drm/i915: Explosion following OOM in do_execbuffer.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobeb17cc3ce752587c978b362ec53ee6c8b2deded8
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61 unsigned long end)
63 drm_i915_private_t *dev_priv = dev->dev_private;
65 if (start >= end ||
66 (start & (PAGE_SIZE - 1)) != 0 ||
67 (end & (PAGE_SIZE - 1)) != 0) {
68 return -EINVAL;
71 drm_mm_init(&dev_priv->mm.gtt_space, start,
72 end - start);
74 dev->gtt_total = (uint32_t) (end - start);
76 return 0;
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81 struct drm_file *file_priv)
83 struct drm_i915_gem_init *args = data;
84 int ret;
86 mutex_lock(&dev->struct_mutex);
87 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88 mutex_unlock(&dev->struct_mutex);
90 return ret;
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95 struct drm_file *file_priv)
97 struct drm_i915_gem_get_aperture *args = data;
99 if (!(dev->driver->driver_features & DRIVER_GEM))
100 return -ENODEV;
102 args->aper_size = dev->gtt_total;
103 args->aper_available_size = (args->aper_size -
104 atomic_read(&dev->pin_memory));
106 return 0;
111 * Creates a new mm object and returns a handle to it.
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115 struct drm_file *file_priv)
117 struct drm_i915_gem_create *args = data;
118 struct drm_gem_object *obj;
119 int ret;
120 u32 handle;
122 args->size = roundup(args->size, PAGE_SIZE);
124 /* Allocate the new object */
125 obj = i915_gem_alloc_object(dev, args->size);
126 if (obj == NULL)
127 return -ENOMEM;
129 ret = drm_gem_handle_create(file_priv, obj, &handle);
130 drm_gem_object_handle_unreference_unlocked(obj);
132 if (ret)
133 return ret;
135 args->handle = handle;
137 return 0;
140 static inline int
141 fast_shmem_read(struct page **pages,
142 loff_t page_base, int page_offset,
143 char __user *data,
144 int length)
146 char __iomem *vaddr;
147 int unwritten;
149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150 if (vaddr == NULL)
151 return -ENOMEM;
152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153 kunmap_atomic(vaddr, KM_USER0);
155 if (unwritten)
156 return -EFAULT;
158 return 0;
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 drm_i915_private_t *dev_priv = obj->dev->dev_private;
164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167 obj_priv->tiling_mode != I915_TILING_NONE;
170 static inline void
171 slow_shmem_copy(struct page *dst_page,
172 int dst_offset,
173 struct page *src_page,
174 int src_offset,
175 int length)
177 char *dst_vaddr, *src_vaddr;
179 dst_vaddr = kmap(dst_page);
180 src_vaddr = kmap(src_page);
182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
184 kunmap(src_page);
185 kunmap(dst_page);
188 static inline void
189 slow_shmem_bit17_copy(struct page *gpu_page,
190 int gpu_offset,
191 struct page *cpu_page,
192 int cpu_offset,
193 int length,
194 int is_read)
196 char *gpu_vaddr, *cpu_vaddr;
198 /* Use the unswizzled path if this page isn't affected. */
199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200 if (is_read)
201 return slow_shmem_copy(cpu_page, cpu_offset,
202 gpu_page, gpu_offset, length);
203 else
204 return slow_shmem_copy(gpu_page, gpu_offset,
205 cpu_page, cpu_offset, length);
208 gpu_vaddr = kmap(gpu_page);
209 cpu_vaddr = kmap(cpu_page);
211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212 * XORing with the other bits (A9 for Y, A9 and A10 for X)
214 while (length > 0) {
215 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216 int this_length = min(cacheline_end - gpu_offset, length);
217 int swizzled_gpu_offset = gpu_offset ^ 64;
219 if (is_read) {
220 memcpy(cpu_vaddr + cpu_offset,
221 gpu_vaddr + swizzled_gpu_offset,
222 this_length);
223 } else {
224 memcpy(gpu_vaddr + swizzled_gpu_offset,
225 cpu_vaddr + cpu_offset,
226 this_length);
228 cpu_offset += this_length;
229 gpu_offset += this_length;
230 length -= this_length;
233 kunmap(cpu_page);
234 kunmap(gpu_page);
238 * This is the fast shmem pread path, which attempts to copy_from_user directly
239 * from the backing pages of the object to the user's address space. On a
240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
242 static int
243 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pread *args,
245 struct drm_file *file_priv)
247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
248 ssize_t remain;
249 loff_t offset, page_base;
250 char __user *user_data;
251 int page_offset, page_length;
252 int ret;
254 user_data = (char __user *) (uintptr_t) args->data_ptr;
255 remain = args->size;
257 mutex_lock(&dev->struct_mutex);
259 ret = i915_gem_object_get_pages(obj, 0);
260 if (ret != 0)
261 goto fail_unlock;
263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264 args->size);
265 if (ret != 0)
266 goto fail_put_pages;
268 obj_priv = to_intel_bo(obj);
269 offset = args->offset;
271 while (remain > 0) {
272 /* Operation in this page
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
284 ret = fast_shmem_read(obj_priv->pages,
285 page_base, page_offset,
286 user_data, page_length);
287 if (ret)
288 goto fail_put_pages;
290 remain -= page_length;
291 user_data += page_length;
292 offset += page_length;
295 fail_put_pages:
296 i915_gem_object_put_pages(obj);
297 fail_unlock:
298 mutex_unlock(&dev->struct_mutex);
300 return ret;
303 static int
304 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
306 int ret;
308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
310 /* If we've insufficient memory to map in the pages, attempt
311 * to make some space by throwing out some old buffers.
313 if (ret == -ENOMEM) {
314 struct drm_device *dev = obj->dev;
316 ret = i915_gem_evict_something(dev, obj->size);
317 if (ret)
318 return ret;
320 ret = i915_gem_object_get_pages(obj, 0);
323 return ret;
327 * This is the fallback shmem pread path, which allocates temporary storage
328 * in kernel space to copy_to_user into outside of the struct_mutex, so we
329 * can copy out of the object's backing pages while holding the struct mutex
330 * and not take page faults.
332 static int
333 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file_priv)
337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
338 struct mm_struct *mm = current->mm;
339 struct page **user_pages;
340 ssize_t remain;
341 loff_t offset, pinned_pages, i;
342 loff_t first_data_page, last_data_page, num_pages;
343 int shmem_page_index, shmem_page_offset;
344 int data_page_index, data_page_offset;
345 int page_length;
346 int ret;
347 uint64_t data_ptr = args->data_ptr;
348 int do_bit17_swizzling;
350 remain = args->size;
352 /* Pin the user pages containing the data. We can't fault while
353 * holding the struct mutex, yet we want to hold it while
354 * dereferencing the user data.
356 first_data_page = data_ptr / PAGE_SIZE;
357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358 num_pages = last_data_page - first_data_page + 1;
360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
361 if (user_pages == NULL)
362 return -ENOMEM;
364 down_read(&mm->mmap_sem);
365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
366 num_pages, 1, 0, user_pages, NULL);
367 up_read(&mm->mmap_sem);
368 if (pinned_pages < num_pages) {
369 ret = -EFAULT;
370 goto fail_put_user_pages;
373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
375 mutex_lock(&dev->struct_mutex);
377 ret = i915_gem_object_get_pages_or_evict(obj);
378 if (ret)
379 goto fail_unlock;
381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382 args->size);
383 if (ret != 0)
384 goto fail_put_pages;
386 obj_priv = to_intel_bo(obj);
387 offset = args->offset;
389 while (remain > 0) {
390 /* Operation in this page
392 * shmem_page_index = page number within shmem file
393 * shmem_page_offset = offset within page in shmem file
394 * data_page_index = page number in get_user_pages return
395 * data_page_offset = offset with data_page_index page.
396 * page_length = bytes to copy for this page
398 shmem_page_index = offset / PAGE_SIZE;
399 shmem_page_offset = offset & ~PAGE_MASK;
400 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401 data_page_offset = data_ptr & ~PAGE_MASK;
403 page_length = remain;
404 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405 page_length = PAGE_SIZE - shmem_page_offset;
406 if ((data_page_offset + page_length) > PAGE_SIZE)
407 page_length = PAGE_SIZE - data_page_offset;
409 if (do_bit17_swizzling) {
410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 user_pages[data_page_index],
413 data_page_offset,
414 page_length,
416 } else {
417 slow_shmem_copy(user_pages[data_page_index],
418 data_page_offset,
419 obj_priv->pages[shmem_page_index],
420 shmem_page_offset,
421 page_length);
424 remain -= page_length;
425 data_ptr += page_length;
426 offset += page_length;
429 fail_put_pages:
430 i915_gem_object_put_pages(obj);
431 fail_unlock:
432 mutex_unlock(&dev->struct_mutex);
433 fail_put_user_pages:
434 for (i = 0; i < pinned_pages; i++) {
435 SetPageDirty(user_pages[i]);
436 page_cache_release(user_pages[i]);
438 drm_free_large(user_pages);
440 return ret;
444 * Reads data from the object referenced by handle.
446 * On error, the contents of *data are undefined.
449 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 struct drm_file *file_priv)
452 struct drm_i915_gem_pread *args = data;
453 struct drm_gem_object *obj;
454 struct drm_i915_gem_object *obj_priv;
455 int ret;
457 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458 if (obj == NULL)
459 return -EBADF;
460 obj_priv = to_intel_bo(obj);
462 /* Bounds check source.
464 * XXX: This could use review for overflow issues...
466 if (args->offset > obj->size || args->size > obj->size ||
467 args->offset + args->size > obj->size) {
468 drm_gem_object_unreference_unlocked(obj);
469 return -EINVAL;
472 if (i915_gem_object_needs_bit17_swizzle(obj)) {
473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
474 } else {
475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476 if (ret != 0)
477 ret = i915_gem_shmem_pread_slow(dev, obj, args,
478 file_priv);
481 drm_gem_object_unreference_unlocked(obj);
483 return ret;
486 /* This is the fast write path which cannot handle
487 * page faults in the source data
490 static inline int
491 fast_user_write(struct io_mapping *mapping,
492 loff_t page_base, int page_offset,
493 char __user *user_data,
494 int length)
496 char *vaddr_atomic;
497 unsigned long unwritten;
499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr_atomic);
503 if (unwritten)
504 return -EFAULT;
505 return 0;
508 /* Here's the write path which can sleep for
509 * page faults
512 static inline void
513 slow_kernel_write(struct io_mapping *mapping,
514 loff_t gtt_base, int gtt_offset,
515 struct page *user_page, int user_offset,
516 int length)
518 char __iomem *dst_vaddr;
519 char *src_vaddr;
521 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
522 src_vaddr = kmap(user_page);
524 memcpy_toio(dst_vaddr + gtt_offset,
525 src_vaddr + user_offset,
526 length);
528 kunmap(user_page);
529 io_mapping_unmap(dst_vaddr);
532 static inline int
533 fast_shmem_write(struct page **pages,
534 loff_t page_base, int page_offset,
535 char __user *data,
536 int length)
538 char __iomem *vaddr;
539 unsigned long unwritten;
541 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
542 if (vaddr == NULL)
543 return -ENOMEM;
544 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
545 kunmap_atomic(vaddr, KM_USER0);
547 if (unwritten)
548 return -EFAULT;
549 return 0;
553 * This is the fast pwrite path, where we copy the data directly from the
554 * user into the GTT, uncached.
556 static int
557 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
558 struct drm_i915_gem_pwrite *args,
559 struct drm_file *file_priv)
561 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
562 drm_i915_private_t *dev_priv = dev->dev_private;
563 ssize_t remain;
564 loff_t offset, page_base;
565 char __user *user_data;
566 int page_offset, page_length;
567 int ret;
569 user_data = (char __user *) (uintptr_t) args->data_ptr;
570 remain = args->size;
571 if (!access_ok(VERIFY_READ, user_data, remain))
572 return -EFAULT;
575 mutex_lock(&dev->struct_mutex);
576 ret = i915_gem_object_pin(obj, 0);
577 if (ret) {
578 mutex_unlock(&dev->struct_mutex);
579 return ret;
581 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
582 if (ret)
583 goto fail;
585 obj_priv = to_intel_bo(obj);
586 offset = obj_priv->gtt_offset + args->offset;
588 while (remain > 0) {
589 /* Operation in this page
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
595 page_base = (offset & ~(PAGE_SIZE-1));
596 page_offset = offset & (PAGE_SIZE-1);
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
601 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
602 page_offset, user_data, page_length);
604 /* If we get a fault while copying data, then (presumably) our
605 * source page isn't available. Return the error and we'll
606 * retry in the slow path.
608 if (ret)
609 goto fail;
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
616 fail:
617 i915_gem_object_unpin(obj);
618 mutex_unlock(&dev->struct_mutex);
620 return ret;
624 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
625 * the memory and maps it using kmap_atomic for copying.
627 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
628 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
630 static int
631 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
632 struct drm_i915_gem_pwrite *args,
633 struct drm_file *file_priv)
635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
636 drm_i915_private_t *dev_priv = dev->dev_private;
637 ssize_t remain;
638 loff_t gtt_page_base, offset;
639 loff_t first_data_page, last_data_page, num_pages;
640 loff_t pinned_pages, i;
641 struct page **user_pages;
642 struct mm_struct *mm = current->mm;
643 int gtt_page_offset, data_page_offset, data_page_index, page_length;
644 int ret;
645 uint64_t data_ptr = args->data_ptr;
647 remain = args->size;
649 /* Pin the user pages containing the data. We can't fault while
650 * holding the struct mutex, and all of the pwrite implementations
651 * want to hold it while dereferencing the user data.
653 first_data_page = data_ptr / PAGE_SIZE;
654 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
655 num_pages = last_data_page - first_data_page + 1;
657 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
658 if (user_pages == NULL)
659 return -ENOMEM;
661 down_read(&mm->mmap_sem);
662 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
663 num_pages, 0, 0, user_pages, NULL);
664 up_read(&mm->mmap_sem);
665 if (pinned_pages < num_pages) {
666 ret = -EFAULT;
667 goto out_unpin_pages;
670 mutex_lock(&dev->struct_mutex);
671 ret = i915_gem_object_pin(obj, 0);
672 if (ret)
673 goto out_unlock;
675 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
676 if (ret)
677 goto out_unpin_object;
679 obj_priv = to_intel_bo(obj);
680 offset = obj_priv->gtt_offset + args->offset;
682 while (remain > 0) {
683 /* Operation in this page
685 * gtt_page_base = page offset within aperture
686 * gtt_page_offset = offset within page in aperture
687 * data_page_index = page number in get_user_pages return
688 * data_page_offset = offset with data_page_index page.
689 * page_length = bytes to copy for this page
691 gtt_page_base = offset & PAGE_MASK;
692 gtt_page_offset = offset & ~PAGE_MASK;
693 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
694 data_page_offset = data_ptr & ~PAGE_MASK;
696 page_length = remain;
697 if ((gtt_page_offset + page_length) > PAGE_SIZE)
698 page_length = PAGE_SIZE - gtt_page_offset;
699 if ((data_page_offset + page_length) > PAGE_SIZE)
700 page_length = PAGE_SIZE - data_page_offset;
702 slow_kernel_write(dev_priv->mm.gtt_mapping,
703 gtt_page_base, gtt_page_offset,
704 user_pages[data_page_index],
705 data_page_offset,
706 page_length);
708 remain -= page_length;
709 offset += page_length;
710 data_ptr += page_length;
713 out_unpin_object:
714 i915_gem_object_unpin(obj);
715 out_unlock:
716 mutex_unlock(&dev->struct_mutex);
717 out_unpin_pages:
718 for (i = 0; i < pinned_pages; i++)
719 page_cache_release(user_pages[i]);
720 drm_free_large(user_pages);
722 return ret;
726 * This is the fast shmem pwrite path, which attempts to directly
727 * copy_from_user into the kmapped pages backing the object.
729 static int
730 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file_priv)
734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
735 ssize_t remain;
736 loff_t offset, page_base;
737 char __user *user_data;
738 int page_offset, page_length;
739 int ret;
741 user_data = (char __user *) (uintptr_t) args->data_ptr;
742 remain = args->size;
744 mutex_lock(&dev->struct_mutex);
746 ret = i915_gem_object_get_pages(obj, 0);
747 if (ret != 0)
748 goto fail_unlock;
750 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
751 if (ret != 0)
752 goto fail_put_pages;
754 obj_priv = to_intel_bo(obj);
755 offset = args->offset;
756 obj_priv->dirty = 1;
758 while (remain > 0) {
759 /* Operation in this page
761 * page_base = page offset within aperture
762 * page_offset = offset within page
763 * page_length = bytes to copy for this page
765 page_base = (offset & ~(PAGE_SIZE-1));
766 page_offset = offset & (PAGE_SIZE-1);
767 page_length = remain;
768 if ((page_offset + remain) > PAGE_SIZE)
769 page_length = PAGE_SIZE - page_offset;
771 ret = fast_shmem_write(obj_priv->pages,
772 page_base, page_offset,
773 user_data, page_length);
774 if (ret)
775 goto fail_put_pages;
777 remain -= page_length;
778 user_data += page_length;
779 offset += page_length;
782 fail_put_pages:
783 i915_gem_object_put_pages(obj);
784 fail_unlock:
785 mutex_unlock(&dev->struct_mutex);
787 return ret;
791 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
792 * the memory and maps it using kmap_atomic for copying.
