MAINTAINERS: update STABLE BRANCH info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / selinux / ss / services.c
blobb3efae204ac7cd40c68fd3c85d066997f74fcbc2
1 /*
2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Copyright (C) 2008, 2009 NEC Corporation
30 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
31 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
32 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
33 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License as published by
36 * the Free Software Foundation, version 2.
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/sched.h>
46 #include <linux/audit.h>
47 #include <linux/mutex.h>
48 #include <linux/selinux.h>
49 #include <net/netlabel.h>
51 #include "flask.h"
52 #include "avc.h"
53 #include "avc_ss.h"
54 #include "security.h"
55 #include "context.h"
56 #include "policydb.h"
57 #include "sidtab.h"
58 #include "services.h"
59 #include "conditional.h"
60 #include "mls.h"
61 #include "objsec.h"
62 #include "netlabel.h"
63 #include "xfrm.h"
64 #include "ebitmap.h"
65 #include "audit.h"
67 extern void selnl_notify_policyload(u32 seqno);
69 int selinux_policycap_netpeer;
70 int selinux_policycap_openperm;
72 static DEFINE_RWLOCK(policy_rwlock);
74 static struct sidtab sidtab;
75 struct policydb policydb;
76 int ss_initialized;
79 * The largest sequence number that has been used when
80 * providing an access decision to the access vector cache.
81 * The sequence number only changes when a policy change
82 * occurs.
84 static u32 latest_granting;
86 /* Forward declaration. */
87 static int context_struct_to_string(struct context *context, char **scontext,
88 u32 *scontext_len);
90 static int context_struct_compute_av(struct context *scontext,
91 struct context *tcontext,
92 u16 tclass,
93 u32 requested,
94 struct av_decision *avd);
96 struct selinux_mapping {
97 u16 value; /* policy value */
98 unsigned num_perms;
99 u32 perms[sizeof(u32) * 8];
102 static struct selinux_mapping *current_mapping;
103 static u16 current_mapping_size;
105 static int selinux_set_mapping(struct policydb *pol,
106 struct security_class_mapping *map,
107 struct selinux_mapping **out_map_p,
108 u16 *out_map_size)
110 struct selinux_mapping *out_map = NULL;
111 size_t size = sizeof(struct selinux_mapping);
112 u16 i, j;
113 unsigned k;
114 bool print_unknown_handle = false;
116 /* Find number of classes in the input mapping */
117 if (!map)
118 return -EINVAL;
119 i = 0;
120 while (map[i].name)
121 i++;
123 /* Allocate space for the class records, plus one for class zero */
124 out_map = kcalloc(++i, size, GFP_ATOMIC);
125 if (!out_map)
126 return -ENOMEM;
128 /* Store the raw class and permission values */
129 j = 0;
130 while (map[j].name) {
131 struct security_class_mapping *p_in = map + (j++);
132 struct selinux_mapping *p_out = out_map + j;
134 /* An empty class string skips ahead */
135 if (!strcmp(p_in->name, "")) {
136 p_out->num_perms = 0;
137 continue;
140 p_out->value = string_to_security_class(pol, p_in->name);
141 if (!p_out->value) {
142 printk(KERN_INFO
143 "SELinux: Class %s not defined in policy.\n",
144 p_in->name);
145 if (pol->reject_unknown)
146 goto err;
147 p_out->num_perms = 0;
148 print_unknown_handle = true;
149 continue;
152 k = 0;
153 while (p_in->perms && p_in->perms[k]) {
154 /* An empty permission string skips ahead */
155 if (!*p_in->perms[k]) {
156 k++;
157 continue;
159 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
160 p_in->perms[k]);
161 if (!p_out->perms[k]) {
162 printk(KERN_INFO
163 "SELinux: Permission %s in class %s not defined in policy.\n",
164 p_in->perms[k], p_in->name);
165 if (pol->reject_unknown)
166 goto err;
167 print_unknown_handle = true;
170 k++;
172 p_out->num_perms = k;
175 if (print_unknown_handle)
176 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
177 pol->allow_unknown ? "allowed" : "denied");
179 *out_map_p = out_map;
180 *out_map_size = i;
181 return 0;
182 err:
183 kfree(out_map);
184 return -EINVAL;
188 * Get real, policy values from mapped values
191 static u16 unmap_class(u16 tclass)
193 if (tclass < current_mapping_size)
194 return current_mapping[tclass].value;
196 return tclass;
199 static u32 unmap_perm(u16 tclass, u32 tperm)
201 if (tclass < current_mapping_size) {
202 unsigned i;
203 u32 kperm = 0;
205 for (i = 0; i < current_mapping[tclass].num_perms; i++)
206 if (tperm & (1<<i)) {
207 kperm |= current_mapping[tclass].perms[i];
208 tperm &= ~(1<<i);
210 return kperm;
213 return tperm;
216 static void map_decision(u16 tclass, struct av_decision *avd,
217 int allow_unknown)
219 if (tclass < current_mapping_size) {
220 unsigned i, n = current_mapping[tclass].num_perms;
221 u32 result;
223 for (i = 0, result = 0; i < n; i++) {
224 if (avd->allowed & current_mapping[tclass].perms[i])
225 result |= 1<<i;
226 if (allow_unknown && !current_mapping[tclass].perms[i])
227 result |= 1<<i;
229 avd->allowed = result;
231 for (i = 0, result = 0; i < n; i++)
232 if (avd->auditallow & current_mapping[tclass].perms[i])
233 result |= 1<<i;
234 avd->auditallow = result;
236 for (i = 0, result = 0; i < n; i++) {
237 if (avd->auditdeny & current_mapping[tclass].perms[i])
238 result |= 1<<i;
239 if (!allow_unknown && !current_mapping[tclass].perms[i])
240 result |= 1<<i;
243 * In case the kernel has a bug and requests a permission
244 * between num_perms and the maximum permission number, we
245 * should audit that denial
247 for (; i < (sizeof(u32)*8); i++)
248 result |= 1<<i;
249 avd->auditdeny = result;
255 * Return the boolean value of a constraint expression
256 * when it is applied to the specified source and target
257 * security contexts.
259 * xcontext is a special beast... It is used by the validatetrans rules
260 * only. For these rules, scontext is the context before the transition,
261 * tcontext is the context after the transition, and xcontext is the context
262 * of the process performing the transition. All other callers of
263 * constraint_expr_eval should pass in NULL for xcontext.
265 static int constraint_expr_eval(struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
270 u32 val1, val2;
271 struct context *c;
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
276 int sp = -1;
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
280 case CEXPR_NOT:
281 BUG_ON(sp < 0);
282 s[sp] = !s[sp];
283 break;
284 case CEXPR_AND:
285 BUG_ON(sp < 1);
286 sp--;
287 s[sp] &= s[sp+1];
288 break;
289 case CEXPR_OR:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] |= s[sp+1];
293 break;
294 case CEXPR_ATTR:
295 if (sp == (CEXPR_MAXDEPTH-1))
296 return 0;
297 switch (e->attr) {
298 case CEXPR_USER:
299 val1 = scontext->user;
300 val2 = tcontext->user;
301 break;
302 case CEXPR_TYPE:
303 val1 = scontext->type;
304 val2 = tcontext->type;
305 break;
306 case CEXPR_ROLE:
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb.role_val_to_struct[val1 - 1];
310 r2 = policydb.role_val_to_struct[val2 - 1];
311 switch (e->op) {
312 case CEXPR_DOM:
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
314 val2 - 1);
315 continue;
316 case CEXPR_DOMBY:
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
318 val1 - 1);
319 continue;
320 case CEXPR_INCOMP:
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 val2 - 1) &&
323 !ebitmap_get_bit(&r2->dominates,
324 val1 - 1));
325 continue;
326 default:
327 break;
329 break;
330 case CEXPR_L1L2:
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_L1H2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_H1L2:
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_H1H2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_L1H1:
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L2H2:
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 mls_ops:
355 switch (e->op) {
356 case CEXPR_EQ:
357 s[++sp] = mls_level_eq(l1, l2);
358 continue;
359 case CEXPR_NEQ:
360 s[++sp] = !mls_level_eq(l1, l2);
361 continue;
362 case CEXPR_DOM:
363 s[++sp] = mls_level_dom(l1, l2);
364 continue;
365 case CEXPR_DOMBY:
366 s[++sp] = mls_level_dom(l2, l1);
367 continue;
368 case CEXPR_INCOMP:
369 s[++sp] = mls_level_incomp(l2, l1);
370 continue;
371 default:
372 BUG();
373 return 0;
375 break;
376 default:
377 BUG();
378 return 0;
381 switch (e->op) {
382 case CEXPR_EQ:
383 s[++sp] = (val1 == val2);
384 break;
385 case CEXPR_NEQ:
386 s[++sp] = (val1 != val2);
387 break;
388 default:
389 BUG();
390 return 0;
392 break;
393 case CEXPR_NAMES:
394 if (sp == (CEXPR_MAXDEPTH-1))
395 return 0;
396 c = scontext;
397 if (e->attr & CEXPR_TARGET)
398 c = tcontext;
399 else if (e->attr & CEXPR_XTARGET) {
400 c = xcontext;
401 if (!c) {
402 BUG();
403 return 0;
406 if (e->attr & CEXPR_USER)
407 val1 = c->user;
408 else if (e->attr & CEXPR_ROLE)
409 val1 = c->role;
410 else if (e->attr & CEXPR_TYPE)
411 val1 = c->type;
412 else {
413 BUG();
414 return 0;
417 switch (e->op) {
418 case CEXPR_EQ:
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 break;
421 case CEXPR_NEQ:
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 break;
424 default:
425 BUG();
426 return 0;
428 break;
429 default:
430 BUG();
431 return 0;
435 BUG_ON(sp != 0);
436 return s[0];
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
443 static int dump_masked_av_helper(void *k, void *d, void *args)
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
