out;
2591 __bio_clone(bio, bio_src);
2593 if (bio_integrity(bio_src) &&
2594 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2595 goto free_and_out;
2597 if (bio_ctr && bio_ctr(bio, bio_src, data))
2598 goto free_and_out;
2600 if (rq->bio) {
2601 rq->biotail->bi_next = bio;
2602 rq->biotail = bio;
2603 } else
2604 rq->bio = rq->biotail = bio;
2607 __blk_rq_prep_clone(rq, rq_src);
2609 return 0;
2611 free_and_out:
2612 if (bio)
2613 bio_free(bio, bs);
2614 blk_rq_unprep_clone(rq);
2616 return -ENOMEM;
2618 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2620 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2622 return queue_work(kblockd_workqueue, work);
2624 EXPORT_SYMBOL(kblockd_schedule_work);
2626 int kblockd_schedule_delayed_work(struct request_queue *q,
2627 struct delayed_work *dwork, unsigned long delay)
2629 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2631 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2633 int __init blk_dev_init(void)
2635 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2636 sizeof(((struct request *)0)->cmd_flags));
2638 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2639 kblockd_workqueue = alloc_workqueue("kblockd",
2640 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2641 if (!kblockd_workqueue)
2642 panic("Failed to create kblockd\n");
2644 request_cachep = kmem_cache_create("blkdev_requests",
2645 sizeof(struct request), 0, SLAB_PANIC, NULL);
2647 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2648 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2650 return 0;