794 * This avoids taking mmap_sem for faulting on the user's address while the
795 * struct_mutex is held.
797 static int
798 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
799 struct drm_i915_gem_pwrite *args,
800 struct drm_file *file_priv)
802 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
803 struct mm_struct *mm = current->mm;
804 struct page **user_pages;
805 ssize_t remain;
806 loff_t offset, pinned_pages, i;
807 loff_t first_data_page, last_data_page, num_pages;
808 int shmem_page_index, shmem_page_offset;
809 int data_page_index, data_page_offset;
810 int page_length;
811 int ret;
812 uint64_t data_ptr = args->data_ptr;
813 int do_bit17_swizzling;
815 remain = args->size;
817 /* Pin the user pages containing the data. We can't fault while
818 * holding the struct mutex, and all of the pwrite implementations
819 * want to hold it while dereferencing the user data.
821 first_data_page = data_ptr / PAGE_SIZE;
822 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
823 num_pages = last_data_page - first_data_page + 1;
825 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
826 if (user_pages == NULL)
827 return -ENOMEM;
829 down_read(&mm->mmap_sem);
830 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
831 num_pages, 0, 0, user_pages, NULL);
832 up_read(&mm->mmap_sem);
833 if (pinned_pages < num_pages) {
834 ret = -EFAULT;
835 goto fail_put_user_pages;
838 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840 mutex_lock(&dev->struct_mutex);
842 ret = i915_gem_object_get_pages_or_evict(obj);
843 if (ret)
844 goto fail_unlock;
846 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
847 if (ret != 0)
848 goto fail_put_pages;
850 obj_priv = to_intel_bo(obj);
851 offset = args->offset;
852 obj_priv->dirty = 1;
854 while (remain > 0) {
855 /* Operation in this page
857 * shmem_page_index = page number within shmem file
858 * shmem_page_offset = offset within page in shmem file
859 * data_page_index = page number in get_user_pages return
860 * data_page_offset = offset with data_page_index page.
861 * page_length = bytes to copy for this page
863 shmem_page_index = offset / PAGE_SIZE;
864 shmem_page_offset = offset & ~PAGE_MASK;
865 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
866 data_page_offset = data_ptr & ~PAGE_MASK;
868 page_length = remain;
869 if ((shmem_page_offset + page_length) > PAGE_SIZE)
870 page_length = PAGE_SIZE - shmem_page_offset;
871 if ((data_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - data_page_offset;
874 if (do_bit17_swizzling) {
875 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
876 shmem_page_offset,
877 user_pages[data_page_index],
878 data_page_offset,
879 page_length,
881 } else {
882 slow_shmem_copy(obj_priv->pages[shmem_page_index],
883 shmem_page_offset,
884 user_pages[data_page_index],
885 data_page_offset,
886 page_length);
889 remain -= page_length;
890 data_ptr += page_length;
891 offset += page_length;
894 fail_put_pages:
895 i915_gem_object_put_pages(obj);
896 fail_unlock:
897 mutex_unlock(&dev->struct_mutex);
898 fail_put_user_pages:
899 for (i = 0; i < pinned_pages; i++)
900 page_cache_release(user_pages[i]);
901 drm_free_large(user_pages);
903 return ret;
907 * Writes data to the object referenced by handle.
909 * On error, the contents of the buffer that were to be modified are undefined.
912 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
913 struct drm_file *file_priv)
915 struct drm_i915_gem_pwrite *args = data;
916 struct drm_gem_object *obj;
917 struct drm_i915_gem_object *obj_priv;
918 int ret = 0;
920 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
921 if (obj == NULL)
922 return -EBADF;
923 obj_priv = to_intel_bo(obj);
925 /* Bounds check destination.
927 * XXX: This could use review for overflow issues...
929 if (args->offset > obj->size || args->size > obj->size ||
930 args->offset + args->size > obj->size) {
931 drm_gem_object_unreference_unlocked(obj);
932 return -EINVAL;
935 /* We can only do the GTT pwrite on untiled buffers, as otherwise
936 * it would end up going through the fenced access, and we'll get
937 * different detiling behavior between reading and writing.
938 * pread/pwrite currently are reading and writing from the CPU
939 * perspective, requiring manual detiling by the client.
941 if (obj_priv->phys_obj)
942 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
943 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
944 dev->gtt_total != 0 &&
945 obj->write_domain != I915_GEM_DOMAIN_CPU) {
946 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
947 if (ret == -EFAULT) {
948 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
949 file_priv);
951 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
952 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
953 } else {
954 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
957 file_priv);
961 #if WATCH_PWRITE
962 if (ret)
963 DRM_INFO("pwrite failed %d\n", ret);
964 #endif
966 drm_gem_object_unreference_unlocked(obj);
968 return ret;
972 * Called when user space prepares to use an object with the CPU, either
973 * through the mmap ioctl's mapping or a GTT mapping.
976 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
977 struct drm_file *file_priv)
979 struct drm_i915_private *dev_priv = dev->dev_private;
980 struct drm_i915_gem_set_domain *args = data;
981 struct drm_gem_object *obj;
982 struct drm_i915_gem_object *obj_priv;
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
985 int ret;
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
990 /* Only handle setting domains to types used by the CPU. */
991 if (write_domain & I915_GEM_GPU_DOMAINS)
992 return -EINVAL;
994 if (read_domains & I915_GEM_GPU_DOMAINS)
995 return -EINVAL;
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
1006 obj_priv = to_intel_bo(obj);
1008 mutex_lock(&dev->struct_mutex);
1010 intel_mark_busy(dev, obj);
1012 #if WATCH_BUF
1013 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1014 obj, obj->size, read_domains, write_domain);
1015 #endif
1016 if (read_domains & I915_GEM_DOMAIN_GTT) {
1017 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1019 /* Update the LRU on the fence for the CPU access that's
1020 * about to occur.
1022 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1023 struct drm_i915_fence_reg *reg =
1024 &dev_priv->fence_regs[obj_priv->fence_reg];
1025 list_move_tail(&reg->lru_list,
1026 &dev_priv->mm.fence_list);
1029 /* Silently promote "you're not bound, there was nothing to do"
1030 * to success, since the client was just asking us to
1031 * make sure everything was done.
1033 if (ret == -EINVAL)
1034 ret = 0;
1035 } else {
1036 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039 drm_gem_object_unreference(obj);
1040 mutex_unlock(&dev->struct_mutex);
1041 return ret;
1045 * Called when user space has done writes to this buffer
1048 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1049 struct drm_file *file_priv)
1051 struct drm_i915_gem_sw_finish *args = data;
1052 struct drm_gem_object *obj;
1053 struct drm_i915_gem_object *obj_priv;
1054 int ret = 0;
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1059 mutex_lock(&dev->struct_mutex);
1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061 if (obj == NULL) {
1062 mutex_unlock(&dev->struct_mutex);
1063 return -EBADF;
1066 #if WATCH_BUF
1067 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1068 __func__, args->handle, obj, obj->size);
1069 #endif
1070 obj_priv = to_intel_bo(obj);
1072 /* Pinned buffers may be scanout, so flush the cache */
1073 if (obj_priv->pin_count)
1074 i915_gem_object_flush_cpu_write_domain(obj);
1076 drm_gem_object_unreference(obj);
1077 mutex_unlock(&dev->struct_mutex);
1078 return ret;
1082 * Maps the contents of an object, returning the address it is mapped
1083 * into.
1085 * While the mapping holds a reference on the contents of the object, it doesn't
1086 * imply a ref on the object itself.
1089 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1090 struct drm_file *file_priv)
1092 struct drm_i915_gem_mmap *args = data;
1093 struct drm_gem_object *obj;
1094 loff_t offset;
1095 unsigned long addr;
1097 if (!(dev->driver->driver_features & DRIVER_GEM))
1098 return -ENODEV;
1100 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1101 if (obj == NULL)
1102 return -EBADF;
1104 offset = args->offset;
1106 down_write(&current->mm->mmap_sem);
1107 addr = do_mmap(obj->filp, 0, args->size,
1108 PROT_READ | PROT_WRITE, MAP_SHARED,
1109 args->offset);
1110 up_write(&current->mm->mmap_sem);
1111 drm_gem_object_unreference_unlocked(obj);
1112 if (IS_ERR((void *)addr))
1113 return addr;
1115 args->addr_ptr = (uint64_t) addr;
1117 return 0;
1121 * i915_gem_fault - fault a page into the GTT
1122 * vma: VMA in question
1123 * vmf: fault info
1125 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1126 * from userspace. The fault handler takes care of binding the object to
1127 * the GTT (if needed), allocating and programming a fence register (again,
1128 * only if needed based on whether the old reg is still valid or the object
1129 * is tiled) and inserting a new PTE into the faulting process.
1131 * Note that the faulting process may involve evicting existing objects
1132 * from the GTT and/or fence registers to make room. So performance may
1133 * suffer if the GTT working set is large or there are few fence registers
1134 * left.
1136 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1138 struct drm_gem_object *obj = vma->vm_private_data;
1139 struct drm_device *dev = obj->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1142 pgoff_t page_offset;
1143 unsigned long pfn;
1144 int ret = 0;
1145 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1147 /* We don't use vmf->pgoff since that has the fake offset */
1148 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1149 PAGE_SHIFT;
1151 /* Now bind it into the GTT if needed */
1152 mutex_lock(&dev->struct_mutex);
1153 if (!obj_priv->gtt_space) {
1154 ret = i915_gem_object_bind_to_gtt(obj, 0);
1155 if (ret)
1156 goto unlock;
1158 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1160 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1161 if (ret)
1162 goto unlock;
1165 /* Need a new fence register? */
1166 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167 ret = i915_gem_object_get_fence_reg(obj);
1168 if (ret)
1169 goto unlock;
1172 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1173 page_offset;
1175 /* Finally, remap it using the new GTT offset */
1176 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1177 unlock:
1178 mutex_unlock(&dev->struct_mutex);
1180 switch (ret) {
1181 case 0:
1182 case -ERESTARTSYS:
1183 return VM_FAULT_NOPAGE;
1184 case -ENOMEM:
1185 case -EAGAIN:
1186 return VM_FAULT_OOM;
1187 default:
1188 return VM_FAULT_SIGBUS;
1193 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1194 * @obj: obj in question
1196 * GEM memory mapping works by handing back to userspace a fake mmap offset
1197 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1198 * up the object based on the offset and sets up the various memory mapping
1199 * structures.
1201 * This routine allocates and attaches a fake offset for @obj.
1203 static int
1204 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1206 struct drm_device *dev = obj->dev;
1207 struct drm_gem_mm *mm = dev->mm_private;
1208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1209 struct drm_map_list *list;
1210 struct drm_local_map *map;
1211 int ret = 0;
1213 /* Set the object up for mmap'ing */
1214 list = &obj->map_list;
1215 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1216 if (!list->map)
1217 return -ENOMEM;
1219 map = list->map;
1220 map->type = _DRM_GEM;
1221 map->size = obj->size;
1222 map->handle = obj;
1224 /* Get a DRM GEM mmap offset allocated... */
1225 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1226 obj->size / PAGE_SIZE, 0, 0);
1227 if (!list->file_offset_node) {
1228 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1229 ret = -ENOMEM;
1230 goto out_free_list;
1233 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1234 obj->size / PAGE_SIZE, 0);
1235 if (!list->file_offset_node) {
1236 ret = -ENOMEM;
1237 goto out_free_list;
1240 list->hash.key = list->file_offset_node->start;
1241 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1242 DRM_ERROR("failed to add to map hash\n");
1243 ret = -ENOMEM;
1244 goto out_free_mm;
1247 /* By now we should be all set, any drm_mmap request on the offset
1248 * below will get to our mmap & fault handler */
1249 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1251 return 0;
1253 out_free_mm:
1254 drm_mm_put_block(list->file_offset_node);
1255 out_free_list:
1256 kfree(list->map);
1258 return ret;
1262 * i915_gem_release_mmap - remove physical page mappings
1263 * @obj: obj in question
1265 * Preserve the reservation of the mmapping with the DRM core code, but
1266 * relinquish ownership of the pages back to the system.
1268 * It is vital that we remove the page mapping if we have mapped a tiled
1269 * object through the GTT and then lose the fence register due to
1270 * resource pressure. Similarly if the object has been moved out of the
1271 * aperture, than pages mapped into userspace must be revoked. Removing the
1272 * mapping will then trigger a page fault on the next user access, allowing
1273 * fixup by i915_gem_fault().
1275 void
1276 i915_gem_release_mmap(struct drm_gem_object *obj)
1278 struct drm_device *dev = obj->dev;
1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1281 if (dev->dev_mapping)
1282 unmap_mapping_range(dev->dev_mapping,
1283 obj_priv->mmap_offset, obj->size, 1);
1286 static void
1287 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1289 struct drm_device *dev = obj->dev;
1290 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1291 struct drm_gem_mm *mm = dev->mm_private;
1292 struct drm_map_list *list;
1294 list = &obj->map_list;
1295 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1297 if (list->file_offset_node) {
1298 drm_mm_put_block(list->file_offset_node);
1299 list->file_offset_node = NULL;
1302 if (list->map) {
1303 kfree(list->map);
1304 list->map = NULL;
1307 obj_priv->mmap_offset = 0;
1311 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1312 * @obj: object to check
1314 * Return the required GTT alignment for an object, taking into account
1315 * potential fence register mapping if needed.
1317 static uint32_t
1318 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1320 struct drm_device *dev = obj->dev;
1321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1322 int start, i;
1325 * Minimum alignment is 4k (GTT page size), but might be greater
1326 * if a fence register is needed for the object.
1328 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1329 return 4096;
1332 * Previous chips need to be aligned to the size of the smallest
1333 * fence register that can contain the object.
1335 if (IS_I9XX(dev))
1336 start = 1024*1024;
1337 else
1338 start = 512*1024;
1340 for (i = start; i < obj->size; i <<= 1)
1343 return i;
1347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1348 * @dev: DRM device
1349 * @data: GTT mapping ioctl data
1350 * @file_priv: GEM object info
1352 * Simply returns the fake offset to userspace so it can mmap it.
1353 * The mmap call will end up in drm_gem_mmap(), which will set things
1354 * up so we can get faults in the handler above.
1356 * The fault handler will take care of binding the object into the GTT
1357 * (since it may have been evicted to make room for something), allocating
1358 * a fence register, and mapping the appropriate aperture address into
1359 * userspace.
1362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file_priv)
1365 struct drm_i915_gem_mmap_gtt *args = data;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 struct drm_gem_object *obj;
1368 struct drm_i915_gem_object *obj_priv;
1369 int ret;
1371 if (!(dev->driver->driver_features & DRIVER_GEM))
1372 return -ENODEV;
1374 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1375 if (obj == NULL)
1376 return -EBADF;
1378 mutex_lock(&dev->struct_mutex);
1380 obj_priv = to_intel_bo(obj);
1382 if (obj_priv->madv != I915_MADV_WILLNEED) {
1383 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1384 drm_gem_object_unreference(obj);
1385 mutex_unlock(&dev->struct_mutex);
1386 return -EINVAL;
1390 if (!obj_priv->mmap_offset) {
1391 ret = i915_gem_create_mmap_offset(obj);
1392 if (ret) {
1393 drm_gem_object_unreference(obj);
1394 mutex_unlock(&dev->struct_mutex);
1395 return ret;
1399 args->offset = obj_priv->mmap_offset;
1402 * Pull it into the GTT so that we have a page list (makes the
1403 * initial fault faster and any subsequent flushing possible).