450 permission_names[pdatum->value - 1] = (char *)k;
452 return 0;
455 static void security_dump_masked_av(struct context *scontext,
456 struct context *tcontext,
457 u16 tclass,
458 u32 permissions,
459 const char *reason)
461 struct common_datum *common_dat;
462 struct class_datum *tclass_dat;
463 struct audit_buffer *ab;
464 char *tclass_name;
465 char *scontext_name = NULL;
466 char *tcontext_name = NULL;
467 char *permission_names[32];
468 int index, length;
469 bool need_comma = false;
471 if (!permissions)
472 return;
474 tclass_name = policydb.p_class_val_to_name[tclass - 1];
475 tclass_dat = policydb.class_val_to_struct[tclass - 1];
476 common_dat = tclass_dat->comdatum;
478 /* init permission_names */
479 if (common_dat &&
480 hashtab_map(common_dat->permissions.table,
481 dump_masked_av_helper, permission_names) < 0)
482 goto out;
484 if (hashtab_map(tclass_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
486 goto out;
488 /* get scontext/tcontext in text form */
489 if (context_struct_to_string(scontext,
490 &scontext_name, &length) < 0)
491 goto out;
493 if (context_struct_to_string(tcontext,
494 &tcontext_name, &length) < 0)
495 goto out;
497 /* audit a message */
498 ab = audit_log_start(current->audit_context,
499 GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 if (!ab)
501 goto out;
503 audit_log_format(ab, "op=security_compute_av reason=%s "
504 "scontext=%s tcontext=%s tclass=%s perms=",
505 reason, scontext_name, tcontext_name, tclass_name);
507 for (index = 0; index < 32; index++) {
508 u32 mask = (1 << index);
510 if ((mask & permissions) == 0)
511 continue;
513 audit_log_format(ab, "%s%s",
514 need_comma ? "," : "",
515 permission_names[index]
516 ? permission_names[index] : "????");
517 need_comma = true;
519 audit_log_end(ab);
520 out:
521 /* release scontext/tcontext */
522 kfree(tcontext_name);
523 kfree(scontext_name);
525 return;
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
532 static void type_attribute_bounds_av(struct context *scontext,
533 struct context *tcontext,
534 u16 tclass,
535 u32 requested,
536 struct av_decision *avd)
538 struct context lo_scontext;
539 struct context lo_tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source
542 = policydb.type_val_to_struct[scontext->type - 1];
543 struct type_datum *target
544 = policydb.type_val_to_struct[tcontext->type - 1];
545 u32 masked = 0;
547 if (source->bounds) {
548 memset(&lo_avd, 0, sizeof(lo_avd));
550 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
551 lo_scontext.type = source->bounds;
553 context_struct_compute_av(&lo_scontext,
554 tcontext,
555 tclass,
556 requested,
557 &lo_avd);
558 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
559 return; /* no masked permission */
560 masked = ~lo_avd.allowed & avd->allowed;
563 if (target->bounds) {
564 memset(&lo_avd, 0, sizeof(lo_avd));
566 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 lo_tcontext.type = target->bounds;
569 context_struct_compute_av(scontext,
570 &lo_tcontext,
571 tclass,
572 requested,
573 &lo_avd);
574 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
575 return; /* no masked permission */
576 masked = ~lo_avd.allowed & avd->allowed;
579 if (source->bounds && target->bounds) {
580 memset(&lo_avd, 0, sizeof(lo_avd));
582 * lo_scontext and lo_tcontext are already
583 * set up.
586 context_struct_compute_av(&lo_scontext,
587 &lo_tcontext,
588 tclass,
589 requested,
590 &lo_avd);
591 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
592 return; /* no masked permission */
593 masked = ~lo_avd.allowed & avd->allowed;
596 if (masked) {
597 /* mask violated permissions */
598 avd->allowed &= ~masked;
600 /* audit masked permissions */
601 security_dump_masked_av(scontext, tcontext,
602 tclass, masked, "bounds");
607 * Compute access vectors based on a context structure pair for
608 * the permissions in a particular class.
610 static int context_struct_compute_av(struct context *scontext,
611 struct context *tcontext,
612 u16 tclass,
613 u32 requested,
614 struct av_decision *avd)
616 struct constraint_node *constraint;
617 struct role_allow *ra;
618 struct avtab_key avkey;
619 struct avtab_node *node;
620 struct class_datum *tclass_datum;
621 struct ebitmap *sattr, *tattr;
622 struct ebitmap_node *snode, *tnode;
623 unsigned int i, j;
626 * Initialize the access vectors to the default values.
628 avd->allowed = 0;
629 avd->auditallow = 0;
630 avd->auditdeny = 0xffffffff;
631 avd->seqno = latest_granting;
632 avd->flags = 0;
634 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
635 if (printk_ratelimit())
636 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
637 return -EINVAL;
640 tclass_datum = policydb.class_val_to_struct[tclass - 1];
643 * If a specific type enforcement rule was defined for
644 * this permission check, then use it.
646 avkey.target_class = tclass;
647 avkey.specified = AVTAB_AV;
648 sattr = &policydb.type_attr_map[scontext->type - 1];
649 tattr = &policydb.type_attr_map[tcontext->type - 1];
650 ebitmap_for_each_positive_bit(sattr, snode, i) {
651 ebitmap_for_each_positive_bit(tattr, tnode, j) {
652 avkey.source_type = i + 1;
653 avkey.target_type = j + 1;
654 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
655 node;
656 node = avtab_search_node_next(node, avkey.specified)) {
657 if (node->key.specified == AVTAB_ALLOWED)
658 avd->allowed |= node->datum.data;
659 else if (node->key.specified == AVTAB_AUDITALLOW)
660 avd->auditallow |= node->datum.data;
661 else if (node->key.specified == AVTAB_AUDITDENY)
662 avd->auditdeny &= node->datum.data;
665 /* Check conditional av table for additional permissions */
666 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
672 * Remove any permissions prohibited by a constraint (this includes
673 * the MLS policy).
675 constraint = tclass_datum->constraints;
676 while (constraint) {
677 if ((constraint->permissions & (avd->allowed)) &&
678 !constraint_expr_eval(scontext, tcontext, NULL,
679 constraint->expr)) {
680 avd->allowed &= ~(constraint->permissions);
682 constraint = constraint->next;
686 * If checking process transition permission and the
687 * role is changing, then check the (current_role, new_role)
688 * pair.
690 if (tclass == policydb.process_class &&
691 (avd->allowed & policydb.process_trans_perms) &&
692 scontext->role != tcontext->role) {
693 for (ra = policydb.role_allow; ra; ra = ra->next) {
694 if (scontext->role == ra->role &&
695 tcontext->role == ra->new_role)
696 break;
698 if (!ra)
699 avd->allowed &= ~policydb.process_trans_perms;
703 * If the given source and target types have boundary
704 * constraint, lazy checks have to mask any violated
705 * permission and notice it to userspace via audit.
707 type_attribute_bounds_av(scontext, tcontext,
708 tclass, requested, avd);
710 return 0;
713 static int security_validtrans_handle_fail(struct context *ocontext,
714 struct context *ncontext,
715 struct context *tcontext,
716 u16 tclass)
718 char *o = NULL, *n = NULL, *t = NULL;
719 u32 olen, nlen, tlen;
721 if (context_struct_to_string(ocontext, &o, &olen) < 0)
722 goto out;
723 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
724 goto out;
725 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
726 goto out;
727 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
728 "security_validate_transition: denied for"
729 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
730 o, n, t, policydb.p_class_val_to_name[tclass-1]);
731 out:
732 kfree(o);
733 kfree(n);
734 kfree(t);
736 if (!selinux_enforcing)
737 return 0;
738 return -EPERM;
741 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
742 u16 orig_tclass)
744 struct context *ocontext;
745 struct context *ncontext;
746 struct context *tcontext;
747 struct class_datum *tclass_datum;
748 struct constraint_node *constraint;
749 u16 tclass;
750 int rc = 0;
752 if (!ss_initialized)
753 return 0;
755 read_lock(&policy_rwlock);
757 tclass = unmap_class(orig_tclass);
759 if (!tclass || tclass > policydb.p_classes.nprim) {
760 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
761 __func__, tclass);
762 rc = -EINVAL;
763 goto out;
765 tclass_datum = policydb.class_val_to_struct[tclass - 1];
767 ocontext = sidtab_search(&sidtab, oldsid);
768 if (!ocontext) {
769 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
770 __func__, oldsid);
771 rc = -EINVAL;
772 goto out;
775 ncontext = sidtab_search(&sidtab, newsid);
776 if (!ncontext) {
777 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
778 __func__, newsid);
779 rc = -EINVAL;
780 goto out;
783 tcontext = sidtab_search(&sidtab, tasksid);
784 if (!tcontext) {
785 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
786 __func__, tasksid);
787 rc = -EINVAL;
788 goto out;
791 constraint = tclass_datum->validatetrans;
792 while (constraint) {
793 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
794 constraint->expr)) {
795 rc = security_validtrans_handle_fail(ocontext, ncontext,
796 tcontext, tclass);
797 goto out;
799 constraint = constraint->next;
802 out:
803 read_unlock(&policy_rwlock);
804 return rc;
808 * security_bounded_transition - check whether the given
809 * transition is directed to bounded, or not.
810 * It returns 0, if @newsid is bounded by @oldsid.
811 * Otherwise, it returns error code.
813 * @oldsid : current security identifier
814 * @newsid : destinated security identifier
816 int security_bounded_transition(u32 old_sid, u32 new_sid)
818 struct context *old_context, *new_context;
819 struct type_datum *type;
820 int index;
821 int rc = -EINVAL;
823 read_lock(&policy_rwlock);
825 old_context = sidtab_search(&sidtab, old_sid);
826 if (!old_context) {
827 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
828 __func__, old_sid);
829 goto out;
832 new_context = sidtab_search(&sidtab, new_sid);
833 if (!new_context) {
834 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
835 __func__, new_sid);
836 goto out;
839 /* type/domain unchanged */
840 if (old_context->type == new_context->type) {
841 rc = 0;
842 goto out;
845 index = new_context->type;
846 while (true) {
847 type = policydb.type_val_to_struct[index - 1];
848 BUG_ON(!type);
850 /* not bounded anymore */
851 if (!type->bounds) {
852 rc = -EPERM;
853 break;
856 /* @newsid is bounded by @oldsid */
857 if (type->bounds == old_context->type) {
858 rc = 0;
859 break;
861 index = type->bounds;
864 if (rc) {
865 char *old_name = NULL;
866 char *new_name = NULL;
867 int length;
869 if (!context_struct_to_string(old_context,
870 &old_name, &length) &&
871 !context_struct_to_string(new_context,
872 &new_name, &length)) {
873 audit_log(current->audit_context,
874 GFP_ATOMIC, AUDIT_SELINUX_ERR,
875 "op=security_bounded_transition "
876 "result=denied "
877 "oldcontext=%s newcontext=%s",
878 old_name, new_name);
880 kfree(new_name);
881 kfree(old_name);
883 out:
884 read_unlock(&policy_rwlock);
886 return rc;
890 static int security_compute_av_core(u32 ssid,
891 u32 tsid,
892 u16 tclass,
893 u32 requested,
894 struct av_decision *avd)
896 struct context *scontext = NULL, *tcontext = NULL;
897 int rc = 0;
899 scontext = sidtab_search(&sidtab, ssid);
900 if (!scontext) {
901 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
902 __func__, ssid);
903 return -EINVAL;
905 tcontext = sidtab_search(&sidtab, tsid);
906 if (!tcontext) {
907 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
908 __func__, tsid);
909 return -EINVAL;
912 rc = context_struct_compute_av(scontext, tcontext, tclass,
913 requested, avd);
915 /* permissive domain? */
916 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
917 avd->flags |= AVD_FLAGS_PERMISSIVE;
919 return rc;
923 * security_compute_av - Compute access vector decisions.
924 * @ssid: source security identifier
925 * @tsid: target security identifier
926 * @tclass: target security class
927 * @requested: requested permissions
928 * @avd: access vector decisions
930 * Compute a set of access vector decisions based on the
931 * SID pair (@ssid, @tsid) for the permissions in @tclass.
932 * Return -%EINVAL if any of the parameters are invalid or %0
933 * if the access vector decisions were computed successfully.
935 int security_compute_av(u32 ssid,
936 u32 tsid,
937 u16 orig_tclass,
938 u32 orig_requested,
939 struct av_decision *avd)
941 u16 tclass;
942 u32 requested;
943 int rc;
945 read_lock(&policy_rwlock);
947 if (!ss_initialized)
948 goto allow;
950 requested = unmap_perm(orig_tclass, orig_requested);
951 tclass = unmap_class(orig_tclass);
952 if (unlikely(orig_tclass && !tclass)) {
953 if (policydb.allow_unknown)
954 goto allow;
955 rc = -EINVAL;
956 goto out;
958 rc = security_compute_av_core(ssid, tsid, tclass, requested, avd);
959 map_decision(orig_tclass, avd, policydb.allow_unknown);
960 out:
961 read_unlock(&policy_rwlock);
962 return rc;
963 allow:
964 avd->allowed = 0xffffffff;
965 avd->auditallow = 0;
966 avd->auditdeny = 0xffffffff;
967 avd->seqno = latest_granting;
968 avd->flags = 0;
969 rc = 0;
970 goto out;
973 int security_compute_av_user(u32 ssid,
974 u32 tsid,
975 u16 tclass,
976 u32 requested,
977 struct av_decision *avd)
979 int rc;
981 if (!ss_initialized) {
982 avd->allowed = 0xffffffff;
983 avd->auditallow = 0;
984 avd->auditdeny = 0xffffffff;
985 avd->seqno = latest_granting;
986 return 0;
989 read_lock(&policy_rwlock);
990 rc = security_compute_av_core(ssid, tsid, tclass, requested, avd);
991 read_unlock(&policy_rwlock);
992 return rc;
996 * Write the security context string representation of
997 * the context structure `context' into a dynamically
998 * allocated string of the correct size. Set `*scontext'
999 * to point to this string and set `*scontext_len' to
1000 * the length of the string.
1002 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1004 char *scontextp;
1006 *scontext = NULL;
1007 *scontext_len = 0;
1009 if (context->len) {
1010 *scontext_len = context->len;
1011 *scontext = kstrdup(context->str, GFP_ATOMIC);
1012 if (!(*scontext))
1013 return -ENOMEM;
1014 return 0;
1017 /* Compute the size of the context. */
1018 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1019 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1020 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1021 *scontext_len += mls_compute_context_len(context);
1023 /* Allocate space for the context; caller must free this space. */
1024 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1025 if (!scontextp)
1026 return -ENOMEM;
1027 *scontext = scontextp;
1030 * Copy the user name, role name and type name into the context.
1032 sprintf(scontextp, "%s:%s:%s",
1033 policydb.p_user_val_to_name[context->user - 1],
1034 policydb.p_role_val_to_name[context->role - 1],
1035 policydb.p_type_val_to_name[context->type - 1]);
1036 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
1037 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1038 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1040 mls_sid_to_context(context, &scontextp);
1042 *scontextp = 0;
1044 return 0;
1047 #include "initial_sid_to_string.h"
1049 const char *security_get_initial_sid_context(u32 sid)
1051 if (unlikely(sid > SECINITSID_NUM))
1052 return NULL;
1053 return initial_sid_to_string[sid];
1056 static int security_sid_to_context_core(u32 sid, char **scontext,
1057 u32 *scontext_len, int force)
1059 struct context *context;
1060 int rc = 0;
1062 *scontext = NULL;
1063 *scontext_len = 0;
1065 if (!ss_initialized) {
1066 if (sid <= SECINITSID_NUM) {
1067 char *scontextp;
1069 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1070 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1071 if (!scontextp) {
1072 rc = -ENOMEM;
1073 goto out;
1075 strcpy(scontextp, initial_sid_to_string[sid]);
1076 *scontext = scontextp;
1077 goto out;
1079 printk(KERN_ERR "SELinux: %s: called before initial "
1080 "load_policy on unknown SID %d\n", __func__, sid);
1081 rc = -EINVAL;
1082 goto out;
1084 read_lock(&policy_rwlock);
1085 if (force)
1086 context = sidtab_search_force(&sidtab, sid);
1087 else
1088 context = sidtab_search(&sidtab, sid);
1089 if (!context) {
1090 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1091 __func__, sid);
1092 rc = -EINVAL;
1093 goto out_unlock;
1095 rc = context_struct_to_string(context, scontext, scontext_len);
1096 out_unlock:
1097 read_unlock(&policy_rwlock);
1098 out:
1099 return rc;
1104 * security_sid_to_context - Obtain a context for a given SID.
1105 * @sid: security identifier, SID
1106 * @scontext: security context
1107 * @scontext_len: length in bytes
1109 * Write the string representation of the context associated with @sid
1110 * into a dynamically allocated string of the correct size. Set @scontext
1111 * to point to this string and set @scontext_len to the length of the string.
1113 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1115 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1118 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1120 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1124 * Caveat: Mutates scontext.
1126 static int string_to_context_struct(struct policydb *pol,
1127 struct sidtab *sidtabp,
1128 char *scontext,
1129 u32 scontext_len,
1130 struct context *ctx,
1131 u32 def_sid)
1133 struct role_datum *role;
1134 struct type_datum *typdatum;
1135 struct user_datum *usrdatum;
1136 char *scontextp, *p, oldc;
1137 int rc = 0;
1139 context_init(ctx);
1141 /* Parse the security context. */
1143 rc = -EINVAL;
1144 scontextp = (char *) scontext;
1146 /* Extract the user. */
1147 p = scontextp;
1148 while (*p && *p != ':')
1149 p++;
1151 if (*p == 0)
1152 goto out;
1154 *p++ = 0;
1156 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1157 if (!usrdatum)
1158 goto out;
1160 ctx->user = usrdatum->value;
1162 /* Extract role. */
1163 scontextp = p;
1164 while (*p && *p != ':')
1165 p++;
1167 if (*p == 0)
1168 goto out;
1170 *p++ = 0;
1172 role = hashtab_search(pol->p_roles.table, scontextp);
1173 if (!role)
1174 goto out;
1175 ctx->role = role->value;
1177 /* Extract type. */
1178 scontextp = p;
1179 while (*p && *p != ':')
1180 p++;
1181 oldc = *p;
1182 *p++ = 0;
1184 typdatum = hashtab_search(pol->p_types.table, scontextp);
1185 if (!typdatum || typdatum->attribute)
1186 goto out;
1188 ctx->type = typdatum->value;
1190 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1191 if (rc)
1192 goto out;
1194 if ((p - scontext) < scontext_len) {
1195 rc = -EINVAL;
1196 goto out;
1199 /* Check the validity of the new context. */
1200 if (!policydb_context_isvalid(pol, ctx)) {
1201 rc = -EINVAL;
1202 goto out;
1204 rc = 0;
1205 out:
1206 if (rc)
1207 context_destroy(ctx);
1208 return rc;
1211 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1212 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1213 int force)
1215 char *scontext2, *str = NULL;
1216 struct context context;
1217 int rc = 0;
1219 if (!ss_initialized) {
1220 int i;
1222 for (i = 1; i < SECINITSID_NUM; i++) {
1223 if (!strcmp(initial_sid_to_string[i], scontext)) {
1224 *sid = i;
1225 return 0;
1228 *sid = SECINITSID_KERNEL;
1229 return 0;
1231 *sid = SECSID_NULL;
1233 /* Copy the string so that we can modify the copy as we parse it. */
1234 scontext2 = kmalloc(scontext_len+1, gfp_flags);
1235 if (!scontext2)
1236 return -ENOMEM;
1237 memcpy(scontext2, scontext, scontext_len);
1238 scontext2[scontext_len] = 0;
1240 if (force) {
1241 /* Save another copy for storing in uninterpreted form */
1242 str = kstrdup(scontext2, gfp_flags);
1243 if (!str) {
1244 kfree(scontext2);
1245 return -ENOMEM;
1249 read_lock(&policy_rwlock);
1250 rc = string_to_context_struct(&policydb, &sidtab,
1251 scontext2, scontext_len,
1252 &context, def_sid);
1253 if (rc == -EINVAL && force) {
1254 context.str = str;
1255 context.len = scontext_len;
1256 str = NULL;
1257 } else if (rc)
1258 goto out;
1259 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1260 context_destroy(&context);
1261 out:
1262 read_unlock(&policy_rwlock);
1263 kfree(scontext2);
1264 kfree(str);
1265 return rc;
1269 * security_context_to_sid - Obtain a SID for a given security context.