1405 if (!obj_priv->agp_mem) {
1406 ret = i915_gem_object_bind_to_gtt(obj, 0);
1407 if (ret) {
1408 drm_gem_object_unreference(obj);
1409 mutex_unlock(&dev->struct_mutex);
1410 return ret;
1412 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1415 drm_gem_object_unreference(obj);
1416 mutex_unlock(&dev->struct_mutex);
1418 return 0;
1421 void
1422 i915_gem_object_put_pages(struct drm_gem_object *obj)
1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 int page_count = obj->size / PAGE_SIZE;
1426 int i;
1428 BUG_ON(obj_priv->pages_refcount == 0);
1429 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1431 if (--obj_priv->pages_refcount != 0)
1432 return;
1434 if (obj_priv->tiling_mode != I915_TILING_NONE)
1435 i915_gem_object_save_bit_17_swizzle(obj);
1437 if (obj_priv->madv == I915_MADV_DONTNEED)
1438 obj_priv->dirty = 0;
1440 for (i = 0; i < page_count; i++) {
1441 if (obj_priv->dirty)
1442 set_page_dirty(obj_priv->pages[i]);
1444 if (obj_priv->madv == I915_MADV_WILLNEED)
1445 mark_page_accessed(obj_priv->pages[i]);
1447 page_cache_release(obj_priv->pages[i]);
1449 obj_priv->dirty = 0;
1451 drm_free_large(obj_priv->pages);
1452 obj_priv->pages = NULL;
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1457 struct intel_ring_buffer *ring)
1459 struct drm_device *dev = obj->dev;
1460 drm_i915_private_t *dev_priv = dev->dev_private;
1461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1462 BUG_ON(ring == NULL);
1463 obj_priv->ring = ring;
1465 /* Add a reference if we're newly entering the active list. */
1466 if (!obj_priv->active) {
1467 drm_gem_object_reference(obj);
1468 obj_priv->active = 1;
1470 /* Move from whatever list we were on to the tail of execution. */
1471 spin_lock(&dev_priv->mm.active_list_lock);
1472 list_move_tail(&obj_priv->list, &ring->active_list);
1473 spin_unlock(&dev_priv->mm.active_list_lock);
1474 obj_priv->last_rendering_seqno = seqno;
1477 static void
1478 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1484 BUG_ON(!obj_priv->active);
1485 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1486 obj_priv->last_rendering_seqno = 0;
1489 /* Immediately discard the backing storage */
1490 static void
1491 i915_gem_object_truncate(struct drm_gem_object *obj)
1493 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1494 struct inode *inode;
1496 inode = obj->filp->f_path.dentry->d_inode;
1497 if (inode->i_op->truncate)
1498 inode->i_op->truncate (inode);
1500 obj_priv->madv = __I915_MADV_PURGED;
1503 static inline int
1504 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1506 return obj_priv->madv == I915_MADV_DONTNEED;
1509 static void
1510 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1516 i915_verify_inactive(dev, __FILE__, __LINE__);
1517 if (obj_priv->pin_count != 0)
1518 list_del_init(&obj_priv->list);
1519 else
1520 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1522 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1524 obj_priv->last_rendering_seqno = 0;
1525 obj_priv->ring = NULL;
1526 if (obj_priv->active) {
1527 obj_priv->active = 0;
1528 drm_gem_object_unreference(obj);
1530 i915_verify_inactive(dev, __FILE__, __LINE__);
1533 static void
1534 i915_gem_process_flushing_list(struct drm_device *dev,
1535 uint32_t flush_domains, uint32_t seqno,
1536 struct intel_ring_buffer *ring)
1538 drm_i915_private_t *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_object *obj_priv, *next;
1541 list_for_each_entry_safe(obj_priv, next,
1542 &dev_priv->mm.gpu_write_list,
1543 gpu_write_list) {
1544 struct drm_gem_object *obj = &obj_priv->base;
1546 if ((obj->write_domain & flush_domains) ==
1547 obj->write_domain &&
1548 obj_priv->ring->ring_flag == ring->ring_flag) {
1549 uint32_t old_write_domain = obj->write_domain;
1551 obj->write_domain = 0;
1552 list_del_init(&obj_priv->gpu_write_list);
1553 i915_gem_object_move_to_active(obj, seqno, ring);
1555 /* update the fence lru list */
1556 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1557 struct drm_i915_fence_reg *reg =
1558 &dev_priv->fence_regs[obj_priv->fence_reg];
1559 list_move_tail(&reg->lru_list,
1560 &dev_priv->mm.fence_list);
1563 trace_i915_gem_object_change_domain(obj,
1564 obj->read_domains,
1565 old_write_domain);
1570 uint32_t
1571 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1572 uint32_t flush_domains, struct intel_ring_buffer *ring)
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_file_private *i915_file_priv = NULL;
1576 struct drm_i915_gem_request *request;
1577 uint32_t seqno;
1578 int was_empty;
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 if (request == NULL)
1585 return 0;
1587 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1589 request->seqno = seqno;
1590 request->ring = ring;
1591 request->emitted_jiffies = jiffies;
1592 was_empty = list_empty(&ring->request_list);
1593 list_add_tail(&request->list, &ring->request_list);
1595 if (i915_file_priv) {
1596 list_add_tail(&request->client_list,
1597 &i915_file_priv->mm.request_list);
1598 } else {
1599 INIT_LIST_HEAD(&request->client_list);
1602 /* Associate any objects on the flushing list matching the write
1603 * domain we're flushing with our flush.
1605 if (flush_domains != 0)
1606 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1608 if (!dev_priv->mm.suspended) {
1609 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1610 if (was_empty)
1611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1613 return seqno;
1617 * Command execution barrier
1619 * Ensures that all commands in the ring are finished
1620 * before signalling the CPU
1622 static uint32_t
1623 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1625 uint32_t flush_domains = 0;
1627 /* The sampler always gets flushed on i965 (sigh) */
1628 if (IS_I965G(dev))
1629 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1631 ring->flush(dev, ring,
1632 I915_GEM_DOMAIN_COMMAND, flush_domains);
1633 return flush_domains;
1637 * Moves buffers associated only with the given active seqno from the active
1638 * to inactive list, potentially freeing them.
1640 static void
1641 i915_gem_retire_request(struct drm_device *dev,
1642 struct drm_i915_gem_request *request)
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1646 trace_i915_gem_request_retire(dev, request->seqno);
1648 /* Move any buffers on the active list that are no longer referenced
1649 * by the ringbuffer to the flushing/inactive lists as appropriate.
1651 spin_lock(&dev_priv->mm.active_list_lock);
1652 while (!list_empty(&request->ring->active_list)) {
1653 struct drm_gem_object *obj;
1654 struct drm_i915_gem_object *obj_priv;
1656 obj_priv = list_first_entry(&request->ring->active_list,
1657 struct drm_i915_gem_object,
1658 list);
1659 obj = &obj_priv->base;
1661 /* If the seqno being retired doesn't match the oldest in the
1662 * list, then the oldest in the list must still be newer than
1663 * this seqno.
1665 if (obj_priv->last_rendering_seqno != request->seqno)
1666 goto out;
1668 #if WATCH_LRU
1669 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1670 __func__, request->seqno, obj);
1671 #endif
1673 if (obj->write_domain != 0)
1674 i915_gem_object_move_to_flushing(obj);
1675 else {
1676 /* Take a reference on the object so it won't be
1677 * freed while the spinlock is held. The list
1678 * protection for this spinlock is safe when breaking
1679 * the lock like this since the next thing we do
1680 * is just get the head of the list again.
1682 drm_gem_object_reference(obj);
1683 i915_gem_object_move_to_inactive(obj);
1684 spin_unlock(&dev_priv->mm.active_list_lock);
1685 drm_gem_object_unreference(obj);
1686 spin_lock(&dev_priv->mm.active_list_lock);
1689 out:
1690 spin_unlock(&dev_priv->mm.active_list_lock);
1694 * Returns true if seq1 is later than seq2.
1696 bool
1697 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1699 return (int32_t)(seq1 - seq2) >= 0;
1702 uint32_t
1703 i915_get_gem_seqno(struct drm_device *dev,
1704 struct intel_ring_buffer *ring)
1706 return ring->get_gem_seqno(dev, ring);
1710 * This function clears the request list as sequence numbers are passed.
1712 void
1713 i915_gem_retire_requests(struct drm_device *dev,
1714 struct intel_ring_buffer *ring)
1716 drm_i915_private_t *dev_priv = dev->dev_private;
1717 uint32_t seqno;
1719 if (!ring->status_page.page_addr
1720 || list_empty(&ring->request_list))
1721 return;
1723 seqno = i915_get_gem_seqno(dev, ring);
1725 while (!list_empty(&ring->request_list)) {
1726 struct drm_i915_gem_request *request;
1727 uint32_t retiring_seqno;
1729 request = list_first_entry(&ring->request_list,
1730 struct drm_i915_gem_request,
1731 list);
1732 retiring_seqno = request->seqno;
1734 if (i915_seqno_passed(seqno, retiring_seqno) ||
1735 atomic_read(&dev_priv->mm.wedged)) {
1736 i915_gem_retire_request(dev, request);
1738 list_del(&request->list);
1739 list_del(&request->client_list);
1740 kfree(request);
1741 } else
1742 break;
1745 if (unlikely (dev_priv->trace_irq_seqno &&
1746 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1748 ring->user_irq_put(dev, ring);
1749 dev_priv->trace_irq_seqno = 0;
1753 void
1754 i915_gem_retire_work_handler(struct work_struct *work)
1756 drm_i915_private_t *dev_priv;
1757 struct drm_device *dev;
1759 dev_priv = container_of(work, drm_i915_private_t,
1760 mm.retire_work.work);
1761 dev = dev_priv->dev;
1763 mutex_lock(&dev->struct_mutex);
1764 i915_gem_retire_requests(dev, &dev_priv->render_ring);
1766 if (HAS_BSD(dev))
1767 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1769 if (!dev_priv->mm.suspended &&
1770 (!list_empty(&dev_priv->render_ring.request_list) ||
1771 (HAS_BSD(dev) &&
1772 !list_empty(&dev_priv->bsd_ring.request_list))))
1773 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1774 mutex_unlock(&dev->struct_mutex);
1778 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1779 int interruptible, struct intel_ring_buffer *ring)
1781 drm_i915_private_t *dev_priv = dev->dev_private;
1782 u32 ier;
1783 int ret = 0;
1785 BUG_ON(seqno == 0);
1787 if (atomic_read(&dev_priv->mm.wedged))
1788 return -EIO;
1790 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1791 if (HAS_PCH_SPLIT(dev))
1792 ier = I915_READ(DEIER) | I915_READ(GTIER);
1793 else
1794 ier = I915_READ(IER);
1795 if (!ier) {
1796 DRM_ERROR("something (likely vbetool) disabled "
1797 "interrupts, re-enabling\n");
1798 i915_driver_irq_preinstall(dev);
1799 i915_driver_irq_postinstall(dev);
1802 trace_i915_gem_request_wait_begin(dev, seqno);
1804 ring->waiting_gem_seqno = seqno;
1805 ring->user_irq_get(dev, ring);
1806 if (interruptible)
1807 ret = wait_event_interruptible(ring->irq_queue,
1808 i915_seqno_passed(
1809 ring->get_gem_seqno(dev, ring), seqno)
1810 || atomic_read(&dev_priv->mm.wedged));
1811 else
1812 wait_event(ring->irq_queue,
1813 i915_seqno_passed(
1814 ring->get_gem_seqno(dev, ring), seqno)
1815 || atomic_read(&dev_priv->mm.wedged));
1817 ring->user_irq_put(dev, ring);
1818 ring->waiting_gem_seqno = 0;
1820 trace_i915_gem_request_wait_end(dev, seqno);
1822 if (atomic_read(&dev_priv->mm.wedged))
1823 ret = -EIO;
1825 if (ret && ret != -ERESTARTSYS)
1826 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1827 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1829 /* Directly dispatch request retiring. While we have the work queue
1830 * to handle this, the waiter on a request often wants an associated
1831 * buffer to have made it to the inactive list, and we would need
1832 * a separate wait queue to handle that.
1834 if (ret == 0)
1835 i915_gem_retire_requests(dev, ring);
1837 return ret;
1841 * Waits for a sequence number to be signaled, and cleans up the
1842 * request and object lists appropriately for that event.
1844 static int
1845 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1846 struct intel_ring_buffer *ring)
1848 return i915_do_wait_request(dev, seqno, 1, ring);
1851 static void
1852 i915_gem_flush(struct drm_device *dev,
1853 uint32_t invalidate_domains,
1854 uint32_t flush_domains)
1856 drm_i915_private_t *dev_priv = dev->dev_private;
1857 if (flush_domains & I915_GEM_DOMAIN_CPU)
1858 drm_agp_chipset_flush(dev);
1859 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1860 invalidate_domains,
1861 flush_domains);
1863 if (HAS_BSD(dev))
1864 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1865 invalidate_domains,
1866 flush_domains);
1869 static void
1870 i915_gem_flush_ring(struct drm_device *dev,
1871 uint32_t invalidate_domains,
1872 uint32_t flush_domains,
1873 struct intel_ring_buffer *ring)
1875 if (flush_domains & I915_GEM_DOMAIN_CPU)
1876 drm_agp_chipset_flush(dev);
1877 ring->flush(dev, ring,
1878 invalidate_domains,
1879 flush_domains);
1883 * Ensures that all rendering to the object has completed and the object is
1884 * safe to unbind from the GTT or access from the CPU.
1886 static int
1887 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1889 struct drm_device *dev = obj->dev;
1890 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1891 int ret;
1893 /* This function only exists to support waiting for existing rendering,
1894 * not for emitting required flushes.
1896 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1898 /* If there is rendering queued on the buffer being evicted, wait for
1899 * it.
1901 if (obj_priv->active) {
1902 #if WATCH_BUF
1903 DRM_INFO("%s: object %p wait for seqno %08x\n",
1904 __func__, obj, obj_priv->last_rendering_seqno);
1905 #endif
1906 ret = i915_wait_request(dev,
1907 obj_priv->last_rendering_seqno, obj_priv->ring);
1908 if (ret != 0)
1909 return ret;
1912 return 0;
1916 * Unbinds an object from the GTT aperture.
1919 i915_gem_object_unbind(struct drm_gem_object *obj)
1921 struct drm_device *dev = obj->dev;
1922 drm_i915_private_t *dev_priv = dev->dev_private;
1923 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1924 int ret = 0;
1926 #if WATCH_BUF
1927 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1928 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1929 #endif
1930 if (obj_priv->gtt_space == NULL)
1931 return 0;
1933 if (obj_priv->pin_count != 0) {
1934 DRM_ERROR("Attempting to unbind pinned buffer\n");
1935 return -EINVAL;
1938 /* blow away mappings if mapped through GTT */
1939 i915_gem_release_mmap(obj);
1941 /* Move the object to the CPU domain to ensure that
1942 * any possible CPU writes while it's not in the GTT
1943 * are flushed when we go to remap it. This will
1944 * also ensure that all pending GPU writes are finished
1945 * before we unbind.
1947 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1948 if (ret) {
1949 if (ret != -ERESTARTSYS)
1950 DRM_ERROR("set_domain failed: %d\n", ret);
1951 return ret;
1954 BUG_ON(obj_priv->active);
1956 /* release the fence reg _after_ flushing */
1957 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1958 i915_gem_clear_fence_reg(obj);
1960 if (obj_priv->agp_mem != NULL) {
1961 drm_unbind_agp(obj_priv->agp_mem);
1962 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1963 obj_priv->agp_mem = NULL;
1966 i915_gem_object_put_pages(obj);
1967 BUG_ON(obj_priv->pages_refcount);
1969 if (obj_priv->gtt_space) {
1970 atomic_dec(&dev->gtt_count);
1971 atomic_sub(obj->size, &dev->gtt_memory);
1973 drm_mm_put_block(obj_priv->gtt_space);
1974 obj_priv->gtt_space = NULL;
1977 /* Remove ourselves from the LRU list if present. */
1978 spin_lock(&dev_priv->mm.active_list_lock);
1979 if (!list_empty(&obj_priv->list))
1980 list_del_init(&obj_priv->list);
1981 spin_unlock(&dev_priv->mm.active_list_lock);
1983 if (i915_gem_object_is_purgeable(obj_priv))
1984 i915_gem_object_truncate(obj);
1986 trace_i915_gem_object_unbind(obj);
1988 return 0;
1991 static struct drm_gem_object *
1992 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
1994 drm_i915_private_t *dev_priv = dev->dev_private;
1995 struct drm_i915_gem_object *obj_priv;
1996 struct drm_gem_object *best = NULL;
1997 struct drm_gem_object *first = NULL;
1999 /* Try to find the smallest clean object */
2000 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2001 struct drm_gem_object *obj = &obj_priv->base;
2002 if (obj->size >= min_size) {
2003 if ((!obj_priv->dirty ||
2004 i915_gem_object_is_purgeable(obj_priv)) &&
2005 (!best || obj->size < best->size)) {
2006 best = obj;
2007 if (best->size == min_size)
2008 return best;
2010 if (!first)
2011 first = obj;
2015 return best ? best : first;
2018 static int
2019 i915_gpu_idle(struct drm_device *dev)
2021 drm_i915_private_t *dev_priv = dev->dev_private;
2022 bool lists_empty;
2023 uint32_t seqno1, seqno2;
2024 int ret;
2026 spin_lock(&dev_priv->mm.active_list_lock);
2027 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2028 list_empty(&dev_priv->render_ring.active_list) &&
2029 (!HAS_BSD(dev) ||
2030 list_empty(&dev_priv->bsd_ring.active_list)));
2031 spin_unlock(&dev_priv->mm.active_list_lock);
2033 if (lists_empty)
2034 return 0;
2036 /* Flush everything onto the inactive list. */
2037 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2038 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2039 &dev_priv->render_ring);
2040 if (seqno1 == 0)
2041 return -ENOMEM;
2042 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2044 if (HAS_BSD(dev)) {
2045 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2046 &dev_priv->bsd_ring);
2047 if (seqno2 == 0)
2048 return -ENOMEM;
2050 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2051 if (ret)
2052 return ret;
2056 return ret;
2059 static int
2060 i915_gem_evict_everything(struct drm_device *dev)
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 int ret;
2064 bool lists_empty;
2066 spin_lock(&dev_priv->mm.active_list_lock);
2067 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2068 list_empty(&dev_priv->mm.flushing_list) &&
2069 list_empty(&dev_priv->render_ring.active_list) &&
2070 (!HAS_BSD(dev)
2071 || list_empty(&dev_priv->bsd_ring.active_list)));
2072 spin_unlock(&dev_priv->mm.active_list_lock);
2074 if (lists_empty)
2075 return -ENOSPC;
2077 /* Flush everything (on to the inactive lists) and evict */
2078 ret = i915_gpu_idle(dev);
2079 if (ret)
2080 return ret;
2082 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2084 ret = i915_gem_evict_from_inactive_list(dev);
2085 if (ret)
2086 return ret;
2088 spin_lock(&dev_priv->mm.active_list_lock);
2089 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090 list_empty(&dev_priv->mm.flushing_list) &&
2091 list_empty(&dev_priv->render_ring.active_list) &&
2092 (!HAS_BSD(dev)
2093 || list_empty(&dev_priv->bsd_ring.active_list)));
2094 spin_unlock(&dev_priv->mm.active_list_lock);
2095 BUG_ON(!lists_empty);
2097 return 0;
2100 static int
2101 i915_gem_evict_something(struct drm_device *dev, int min_size)
2103 drm_i915_private_t *dev_priv = dev->dev_private;
2104 struct drm_gem_object *obj;
2105 int ret;
2107 struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2108 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2109 for (;;) {
2110 i915_gem_retire_requests(dev, render_ring);
2112 if (HAS_BSD(dev))
2113 i915_gem_retire_requests(dev, bsd_ring);
2115 /* If there's an inactive buffer available now, grab it
2116 * and be done.