1270 * @scontext: security context
1271 * @scontext_len: length in bytes
1272 * @sid: security identifier, SID
1274 * Obtains a SID associated with the security context that
1275 * has the string representation specified by @scontext.
1276 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1277 * memory is available, or 0 on success.
1279 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1281 return security_context_to_sid_core(scontext, scontext_len,
1282 sid, SECSID_NULL, GFP_KERNEL, 0);
1286 * security_context_to_sid_default - Obtain a SID for a given security context,
1287 * falling back to specified default if needed.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @def_sid: default SID to assign on error
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * The default SID is passed to the MLS layer to be used to allow
1297 * kernel labeling of the MLS field if the MLS field is not present
1298 * (for upgrading to MLS without full relabel).
1299 * Implicitly forces adding of the context even if it cannot be mapped yet.
1300 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1301 * memory is available, or 0 on success.
1303 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1304 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1306 return security_context_to_sid_core(scontext, scontext_len,
1307 sid, def_sid, gfp_flags, 1);
1310 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1311 u32 *sid)
1313 return security_context_to_sid_core(scontext, scontext_len,
1314 sid, SECSID_NULL, GFP_KERNEL, 1);
1317 static int compute_sid_handle_invalid_context(
1318 struct context *scontext,
1319 struct context *tcontext,
1320 u16 tclass,
1321 struct context *newcontext)
1323 char *s = NULL, *t = NULL, *n = NULL;
1324 u32 slen, tlen, nlen;
1326 if (context_struct_to_string(scontext, &s, &slen) < 0)
1327 goto out;
1328 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1329 goto out;
1330 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1331 goto out;
1332 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1333 "security_compute_sid: invalid context %s"
1334 " for scontext=%s"
1335 " tcontext=%s"
1336 " tclass=%s",
1337 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1338 out:
1339 kfree(s);
1340 kfree(t);
1341 kfree(n);
1342 if (!selinux_enforcing)
1343 return 0;
1344 return -EACCES;
1347 static int security_compute_sid(u32 ssid,
1348 u32 tsid,
1349 u16 orig_tclass,
1350 u32 specified,
1351 u32 *out_sid,
1352 bool kern)
1354 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1355 struct role_trans *roletr = NULL;
1356 struct avtab_key avkey;
1357 struct avtab_datum *avdatum;
1358 struct avtab_node *node;
1359 u16 tclass;
1360 int rc = 0;
1362 if (!ss_initialized) {
1363 switch (orig_tclass) {
1364 case SECCLASS_PROCESS: /* kernel value */
1365 *out_sid = ssid;
1366 break;
1367 default:
1368 *out_sid = tsid;
1369 break;
1371 goto out;
1374 context_init(&newcontext);
1376 read_lock(&policy_rwlock);
1378 if (kern)
1379 tclass = unmap_class(orig_tclass);
1380 else
1381 tclass = orig_tclass;
1383 scontext = sidtab_search(&sidtab, ssid);
1384 if (!scontext) {
1385 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1386 __func__, ssid);
1387 rc = -EINVAL;
1388 goto out_unlock;
1390 tcontext = sidtab_search(&sidtab, tsid);
1391 if (!tcontext) {
1392 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1393 __func__, tsid);
1394 rc = -EINVAL;
1395 goto out_unlock;
1398 /* Set the user identity. */
1399 switch (specified) {
1400 case AVTAB_TRANSITION:
1401 case AVTAB_CHANGE:
1402 /* Use the process user identity. */
1403 newcontext.user = scontext->user;
1404 break;
1405 case AVTAB_MEMBER:
1406 /* Use the related object owner. */
1407 newcontext.user = tcontext->user;
1408 break;
1411 /* Set the role and type to default values. */
1412 if (tclass == policydb.process_class) {
1413 /* Use the current role and type of process. */
1414 newcontext.role = scontext->role;
1415 newcontext.type = scontext->type;
1416 } else {
1417 /* Use the well-defined object role. */
1418 newcontext.role = OBJECT_R_VAL;
1419 /* Use the type of the related object. */
1420 newcontext.type = tcontext->type;
1423 /* Look for a type transition/member/change rule. */
1424 avkey.source_type = scontext->type;
1425 avkey.target_type = tcontext->type;
1426 avkey.target_class = tclass;
1427 avkey.specified = specified;
1428 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1430 /* If no permanent rule, also check for enabled conditional rules */
1431 if (!avdatum) {
1432 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1433 for (; node; node = avtab_search_node_next(node, specified)) {
1434 if (node->key.specified & AVTAB_ENABLED) {
1435 avdatum = &node->datum;
1436 break;
1441 if (avdatum) {
1442 /* Use the type from the type transition/member/change rule. */
1443 newcontext.type = avdatum->data;
1446 /* Check for class-specific changes. */
1447 if (tclass == policydb.process_class) {
1448 if (specified & AVTAB_TRANSITION) {
1449 /* Look for a role transition rule. */
1450 for (roletr = policydb.role_tr; roletr;
1451 roletr = roletr->next) {
1452 if (roletr->role == scontext->role &&
1453 roletr->type == tcontext->type) {
1454 /* Use the role transition rule. */
1455 newcontext.role = roletr->new_role;
1456 break;
1462 /* Set the MLS attributes.
1463 This is done last because it may allocate memory. */
1464 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1465 if (rc)
1466 goto out_unlock;
1468 /* Check the validity of the context. */
1469 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1470 rc = compute_sid_handle_invalid_context(scontext,
1471 tcontext,
1472 tclass,
1473 &newcontext);
1474 if (rc)
1475 goto out_unlock;
1477 /* Obtain the sid for the context. */
1478 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1479 out_unlock:
1480 read_unlock(&policy_rwlock);
1481 context_destroy(&newcontext);
1482 out:
1483 return rc;
1487 * security_transition_sid - Compute the SID for a new subject/object.
1488 * @ssid: source security identifier
1489 * @tsid: target security identifier
1490 * @tclass: target security class
1491 * @out_sid: security identifier for new subject/object
1493 * Compute a SID to use for labeling a new subject or object in the
1494 * class @tclass based on a SID pair (@ssid, @tsid).
1495 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1496 * if insufficient memory is available, or %0 if the new SID was
1497 * computed successfully.
1499 int security_transition_sid(u32 ssid,
1500 u32 tsid,
1501 u16 tclass,
1502 u32 *out_sid)
1504 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1505 out_sid, true);
1508 int security_transition_sid_user(u32 ssid,
1509 u32 tsid,
1510 u16 tclass,
1511 u32 *out_sid)
1513 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1514 out_sid, false);
1518 * security_member_sid - Compute the SID for member selection.
1519 * @ssid: source security identifier
1520 * @tsid: target security identifier
1521 * @tclass: target security class
1522 * @out_sid: security identifier for selected member
1524 * Compute a SID to use when selecting a member of a polyinstantiated
1525 * object of class @tclass based on a SID pair (@ssid, @tsid).
1526 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1527 * if insufficient memory is available, or %0 if the SID was
1528 * computed successfully.
1530 int security_member_sid(u32 ssid,
1531 u32 tsid,
1532 u16 tclass,
1533 u32 *out_sid)
1535 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1536 false);
1540 * security_change_sid - Compute the SID for object relabeling.
1541 * @ssid: source security identifier
1542 * @tsid: target security identifier
1543 * @tclass: target security class
1544 * @out_sid: security identifier for selected member
1546 * Compute a SID to use for relabeling an object of class @tclass
1547 * based on a SID pair (@ssid, @tsid).
1548 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1549 * if insufficient memory is available, or %0 if the SID was
1550 * computed successfully.
1552 int security_change_sid(u32 ssid,
1553 u32 tsid,
1554 u16 tclass,
1555 u32 *out_sid)
1557 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1558 false);
1561 /* Clone the SID into the new SID table. */
1562 static int clone_sid(u32 sid,
1563 struct context *context,
1564 void *arg)
1566 struct sidtab *s = arg;
1568 return sidtab_insert(s, sid, context);
1571 static inline int convert_context_handle_invalid_context(struct context *context)
1573 int rc = 0;
1575 if (selinux_enforcing) {
1576 rc = -EINVAL;
1577 } else {
1578 char *s;
1579 u32 len;
1581 if (!context_struct_to_string(context, &s, &len)) {
1582 printk(KERN_WARNING
1583 "SELinux: Context %s would be invalid if enforcing\n",
1585 kfree(s);
1588 return rc;
1591 struct convert_context_args {
1592 struct policydb *oldp;
1593 struct policydb *newp;
1597 * Convert the values in the security context
1598 * structure `c' from the values specified
1599 * in the policy `p->oldp' to the values specified
1600 * in the policy `p->newp'. Verify that the
1601 * context is valid under the new policy.
1603 static int convert_context(u32 key,
1604 struct context *c,
1605 void *p)
1607 struct convert_context_args *args;
1608 struct context oldc;
1609 struct role_datum *role;
1610 struct type_datum *typdatum;
1611 struct user_datum *usrdatum;
1612 char *s;
1613 u32 len;
1614 int rc;
1616 args = p;
1618 if (c->str) {
1619 struct context ctx;
1620 s = kstrdup(c->str, GFP_KERNEL);
1621 if (!s) {
1622 rc = -ENOMEM;
1623 goto out;
1625 rc = string_to_context_struct(args->newp, NULL, s,
1626 c->len, &ctx, SECSID_NULL);
1627 kfree(s);
1628 if (!rc) {
1629 printk(KERN_INFO
1630 "SELinux: Context %s became valid (mapped).\n",
1631 c->str);
1632 /* Replace string with mapped representation. */
1633 kfree(c->str);
1634 memcpy(c, &ctx, sizeof(*c));
1635 goto out;
1636 } else if (rc == -EINVAL) {
1637 /* Retain string representation for later mapping. */
1638 rc = 0;
1639 goto out;
1640 } else {
1641 /* Other error condition, e.g. ENOMEM. */
1642 printk(KERN_ERR
1643 "SELinux: Unable to map context %s, rc = %d.\n",
1644 c->str, -rc);
1645 goto out;
1649 rc = context_cpy(&oldc, c);
1650 if (rc)
1651 goto out;
1653 rc = -EINVAL;
1655 /* Convert the user. */
1656 usrdatum = hashtab_search(args->newp->p_users.table,
1657 args->oldp->p_user_val_to_name[c->user - 1]);
1658 if (!usrdatum)
1659 goto bad;
1660 c->user = usrdatum->value;
1662 /* Convert the role. */
1663 role = hashtab_search(args->newp->p_roles.table,
1664 args->oldp->p_role_val_to_name[c->role - 1]);
1665 if (!role)
1666 goto bad;
1667 c->role = role->value;
1669 /* Convert the type. */
1670 typdatum = hashtab_search(args->newp->p_types.table,
1671 args->oldp->p_type_val_to_name[c->type - 1]);
1672 if (!typdatum)
1673 goto bad;
1674 c->type = typdatum->value;
1676 rc = mls_convert_context(args->oldp, args->newp, c);
1677 if (rc)
1678 goto bad;
1680 /* Check the validity of the new context. */
1681 if (!policydb_context_isvalid(args->newp, c)) {
1682 rc = convert_context_handle_invalid_context(&oldc);
1683 if (rc)
1684 goto bad;
1687 context_destroy(&oldc);
1688 rc = 0;
1689 out:
1690 return rc;
1691 bad:
1692 /* Map old representation to string and save it. */
1693 if (context_struct_to_string(&oldc, &s, &len))
1694 return -ENOMEM;
1695 context_destroy(&oldc);
1696 context_destroy(c);
1697 c->str = s;
1698 c->len = len;
1699 printk(KERN_INFO
1700 "SELinux: Context %s became invalid (unmapped).\n",
1701 c->str);
1702 rc = 0;
1703 goto out;
1706 static void security_load_policycaps(void)
1708 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1709 POLICYDB_CAPABILITY_NETPEER);
1710 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1711 POLICYDB_CAPABILITY_OPENPERM);
1714 extern void selinux_complete_init(void);
1715 static int security_preserve_bools(struct policydb *p);
1718 * security_load_policy - Load a security policy configuration.
1719 * @data: binary policy data
1720 * @len: length of data in bytes
1722 * Load a new set of security policy configuration data,
1723 * validate it and convert the SID table as necessary.
1724 * This function will flush the access vector cache after
1725 * loading the new policy.
1727 int security_load_policy(void *data, size_t len)
1729 struct policydb oldpolicydb, newpolicydb;
1730 struct sidtab oldsidtab, newsidtab;
1731 struct selinux_mapping *oldmap, *map = NULL;
1732 struct convert_context_args args;
1733 u32 seqno;
1734 u16 map_size;
1735 int rc = 0;
1736 struct policy_file file = { data, len }, *fp = &file;
1738 if (!ss_initialized) {
1739 avtab_cache_init();
1740 if (policydb_read(&policydb, fp)) {
1741 avtab_cache_destroy();
1742 return -EINVAL;
1744 if (selinux_set_mapping(&policydb, secclass_map,
1745 &current_mapping,
1746 &current_mapping_size)) {
1747 policydb_destroy(&policydb);
1748 avtab_cache_destroy();
1749 return -EINVAL;
1751 if (policydb_load_isids(&policydb, &sidtab)) {
1752 policydb_destroy(&policydb);
1753 avtab_cache_destroy();
1754 return -EINVAL;
1756 security_load_policycaps();
1757 ss_initialized = 1;
1758 seqno = ++latest_granting;
1759 selinux_complete_init();
1760 avc_ss_reset(seqno);
1761 selnl_notify_policyload(seqno);
1762 selinux_netlbl_cache_invalidate();
1763 selinux_xfrm_notify_policyload();
1764 return 0;
1767 #if 0
1768 sidtab_hash_eval(&sidtab, "sids");
1769 #endif
1771 if (policydb_read(&newpolicydb, fp))
1772 return -EINVAL;
1774 if (sidtab_init(&newsidtab)) {
1775 policydb_destroy(&newpolicydb);
1776 return -ENOMEM;
1779 if (selinux_set_mapping(&newpolicydb, secclass_map,
1780 &map, &map_size))
1781 goto err;
1783 rc = security_preserve_bools(&newpolicydb);
1784 if (rc) {
1785 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1786 goto err;
1789 /* Clone the SID table. */
1790 sidtab_shutdown(&sidtab);
1791 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1792 rc = -ENOMEM;
1793 goto err;
1797 * Convert the internal representations of contexts
1798 * in the new SID table.
1800 args.oldp = &policydb;
1801 args.newp = &newpolicydb;
1802 rc = sidtab_map(&newsidtab, convert_context, &args);
1803 if (rc)
1804 goto err;
1806 /* Save the old policydb and SID table to free later. */
1807 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1808 sidtab_set(&oldsidtab, &sidtab);
1810 /* Install the new policydb and SID table. */
1811 write_lock_irq(&policy_rwlock);
1812 memcpy(&policydb, &newpolicydb, sizeof policydb);
1813 sidtab_set(&sidtab, &newsidtab);
1814 security_load_policycaps();
1815 oldmap = current_mapping;
1816 current_mapping = map;
1817 current_mapping_size = map_size;
1818 seqno = ++latest_granting;
1819 write_unlock_irq(&policy_rwlock);
1821 /* Free the old policydb and SID table. */
1822 policydb_destroy(&oldpolicydb);
1823 sidtab_destroy(&oldsidtab);
1824 kfree(oldmap);
1826 avc_ss_reset(seqno);
1827 selnl_notify_policyload(seqno);
1828 selinux_netlbl_cache_invalidate();
1829 selinux_xfrm_notify_policyload();
1831 return 0;
1833 err:
1834 kfree(map);
1835 sidtab_destroy(&newsidtab);
1836 policydb_destroy(&newpolicydb);
1837 return rc;
1842 * security_port_sid - Obtain the SID for a port.
1843 * @protocol: protocol number
1844 * @port: port number
1845 * @out_sid: security identifier
1847 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1849 struct ocontext *c;
1850 int rc = 0;
1852 read_lock(&policy_rwlock);
1854 c = policydb.ocontexts[OCON_PORT];
1855 while (c) {
1856 if (c->u.port.protocol == protocol &&
1857 c->u.port.low_port <= port &&
1858 c->u.port.high_port >= port)
1859 break;
1860 c = c->next;
1863 if (c) {
1864 if (!c->sid[0]) {
1865 rc = sidtab_context_to_sid(&sidtab,
1866 &c->context[0],
1867 &c->sid[0]);
1868 if (rc)
1869 goto out;
1871 *out_sid = c->sid[0];
1872 } else {
1873 *out_sid = SECINITSID_PORT;
1876 out:
1877 read_unlock(&policy_rwlock);
1878 return rc;
1882 * security_netif_sid - Obtain the SID for a network interface.
1883 * @name: interface name
1884 * @if_sid: interface SID
1886 int security_netif_sid(char *name, u32 *if_sid)
1888 int rc = 0;
1889 struct ocontext *c;
1891 read_lock(&policy_rwlock);
1893 c = policydb.ocontexts[OCON_NETIF];
1894 while (c) {
1895 if (strcmp(name, c->u.name) == 0)
1896 break;
1897 c = c->next;
1900 if (c) {
1901 if (!c->sid[0] || !c->sid[1]) {
1902 rc = sidtab_context_to_sid(&sidtab,
1903 &c->context[0],
1904 &c->sid[0]);
1905 if (rc)
1906 goto out;
1907 rc = sidtab_context_to_sid(&sidtab,
1908 &c->context[1],
1909 &c->sid[1]);
1910 if (rc)
1911 goto out;
1913 *if_sid = c->sid[0];
1914 } else
1915 *if_sid = SECINITSID_NETIF;
1917 out:
1918 read_unlock(&policy_rwlock);
1919 return rc;
1922 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1924 int i, fail = 0;
1926 for (i = 0; i < 4; i++)
1927 if (addr[i] != (input[i] & mask[i])) {
1928 fail = 1;
1929 break;
1932 return !fail;
1936 * security_node_sid - Obtain the SID for a node (host).