2118 obj = i915_gem_find_inactive_object(dev, min_size);
2119 if (obj) {
2120 struct drm_i915_gem_object *obj_priv;
2122 #if WATCH_LRU
2123 DRM_INFO("%s: evicting %p\n", __func__, obj);
2124 #endif
2125 obj_priv = to_intel_bo(obj);
2126 BUG_ON(obj_priv->pin_count != 0);
2127 BUG_ON(obj_priv->active);
2129 /* Wait on the rendering and unbind the buffer. */
2130 return i915_gem_object_unbind(obj);
2133 /* If we didn't get anything, but the ring is still processing
2134 * things, wait for the next to finish and hopefully leave us
2135 * a buffer to evict.
2137 if (!list_empty(&render_ring->request_list)) {
2138 struct drm_i915_gem_request *request;
2140 request = list_first_entry(&render_ring->request_list,
2141 struct drm_i915_gem_request,
2142 list);
2144 ret = i915_wait_request(dev,
2145 request->seqno, request->ring);
2146 if (ret)
2147 return ret;
2149 continue;
2152 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2153 struct drm_i915_gem_request *request;
2155 request = list_first_entry(&bsd_ring->request_list,
2156 struct drm_i915_gem_request,
2157 list);
2159 ret = i915_wait_request(dev,
2160 request->seqno, request->ring);
2161 if (ret)
2162 return ret;
2164 continue;
2167 /* If we didn't have anything on the request list but there
2168 * are buffers awaiting a flush, emit one and try again.
2169 * When we wait on it, those buffers waiting for that flush
2170 * will get moved to inactive.
2172 if (!list_empty(&dev_priv->mm.flushing_list)) {
2173 struct drm_i915_gem_object *obj_priv;
2175 /* Find an object that we can immediately reuse */
2176 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2177 obj = &obj_priv->base;
2178 if (obj->size >= min_size)
2179 break;
2181 obj = NULL;
2184 if (obj != NULL) {
2185 uint32_t seqno;
2187 i915_gem_flush_ring(dev,
2188 obj->write_domain,
2189 obj->write_domain,
2190 obj_priv->ring);
2191 seqno = i915_add_request(dev, NULL,
2192 obj->write_domain,
2193 obj_priv->ring);
2194 if (seqno == 0)
2195 return -ENOMEM;
2196 continue;
2200 /* If we didn't do any of the above, there's no single buffer
2201 * large enough to swap out for the new one, so just evict
2202 * everything and start again. (This should be rare.)
2204 if (!list_empty (&dev_priv->mm.inactive_list))
2205 return i915_gem_evict_from_inactive_list(dev);
2206 else
2207 return i915_gem_evict_everything(dev);
2212 i915_gem_object_get_pages(struct drm_gem_object *obj,
2213 gfp_t gfpmask)
2215 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216 int page_count, i;
2217 struct address_space *mapping;
2218 struct inode *inode;
2219 struct page *page;
2221 BUG_ON(obj_priv->pages_refcount
2222 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2224 if (obj_priv->pages_refcount++ != 0)
2225 return 0;
2227 /* Get the list of pages out of our struct file. They'll be pinned
2228 * at this point until we release them.
2230 page_count = obj->size / PAGE_SIZE;
2231 BUG_ON(obj_priv->pages != NULL);
2232 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2233 if (obj_priv->pages == NULL) {
2234 obj_priv->pages_refcount--;
2235 return -ENOMEM;
2238 inode = obj->filp->f_path.dentry->d_inode;
2239 mapping = inode->i_mapping;
2240 for (i = 0; i < page_count; i++) {
2241 page = read_cache_page_gfp(mapping, i,
2242 GFP_HIGHUSER |
2243 __GFP_COLD |
2244 gfpmask);
2245 if (IS_ERR(page))
2246 goto err_pages;
2248 obj_priv->pages[i] = page;
2251 if (obj_priv->tiling_mode != I915_TILING_NONE)
2252 i915_gem_object_do_bit_17_swizzle(obj);
2254 return 0;
2256 err_pages:
2257 while (i--)
2258 page_cache_release(obj_priv->pages[i]);
2260 drm_free_large(obj_priv->pages);
2261 obj_priv->pages = NULL;
2262 obj_priv->pages_refcount--;
2263 return PTR_ERR(page);
2266 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2268 struct drm_gem_object *obj = reg->obj;
2269 struct drm_device *dev = obj->dev;
2270 drm_i915_private_t *dev_priv = dev->dev_private;
2271 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2272 int regnum = obj_priv->fence_reg;
2273 uint64_t val;
2275 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2276 0xfffff000) << 32;
2277 val |= obj_priv->gtt_offset & 0xfffff000;
2278 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2279 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2281 if (obj_priv->tiling_mode == I915_TILING_Y)
2282 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2283 val |= I965_FENCE_REG_VALID;
2285 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2288 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2290 struct drm_gem_object *obj = reg->obj;
2291 struct drm_device *dev = obj->dev;
2292 drm_i915_private_t *dev_priv = dev->dev_private;
2293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2294 int regnum = obj_priv->fence_reg;
2295 uint64_t val;
2297 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2298 0xfffff000) << 32;
2299 val |= obj_priv->gtt_offset & 0xfffff000;
2300 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2301 if (obj_priv->tiling_mode == I915_TILING_Y)
2302 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2303 val |= I965_FENCE_REG_VALID;
2305 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2308 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2310 struct drm_gem_object *obj = reg->obj;
2311 struct drm_device *dev = obj->dev;
2312 drm_i915_private_t *dev_priv = dev->dev_private;
2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314 int regnum = obj_priv->fence_reg;
2315 int tile_width;
2316 uint32_t fence_reg, val;
2317 uint32_t pitch_val;
2319 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2320 (obj_priv->gtt_offset & (obj->size - 1))) {
2321 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2322 __func__, obj_priv->gtt_offset, obj->size);
2323 return;
2326 if (obj_priv->tiling_mode == I915_TILING_Y &&
2327 HAS_128_BYTE_Y_TILING(dev))
2328 tile_width = 128;
2329 else
2330 tile_width = 512;
2332 /* Note: pitch better be a power of two tile widths */
2333 pitch_val = obj_priv->stride / tile_width;
2334 pitch_val = ffs(pitch_val) - 1;
2336 if (obj_priv->tiling_mode == I915_TILING_Y &&
2337 HAS_128_BYTE_Y_TILING(dev))
2338 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2339 else
2340 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2342 val = obj_priv->gtt_offset;
2343 if (obj_priv->tiling_mode == I915_TILING_Y)
2344 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2345 val |= I915_FENCE_SIZE_BITS(obj->size);
2346 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2347 val |= I830_FENCE_REG_VALID;
2349 if (regnum < 8)
2350 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2351 else
2352 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2353 I915_WRITE(fence_reg, val);
2356 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2358 struct drm_gem_object *obj = reg->obj;
2359 struct drm_device *dev = obj->dev;
2360 drm_i915_private_t *dev_priv = dev->dev_private;
2361 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362 int regnum = obj_priv->fence_reg;
2363 uint32_t val;
2364 uint32_t pitch_val;
2365 uint32_t fence_size_bits;
2367 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2368 (obj_priv->gtt_offset & (obj->size - 1))) {
2369 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2370 __func__, obj_priv->gtt_offset);
2371 return;
2374 pitch_val = obj_priv->stride / 128;
2375 pitch_val = ffs(pitch_val) - 1;
2376 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2378 val = obj_priv->gtt_offset;
2379 if (obj_priv->tiling_mode == I915_TILING_Y)
2380 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2381 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2382 WARN_ON(fence_size_bits & ~0x00000f00);
2383 val |= fence_size_bits;
2384 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2385 val |= I830_FENCE_REG_VALID;
2387 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2390 static int i915_find_fence_reg(struct drm_device *dev)
2392 struct drm_i915_fence_reg *reg = NULL;
2393 struct drm_i915_gem_object *obj_priv = NULL;
2394 struct drm_i915_private *dev_priv = dev->dev_private;
2395 struct drm_gem_object *obj = NULL;
2396 int i, avail, ret;
2398 /* First try to find a free reg */
2399 avail = 0;
2400 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2401 reg = &dev_priv->fence_regs[i];
2402 if (!reg->obj)
2403 return i;
2405 obj_priv = to_intel_bo(reg->obj);
2406 if (!obj_priv->pin_count)
2407 avail++;
2410 if (avail == 0)
2411 return -ENOSPC;
2413 /* None available, try to steal one or wait for a user to finish */
2414 i = I915_FENCE_REG_NONE;
2415 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2416 lru_list) {
2417 obj = reg->obj;
2418 obj_priv = to_intel_bo(obj);
2420 if (obj_priv->pin_count)
2421 continue;
2423 /* found one! */
2424 i = obj_priv->fence_reg;
2425 break;
2428 BUG_ON(i == I915_FENCE_REG_NONE);
2430 /* We only have a reference on obj from the active list. put_fence_reg
2431 * might drop that one, causing a use-after-free in it. So hold a
2432 * private reference to obj like the other callers of put_fence_reg
2433 * (set_tiling ioctl) do. */
2434 drm_gem_object_reference(obj);
2435 ret = i915_gem_object_put_fence_reg(obj);
2436 drm_gem_object_unreference(obj);
2437 if (ret != 0)
2438 return ret;
2440 return i;
2444 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2445 * @obj: object to map through a fence reg
2447 * When mapping objects through the GTT, userspace wants to be able to write
2448 * to them without having to worry about swizzling if the object is tiled.
2450 * This function walks the fence regs looking for a free one for @obj,
2451 * stealing one if it can't find any.
2453 * It then sets up the reg based on the object's properties: address, pitch
2454 * and tiling format.
2457 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2459 struct drm_device *dev = obj->dev;
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2462 struct drm_i915_fence_reg *reg = NULL;
2463 int ret;
2465 /* Just update our place in the LRU if our fence is getting used. */
2466 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2467 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2468 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2469 return 0;
2472 switch (obj_priv->tiling_mode) {
2473 case I915_TILING_NONE:
2474 WARN(1, "allocating a fence for non-tiled object?\n");
2475 break;
2476 case I915_TILING_X:
2477 if (!obj_priv->stride)
2478 return -EINVAL;
2479 WARN((obj_priv->stride & (512 - 1)),
2480 "object 0x%08x is X tiled but has non-512B pitch\n",
2481 obj_priv->gtt_offset);
2482 break;
2483 case I915_TILING_Y:
2484 if (!obj_priv->stride)
2485 return -EINVAL;
2486 WARN((obj_priv->stride & (128 - 1)),
2487 "object 0x%08x is Y tiled but has non-128B pitch\n",
2488 obj_priv->gtt_offset);
2489 break;
2492 ret = i915_find_fence_reg(dev);
2493 if (ret < 0)
2494 return ret;
2496 obj_priv->fence_reg = ret;
2497 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2498 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2500 reg->obj = obj;
2502 if (IS_GEN6(dev))
2503 sandybridge_write_fence_reg(reg);
2504 else if (IS_I965G(dev))
2505 i965_write_fence_reg(reg);
2506 else if (IS_I9XX(dev))
2507 i915_write_fence_reg(reg);
2508 else
2509 i830_write_fence_reg(reg);
2511 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2512 obj_priv->tiling_mode);
2514 return 0;
2518 * i915_gem_clear_fence_reg - clear out fence register info
2519 * @obj: object to clear
2521 * Zeroes out the fence register itself and clears out the associated
2522 * data structures in dev_priv and obj_priv.
2524 static void
2525 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2527 struct drm_device *dev = obj->dev;
2528 drm_i915_private_t *dev_priv = dev->dev_private;
2529 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2530 struct drm_i915_fence_reg *reg =
2531 &dev_priv->fence_regs[obj_priv->fence_reg];
2533 if (IS_GEN6(dev)) {
2534 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2535 (obj_priv->fence_reg * 8), 0);
2536 } else if (IS_I965G(dev)) {
2537 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2538 } else {
2539 uint32_t fence_reg;
2541 if (obj_priv->fence_reg < 8)
2542 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2543 else
2544 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2545 8) * 4;
2547 I915_WRITE(fence_reg, 0);
2550 reg->obj = NULL;
2551 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2552 list_del_init(&reg->lru_list);
2556 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2557 * to the buffer to finish, and then resets the fence register.
2558 * @obj: tiled object holding a fence register.
2560 * Zeroes out the fence register itself and clears out the associated
2561 * data structures in dev_priv and obj_priv.
2564 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2566 struct drm_device *dev = obj->dev;
2567 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2569 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2570 return 0;
2572 /* If we've changed tiling, GTT-mappings of the object
2573 * need to re-fault to ensure that the correct fence register
2574 * setup is in place.
2576 i915_gem_release_mmap(obj);
2578 /* On the i915, GPU access to tiled buffers is via a fence,
2579 * therefore we must wait for any outstanding access to complete
2580 * before clearing the fence.
2582 if (!IS_I965G(dev)) {
2583 int ret;
2585 i915_gem_object_flush_gpu_write_domain(obj);
2586 ret = i915_gem_object_wait_rendering(obj);
2587 if (ret != 0)
2588 return ret;
2591 i915_gem_object_flush_gtt_write_domain(obj);
2592 i915_gem_clear_fence_reg (obj);
2594 return 0;
2598 * Finds free space in the GTT aperture and binds the object there.
2600 static int
2601 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2603 struct drm_device *dev = obj->dev;
2604 drm_i915_private_t *dev_priv = dev->dev_private;
2605 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2606 struct drm_mm_node *free_space;
2607 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2608 int ret;
2610 if (obj_priv->madv != I915_MADV_WILLNEED) {
2611 DRM_ERROR("Attempting to bind a purgeable object\n");
2612 return -EINVAL;
2615 if (alignment == 0)
2616 alignment = i915_gem_get_gtt_alignment(obj);
2617 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2618 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2619 return -EINVAL;
2622 /* If the object is bigger than the entire aperture, reject it early
2623 * before evicting everything in a vain attempt to find space.
2625 if (obj->size > dev->gtt_total) {
2626 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2627 return -E2BIG;
2630 search_free:
2631 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2632 obj->size, alignment, 0);
2633 if (free_space != NULL) {
2634 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2635 alignment);
2636 if (obj_priv->gtt_space != NULL) {
2637 obj_priv->gtt_space->private = obj;
2638 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2641 if (obj_priv->gtt_space == NULL) {
2642 /* If the gtt is empty and we're still having trouble
2643 * fitting our object in, we're out of memory.
2645 #if WATCH_LRU
2646 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2647 #endif
2648 ret = i915_gem_evict_something(dev, obj->size);
2649 if (ret)
2650 return ret;
2652 goto search_free;
2655 #if WATCH_BUF
2656 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2657 obj->size, obj_priv->gtt_offset);
2658 #endif
2659 ret = i915_gem_object_get_pages(obj, gfpmask);
2660 if (ret) {
2661 drm_mm_put_block(obj_priv->gtt_space);
2662 obj_priv->gtt_space = NULL;
2664 if (ret == -ENOMEM) {
2665 /* first try to clear up some space from the GTT */
2666 ret = i915_gem_evict_something(dev, obj->size);
2667 if (ret) {
2668 /* now try to shrink everyone else */
2669 if (gfpmask) {
2670 gfpmask = 0;
2671 goto search_free;
2674 return ret;
2677 goto search_free;
2680 return ret;
2683 /* Create an AGP memory structure pointing at our pages, and bind it
2684 * into the GTT.