1937 * @domain: communication domain aka address family
1938 * @addrp: address
1939 * @addrlen: address length in bytes
1940 * @out_sid: security identifier
1942 int security_node_sid(u16 domain,
1943 void *addrp,
1944 u32 addrlen,
1945 u32 *out_sid)
1947 int rc = 0;
1948 struct ocontext *c;
1950 read_lock(&policy_rwlock);
1952 switch (domain) {
1953 case AF_INET: {
1954 u32 addr;
1956 if (addrlen != sizeof(u32)) {
1957 rc = -EINVAL;
1958 goto out;
1961 addr = *((u32 *)addrp);
1963 c = policydb.ocontexts[OCON_NODE];
1964 while (c) {
1965 if (c->u.node.addr == (addr & c->u.node.mask))
1966 break;
1967 c = c->next;
1969 break;
1972 case AF_INET6:
1973 if (addrlen != sizeof(u64) * 2) {
1974 rc = -EINVAL;
1975 goto out;
1977 c = policydb.ocontexts[OCON_NODE6];
1978 while (c) {
1979 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1980 c->u.node6.mask))
1981 break;
1982 c = c->next;
1984 break;
1986 default:
1987 *out_sid = SECINITSID_NODE;
1988 goto out;
1991 if (c) {
1992 if (!c->sid[0]) {
1993 rc = sidtab_context_to_sid(&sidtab,
1994 &c->context[0],
1995 &c->sid[0]);
1996 if (rc)
1997 goto out;
1999 *out_sid = c->sid[0];
2000 } else {
2001 *out_sid = SECINITSID_NODE;
2004 out:
2005 read_unlock(&policy_rwlock);
2006 return rc;
2009 #define SIDS_NEL 25
2012 * security_get_user_sids - Obtain reachable SIDs for a user.
2013 * @fromsid: starting SID
2014 * @username: username
2015 * @sids: array of reachable SIDs for user
2016 * @nel: number of elements in @sids
2018 * Generate the set of SIDs for legal security contexts
2019 * for a given user that can be reached by @fromsid.
2020 * Set *@sids to point to a dynamically allocated
2021 * array containing the set of SIDs. Set *@nel to the
2022 * number of elements in the array.
2025 int security_get_user_sids(u32 fromsid,
2026 char *username,
2027 u32 **sids,
2028 u32 *nel)
2030 struct context *fromcon, usercon;
2031 u32 *mysids = NULL, *mysids2, sid;
2032 u32 mynel = 0, maxnel = SIDS_NEL;
2033 struct user_datum *user;
2034 struct role_datum *role;
2035 struct ebitmap_node *rnode, *tnode;
2036 int rc = 0, i, j;
2038 *sids = NULL;
2039 *nel = 0;
2041 if (!ss_initialized)
2042 goto out;
2044 read_lock(&policy_rwlock);
2046 context_init(&usercon);
2048 fromcon = sidtab_search(&sidtab, fromsid);
2049 if (!fromcon) {
2050 rc = -EINVAL;
2051 goto out_unlock;
2054 user = hashtab_search(policydb.p_users.table, username);
2055 if (!user) {
2056 rc = -EINVAL;
2057 goto out_unlock;
2059 usercon.user = user->value;
2061 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2062 if (!mysids) {
2063 rc = -ENOMEM;
2064 goto out_unlock;
2067 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2068 role = policydb.role_val_to_struct[i];
2069 usercon.role = i+1;
2070 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2071 usercon.type = j+1;
2073 if (mls_setup_user_range(fromcon, user, &usercon))
2074 continue;
2076 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2077 if (rc)
2078 goto out_unlock;
2079 if (mynel < maxnel) {
2080 mysids[mynel++] = sid;
2081 } else {
2082 maxnel += SIDS_NEL;
2083 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2084 if (!mysids2) {
2085 rc = -ENOMEM;
2086 goto out_unlock;
2088 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2089 kfree(mysids);
2090 mysids = mysids2;
2091 mysids[mynel++] = sid;
2096 out_unlock:
2097 read_unlock(&policy_rwlock);
2098 if (rc || !mynel) {
2099 kfree(mysids);
2100 goto out;
2103 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2104 if (!mysids2) {
2105 rc = -ENOMEM;
2106 kfree(mysids);
2107 goto out;
2109 for (i = 0, j = 0; i < mynel; i++) {
2110 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2111 SECCLASS_PROCESS, /* kernel value */
2112 PROCESS__TRANSITION, AVC_STRICT,
2113 NULL);
2114 if (!rc)
2115 mysids2[j++] = mysids[i];
2116 cond_resched();
2118 rc = 0;
2119 kfree(mysids);
2120 *sids = mysids2;
2121 *nel = j;
2122 out:
2123 return rc;
2127 * security_genfs_sid - Obtain a SID for a file in a filesystem
2128 * @fstype: filesystem type
2129 * @path: path from root of mount
2130 * @sclass: file security class
2131 * @sid: SID for path
2133 * Obtain a SID to use for a file in a filesystem that
2134 * cannot support xattr or use a fixed labeling behavior like
2135 * transition SIDs or task SIDs.
2137 int security_genfs_sid(const char *fstype,
2138 char *path,
2139 u16 orig_sclass,
2140 u32 *sid)
2142 int len;
2143 u16 sclass;
2144 struct genfs *genfs;
2145 struct ocontext *c;
2146 int rc = 0, cmp = 0;
2148 while (path[0] == '/' && path[1] == '/')
2149 path++;
2151 read_lock(&policy_rwlock);
2153 sclass = unmap_class(orig_sclass);
2155 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2156 cmp = strcmp(fstype, genfs->fstype);
2157 if (cmp <= 0)
2158 break;
2161 if (!genfs || cmp) {
2162 *sid = SECINITSID_UNLABELED;
2163 rc = -ENOENT;
2164 goto out;
2167 for (c = genfs->head; c; c = c->next) {
2168 len = strlen(c->u.name);
2169 if ((!c->v.sclass || sclass == c->v.sclass) &&
2170 (strncmp(c->u.name, path, len) == 0))
2171 break;
2174 if (!c) {
2175 *sid = SECINITSID_UNLABELED;
2176 rc = -ENOENT;
2177 goto out;
2180 if (!c->sid[0]) {
2181 rc = sidtab_context_to_sid(&sidtab,
2182 &c->context[0],
2183 &c->sid[0]);
2184 if (rc)
2185 goto out;
2188 *sid = c->sid[0];
2189 out:
2190 read_unlock(&policy_rwlock);
2191 return rc;
2195 * security_fs_use - Determine how to handle labeling for a filesystem.
2196 * @fstype: filesystem type
2197 * @behavior: labeling behavior
2198 * @sid: SID for filesystem (superblock)
2200 int security_fs_use(
2201 const char *fstype,
2202 unsigned int *behavior,
2203 u32 *sid)
2205 int rc = 0;
2206 struct ocontext *c;
2208 read_lock(&policy_rwlock);
2210 c = policydb.ocontexts[OCON_FSUSE];
2211 while (c) {
2212 if (strcmp(fstype, c->u.name) == 0)
2213 break;
2214 c = c->next;
2217 if (c) {
2218 *behavior = c->v.behavior;
2219 if (!c->sid[0]) {
2220 rc = sidtab_context_to_sid(&sidtab,
2221 &c->context[0],
2222 &c->sid[0]);
2223 if (rc)
2224 goto out;
2226 *sid = c->sid[0];
2227 } else {
2228 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2229 if (rc) {
2230 *behavior = SECURITY_FS_USE_NONE;
2231 rc = 0;
2232 } else {
2233 *behavior = SECURITY_FS_USE_GENFS;
2237 out:
2238 read_unlock(&policy_rwlock);
2239 return rc;
2242 int security_get_bools(int *len, char ***names, int **values)
2244 int i, rc = -ENOMEM;
2246 read_lock(&policy_rwlock);
2247 *names = NULL;
2248 *values = NULL;
2250 *len = policydb.p_bools.nprim;
2251 if (!*len) {
2252 rc = 0;
2253 goto out;
2256 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2257 if (!*names)
2258 goto err;
2260 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2261 if (!*values)
2262 goto err;
2264 for (i = 0; i < *len; i++) {
2265 size_t name_len;
2266 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2267 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2268 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2269 if (!(*names)[i])
2270 goto err;
2271 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2272 (*names)[i][name_len - 1] = 0;
2274 rc = 0;
2275 out:
2276 read_unlock(&policy_rwlock);
2277 return rc;
2278 err:
2279 if (*names) {
2280 for (i = 0; i < *len; i++)
2281 kfree((*names)[i]);
2283 kfree(*values);
2284 goto out;
2288 int security_set_bools(int len, int *values)
2290 int i, rc = 0;
2291 int lenp, seqno = 0;
2292 struct cond_node *cur;
2294 write_lock_irq(&policy_rwlock);
2296 lenp = policydb.p_bools.nprim;
2297 if (len != lenp) {
2298 rc = -EFAULT;
2299 goto out;
2302 for (i = 0; i < len; i++) {
2303 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2304 audit_log(current->audit_context, GFP_ATOMIC,
2305 AUDIT_MAC_CONFIG_CHANGE,
2306 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2307 policydb.p_bool_val_to_name[i],
2308 !!values[i],
2309 policydb.bool_val_to_struct[i]->state,
2310 audit_get_loginuid(current),
2311 audit_get_sessionid(current));
2313 if (values[i])
2314 policydb.bool_val_to_struct[i]->state = 1;
2315 else
2316 policydb.bool_val_to_struct[i]->state = 0;
2319 for (cur = policydb.cond_list; cur; cur = cur->next) {
2320 rc = evaluate_cond_node(&policydb, cur);
2321 if (rc)
2322 goto out;
2325 seqno = ++latest_granting;
2327 out:
2328 write_unlock_irq(&policy_rwlock);
2329 if (!rc) {
2330 avc_ss_reset(seqno);
2331 selnl_notify_policyload(seqno);
2332 selinux_xfrm_notify_policyload();
2334 return rc;
2337 int security_get_bool_value(int bool)
2339 int rc = 0;
2340 int len;
2342 read_lock(&policy_rwlock);
2344 len = policydb.p_bools.nprim;
2345 if (bool >= len) {
2346 rc = -EFAULT;
2347 goto out;
2350 rc = policydb.bool_val_to_struct[bool]->state;
2351 out:
2352 read_unlock(&policy_rwlock);
2353 return rc;
2356 static int security_preserve_bools(struct policydb *p)
2358 int rc, nbools = 0, *bvalues = NULL, i;
2359 char **bnames = NULL;
2360 struct cond_bool_datum *booldatum;
2361 struct cond_node *cur;
2363 rc = security_get_bools(&nbools, &bnames, &bvalues);
2364 if (rc)
2365 goto out;
2366 for (i = 0; i < nbools; i++) {
2367 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2368 if (booldatum)
2369 booldatum->state = bvalues[i];
2371 for (cur = p->cond_list; cur; cur = cur->next) {
2372 rc = evaluate_cond_node(p, cur);
2373 if (rc)
2374 goto out;
2377 out:
2378 if (bnames) {
2379 for (i = 0; i < nbools; i++)
2380 kfree(bnames[i]);
2382 kfree(bnames);
2383 kfree(bvalues);
2384 return rc;
2388 * security_sid_mls_copy() - computes a new sid based on the given
2389 * sid and the mls portion of mls_sid.