2686 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2687 obj_priv->pages,
2688 obj->size >> PAGE_SHIFT,
2689 obj_priv->gtt_offset,
2690 obj_priv->agp_type);
2691 if (obj_priv->agp_mem == NULL) {
2692 i915_gem_object_put_pages(obj);
2693 drm_mm_put_block(obj_priv->gtt_space);
2694 obj_priv->gtt_space = NULL;
2696 ret = i915_gem_evict_something(dev, obj->size);
2697 if (ret)
2698 return ret;
2700 goto search_free;
2702 atomic_inc(&dev->gtt_count);
2703 atomic_add(obj->size, &dev->gtt_memory);
2705 /* Assert that the object is not currently in any GPU domain. As it
2706 * wasn't in the GTT, there shouldn't be any way it could have been in
2707 * a GPU cache
2709 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2710 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2712 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2714 return 0;
2717 void
2718 i915_gem_clflush_object(struct drm_gem_object *obj)
2720 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2722 /* If we don't have a page list set up, then we're not pinned
2723 * to GPU, and we can ignore the cache flush because it'll happen
2724 * again at bind time.
2726 if (obj_priv->pages == NULL)
2727 return;
2729 trace_i915_gem_object_clflush(obj);
2731 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2734 /** Flushes any GPU write domain for the object if it's dirty. */
2735 static void
2736 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2738 struct drm_device *dev = obj->dev;
2739 uint32_t old_write_domain;
2740 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2742 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2743 return;
2745 /* Queue the GPU write cache flushing we need. */
2746 old_write_domain = obj->write_domain;
2747 i915_gem_flush(dev, 0, obj->write_domain);
2748 (void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2749 BUG_ON(obj->write_domain);
2751 trace_i915_gem_object_change_domain(obj,
2752 obj->read_domains,
2753 old_write_domain);
2756 /** Flushes the GTT write domain for the object if it's dirty. */
2757 static void
2758 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2760 uint32_t old_write_domain;
2762 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2763 return;
2765 /* No actual flushing is required for the GTT write domain. Writes
2766 * to it immediately go to main memory as far as we know, so there's
2767 * no chipset flush. It also doesn't land in render cache.
2769 old_write_domain = obj->write_domain;
2770 obj->write_domain = 0;
2772 trace_i915_gem_object_change_domain(obj,
2773 obj->read_domains,
2774 old_write_domain);
2777 /** Flushes the CPU write domain for the object if it's dirty. */
2778 static void
2779 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2781 struct drm_device *dev = obj->dev;
2782 uint32_t old_write_domain;
2784 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2785 return;
2787 i915_gem_clflush_object(obj);
2788 drm_agp_chipset_flush(dev);
2789 old_write_domain = obj->write_domain;
2790 obj->write_domain = 0;
2792 trace_i915_gem_object_change_domain(obj,
2793 obj->read_domains,
2794 old_write_domain);
2797 void
2798 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2800 switch (obj->write_domain) {
2801 case I915_GEM_DOMAIN_GTT:
2802 i915_gem_object_flush_gtt_write_domain(obj);
2803 break;
2804 case I915_GEM_DOMAIN_CPU:
2805 i915_gem_object_flush_cpu_write_domain(obj);
2806 break;
2807 default:
2808 i915_gem_object_flush_gpu_write_domain(obj);
2809 break;
2814 * Moves a single object to the GTT read, and possibly write domain.
2816 * This function returns when the move is complete, including waiting on
2817 * flushes to occur.
2820 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2822 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2823 uint32_t old_write_domain, old_read_domains;
2824 int ret;
2826 /* Not valid to be called on unbound objects. */
2827 if (obj_priv->gtt_space == NULL)
2828 return -EINVAL;
2830 i915_gem_object_flush_gpu_write_domain(obj);
2831 /* Wait on any GPU rendering and flushing to occur. */
2832 ret = i915_gem_object_wait_rendering(obj);
2833 if (ret != 0)
2834 return ret;
2836 old_write_domain = obj->write_domain;
2837 old_read_domains = obj->read_domains;
2839 /* If we're writing through the GTT domain, then CPU and GPU caches
2840 * will need to be invalidated at next use.
2842 if (write)
2843 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2845 i915_gem_object_flush_cpu_write_domain(obj);
2847 /* It should now be out of any other write domains, and we can update
2848 * the domain values for our changes.
2850 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2851 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2852 if (write) {
2853 obj->write_domain = I915_GEM_DOMAIN_GTT;
2854 obj_priv->dirty = 1;
2857 trace_i915_gem_object_change_domain(obj,
2858 old_read_domains,
2859 old_write_domain);
2861 return 0;
2865 * Prepare buffer for display plane. Use uninterruptible for possible flush
2866 * wait, as in modesetting process we're not supposed to be interrupted.
2869 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2871 struct drm_device *dev = obj->dev;
2872 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2873 uint32_t old_write_domain, old_read_domains;
2874 int ret;
2876 /* Not valid to be called on unbound objects. */
2877 if (obj_priv->gtt_space == NULL)
2878 return -EINVAL;
2880 i915_gem_object_flush_gpu_write_domain(obj);
2882 /* Wait on any GPU rendering and flushing to occur. */
2883 if (obj_priv->active) {
2884 #if WATCH_BUF
2885 DRM_INFO("%s: object %p wait for seqno %08x\n",
2886 __func__, obj, obj_priv->last_rendering_seqno);
2887 #endif
2888 ret = i915_do_wait_request(dev,
2889 obj_priv->last_rendering_seqno,
2891 obj_priv->ring);
2892 if (ret != 0)
2893 return ret;
2896 i915_gem_object_flush_cpu_write_domain(obj);
2898 old_write_domain = obj->write_domain;
2899 old_read_domains = obj->read_domains;
2901 /* It should now be out of any other write domains, and we can update
2902 * the domain values for our changes.
2904 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2905 obj->read_domains = I915_GEM_DOMAIN_GTT;
2906 obj->write_domain = I915_GEM_DOMAIN_GTT;
2907 obj_priv->dirty = 1;
2909 trace_i915_gem_object_change_domain(obj,
2910 old_read_domains,
2911 old_write_domain);
2913 return 0;
2917 * Moves a single object to the CPU read, and possibly write domain.
2919 * This function returns when the move is complete, including waiting on
2920 * flushes to occur.
2922 static int
2923 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2925 uint32_t old_write_domain, old_read_domains;
2926 int ret;
2928 i915_gem_object_flush_gpu_write_domain(obj);
2929 /* Wait on any GPU rendering and flushing to occur. */
2930 ret = i915_gem_object_wait_rendering(obj);
2931 if (ret != 0)
2932 return ret;
2934 i915_gem_object_flush_gtt_write_domain(obj);
2936 /* If we have a partially-valid cache of the object in the CPU,
2937 * finish invalidating it and free the per-page flags.
2939 i915_gem_object_set_to_full_cpu_read_domain(obj);
2941 old_write_domain = obj->write_domain;
2942 old_read_domains = obj->read_domains;
2944 /* Flush the CPU cache if it's still invalid. */
2945 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2946 i915_gem_clflush_object(obj);
2948 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2951 /* It should now be out of any other write domains, and we can update
2952 * the domain values for our changes.
2954 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2956 /* If we're writing through the CPU, then the GPU read domains will
2957 * need to be invalidated at next use.
2959 if (write) {
2960 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2961 obj->write_domain = I915_GEM_DOMAIN_CPU;
2964 trace_i915_gem_object_change_domain(obj,
2965 old_read_domains,
2966 old_write_domain);
2968 return 0;
2972 * Set the next domain for the specified object. This
2973 * may not actually perform the necessary flushing/invaliding though,
2974 * as that may want to be batched with other set_domain operations
2976 * This is (we hope) the only really tricky part of gem. The goal
2977 * is fairly simple -- track which caches hold bits of the object
2978 * and make sure they remain coherent. A few concrete examples may
2979 * help to explain how it works. For shorthand, we use the notation
2980 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2981 * a pair of read and write domain masks.
2983 * Case 1: the batch buffer
2985 * 1. Allocated
2986 * 2. Written by CPU
2987 * 3. Mapped to GTT
2988 * 4. Read by GPU
2989 * 5. Unmapped from GTT
2990 * 6. Freed
2992 * Let's take these a step at a time
2994 * 1. Allocated
2995 * Pages allocated from the kernel may still have
2996 * cache contents, so we set them to (CPU, CPU) always.
2997 * 2. Written by CPU (using pwrite)
2998 * The pwrite function calls set_domain (CPU, CPU) and
2999 * this function does nothing (as nothing changes)
3000 * 3. Mapped by GTT
3001 * This function asserts that the object is not
3002 * currently in any GPU-based read or write domains
3003 * 4. Read by GPU
3004 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3005 * As write_domain is zero, this function adds in the
3006 * current read domains (CPU+COMMAND, 0).
3007 * flush_domains is set to CPU.
3008 * invalidate_domains is set to COMMAND
3009 * clflush is run to get data out of the CPU caches
3010 * then i915_dev_set_domain calls i915_gem_flush to
3011 * emit an MI_FLUSH and drm_agp_chipset_flush
3012 * 5. Unmapped from GTT
3013 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3014 * flush_domains and invalidate_domains end up both zero
3015 * so no flushing/invalidating happens
3016 * 6. Freed
3017 * yay, done
3019 * Case 2: The shared render buffer
3021 * 1. Allocated
3022 * 2. Mapped to GTT
3023 * 3. Read/written by GPU
3024 * 4. set_domain to (CPU,CPU)
3025 * 5. Read/written by CPU
3026 * 6. Read/written by GPU
3028 * 1. Allocated
3029 * Same as last example, (CPU, CPU)
3030 * 2. Mapped to GTT
3031 * Nothing changes (assertions find that it is not in the GPU)
3032 * 3. Read/written by GPU
3033 * execbuffer calls set_domain (RENDER, RENDER)
3034 * flush_domains gets CPU
3035 * invalidate_domains gets GPU
3036 * clflush (obj)
3037 * MI_FLUSH and drm_agp_chipset_flush
3038 * 4. set_domain (CPU, CPU)
3039 * flush_domains gets GPU
3040 * invalidate_domains gets CPU
3041 * wait_rendering (obj) to make sure all drawing is complete.
3042 * This will include an MI_FLUSH to get the data from GPU
3043 * to memory
3044 * clflush (obj) to invalidate the CPU cache
3045 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3046 * 5. Read/written by CPU
3047 * cache lines are loaded and dirtied
3048 * 6. Read written by GPU
3049 * Same as last GPU access
3051 * Case 3: The constant buffer
3053 * 1. Allocated
3054 * 2. Written by CPU
3055 * 3. Read by GPU
3056 * 4. Updated (written) by CPU again
3057 * 5. Read by GPU
3059 * 1. Allocated
3060 * (CPU, CPU)
3061 * 2. Written by CPU
3062 * (CPU, CPU)
3063 * 3. Read by GPU
3064 * (CPU+RENDER, 0)
3065 * flush_domains = CPU
3066 * invalidate_domains = RENDER
3067 * clflush (obj)
3068 * MI_FLUSH
3069 * drm_agp_chipset_flush
3070 * 4. Updated (written) by CPU again
3071 * (CPU, CPU)
3072 * flush_domains = 0 (no previous write domain)
3073 * invalidate_domains = 0 (no new read domains)
3074 * 5. Read by GPU
3075 * (CPU+RENDER, 0)
3076 * flush_domains = CPU
3077 * invalidate_domains = RENDER
3078 * clflush (obj)
3079 * MI_FLUSH
3080 * drm_agp_chipset_flush
3082 static void
3083 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3085 struct drm_device *dev = obj->dev;
3086 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3087 uint32_t invalidate_domains = 0;
3088 uint32_t flush_domains = 0;
3089 uint32_t old_read_domains;
3091 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3092 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3094 intel_mark_busy(dev, obj);
3096 #if WATCH_BUF
3097 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3098 __func__, obj,
3099 obj->read_domains, obj->pending_read_domains,
3100 obj->write_domain, obj->pending_write_domain);
3101 #endif
3103 * If the object isn't moving to a new write domain,
3104 * let the object stay in multiple read domains
3106 if (obj->pending_write_domain == 0)
3107 obj->pending_read_domains |= obj->read_domains;
3108 else
3109 obj_priv->dirty = 1;
3112 * Flush the current write domain if
3113 * the new read domains don't match. Invalidate
3114 * any read domains which differ from the old
3115 * write domain
3117 if (obj->write_domain &&
3118 obj->write_domain != obj->pending_read_domains) {
3119 flush_domains |= obj->write_domain;
3120 invalidate_domains |=
3121 obj->pending_read_domains & ~obj->write_domain;
3124 * Invalidate any read caches which may have
3125 * stale data. That is, any new read domains.
3127 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3128 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3129 #if WATCH_BUF
3130 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3131 __func__, flush_domains, invalidate_domains);
3132 #endif
3133 i915_gem_clflush_object(obj);
3136 old_read_domains = obj->read_domains;
3138 /* The actual obj->write_domain will be updated with
3139 * pending_write_domain after we emit the accumulated flush for all
3140 * of our domain changes in execbuffers (which clears objects'
3141 * write_domains). So if we have a current write domain that we
3142 * aren't changing, set pending_write_domain to that.
3144 if (flush_domains == 0 && obj->pending_write_domain == 0)
3145 obj->pending_write_domain = obj->write_domain;
3146 obj->read_domains = obj->pending_read_domains;
3148 dev->invalidate_domains |= invalidate_domains;
3149 dev->flush_domains |= flush_domains;
3150 #if WATCH_BUF
3151 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3152 __func__,
3153 obj->read_domains, obj->write_domain,
3154 dev->invalidate_domains, dev->flush_domains);
3155 #endif
3157 trace_i915_gem_object_change_domain(obj,
3158 old_read_domains,
3159 obj->write_domain);
3163 * Moves the object from a partially CPU read to a full one.
3165 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3166 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3168 static void
3169 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3171 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3173 if (!obj_priv->page_cpu_valid)
3174 return;
3176 /* If we're partially in the CPU read domain, finish moving it in.
3178 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3179 int i;
3181 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3182 if (obj_priv->page_cpu_valid[i])
3183 continue;
3184 drm_clflush_pages(obj_priv->pages + i, 1);
3188 /* Free the page_cpu_valid mappings which are now stale, whether
3189 * or not we've got I915_GEM_DOMAIN_CPU.
3191 kfree(obj_priv->page_cpu_valid);
3192 obj_priv->page_cpu_valid = NULL;
3196 * Set the CPU read domain on a range of the object.
3198 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3199 * not entirely valid. The page_cpu_valid member of the object flags which
3200 * pages have been flushed, and will be respected by
3201 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3202 * of the whole object.
3204 * This function returns when the move is complete, including waiting on
3205 * flushes to occur.
3207 static int
3208 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3209 uint64_t offset, uint64_t size)
3211 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3212 uint32_t old_read_domains;
3213 int i, ret;
3215 if (offset == 0 && size == obj->size)
3216 return i915_gem_object_set_to_cpu_domain(obj, 0);
3218 i915_gem_object_flush_gpu_write_domain(obj);
3219 /* Wait on any GPU rendering and flushing to occur. */
3220 ret = i915_gem_object_wait_rendering(obj);
3221 if (ret != 0)
3222 return ret;
3223 i915_gem_object_flush_gtt_write_domain(obj);
3225 /* If we're already fully in the CPU read domain, we're done. */
3226 if (obj_priv->page_cpu_valid == NULL &&
3227 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3228 return 0;
3230 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3231 * newly adding I915_GEM_DOMAIN_CPU
3233 if (obj_priv->page_cpu_valid == NULL) {
3234 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3235 GFP_KERNEL);
3236 if (obj_priv->page_cpu_valid == NULL)
3237 return -ENOMEM;
3238 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3239 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3241 /* Flush the cache on any pages that are still invalid from the CPU's
3242 * perspective.
3244 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3245 i++) {
3246 if (obj_priv->page_cpu_valid[i])
3247 continue;
3249 drm_clflush_pages(obj_priv->pages + i, 1);
3251 obj_priv->page_cpu_valid[i] = 1;
3254 /* It should now be out of any other write domains, and we can update
3255 * the domain values for our changes.
3257 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3259 old_read_domains = obj->read_domains;
3260 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3262 trace_i915_gem_object_change_domain(obj,
3263 old_read_domains,
3264 obj->write_domain);
3266 return 0;
3270 * Pin an object to the GTT and evaluate the relocations landing in it.
3272 static int
3273 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3274 struct drm_file *file_priv,
3275 struct drm_i915_gem_exec_object2 *entry,
3276 struct drm_i915_gem_relocation_entry *relocs)
3278 struct drm_device *dev = obj->dev;
3279 drm_i915_private_t *dev_priv = dev->dev_private;
3280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3281 int i, ret;
3282 void __iomem *reloc_page;
3283 bool need_fence;
3285 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3286 obj_priv->tiling_mode != I915_TILING_NONE;
3288 /* Check fence reg constraints and rebind if necessary */
3289 if (need_fence &&
3290 !i915_gem_object_fence_offset_ok(obj,
3291 obj_priv->tiling_mode)) {
3292 ret = i915_gem_object_unbind(obj);
3293 if (ret)
3294 return ret;
3297 /* Choose the GTT offset for our buffer and put it there. */
3298 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3299 if (ret)
3300 return ret;
3303 * Pre-965 chips need a fence register set up in order to
3304 * properly handle blits to/from tiled surfaces.