2391 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2393 struct context *context1;
2394 struct context *context2;
2395 struct context newcon;
2396 char *s;
2397 u32 len;
2398 int rc = 0;
2400 if (!ss_initialized || !selinux_mls_enabled) {
2401 *new_sid = sid;
2402 goto out;
2405 context_init(&newcon);
2407 read_lock(&policy_rwlock);
2408 context1 = sidtab_search(&sidtab, sid);
2409 if (!context1) {
2410 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2411 __func__, sid);
2412 rc = -EINVAL;
2413 goto out_unlock;
2416 context2 = sidtab_search(&sidtab, mls_sid);
2417 if (!context2) {
2418 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2419 __func__, mls_sid);
2420 rc = -EINVAL;
2421 goto out_unlock;
2424 newcon.user = context1->user;
2425 newcon.role = context1->role;
2426 newcon.type = context1->type;
2427 rc = mls_context_cpy(&newcon, context2);
2428 if (rc)
2429 goto out_unlock;
2431 /* Check the validity of the new context. */
2432 if (!policydb_context_isvalid(&policydb, &newcon)) {
2433 rc = convert_context_handle_invalid_context(&newcon);
2434 if (rc)
2435 goto bad;
2438 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2439 goto out_unlock;
2441 bad:
2442 if (!context_struct_to_string(&newcon, &s, &len)) {
2443 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2444 "security_sid_mls_copy: invalid context %s", s);
2445 kfree(s);
2448 out_unlock:
2449 read_unlock(&policy_rwlock);
2450 context_destroy(&newcon);
2451 out:
2452 return rc;
2456 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2457 * @nlbl_sid: NetLabel SID
2458 * @nlbl_type: NetLabel labeling protocol type
2459 * @xfrm_sid: XFRM SID
2461 * Description:
2462 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2463 * resolved into a single SID it is returned via @peer_sid and the function
2464 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2465 * returns a negative value. A table summarizing the behavior is below:
2467 * | function return | @sid
2468 * ------------------------------+-----------------+-----------------
2469 * no peer labels | 0 | SECSID_NULL
2470 * single peer label | 0 | <peer_label>
2471 * multiple, consistent labels | 0 | <peer_label>
2472 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2475 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2476 u32 xfrm_sid,
2477 u32 *peer_sid)
2479 int rc;
2480 struct context *nlbl_ctx;
2481 struct context *xfrm_ctx;
2483 /* handle the common (which also happens to be the set of easy) cases
2484 * right away, these two if statements catch everything involving a
2485 * single or absent peer SID/label */
2486 if (xfrm_sid == SECSID_NULL) {
2487 *peer_sid = nlbl_sid;
2488 return 0;
2490 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2491 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2492 * is present */
2493 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2494 *peer_sid = xfrm_sid;
2495 return 0;
2498 /* we don't need to check ss_initialized here since the only way both
2499 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2500 * security server was initialized and ss_initialized was true */
2501 if (!selinux_mls_enabled) {
2502 *peer_sid = SECSID_NULL;
2503 return 0;
2506 read_lock(&policy_rwlock);
2508 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2509 if (!nlbl_ctx) {
2510 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2511 __func__, nlbl_sid);
2512 rc = -EINVAL;
2513 goto out_slowpath;
2515 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2516 if (!xfrm_ctx) {
2517 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2518 __func__, xfrm_sid);
2519 rc = -EINVAL;
2520 goto out_slowpath;
2522 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2524 out_slowpath:
2525 read_unlock(&policy_rwlock);
2526 if (rc == 0)
2527 /* at present NetLabel SIDs/labels really only carry MLS
2528 * information so if the MLS portion of the NetLabel SID
2529 * matches the MLS portion of the labeled XFRM SID/label
2530 * then pass along the XFRM SID as it is the most
2531 * expressive */
2532 *peer_sid = xfrm_sid;
2533 else
2534 *peer_sid = SECSID_NULL;
2535 return rc;
2538 static int get_classes_callback(void *k, void *d, void *args)
2540 struct class_datum *datum = d;
2541 char *name = k, **classes = args;
2542 int value = datum->value - 1;
2544 classes[value] = kstrdup(name, GFP_ATOMIC);
2545 if (!classes[value])
2546 return -ENOMEM;
2548 return 0;
2551 int security_get_classes(char ***classes, int *nclasses)
2553 int rc = -ENOMEM;
2555 read_lock(&policy_rwlock);
2557 *nclasses = policydb.p_classes.nprim;
2558 *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2559 if (!*classes)
2560 goto out;
2562 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2563 *classes);
2564 if (rc < 0) {
2565 int i;
2566 for (i = 0; i < *nclasses; i++)
2567 kfree((*classes)[i]);
2568 kfree(*classes);
2571 out:
2572 read_unlock(&policy_rwlock);
2573 return rc;
2576 static int get_permissions_callback(void *k, void *d, void *args)
2578 struct perm_datum *datum = d;
2579 char *name = k, **perms = args;
2580 int value = datum->value - 1;
2582 perms[value] = kstrdup(name, GFP_ATOMIC);
2583 if (!perms[value])
2584 return -ENOMEM;
2586 return 0;
2589 int security_get_permissions(char *class, char ***perms, int *nperms)
2591 int rc = -ENOMEM, i;
2592 struct class_datum *match;
2594 read_lock(&policy_rwlock);
2596 match = hashtab_search(policydb.p_classes.table, class);
2597 if (!match) {
2598 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2599 __func__, class);
2600 rc = -EINVAL;
2601 goto out;
2604 *nperms = match->permissions.nprim;
2605 *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2606 if (!*perms)
2607 goto out;
2609 if (match->comdatum) {
2610 rc = hashtab_map(match->comdatum->permissions.table,
2611 get_permissions_callback, *perms);
2612 if (rc < 0)
2613 goto err;
2616 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2617 *perms);
2618 if (rc < 0)
2619 goto err;
2621 out:
2622 read_unlock(&policy_rwlock);
2623 return rc;
2625 err:
2626 read_unlock(&policy_rwlock);
2627 for (i = 0; i < *nperms; i++)
2628 kfree((*perms)[i]);
2629 kfree(*perms);
2630 return rc;
2633 int security_get_reject_unknown(void)
2635 return policydb.reject_unknown;
2638 int security_get_allow_unknown(void)
2640 return policydb.allow_unknown;
2644 * security_policycap_supported - Check for a specific policy capability
2645 * @req_cap: capability
2647 * Description:
2648 * This function queries the currently loaded policy to see if it supports the
2649 * capability specified by @req_cap. Returns true (1) if the capability is
2650 * supported, false (0) if it isn't supported.
2653 int security_policycap_supported(unsigned int req_cap)
2655 int rc;
2657 read_lock(&policy_rwlock);
2658 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2659 read_unlock(&policy_rwlock);
2661 return rc;
2664 struct selinux_audit_rule {
2665 u32 au_seqno;
2666 struct context au_ctxt;
2669 void selinux_audit_rule_free(void *vrule)
2671 struct selinux_audit_rule *rule = vrule;
2673 if (rule) {
2674 context_destroy(&rule->au_ctxt);
2675 kfree(rule);
2679 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2681 struct selinux_audit_rule *tmprule;
2682 struct role_datum *roledatum;
2683 struct type_datum *typedatum;
2684 struct user_datum *userdatum;
2685 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2686 int rc = 0;
2688 *rule = NULL;
2690 if (!ss_initialized)
2691 return -EOPNOTSUPP;
2693 switch (field) {
2694 case AUDIT_SUBJ_USER:
2695 case AUDIT_SUBJ_ROLE:
2696 case AUDIT_SUBJ_TYPE:
2697 case AUDIT_OBJ_USER:
2698 case AUDIT_OBJ_ROLE:
2699 case AUDIT_OBJ_TYPE:
2700 /* only 'equals' and 'not equals' fit user, role, and type */
2701 if (op != Audit_equal && op != Audit_not_equal)
2702 return -EINVAL;
2703 break;
2704 case AUDIT_SUBJ_SEN:
2705 case AUDIT_SUBJ_CLR:
2706 case AUDIT_OBJ_LEV_LOW:
2707 case AUDIT_OBJ_LEV_HIGH:
2708 /* we do not allow a range, indicated by the presense of '-' */
2709 if (strchr(rulestr, '-'))
2710 return -EINVAL;
2711 break;
2712 default:
2713 /* only the above fields are valid */
2714 return -EINVAL;
2717 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2718 if (!tmprule)
2719 return -ENOMEM;
2721 context_init(&tmprule->au_ctxt);
2723 read_lock(&policy_rwlock);
2725 tmprule->au_seqno = latest_granting;
2727 switch (field) {
2728 case AUDIT_SUBJ_USER:
2729 case AUDIT_OBJ_USER:
2730 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2731 if (!userdatum)
2732 rc = -EINVAL;
2733 else
2734 tmprule->au_ctxt.user = userdatum->value;
2735 break;
2736 case AUDIT_SUBJ_ROLE:
2737 case AUDIT_OBJ_ROLE:
2738 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2739 if (!roledatum)
2740 rc = -EINVAL;
2741 else
2742 tmprule->au_ctxt.role = roledatum->value;
2743 break;
2744 case AUDIT_SUBJ_TYPE:
2745 case AUDIT_OBJ_TYPE:
2746 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2747 if (!typedatum)
2748 rc = -EINVAL;
2749 else
2750 tmprule->au_ctxt.type = typedatum->value;
2751 break;
2752 case AUDIT_SUBJ_SEN:
2753 case AUDIT_SUBJ_CLR:
2754 case AUDIT_OBJ_LEV_LOW:
2755 case AUDIT_OBJ_LEV_HIGH:
2756 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2757 break;
2760 read_unlock(&policy_rwlock);
2762 if (rc) {
2763 selinux_audit_rule_free(tmprule);
2764 tmprule = NULL;
2767 *rule = tmprule;
2769 return rc;
2772 /* Check to see if the rule contains any selinux fields */
2773 int selinux_audit_rule_known(struct audit_krule *rule)
2775 int i;
2777 for (i = 0; i < rule->field_count; i++) {
2778 struct audit_field *f = &rule->fields[i];
2779 switch (f->type) {
2780 case AUDIT_SUBJ_USER:
2781 case AUDIT_SUBJ_ROLE:
2782 case AUDIT_SUBJ_TYPE:
2783 case AUDIT_SUBJ_SEN:
2784 case AUDIT_SUBJ_CLR:
2785 case AUDIT_OBJ_USER:
2786 case AUDIT_OBJ_ROLE:
2787 case AUDIT_OBJ_TYPE:
2788 case AUDIT_OBJ_LEV_LOW:
2789 case AUDIT_OBJ_LEV_HIGH:
2790 return 1;
2794 return 0;
2797 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2798 struct audit_context *actx)
2800 struct context *ctxt;
2801 struct mls_level *level;
2802 struct selinux_audit_rule *rule = vrule;
2803 int match = 0;
2805 if (!rule) {
2806 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2807 "selinux_audit_rule_match: missing rule\n");
2808 return -ENOENT;
2811 read_lock(&policy_rwlock);
2813 if (rule->au_seqno < latest_granting) {
2814 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2815 "selinux_audit_rule_match: stale rule\n");
2816 match = -ESTALE;
2817 goto out;
2820 ctxt = sidtab_search(&sidtab, sid);
2821 if (!ctxt) {
2822 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2823 "selinux_audit_rule_match: unrecognized SID %d\n",
2824 sid);
2825 match = -ENOENT;
2826 goto out;
2829 /* a field/op pair that is not caught here will simply fall through
2830 without a match */
2831 switch (field) {
2832 case AUDIT_SUBJ_USER:
2833 case AUDIT_OBJ_USER:
2834 switch (op) {
2835 case Audit_equal:
2836 match = (ctxt->user == rule->au_ctxt.user);
2837 break;
2838 case Audit_not_equal:
2839 match = (ctxt->user != rule->au_ctxt.user);
2840 break;
2842 break;
2843 case AUDIT_SUBJ_ROLE:
2844 case AUDIT_OBJ_ROLE:
2845 switch (op) {
2846 case Audit_equal:
2847 match = (ctxt->role == rule->au_ctxt.role);
2848 break;
2849 case Audit_not_equal:
2850 match = (ctxt->role != rule->au_ctxt.role);
2851 break;
2853 break;
2854 case AUDIT_SUBJ_TYPE:
2855 case AUDIT_OBJ_TYPE:
2856 switch (op) {
2857 case Audit_equal:
2858 match = (ctxt->type == rule->au_ctxt.type);
2859 break;
2860 case Audit_not_equal:
2861 match = (ctxt->type != rule->au_ctxt.type);
2862 break;
2864 break;
2865 case AUDIT_SUBJ_SEN:
2866 case AUDIT_SUBJ_CLR:
2867 case AUDIT_OBJ_LEV_LOW:
2868 case AUDIT_OBJ_LEV_HIGH:
2869 level = ((field == AUDIT_SUBJ_SEN ||
2870 field == AUDIT_OBJ_LEV_LOW) ?
2871 &ctxt->range.level[0] : &ctxt->range.level[1]);
2872 switch (op) {
2873 case Audit_equal:
2874 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2875 level);
2876 break;
2877 case Audit_not_equal:
2878 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2879 level);
2880 break;
2881 case Audit_lt:
2882 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2883 level) &&
2884 !mls_level_eq(&rule->au_ctxt.range.level[0],
2885 level));
2886 break;
2887 case Audit_le:
2888 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2889 level);
2890 break;
2891 case Audit_gt:
2892 match = (mls_level_dom(level,
2893 &rule->au_ctxt.range.level[0]) &&
2894 !mls_level_eq(level,
2895 &rule->au_ctxt.range.level[0]));
2896 break;
2897 case Audit_ge:
2898 match = mls_level_dom(level,
2899 &rule->au_ctxt.range.level[0]);
2900 break;
2904 out:
2905 read_unlock(&policy_rwlock);
2906 return match;
2909 static int (*aurule_callback)(void) = audit_update_lsm_rules;
2911 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2912 u16 class, u32 perms, u32 *retained)
2914 int err = 0;
2916 if (event == AVC_CALLBACK_RESET && aurule_callback)
2917 err = aurule_callback();
2918 return err;
2921 static int __init aurule_init(void)
2923 int err;
2925 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2926 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2927 if (err)
2928 panic("avc_add_callback() failed, error %d\n", err);
2930 return err;
2932 __initcall(aurule_init);
2934 #ifdef CONFIG_NETLABEL
2936 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2937 * @secattr: the NetLabel packet security attributes
2938 * @sid: the SELinux SID
2940 * Description:
2941 * Attempt to cache the context in @ctx, which was derived from the packet in
2942 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2943 * already been initialized.
2946 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2947 u32 sid)
2949 u32 *sid_cache;
2951 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2952 if (sid_cache == NULL)
2953 return;
2954 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2955 if (secattr->cache == NULL) {
2956 kfree(sid_cache);
2957 return;
2960 *sid_cache = sid;
2961 secattr->cache->free = kfree;
2962 secattr->cache->data = sid_cache;
2963 secattr->flags |= NETLBL_SECATTR_CACHE;
2967 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2968 * @secattr: the NetLabel packet security attributes
2969 * @sid: the SELinux SID
2971 * Description:
2972 * Convert the given NetLabel security attributes in @secattr into a
2973 * SELinux SID. If the @secattr field does not contain a full SELinux
2974 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2975 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2976 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2977 * conversion for future lookups. Returns zero on success, negative values on
2978 * failure.
2981 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2982 u32 *sid)
2984 int rc = -EIDRM;
2985 struct context *ctx;
2986 struct context ctx_new;
2988 if (!ss_initialized) {
2989 *sid = SECSID_NULL;
2990 return 0;
2993 read_lock(&policy_rwlock);
2995 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2996 *sid = *(u32 *)secattr->cache->data;
2997 rc = 0;
2998 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
2999 *sid = secattr->attr.secid;
3000 rc = 0;
3001 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3002 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3003 if (ctx == NULL)
3004 goto netlbl_secattr_to_sid_return;
3006 context_init(&ctx_new);
3007 ctx_new.user = ctx->user;
3008 ctx_new.role = ctx->role;
3009 ctx_new.type = ctx->type;
3010 mls_import_netlbl_lvl(&ctx_new, secattr);
3011 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3012 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3013 secattr->attr.mls.cat) != 0)
3014 goto netlbl_secattr_to_sid_return;
3015 memcpy(&ctx_new.range.level[1].cat,
3016 &ctx_new.range.level[0].cat,
3017 sizeof(ctx_new.range.level[0].cat));
3019 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3020 goto netlbl_secattr_to_sid_return_cleanup;
3022 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3023 if (rc != 0)
3024 goto netlbl_secattr_to_sid_return_cleanup;
3026 security_netlbl_cache_add(secattr, *sid);
3028 ebitmap_destroy(&ctx_new.range.level[0].cat);
3029 } else {
3030 *sid = SECSID_NULL;
3031 rc = 0;
3034 netlbl_secattr_to_sid_return:
3035 read_unlock(&policy_rwlock);
3036 return rc;
3037 netlbl_secattr_to_sid_return_cleanup:
3038 ebitmap_destroy(&ctx_new.range.level[0].cat);
3039 goto netlbl_secattr_to_sid_return;
3043 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3044 * @sid: the SELinux SID
3045 * @secattr: the NetLabel packet security attributes
3047 * Description:
3048 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3049 * Returns zero on success, negative values on failure.
3052 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3054 int rc;
3055 struct context *ctx;
3057 if (!ss_initialized)
3058 return 0;
3060 read_lock(&policy_rwlock);
3061 ctx = sidtab_search(&sidtab, sid);
3062 if (ctx == NULL) {
3063 rc = -ENOENT;
3064 goto netlbl_sid_to_secattr_failure;
3066 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3067 GFP_ATOMIC);
3068 if (secattr->domain == NULL) {
3069 rc = -ENOMEM;
3070 goto netlbl_sid_to_secattr_failure;
3072 secattr->attr.secid = sid;
3073 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3074 mls_export_netlbl_lvl(ctx, secattr);
3075 rc = mls_export_netlbl_cat(ctx, secattr);
3076 if (rc != 0)
3077 goto netlbl_sid_to_secattr_failure;
3078 read_unlock(&policy_rwlock);
3080 return 0;
3082 netlbl_sid_to_secattr_failure:
3083 read_unlock(&policy_rwlock);
3084 return rc;
3086 #endif /* CONFIG_NETLABEL */