3306 if (need_fence) {
3307 ret = i915_gem_object_get_fence_reg(obj);
3308 if (ret != 0) {
3309 i915_gem_object_unpin(obj);
3310 return ret;
3314 entry->offset = obj_priv->gtt_offset;
3316 /* Apply the relocations, using the GTT aperture to avoid cache
3317 * flushing requirements.
3319 for (i = 0; i < entry->relocation_count; i++) {
3320 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3321 struct drm_gem_object *target_obj;
3322 struct drm_i915_gem_object *target_obj_priv;
3323 uint32_t reloc_val, reloc_offset;
3324 uint32_t __iomem *reloc_entry;
3326 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3327 reloc->target_handle);
3328 if (target_obj == NULL) {
3329 i915_gem_object_unpin(obj);
3330 return -EBADF;
3332 target_obj_priv = to_intel_bo(target_obj);
3334 #if WATCH_RELOC
3335 DRM_INFO("%s: obj %p offset %08x target %d "
3336 "read %08x write %08x gtt %08x "
3337 "presumed %08x delta %08x\n",
3338 __func__,
3339 obj,
3340 (int) reloc->offset,
3341 (int) reloc->target_handle,
3342 (int) reloc->read_domains,
3343 (int) reloc->write_domain,
3344 (int) target_obj_priv->gtt_offset,
3345 (int) reloc->presumed_offset,
3346 reloc->delta);
3347 #endif
3349 /* The target buffer should have appeared before us in the
3350 * exec_object list, so it should have a GTT space bound by now.
3352 if (target_obj_priv->gtt_space == NULL) {
3353 DRM_ERROR("No GTT space found for object %d\n",
3354 reloc->target_handle);
3355 drm_gem_object_unreference(target_obj);
3356 i915_gem_object_unpin(obj);
3357 return -EINVAL;
3360 /* Validate that the target is in a valid r/w GPU domain */
3361 if (reloc->write_domain & (reloc->write_domain - 1)) {
3362 DRM_ERROR("reloc with multiple write domains: "
3363 "obj %p target %d offset %d "
3364 "read %08x write %08x",
3365 obj, reloc->target_handle,
3366 (int) reloc->offset,
3367 reloc->read_domains,
3368 reloc->write_domain);
3369 return -EINVAL;
3371 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3372 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3373 DRM_ERROR("reloc with read/write CPU domains: "
3374 "obj %p target %d offset %d "
3375 "read %08x write %08x",
3376 obj, reloc->target_handle,
3377 (int) reloc->offset,
3378 reloc->read_domains,
3379 reloc->write_domain);
3380 drm_gem_object_unreference(target_obj);
3381 i915_gem_object_unpin(obj);
3382 return -EINVAL;
3384 if (reloc->write_domain && target_obj->pending_write_domain &&
3385 reloc->write_domain != target_obj->pending_write_domain) {
3386 DRM_ERROR("Write domain conflict: "
3387 "obj %p target %d offset %d "
3388 "new %08x old %08x\n",
3389 obj, reloc->target_handle,
3390 (int) reloc->offset,
3391 reloc->write_domain,
3392 target_obj->pending_write_domain);
3393 drm_gem_object_unreference(target_obj);
3394 i915_gem_object_unpin(obj);
3395 return -EINVAL;
3398 target_obj->pending_read_domains |= reloc->read_domains;
3399 target_obj->pending_write_domain |= reloc->write_domain;
3401 /* If the relocation already has the right value in it, no
3402 * more work needs to be done.
3404 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3405 drm_gem_object_unreference(target_obj);
3406 continue;
3409 /* Check that the relocation address is valid... */
3410 if (reloc->offset > obj->size - 4) {
3411 DRM_ERROR("Relocation beyond object bounds: "
3412 "obj %p target %d offset %d size %d.\n",
3413 obj, reloc->target_handle,
3414 (int) reloc->offset, (int) obj->size);
3415 drm_gem_object_unreference(target_obj);
3416 i915_gem_object_unpin(obj);
3417 return -EINVAL;
3419 if (reloc->offset & 3) {
3420 DRM_ERROR("Relocation not 4-byte aligned: "
3421 "obj %p target %d offset %d.\n",
3422 obj, reloc->target_handle,
3423 (int) reloc->offset);
3424 drm_gem_object_unreference(target_obj);
3425 i915_gem_object_unpin(obj);
3426 return -EINVAL;
3429 /* and points to somewhere within the target object. */
3430 if (reloc->delta >= target_obj->size) {
3431 DRM_ERROR("Relocation beyond target object bounds: "
3432 "obj %p target %d delta %d size %d.\n",
3433 obj, reloc->target_handle,
3434 (int) reloc->delta, (int) target_obj->size);
3435 drm_gem_object_unreference(target_obj);
3436 i915_gem_object_unpin(obj);
3437 return -EINVAL;
3440 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3441 if (ret != 0) {
3442 drm_gem_object_unreference(target_obj);
3443 i915_gem_object_unpin(obj);
3444 return -EINVAL;
3447 /* Map the page containing the relocation we're going to
3448 * perform.
3450 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3451 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3452 (reloc_offset &
3453 ~(PAGE_SIZE - 1)));
3454 reloc_entry = (uint32_t __iomem *)(reloc_page +
3455 (reloc_offset & (PAGE_SIZE - 1)));
3456 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3458 #if WATCH_BUF
3459 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3460 obj, (unsigned int) reloc->offset,
3461 readl(reloc_entry), reloc_val);
3462 #endif
3463 writel(reloc_val, reloc_entry);
3464 io_mapping_unmap_atomic(reloc_page);
3466 /* The updated presumed offset for this entry will be
3467 * copied back out to the user.
3469 reloc->presumed_offset = target_obj_priv->gtt_offset;
3471 drm_gem_object_unreference(target_obj);
3474 #if WATCH_BUF
3475 if (0)
3476 i915_gem_dump_object(obj, 128, __func__, ~0);
3477 #endif
3478 return 0;
3481 /* Throttle our rendering by waiting until the ring has completed our requests
3482 * emitted over 20 msec ago.
3484 * Note that if we were to use the current jiffies each time around the loop,
3485 * we wouldn't escape the function with any frames outstanding if the time to
3486 * render a frame was over 20ms.
3488 * This should get us reasonable parallelism between CPU and GPU but also
3489 * relatively low latency when blocking on a particular request to finish.
3491 static int
3492 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3494 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3495 int ret = 0;
3496 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3498 mutex_lock(&dev->struct_mutex);
3499 while (!list_empty(&i915_file_priv->mm.request_list)) {
3500 struct drm_i915_gem_request *request;
3502 request = list_first_entry(&i915_file_priv->mm.request_list,
3503 struct drm_i915_gem_request,
3504 client_list);
3506 if (time_after_eq(request->emitted_jiffies, recent_enough))
3507 break;
3509 ret = i915_wait_request(dev, request->seqno, request->ring);
3510 if (ret != 0)
3511 break;
3513 mutex_unlock(&dev->struct_mutex);
3515 return ret;
3518 static int
3519 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3520 uint32_t buffer_count,
3521 struct drm_i915_gem_relocation_entry **relocs)
3523 uint32_t reloc_count = 0, reloc_index = 0, i;
3524 int ret;
3526 *relocs = NULL;
3527 for (i = 0; i < buffer_count; i++) {
3528 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3529 return -EINVAL;
3530 reloc_count += exec_list[i].relocation_count;
3533 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3534 if (*relocs == NULL) {
3535 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3536 return -ENOMEM;
3539 for (i = 0; i < buffer_count; i++) {
3540 struct drm_i915_gem_relocation_entry __user *user_relocs;
3542 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3544 ret = copy_from_user(&(*relocs)[reloc_index],
3545 user_relocs,
3546 exec_list[i].relocation_count *
3547 sizeof(**relocs));
3548 if (ret != 0) {
3549 drm_free_large(*relocs);
3550 *relocs = NULL;
3551 return -EFAULT;
3554 reloc_index += exec_list[i].relocation_count;
3557 return 0;
3560 static int
3561 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3562 uint32_t buffer_count,
3563 struct drm_i915_gem_relocation_entry *relocs)
3565 uint32_t reloc_count = 0, i;
3566 int ret = 0;
3568 if (relocs == NULL)
3569 return 0;
3571 for (i = 0; i < buffer_count; i++) {
3572 struct drm_i915_gem_relocation_entry __user *user_relocs;
3573 int unwritten;
3575 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3577 unwritten = copy_to_user(user_relocs,
3578 &relocs[reloc_count],
3579 exec_list[i].relocation_count *
3580 sizeof(*relocs));
3582 if (unwritten) {
3583 ret = -EFAULT;
3584 goto err;
3587 reloc_count += exec_list[i].relocation_count;
3590 err:
3591 drm_free_large(relocs);
3593 return ret;
3596 static int
3597 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3598 uint64_t exec_offset)
3600 uint32_t exec_start, exec_len;
3602 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3603 exec_len = (uint32_t) exec->batch_len;
3605 if ((exec_start | exec_len) & 0x7)
3606 return -EINVAL;
3608 if (!exec_start)
3609 return -EINVAL;
3611 return 0;
3614 static int
3615 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3616 struct drm_gem_object **object_list,
3617 int count)
3619 drm_i915_private_t *dev_priv = dev->dev_private;
3620 struct drm_i915_gem_object *obj_priv;
3621 DEFINE_WAIT(wait);
3622 int i, ret = 0;
3624 for (;;) {
3625 prepare_to_wait(&dev_priv->pending_flip_queue,
3626 &wait, TASK_INTERRUPTIBLE);
3627 for (i = 0; i < count; i++) {
3628 obj_priv = to_intel_bo(object_list[i]);
3629 if (atomic_read(&obj_priv->pending_flip) > 0)
3630 break;
3632 if (i == count)
3633 break;
3635 if (!signal_pending(current)) {
3636 mutex_unlock(&dev->struct_mutex);
3637 schedule();
3638 mutex_lock(&dev->struct_mutex);
3639 continue;
3641 ret = -ERESTARTSYS;
3642 break;
3644 finish_wait(&dev_priv->pending_flip_queue, &wait);
3646 return ret;
3651 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3652 struct drm_file *file_priv,
3653 struct drm_i915_gem_execbuffer2 *args,
3654 struct drm_i915_gem_exec_object2 *exec_list)
3656 drm_i915_private_t *dev_priv = dev->dev_private;
3657 struct drm_gem_object **object_list = NULL;
3658 struct drm_gem_object *batch_obj;
3659 struct drm_i915_gem_object *obj_priv;
3660 struct drm_clip_rect *cliprects = NULL;
3661 struct drm_i915_gem_relocation_entry *relocs = NULL;
3662 int ret = 0, ret2, i, pinned = 0;
3663 uint64_t exec_offset;
3664 uint32_t seqno, flush_domains, reloc_index;
3665 int pin_tries, flips;
3667 struct intel_ring_buffer *ring = NULL;
3669 #if WATCH_EXEC
3670 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3671 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3672 #endif
3673 if (args->flags & I915_EXEC_BSD) {
3674 if (!HAS_BSD(dev)) {
3675 DRM_ERROR("execbuf with wrong flag\n");
3676 return -EINVAL;
3678 ring = &dev_priv->bsd_ring;
3679 } else {
3680 ring = &dev_priv->render_ring;
3684 if (args->buffer_count < 1) {
3685 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3686 return -EINVAL;
3688 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3689 if (object_list == NULL) {
3690 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3691 args->buffer_count);
3692 ret = -ENOMEM;
3693 goto pre_mutex_err;
3696 if (args->num_cliprects != 0) {
3697 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3698 GFP_KERNEL);
3699 if (cliprects == NULL) {
3700 ret = -ENOMEM;
3701 goto pre_mutex_err;
3704 ret = copy_from_user(cliprects,
3705 (struct drm_clip_rect __user *)
3706 (uintptr_t) args->cliprects_ptr,
3707 sizeof(*cliprects) * args->num_cliprects);
3708 if (ret != 0) {
3709 DRM_ERROR("copy %d cliprects failed: %d\n",
3710 args->num_cliprects, ret);
3711 goto pre_mutex_err;
3715 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3716 &relocs);
3717 if (ret != 0)
3718 goto pre_mutex_err;
3720 mutex_lock(&dev->struct_mutex);
3722 i915_verify_inactive(dev, __FILE__, __LINE__);
3724 if (atomic_read(&dev_priv->mm.wedged)) {
3725 mutex_unlock(&dev->struct_mutex);
3726 ret = -EIO;
3727 goto pre_mutex_err;
3730 if (dev_priv->mm.suspended) {
3731 mutex_unlock(&dev->struct_mutex);
3732 ret = -EBUSY;
3733 goto pre_mutex_err;
3736 /* Look up object handles */
3737 flips = 0;
3738 for (i = 0; i < args->buffer_count; i++) {
3739 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3740 exec_list[i].handle);
3741 if (object_list[i] == NULL) {
3742 DRM_ERROR("Invalid object handle %d at index %d\n",
3743 exec_list[i].handle, i);
3744 /* prevent error path from reading uninitialized data */
3745 args->buffer_count = i + 1;
3746 ret = -EBADF;
3747 goto err;
3750 obj_priv = to_intel_bo(object_list[i]);
3751 if (obj_priv->in_execbuffer) {
3752 DRM_ERROR("Object %p appears more than once in object list\n",
3753 object_list[i]);
3754 /* prevent error path from reading uninitialized data */
3755 args->buffer_count = i + 1;
3756 ret = -EBADF;
3757 goto err;
3759 obj_priv->in_execbuffer = true;
3760 flips += atomic_read(&obj_priv->pending_flip);
3763 if (flips > 0) {
3764 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3765 args->buffer_count);
3766 if (ret)
3767 goto err;
3770 /* Pin and relocate */
3771 for (pin_tries = 0; ; pin_tries++) {
3772 ret = 0;
3773 reloc_index = 0;
3775 for (i = 0; i < args->buffer_count; i++) {
3776 object_list[i]->pending_read_domains = 0;
3777 object_list[i]->pending_write_domain = 0;
3778 ret = i915_gem_object_pin_and_relocate(object_list[i],
3779 file_priv,
3780 &exec_list[i],
3781 &relocs[reloc_index]);
3782 if (ret)
3783 break;
3784 pinned = i + 1;
3785 reloc_index += exec_list[i].relocation_count;
3787 /* success */
3788 if (ret == 0)
3789 break;
3791 /* error other than GTT full, or we've already tried again */
3792 if (ret != -ENOSPC || pin_tries >= 1) {
3793 if (ret != -ERESTARTSYS) {
3794 unsigned long long total_size = 0;
3795 int num_fences = 0;
3796 for (i = 0; i < args->buffer_count; i++) {
3797 obj_priv = to_intel_bo(object_list[i]);
3799 total_size += object_list[i]->size;
3800 num_fences +=
3801 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3802 obj_priv->tiling_mode != I915_TILING_NONE;
3804 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3805 pinned+1, args->buffer_count,
3806 total_size, num_fences,
3807 ret);
3808 DRM_ERROR("%d objects [%d pinned], "
3809 "%d object bytes [%d pinned], "
3810 "%d/%d gtt bytes\n",
3811 atomic_read(&dev->object_count),
3812 atomic_read(&dev->pin_count),
3813 atomic_read(&dev->object_memory),
3814 atomic_read(&dev->pin_memory),
3815 atomic_read(&dev->gtt_memory),
3816 dev->gtt_total);
3818 goto err;
3821 /* unpin all of our buffers */
3822 for (i = 0; i < pinned; i++)
3823 i915_gem_object_unpin(object_list[i]);
3824 pinned = 0;
3826 /* evict everyone we can from the aperture */
3827 ret = i915_gem_evict_everything(dev);
3828 if (ret && ret != -ENOSPC)
3829 goto err;
3832 /* Set the pending read domains for the batch buffer to COMMAND */
3833 batch_obj = object_list[args->buffer_count-1];
3834 if (batch_obj->pending_write_domain) {
3835 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3836 ret = -EINVAL;
3837 goto err;
3839 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3841 /* Sanity check the batch buffer, prior to moving objects */
3842 exec_offset = exec_list[args->buffer_count - 1].offset;
3843 ret = i915_gem_check_execbuffer (args, exec_offset);
3844 if (ret != 0) {
3845 DRM_ERROR("execbuf with invalid offset/length\n");
3846 goto err;
3849 i915_verify_inactive(dev, __FILE__, __LINE__);
3851 /* Zero the global flush/invalidate flags. These
3852 * will be modified as new domains are computed
3853 * for each object
3855 dev->invalidate_domains = 0;
3856 dev->flush_domains = 0;
3858 for (i = 0; i < args->buffer_count; i++) {
3859 struct drm_gem_object *obj = object_list[i];
3861 /* Compute new gpu domains and update invalidate/flush */
3862 i915_gem_object_set_to_gpu_domain(obj);
3865 i915_verify_inactive(dev, __FILE__, __LINE__);
3867 if (dev->invalidate_domains | dev->flush_domains) {
3868 #if WATCH_EXEC
3869 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3870 __func__,
3871 dev->invalidate_domains,
3872 dev->flush_domains);
3873 #endif
3874 i915_gem_flush(dev,
3875 dev->invalidate_domains,
3876 dev->flush_domains);
3877 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3878 (void)i915_add_request(dev, file_priv,
3879 dev->flush_domains,
3880 &dev_priv->render_ring);
3882 if (HAS_BSD(dev))
3883 (void)i915_add_request(dev, file_priv,
3884 dev->flush_domains,
3885 &dev_priv->bsd_ring);
3889 for (i = 0; i < args->buffer_count; i++) {
3890 struct drm_gem_object *obj = object_list[i];
3891 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3892 uint32_t old_write_domain = obj->write_domain;
3894 obj->write_domain = obj->pending_write_domain;
3895 if (obj->write_domain)
3896 list_move_tail(&obj_priv->gpu_write_list,
3897 &dev_priv->mm.gpu_write_list);
3898 else
3899 list_del_init(&obj_priv->gpu_write_list);
3901 trace_i915_gem_object_change_domain(obj,
3902 obj->read_domains,
3903 old_write_domain);
3906 i915_verify_inactive(dev, __FILE__, __LINE__);
3908 #if WATCH_COHERENCY
3909 for (i = 0; i < args->buffer_count; i++) {
3910 i915_gem_object_check_coherency(object_list[i],
3911 exec_list[i].handle);
3913 #endif
3915 #if WATCH_EXEC
3916 i915_gem_dump_object(batch_obj,
3917 args->batch_len,
3918 __func__,
3919 ~0);
3920 #endif
3922 /* Exec the batchbuffer */
3923 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3924 cliprects, exec_offset);
3925 if (ret) {
3926 DRM_ERROR("dispatch failed %d\n", ret);
3927 goto err;
3931 * Ensure that the commands in the batch buffer are
3932 * finished before the interrupt fires
3934 flush_domains = i915_retire_commands(dev, ring);
3936 i915_verify_inactive(dev, __FILE__, __LINE__);
3939 * Get a seqno representing the execution of the current buffer,
3940 * which we can wait on. We would like to mitigate these interrupts,
3941 * likely by only creating seqnos occasionally (so that we have
3942 * *some* interrupts representing completion of buffers that we can
3943 * wait on when trying to clear up gtt space).
3945 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3946 BUG_ON(seqno == 0);
3947 for (i = 0; i < args->buffer_count; i++) {
3948 struct drm_gem_object *obj = object_list[i];
3949 obj_priv = to_intel_bo(obj);
3951 i915_gem_object_move_to_active(obj, seqno, ring);
3952 #if WATCH_LRU
3953 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3954 #endif
3956 #if WATCH_LRU
3957 i915_dump_lru(dev, __func__);
3958 #endif
3960 i915_verify_inactive(dev, __FILE__, __LINE__);
3962 err:
3963 for (i = 0; i < pinned; i++)
3964 i915_gem_object_unpin(object_list[i]);
3966 for (i = 0; i < args->buffer_count; i++) {
3967 if (object_list[i]) {
3968 obj_priv = to_intel_bo(object_list[i]);
3969 obj_priv->in_execbuffer = false;
3971 drm_gem_object_unreference(object_list[i]);
3974 mutex_unlock(&dev->struct_mutex);
3976 pre_mutex_err:
3977 /* Copy the updated relocations out regardless of current error
3978 * state. Failure to update the relocs would mean that the next
3979 * time userland calls execbuf, it would do so with presumed offset
3980 * state that didn't match the actual object state.
3982 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3983 relocs);
3984 if (ret2 != 0) {
3985 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3987 if (ret == 0)
3988 ret = ret2;
3991 drm_free_large(object_list);
3992 kfree(cliprects);
3994 return ret;
3998 * Legacy execbuffer just creates an exec2 list from the original exec object
3999 * list array and passes it to the real function.
4002 i915_gem_execbuffer(struct drm_device *dev, void *data,
4003 struct drm_file *file_priv)
4005 struct drm_i915_gem_execbuffer *args = data;
4006 struct drm_i915_gem_execbuffer2 exec2;
4007 struct drm_i915_gem_exec_object *exec_list = NULL;
4008 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4009 int ret, i;
4011 #if WATCH_EXEC
4012 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4013 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4014 #endif
4016 if (args->buffer_count < 1) {
4017 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4018 return -EINVAL;
4021 /* Copy in the exec list from userland */
4022 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4023 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4024 if (exec_list == NULL || exec2_list == NULL) {
4025 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4026 args->buffer_count);
4027 drm_free_large(exec_list);
4028 drm_free_large(exec2_list);
4029 return -ENOMEM;
4031 ret = copy_from_user(exec_list,
4032 (struct drm_i915_relocation_entry __user *)
4033 (uintptr_t) args->buffers_ptr,
4034 sizeof(*exec_list) * args->buffer_count);
4035 if (ret != 0) {
4036 DRM_ERROR("copy %d exec entries failed %d\n",
4037 args->buffer_count, ret);
4038 drm_free_large(exec_list);
4039 drm_free_large(exec2_list);
4040 return -EFAULT;
4043 for (i = 0; i < args->buffer_count; i++) {
4044 exec2_list[i].handle = exec_list[i].handle;
4045 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4046 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4047 exec2_list[i].alignment = exec_list[i].alignment;
4048 exec2_list[i].offset = exec_list[i].offset;
4049 if (!IS_I965G(dev))
4050 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4051 else
4052 exec2_list[i].flags = 0;
4055 exec2.buffers_ptr = args->buffers_ptr;
4056 exec2.buffer_count = args->buffer_count;
4057 exec2.batch_start_offset = args->batch_start_offset;
4058 exec2.batch_len = args->batch_len;
4059 exec2.DR1 = args->DR1;
4060 exec2.DR4 = args->DR4;
4061 exec2.num_cliprects = args->num_cliprects;
4062 exec2.cliprects_ptr = args->cliprects_ptr;
4063 exec2.flags = I915_EXEC_RENDER;
4065 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4066 if (!ret) {
4067 /* Copy the new buffer offsets back to the user's exec list. */
4068 for (i = 0; i < args->buffer_count; i++)
4069 exec_list[i].offset = exec2_list[i].offset;
4070 /* ... and back out to userspace */
4071 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4072 (uintptr_t) args->buffers_ptr,
4073 exec_list,
4074 sizeof(*exec_list) * args->buffer_count);
4075 if (ret) {
4076 ret = -EFAULT;
4077 DRM_ERROR("failed to copy %d exec entries "
4078 "back to user (%d)\n",
4079 args->buffer_count, ret);
4083 drm_free_large(exec_list);
4084 drm_free_large(exec2_list);
4085 return ret;
4089 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4090 struct drm_file *file_priv)
4092 struct drm_i915_gem_execbuffer2 *args = data;
4093 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4094 int ret;
4096 #if WATCH_EXEC
4097 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4098 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4099 #endif
4101 if (args->buffer_count < 1) {
4102 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4103 return -EINVAL;
4106 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4107 if (exec2_list == NULL) {
4108 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4109 args->buffer_count);
4110 return -ENOMEM;
4112 ret = copy_from_user(exec2_list,
4113 (struct drm_i915_relocation_entry __user *)
4114 (uintptr_t) args->buffers_ptr,
4115 sizeof(*exec2_list) * args->buffer_count);
4116 if (ret != 0) {
4117 DRM_ERROR("copy %d exec entries failed %d\n",
4118 args->buffer_count, ret);
4119 drm_free_large(exec2_list);
4120 return -EFAULT;
4123 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4124 if (!ret) {
4125 /* Copy the new buffer offsets back to the user's exec list. */
4126 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4127 (uintptr_t) args->buffers_ptr,
4128 exec2_list,
4129 sizeof(*exec2_list) * args->buffer_count);
4130 if (ret) {
4131 ret = -EFAULT;
4132 DRM_ERROR("failed to copy %d exec entries "
4133 "back to user (%d)\n",
4134 args->buffer_count, ret);
4138 drm_free_large(exec2_list);
4139 return ret;
4143 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4145 struct drm_device *dev = obj->dev;
4146 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4147 int ret;
4149 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4151 i915_verify_inactive(dev, __FILE__, __LINE__);
4153 if (obj_priv->gtt_space != NULL) {
4154 if (alignment == 0)
4155 alignment = i915_gem_get_gtt_alignment(obj);
4156 if (obj_priv->gtt_offset & (alignment - 1)) {
4157 ret = i915_gem_object_unbind(obj);
4158 if (ret)
4159 return ret;
4163 if (obj_priv->gtt_space == NULL) {
4164 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4165 if (ret)
4166 return ret;
4169 obj_priv->pin_count++;
4171 /* If the object is not active and not pending a flush,
4172 * remove it from the inactive list
4174 if (obj_priv->pin_count == 1) {
4175 atomic_inc(&dev->pin_count);
4176 atomic_add(obj->size, &dev->pin_memory);
4177 if (!obj_priv->active &&
4178 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4179 !list_empty(&obj_priv->list))
4180 list_del_init(&obj_priv->list);
4182 i915_verify_inactive(dev, __FILE__, __LINE__);
4184 return 0;
4187 void
4188 i915_gem_object_unpin(struct drm_gem_object *obj)
4190 struct drm_device *dev = obj->dev;
4191 drm_i915_private_t *dev_priv = dev->dev_private;
4192 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4194 i915_verify_inactive(dev, __FILE__, __LINE__);
4195 obj_priv->pin_count--;
4196 BUG_ON(obj_priv->pin_count < 0);
4197 BUG_ON(obj_priv->gtt_space == NULL);
4199 /* If the object is no longer pinned, and is
4200 * neither active nor being flushed, then stick it on
4201 * the inactive list
4203 if (obj_priv->pin_count == 0) {
4204 if (!obj_priv->active &&
4205 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4206 list_move_tail(&obj_priv->list,
4207 &dev_priv->mm.inactive_list);
4208 atomic_dec(&dev->pin_count);
4209 atomic_sub(obj->size, &dev->pin_memory);
4211 i915_verify_inactive(dev, __FILE__, __LINE__);
4215 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4216 struct drm_file *file_priv)
4218 struct drm_i915_gem_pin *args = data;
4219 struct drm_gem_object *obj;
4220 struct drm_i915_gem_object *obj_priv;
4221 int ret;
4223 mutex_lock(&dev->struct_mutex);
4225 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4226 if (obj == NULL) {
4227 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4228 args->handle);
4229 mutex_unlock(&dev->struct_mutex);
4230 return -EBADF;
4232 obj_priv = to_intel_bo(obj);
4234 if (obj_priv->madv != I915_MADV_WILLNEED) {
4235 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4236 drm_gem_object_unreference(obj);
4237 mutex_unlock(&dev->struct_mutex);
4238 return -EINVAL;
4241 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4242 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4243 args->handle);
4244 drm_gem_object_unreference(obj);
4245 mutex_unlock(&dev->struct_mutex);
4246 return -EINVAL;
4249 obj_priv->user_pin_count++;
4250 obj_priv->pin_filp = file_priv;
4251 if (obj_priv->user_pin_count == 1) {
4252 ret = i915_gem_object_pin(obj, args->alignment);
4253 if (ret != 0) {
4254 drm_gem_object_unreference(obj);
4255 mutex_unlock(&dev->struct_mutex);
4256 return ret;
4260 /* XXX - flush the CPU caches for pinned objects
4261 * as the X server doesn't manage domains yet
4263 i915_gem_object_flush_cpu_write_domain(obj);
4264 args->offset = obj_priv->gtt_offset;
4265 drm_gem_object_unreference(obj);
4266 mutex_unlock(&dev->struct_mutex);
4268 return 0;
4272 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4273 struct drm_file *file_priv)
4275 struct drm_i915_gem_pin *args = data;
4276 struct drm_gem_object *obj;
4277 struct drm_i915_gem_object *obj_priv;
4279 mutex_lock(&dev->struct_mutex);
4281 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4282 if (obj == NULL) {
4283 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4284 args->handle);
4285 mutex_unlock(&dev->struct_mutex);
4286 return -EBADF;
4289 obj_priv = to_intel_bo(obj);
4290 if (obj_priv->pin_filp != file_priv) {
4291 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4292 args->handle);
4293 drm_gem_object_unreference(obj);
4294 mutex_unlock(&dev->struct_mutex);
4295 return -EINVAL;
4297 obj_priv->user_pin_count--;
4298 if (obj_priv->user_pin_count == 0) {
4299 obj_priv->pin_filp = NULL;
4300 i915_gem_object_unpin(obj);
4303 drm_gem_object_unreference(obj);
4304 mutex_unlock(&dev->struct_mutex);
4305 return 0;
4309 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4310 struct drm_file *file_priv)
4312 struct drm_i915_gem_busy *args = data;
4313 struct drm_gem_object *obj;
4314 struct drm_i915_gem_object *obj_priv;
4315 drm_i915_private_t *dev_priv = dev->dev_private;
4317 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4318 if (obj == NULL) {
4319 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4320 args->handle);
4321 return -EBADF;
4324 mutex_lock(&dev->struct_mutex);
4325 /* Update the active list for the hardware's current position.
4326 * Otherwise this only updates on a delayed timer or when irqs are
4327 * actually unmasked, and our working set ends up being larger than
4328 * required.
4330 i915_gem_retire_requests(dev, &dev_priv->render_ring);
4332 if (HAS_BSD(dev))
4333 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4335 obj_priv = to_intel_bo(obj);
4336 /* Don't count being on the flushing list against the object being
4337 * done. Otherwise, a buffer left on the flushing list but not getting
4338 * flushed (because nobody's flushing that domain) won't ever return
4339 * unbusy and get reused by libdrm's bo cache. The other expected
4340 * consumer of this interface, OpenGL's occlusion queries, also specs
4341 * that the objects get unbusy "eventually" without any interference.
4343 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4345 drm_gem_object_unreference(obj);
4346 mutex_unlock(&dev->struct_mutex);
4347 return 0;
4351 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4352 struct drm_file *file_priv)
4354 return i915_gem_ring_throttle(dev, file_priv);
4358 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file_priv)
4361 struct drm_i915_gem_madvise *args = data;
4362 struct drm_gem_object *obj;
4363 struct drm_i915_gem_object *obj_priv;
4365 switch (args->madv) {
4366 case I915_MADV_DONTNEED:
4367 case I915_MADV_WILLNEED:
4368 break;
4369 default:
4370 return -EINVAL;
4373 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4374 if (obj == NULL) {
4375 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4376 args->handle);
4377 return -EBADF;
4380 mutex_lock(&dev->struct_mutex);
4381 obj_priv = to_intel_bo(obj);
4383 if (obj_priv->pin_count) {
4384 drm_gem_object_unreference(obj);
4385 mutex_unlock(&dev->struct_mutex);
4387 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4388 return -EINVAL;
4391 if (obj_priv->madv != __I915_MADV_PURGED)
4392 obj_priv->madv = args->madv;
4394 /* if the object is no longer bound, discard its backing storage */
4395 if (i915_gem_object_is_purgeable(obj_priv) &&
4396 obj_priv->gtt_space == NULL)
4397 i915_gem_object_truncate(obj);
4399 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4401 drm_gem_object_unreference(obj);
4402 mutex_unlock(&dev->struct_mutex);
4404 return 0;
4407 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4408 size_t size)
4410 struct drm_i915_gem_object *obj;
4412 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4413 if (obj == NULL)
4414 return NULL;
4416 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4417 kfree(obj);
4418 return NULL;
4421 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4424 obj->agp_type = AGP_USER_MEMORY;
4425 obj->base.driver_private = NULL;
4426 obj->fence_reg = I915_FENCE_REG_NONE;
4427 INIT_LIST_HEAD(&obj->list);
4428 INIT_LIST_HEAD(&obj->gpu_write_list);
4429 obj->madv = I915_MADV_WILLNEED;
4431 trace_i915_gem_object_create(&obj->base);
4433 return &obj->base;
4436 int i915_gem_init_object(struct drm_gem_object *obj)
4438 BUG();
4440 return 0;
4443 void i915_gem_free_object(struct drm_gem_object *obj)
4445 struct drm_device *dev = obj->dev;
4446 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4448 trace_i915_gem_object_destroy(obj);
4450 while (obj_priv->pin_count > 0)
4451 i915_gem_object_unpin(obj);
4453 if (obj_priv->phys_obj)
4454 i915_gem_detach_phys_object(dev, obj);
4456 i915_gem_object_unbind(obj);
4458 if (obj_priv->mmap_offset)
4459 i915_gem_free_mmap_offset(obj);
4461 drm_gem_object_release(obj);
4463 kfree(obj_priv->page_cpu_valid);
4464 kfree(obj_priv->bit_17);
4465 kfree(obj_priv);
4468 /** Unbinds all inactive objects. */
4469 static int
4470 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4472 drm_i915_private_t *dev_priv = dev->dev_private;
4474 while (!list_empty(&dev_priv->mm.inactive_list)) {
4475 struct drm_gem_object *obj;
4476 int ret;
4478 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4479 struct drm_i915_gem_object,
4480 list)->base;
4482 ret = i915_gem_object_unbind(obj);
4483 if (ret != 0) {
4484 DRM_ERROR("Error unbinding object: %d\n", ret);
4485 return ret;
4489 return 0;
4493 i915_gem_idle(struct drm_device *dev)
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4496 int ret;
4498 mutex_lock(&dev->struct_mutex);
4500 if (dev_priv->mm.suspended ||
4501 (dev_priv->render_ring.gem_object == NULL) ||
4502 (HAS_BSD(dev) &&
4503 dev_priv->bsd_ring.gem_object == NULL)) {
4504 mutex_unlock(&dev->struct_mutex);
4505 return 0;
4508 ret = i915_gpu_idle(dev);
4509 if (ret) {
4510 mutex_unlock(&dev->struct_mutex);
4511 return ret;
4514 /* Under UMS, be paranoid and evict. */
4515 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4516 ret = i915_gem_evict_from_inactive_list(dev);
4517 if (ret) {
4518 mutex_unlock(&dev->struct_mutex);
4519 return ret;
4523 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4524 * We need to replace this with a semaphore, or something.
4525 * And not confound mm.suspended!
4527 dev_priv->mm.suspended = 1;
4528 del_timer(&dev_priv->hangcheck_timer);
4530 i915_kernel_lost_context(dev);
4531 i915_gem_cleanup_ringbuffer(dev);
4533 mutex_unlock(&dev->struct_mutex);
4535 /* Cancel the retire work handler, which should be idle now. */
4536 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4538 return 0;
4542 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4543 * over cache flushing.
4545 static int
4546 i915_gem_init_pipe_control(struct drm_device *dev)
4548 drm_i915_private_t *dev_priv = dev->dev_private;
4549 struct drm_gem_object *obj;
4550 struct drm_i915_gem_object *obj_priv;
4551 int ret;
4553 obj = i915_gem_alloc_object(dev, 4096);
4554 if (obj == NULL) {
4555 DRM_ERROR("Failed to allocate seqno page\n");
4556 ret = -ENOMEM;
4557 goto err;
4559 obj_priv = to_intel_bo(obj);
4560 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4562 ret = i915_gem_object_pin(obj, 4096);
4563 if (ret)
4564 goto err_unref;
4566 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4567 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4568 if (dev_priv->seqno_page == NULL)
4569 goto err_unpin;
4571 dev_priv->seqno_obj = obj;
4572 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4574 return 0;
4576 err_unpin:
4577 i915_gem_object_unpin(obj);
4578 err_unref:
4579 drm_gem_object_unreference(obj);
4580 err:
4581 return ret;
4585 static void
4586 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4588 drm_i915_private_t *dev_priv = dev->dev_private;
4589 struct drm_gem_object *obj;
4590 struct drm_i915_gem_object *obj_priv;
4592 obj = dev_priv->seqno_obj;
4593 obj_priv = to_intel_bo(obj);
4594 kunmap(obj_priv->pages[0]);
4595 i915_gem_object_unpin(obj);
4596 drm_gem_object_unreference(obj);
4597 dev_priv->seqno_obj = NULL;
4599 dev_priv->seqno_page = NULL;
4603 i915_gem_init_ringbuffer(struct drm_device *dev)
4605 drm_i915_private_t *dev_priv = dev->dev_private;
4606 int ret;
4608 dev_priv->render_ring = render_ring;
4610 if (!I915_NEED_GFX_HWS(dev)) {
4611 dev_priv->render_ring.status_page.page_addr
4612 = dev_priv->status_page_dmah->vaddr;
4613 memset(dev_priv->render_ring.status_page.page_addr,
4614 0, PAGE_SIZE);
4617 if (HAS_PIPE_CONTROL(dev)) {
4618 ret = i915_gem_init_pipe_control(dev);
4619 if (ret)
4620 return ret;
4623 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4624 if (ret)
4625 goto cleanup_pipe_control;
4627 if (HAS_BSD(dev)) {
4628 dev_priv->bsd_ring = bsd_ring;
4629 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4630 if (ret)
4631 goto cleanup_render_ring;
4634 return 0;
4636 cleanup_render_ring:
4637 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4638 cleanup_pipe_control:
4639 if (HAS_PIPE_CONTROL(dev))
4640 i915_gem_cleanup_pipe_control(dev);
4641 return ret;
4644 void
4645 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4647 drm_i915_private_t *dev_priv = dev->dev_private;
4649 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4650 if (HAS_BSD(dev))
4651 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4652 if (HAS_PIPE_CONTROL(dev))
4653 i915_gem_cleanup_pipe_control(dev);
4657 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4658 struct drm_file *file_priv)
4660 drm_i915_private_t *dev_priv = dev->dev_private;
4661 int ret;
4663 if (drm_core_check_feature(dev, DRIVER_MODESET))
4664 return 0;
4666 if (atomic_read(&dev_priv->mm.wedged)) {
4667 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4668 atomic_set(&dev_priv->mm.wedged, 0);
4671 mutex_lock(&dev->struct_mutex);
4672 dev_priv->mm.suspended = 0;
4674 ret = i915_gem_init_ringbuffer(dev);
4675 if (ret != 0) {
4676 mutex_unlock(&dev->struct_mutex);
4677 return ret;
4680 spin_lock(&dev_priv->mm.active_list_lock);
4681 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4682 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4683 spin_unlock(&dev_priv->mm.active_list_lock);
4685 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4686 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4687 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4688 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4689 mutex_unlock(&dev->struct_mutex);
4691 drm_irq_install(dev);
4693 return 0;
4697 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4698 struct drm_file *file_priv)
4700 if (drm_core_check_feature(dev, DRIVER_MODESET))
4701 return 0;
4703 drm_irq_uninstall(dev);
4704 return i915_gem_idle(dev);
4707 void
4708 i915_gem_lastclose(struct drm_device *dev)
4710 int ret;
4712 if (drm_core_check_feature(dev, DRIVER_MODESET))
4713 return;
4715 ret = i915_gem_idle(dev);
4716 if (ret)
4717 DRM_ERROR("failed to idle hardware: %d\n", ret);
4720 void
4721 i915_gem_load(struct drm_device *dev)
4723 int i;
4724 drm_i915_private_t *dev_priv = dev->dev_private;
4726 spin_lock_init(&dev_priv->mm.active_list_lock);
4727 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4728 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4729 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4730 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4731 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4732 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4733 if (HAS_BSD(dev)) {
4734 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4735 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4737 for (i = 0; i < 16; i++)
4738 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4739 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4740 i915_gem_retire_work_handler);
4741 spin_lock(&shrink_list_lock);
4742 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4743 spin_unlock(&shrink_list_lock);
4745 /* Old X drivers will take 0-2 for front, back, depth buffers */
4746 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4747 dev_priv->fence_reg_start = 3;
4749 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4750 dev_priv->num_fence_regs = 16;
4751 else
4752 dev_priv->num_fence_regs = 8;
4754 /* Initialize fence registers to zero */
4755 if (IS_I965G(dev)) {
4756 for (i = 0; i < 16; i++)
4757 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4758 } else {
4759 for (i = 0; i < 8; i++)
4760 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4761 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4762 for (i = 0; i < 8; i++)
4763 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4765 i915_gem_detect_bit_6_swizzle(dev);
4766 init_waitqueue_head(&dev_priv->pending_flip_queue);
4770 * Create a physically contiguous memory object for this object
4771 * e.g. for cursor + overlay regs
4773 int i915_gem_init_phys_object(struct drm_device *dev,
4774 int id, int size)
4776 drm_i915_private_t *dev_priv = dev->dev_private;
4777 struct drm_i915_gem_phys_object *phys_obj;
4778 int ret;
4780 if (dev_priv->mm.phys_objs[id - 1] || !size)
4781 return 0;
4783 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4784 if (!phys_obj)
4785 return -ENOMEM;
4787 phys_obj->id = id;
4789 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4790 if (!phys_obj->handle) {
4791 ret = -ENOMEM;
4792 goto kfree_obj;
4794 #ifdef CONFIG_X86
4795 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4796 #endif
4798 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4800 return 0;
4801 kfree_obj:
4802 kfree(phys_obj);
4803 return ret;
4806 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4808 drm_i915_private_t *dev_priv = dev->dev_private;
4809 struct drm_i915_gem_phys_object *phys_obj;
4811 if (!dev_priv->mm.phys_objs[id - 1])
4812 return;
4814 phys_obj = dev_priv->mm.phys_objs[id - 1];
4815 if (phys_obj->cur_obj) {
4816 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4819 #ifdef CONFIG_X86
4820 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4821 #endif
4822 drm_pci_free(dev, phys_obj->handle);
4823 kfree(phys_obj);
4824 dev_priv->mm.phys_objs[id - 1] = NULL;
4827 void i915_gem_free_all_phys_object(struct drm_device *dev)
4829 int i;
4831 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4832 i915_gem_free_phys_object(dev, i);
4835 void i915_gem_detach_phys_object(struct drm_device *dev,
4836 struct drm_gem_object *obj)
4838 struct drm_i915_gem_object *obj_priv;
4839 int i;
4840 int ret;
4841 int page_count;
4843 obj_priv = to_intel_bo(obj);
4844 if (!obj_priv->phys_obj)
4845 return;
4847 ret = i915_gem_object_get_pages(obj, 0);
4848 if (ret)
4849 goto out;
4851 page_count = obj->size / PAGE_SIZE;
4853 for (i = 0; i < page_count; i++) {
4854 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4855 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4857 memcpy(dst, src, PAGE_SIZE);
4858 kunmap_atomic(dst, KM_USER0);
4860 drm_clflush_pages(obj_priv->pages, page_count);
4861 drm_agp_chipset_flush(dev);
4863 i915_gem_object_put_pages(obj);
4864 out:
4865 obj_priv->phys_obj->cur_obj = NULL;
4866 obj_priv->phys_obj = NULL;
4870 i915_gem_attach_phys_object(struct drm_device *dev,
4871 struct drm_gem_object *obj, int id)
4873 drm_i915_private_t *dev_priv = dev->dev_private;
4874 struct drm_i915_gem_object *obj_priv;
4875 int ret = 0;
4876 int page_count;
4877 int i;
4879 if (id > I915_MAX_PHYS_OBJECT)
4880 return -EINVAL;
4882 obj_priv = to_intel_bo(obj);
4884 if (obj_priv->phys_obj) {
4885 if (obj_priv->phys_obj->id == id)
4886 return 0;
4887 i915_gem_detach_phys_object(dev, obj);
4891 /* create a new object */
4892 if (!dev_priv->mm.phys_objs[id - 1]) {
4893 ret = i915_gem_init_phys_object(dev, id,
4894 obj->size);
4895 if (ret) {
4896 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4897 goto out;
4901 /* bind to the object */
4902 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4903 obj_priv->phys_obj->cur_obj = obj;
4905 ret = i915_gem_object_get_pages(obj, 0);
4906 if (ret) {
4907 DRM_ERROR("failed to get page list\n");
4908 goto out;
4911 page_count = obj->size / PAGE_SIZE;
4913 for (i = 0; i < page_count; i++) {
4914 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4915 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4917 memcpy(dst, src, PAGE_SIZE);
4918 kunmap_atomic(src, KM_USER0);
4921 i915_gem_object_put_pages(obj);
4923 return 0;
4924 out:
4925 return ret;
4928 static int
4929 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4930 struct drm_i915_gem_pwrite *args,
4931 struct drm_file *file_priv)
4933 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4934 void *obj_addr;
4935 int ret;
4936 char __user *user_data;
4938 user_data = (char __user *) (uintptr_t) args->data_ptr;
4939 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4941 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4942 ret = copy_from_user(obj_addr, user_data, args->size);
4943 if (ret)
4944 return -EFAULT;
4946 drm_agp_chipset_flush(dev);
4947 return 0;
4950 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4952 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4954 /* Clean up our request list when the client is going away, so that
4955 * later retire_requests won't dereference our soon-to-be-gone
4956 * file_priv.
4958 mutex_lock(&dev->struct_mutex);
4959 while (!list_empty(&i915_file_priv->mm.request_list))
4960 list_del_init(i915_file_priv->mm.request_list.next);
4961 mutex_unlock(&dev->struct_mutex);
4964 static int
4965 i915_gpu_is_active(struct drm_device *dev)
4967 drm_i915_private_t *dev_priv = dev->dev_private;
4968 int lists_empty;
4970 spin_lock(&dev_priv->mm.active_list_lock);
4971 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4972 list_empty(&dev_priv->render_ring.active_list);
4973 if (HAS_BSD(dev))
4974 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4975 spin_unlock(&dev_priv->mm.active_list_lock);
4977 return !lists_empty;
4980 static int
4981 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4983 drm_i915_private_t *dev_priv, *next_dev;
4984 struct drm_i915_gem_object *obj_priv, *next_obj;
4985 int cnt = 0;
4986 int would_deadlock = 1;
4988 /* "fast-path" to count number of available objects */
4989 if (nr_to_scan == 0) {
4990 spin_lock(&shrink_list_lock);
4991 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4992 struct drm_device *dev = dev_priv->dev;
4994 if (mutex_trylock(&dev->struct_mutex)) {
4995 list_for_each_entry(obj_priv,
4996 &dev_priv->mm.inactive_list,
4997 list)
4998 cnt++;
4999 mutex_unlock(&dev->struct_mutex);
5002 spin_unlock(&shrink_list_lock);
5004 return (cnt / 100) * sysctl_vfs_cache_pressure;
5007 spin_lock(&shrink_list_lock);
5009 rescan:
5010 /* first scan for clean buffers */
5011 list_for_each_entry_safe(dev_priv, next_dev,
5012 &shrink_list, mm.shrink_list) {
5013 struct drm_device *dev = dev_priv->dev;
5015 if (! mutex_trylock(&dev->struct_mutex))
5016 continue;
5018 spin_unlock(&shrink_list_lock);
5019 i915_gem_retire_requests(dev, &dev_priv->render_ring);
5021 if (HAS_BSD(dev))
5022 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5024 list_for_each_entry_safe(obj_priv, next_obj,
5025 &dev_priv->mm.inactive_list,
5026 list) {
5027 if (i915_gem_object_is_purgeable(obj_priv)) {
5028 i915_gem_object_unbind(&obj_priv->base);
5029 if (--nr_to_scan <= 0)
5030 break;
5034 spin_lock(&shrink_list_lock);
5035 mutex_unlock(&dev->struct_mutex);
5037 would_deadlock = 0;
5039 if (nr_to_scan <= 0)
5040 break;
5043 /* second pass, evict/count anything still on the inactive list */
5044 list_for_each_entry_safe(dev_priv, next_dev,
5045 &shrink_list, mm.shrink_list) {
5046 struct drm_device *dev = dev_priv->dev;
5048 if (! mutex_trylock(&dev->struct_mutex))
5049 continue;
5051 spin_unlock(&shrink_list_lock);
5053 list_for_each_entry_safe(obj_priv, next_obj,
5054 &dev_priv->mm.inactive_list,
5055 list) {
5056 if (nr_to_scan > 0) {
5057 i915_gem_object_unbind(&obj_priv->base);
5058 nr_to_scan--;
5059 } else
5060 cnt++;
5063 spin_lock(&shrink_list_lock);
5064 mutex_unlock(&dev->struct_mutex);
5066 would_deadlock = 0;
5069 if (nr_to_scan) {
5070 int active = 0;
5073 * We are desperate for pages, so as a last resort, wait
5074 * for the GPU to finish and discard whatever we can.
5075 * This has a dramatic impact to reduce the number of
5076 * OOM-killer events whilst running the GPU aggressively.
5078 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5079 struct drm_device *dev = dev_priv->dev;
5081 if (!mutex_trylock(&dev->struct_mutex))
5082 continue;
5084 spin_unlock(&shrink_list_lock);
5086 if (i915_gpu_is_active(dev)) {
5087 i915_gpu_idle(dev);
5088 active++;
5091 spin_lock(&shrink_list_lock);
5092 mutex_unlock(&dev->struct_mutex);
5095 if (active)
5096 goto rescan;
5099 spin_unlock(&shrink_list_lock);
5101 if (would_deadlock)
5102 return -1;
5103 else if (cnt > 0)
5104 return (cnt / 100) * sysctl_vfs_cache_pressure;
5105 else
5106 return 0;
5109 static struct shrinker shrinker = {
5110 .shrink = i915_gem_shrink,
5111 .seeks = DEFAULT_SEEKS,
5114 __init void
5115 i915_gem_shrinker_init(void)
5117 register_shrinker(&shrinker);
5120 __exit void
5121 i915_gem_shrinker_exit(void)
5123 unregister_shrinker(&shrinker);